forked from asteroid-team/asteroid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsystem.py
129 lines (116 loc) · 5.54 KB
/
system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from asteroid.engine.system import System as SystemCore
class SystemTwoStep(SystemCore):
"""
Inherits from the core system class and overrides the methods for the
common steps as well the train and evaluation steps for the two-step
source separation.
Args:
model (torch.nn.Module): Instance of model.
optimizer (torch.optim.Optimizer): Instance or list of optimizers.
loss_func (callable): Loss function with signature
(est_targets, targets).
train_loader (torch.utils.data.DataLoader): Training dataloader.
val_loader (torch.utils.data.DataLoader): Validation dataloader.
scheduler (torch.optim.lr_scheduler._LRScheduler): Instance, or list
of learning rate schedulers.
config: Anything to be saved with the checkpoints during training.
The config dictionary to re-instantiate the run for example.
module (str):
'separator': The two step is used for training or evaluation the
separation module only.
'filterbank': The two step approach is used for training only the
adaptive encoder/decoder part or in other words the
filterbank.
For more info take a look at method common_step_two_step_separtion()
.. note:: By default, `training_step` (used by `pytorch-lightning` in the
training loop) and `validation_step` (used for the validation loop)
share `common_step`. If you want different behavior for the training
loop and the validation loop, overwrite both `training_step` and
`validation_step` instead.
"""
def __init__(
self,
model,
optimizer,
loss_func,
train_loader,
val_loader=None,
scheduler=None,
config=None,
module=None,
):
super().__init__(
model,
optimizer,
loss_func,
train_loader,
val_loader=val_loader,
scheduler=scheduler,
config=config,
)
assert module in ["filterbank", "separator"], (
"If the two-step "
"approach is used then either filterbank or separator has "
"to be used but got: {}".format(module)
)
self.module = module
def common_step(self, batch, train=True):
"""Common forward step between training and validation.
The function of this method is to unpack the data given by the loader,
forward the batch through the model and compute the loss for the
separation module and the filterbank when the optimization process
for source separation is breaken in two distinct processes as
proposed in [1].
Args:
batch: the object returned by the loader (a list of torch.Tensor
in most cases) but can be something else.
train (bool): In case of training or validation the
filterbank will return the estimated time signals. However,
in training mode the separator will be trained using the
ideal latent targets and it will estimate the corresponding
latent representations of the sources as proposed in [1].
Returns:
dict:
``'loss'``: loss
``'log'``: dict with tensorboard logs
References:
[1]: Tzinis, E., Venkataramani, S., Wang, Z., Subakan, Y. C., and
Smaragdis, P., "Two-Step Sound Source Separation:
Training on Learned Latent Targets." In Acoustics, Speech
and Signal Processing (ICASSP), 2020 IEEE International
Conference. https://arxiv.org/abs/1910.09804
"""
mixture_time, true_sources_time = batch
if self.module == "filterbank":
est_sources_time, _ = self(mixture_time, true_sources_time)
est_sources_time_mean = est_sources_time.mean(-1, keepdims=True)
true_sources_time_mean = true_sources_time.mean(-1, keepdims=True)
return self.loss_func(
est_sources_time - est_sources_time_mean, true_sources_time - true_sources_time_mean
)
# Here we train or validate the separator. In training we need the
# latent targets to regress on. In validation we just provide the
# estimated time domain signals.
if train:
latent_targets = self.model.get_ideal_latent_targets(mixture_time, true_sources_time)
est_latents = self.model.estimate_latent_representations(mixture_time)
batch_size, n_sources = est_latents.shape[0], est_latents.shape[1]
# See section 2.2 of the paper
return self.loss_func(
est_latents.view(batch_size, n_sources, -1),
latent_targets.view(batch_size, n_sources, -1),
)
else:
est_sources_time = self.model(mixture_time)
est_sources_time_mean = est_sources_time.mean(-1, keepdims=True)
true_sources_time_mean = true_sources_time.mean(-1, keepdims=True)
return self.loss_func(
est_sources_time - est_sources_time_mean, true_sources_time - true_sources_time_mean
)
def training_step(self, batch, batch_nb):
loss = self.common_step(batch, train=True)
tensorboard_logs = {"train_loss": loss}
return {"loss": loss, "log": tensorboard_logs}
def validation_step(self, batch, batch_nb):
loss = self.common_step(batch, train=False)
return {"val_loss": loss}