-
Notifications
You must be signed in to change notification settings - Fork 14
/
train.py
245 lines (210 loc) · 9.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import argparse
import os
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from audio import Audio
from utils.model import get_model, get_vocoder, get_param_num
from utils.tools import to_device, log, synth_one_sample
from dataset import Dataset
from evaluate import evaluate
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args, configs):
print("Prepare training ...")
preprocess_config, model_config, train_config = configs
# Get dataset
dataset = Dataset(
"train.txt", preprocess_config, train_config, sort=True, drop_last=True
)
batch_size = train_config["optimizer"]["batch_size"]
group_size = 4 # Set this larger than 1 to enable sorting in Dataset
assert batch_size * group_size < len(dataset)
loader = DataLoader(
dataset,
batch_size=batch_size * group_size,
shuffle=True,
collate_fn=dataset.collate_fn,
)
audio_processor = Audio(preprocess_config)
# Prepare model
model, optimizer = get_model(args, configs, device, train=True)
# model = nn.DataParallel(model)
num_param = get_param_num(model)
print("Number of VAENAR Parameters:", num_param)
# Load vocoder
vocoder = get_vocoder(model_config, device)
# Init logger
for p in train_config["path"].values():
os.makedirs(p, exist_ok=True)
train_log_path = os.path.join(train_config["path"]["log_path"], "train")
val_log_path = os.path.join(train_config["path"]["log_path"], "val")
os.makedirs(train_log_path, exist_ok=True)
os.makedirs(val_log_path, exist_ok=True)
train_logger = SummaryWriter(train_log_path)
val_logger = SummaryWriter(val_log_path)
# Training
step = args.restore_step + 1
epoch = 1
grad_acc_step = train_config["optimizer"]["grad_acc_step"]
grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"]
total_step = train_config["step"]["total_step"]
log_step = train_config["step"]["log_step"]
save_step = train_config["step"]["save_step"]
synth_step = train_config["step"]["synth_step"]
val_step = train_config["step"]["val_step"]
intervals = train_config["alignment"]["reduce_interval"]
rfs = train_config["alignment"]["reduction_factors"]
length_weight = train_config["length"]["length_weight"]
kl_weight_init = train_config["kl"]["kl_weight_init"]
kl_weight_end = train_config["kl"]["kl_weight_end"]
kl_weight_inc_epochs = train_config["kl"]["kl_weight_increase_epoch"]
kl_weight_step = (kl_weight_end - kl_weight_init) / kl_weight_inc_epochs
outer_bar = tqdm(total=total_step, desc="Training", position=0)
outer_bar.n = args.restore_step
outer_bar.update()
# reduction factor computation
def _get_reduction_factor(ep):
i = 0
while i < len(intervals) and intervals[i] <= ep:
i += 1
i = i - 1 if i > 0 else 0
return rfs[i]
while True:
reduction_factor = _get_reduction_factor(epoch)
kl_weight = kl_weight_init + kl_weight_step * epoch if epoch <= kl_weight_inc_epochs else kl_weight_end
inner_bar = tqdm(total=len(loader), desc="Epoch {}".format(epoch), position=1)
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
if step == 1:
with torch.no_grad():
model.init(text_inputs=batch[2:][1], mel_lengths=batch[2:][5], text_lengths=batch[2:][2])
# Forward
(predictions, mel_l2, kl_divergence, length_l2, dec_alignments, reduced_mel_lens, *_) = model(
*(batch[2:]),
reduce_loss=True,
reduction_factor=reduction_factor
)
# Cal Loss
total_loss = mel_l2 + length_weight * length_l2 \
+ kl_weight * torch.max(kl_divergence, torch.tensor(0., device=device))
# Backward
total_loss = total_loss / grad_acc_step
total_loss.backward()
if step % grad_acc_step == 0:
# Clipping gradients to avoid gradient explosion
nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh)
# Update weights
optimizer.step_and_update_lr()
optimizer.zero_grad()
if step % log_step == 0:
losses = [l.item() for l in list([total_loss, mel_l2, kl_divergence, length_l2])]
message1 = "Step {}/{}, ".format(step, total_step)
message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, KLD Loss: {:.4f}, Duration Loss: {:.4f}".format(
*losses
)
with open(os.path.join(train_log_path, "log.txt"), "a") as f:
f.write(message1 + message2 + "\n")
outer_bar.write(message1 + message2)
log(train_logger, step, losses=losses, kl_weight=kl_weight)
if step % synth_step == 0:
fig, attn_figs, wav_reconstruction, wav_prediction, tag = synth_one_sample(
batch,
predictions,
dec_alignments,
reduced_mel_lens,
vocoder,
audio_processor,
model_config,
preprocess_config,
)
log(
train_logger,
fig=fig,
tag="Training/step_{}_{}".format(step, tag),
)
for attn_idx, attn_fig in enumerate(attn_figs):
log(
train_logger,
fig=attn_fig,
tag="Training_dec_attn_{}/step_{}_{}".format(attn_idx, step, tag),
)
sampling_rate = preprocess_config["preprocessing"]["audio"][
"sampling_rate"
]
log(
train_logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_reconstructed".format(step, tag),
)
log(
train_logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_synthesized".format(step, tag),
)
if step % val_step == 0:
model.eval()
message = evaluate(
model,
step,
configs,
reduction_factor,
length_weight,
kl_weight,
val_logger,
vocoder,
audio_processor,
len(losses),
device,
)
with open(os.path.join(val_log_path, "log.txt"), "a") as f:
f.write(message + "\n")
outer_bar.write(message)
model.train()
if step % save_step == 0:
torch.save(
{
"model": model.state_dict(),
"optimizer": optimizer._optimizer.state_dict(),
},
os.path.join(
train_config["path"]["ckpt_path"],
"{}.pth.tar".format(step),
),
)
if step == total_step:
quit()
step += 1
outer_bar.update(1)
inner_bar.update(1)
epoch += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, default=0)
parser.add_argument(
"-p",
"--preprocess_config",
type=str,
required=True,
help="path to preprocess.yaml",
)
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml"
)
parser.add_argument(
"-t", "--train_config", type=str, required=True, help="path to train.yaml"
)
args = parser.parse_args()
# Read Config
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
configs = (preprocess_config, model_config, train_config)
main(args, configs)