-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# Copyright (c) 2023 kamyu. All rights reserved. | ||
# | ||
# Meta Hacker Cup 2023 Round 2 - Problem D. Tower Rush | ||
# https://www.facebook.com/codingcompetitions/hacker-cup/2023/round-2/problems/D | ||
# | ||
# Time: O(NlogN) | ||
# Space: O(N) | ||
# | ||
|
||
from collections import Counter | ||
|
||
def linear_sieve_of_eratosthenes(n): # Time: O(n), Space: O(n) | ||
primes = [] | ||
spf = [-1]*(n+1) # the smallest prime factor | ||
for i in range(2, n+1): | ||
if spf[i] == -1: | ||
spf[i] = i | ||
primes.append(i) | ||
for p in primes: | ||
if i*p > n or p > spf[i]: | ||
break | ||
spf[i*p] = p | ||
return spf # modified | ||
|
||
# https://www.geeksforgeeks.org/program-for-mobius-function-set-2/ | ||
def mobius(spf): # Time: O(n), Space: O(n) | ||
mu = [0]*len(spf) | ||
for i in range(1, len(mu)): | ||
mu[i] = 1 if i == 1 else 0 if spf[i//spf[i]] == spf[i] else -mu[i//spf[i]] | ||
return mu | ||
|
||
def lazy_init(n): | ||
while len(INV) <= n: # lazy initialization | ||
FACT.append(FACT[-1]*len(INV) % MOD) | ||
INV.append(INV[MOD%len(INV)]*(MOD-MOD//len(INV)) % MOD) # https://cp-algorithms.com/algebra/module-inverse.html | ||
INV_FACT.append(INV_FACT[-1]*INV[-1] % MOD) | ||
|
||
def factorial(n): | ||
lazy_init(n) | ||
return FACT[n] | ||
|
||
def inv_factorial(n): | ||
lazy_init(n) | ||
return INV_FACT[n] | ||
|
||
def nCr(n, k): | ||
if n < k: | ||
return 0 | ||
return factorial(n)*inv_factorial(k)*inv_factorial(n-k) % MOD | ||
|
||
def tower_rush(): | ||
N, K, D = list(map(int, input().split())) | ||
H = list(map(int, input().split())) | ||
cnt = Counter() | ||
for x in H: | ||
for d in DIVISORS[x]: | ||
cnt[d] += 1 | ||
max_d = max(cnt.keys()) | ||
result = 0 | ||
for d in DIVISORS[D]: | ||
for i in range(max_d//d+1): | ||
if d*i not in cnt: | ||
continue | ||
result = (result+nCr(cnt[d*i], K)*MU[i])%MOD | ||
return result*factorial(K)%MOD | ||
|
||
MOD = 10**9+7 | ||
MAX_N = 10**6 | ||
FACT, INV, INV_FACT = [[1]*2 for _ in range(3)] | ||
MU = mobius(linear_sieve_of_eratosthenes(MAX_N)) | ||
DIVISORS = [[] for _ in range(MAX_N+1)] | ||
for i in range(1, MAX_N+1): | ||
for j in range(i, MAX_N+1, i): | ||
DIVISORS[j].append(i) | ||
for case in range(int(input())): | ||
print('Case #%d: %s' % (case+1, tower_rush())) |