Skip to content

kaankalaycioglu/ML3DProject

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Voxel-Aware AttentionNet (VAAN) for 3D Object Detection: Enhancing Voxel R-CNN with ERPN and GLENet

As a basis, we used the GLENet implementation. The ReadMe file is shown below. We have modified it and added the .yaml file to run the full modified network. There were significant struggles to run the code on an NVIDIA 30** GPU. We therefore recommend to use the docker image djiajun1206/pcdet:python3.7_pytorch1.10 to run the project. Follow the instructions below and train the model with our GLENet_VR_DSA_ERPN.yaml file.

GLENet

PWC arXiv visitors

Overview

Introduction

Implementation of paper: "GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation". The implementation contains two parts, GLENet for generating label uncertainty and probability detectors part implemented based on [OpenPcdet 0.5.2].

Fig.1 Visual results of GLENet. The ground-truth and predictions are colored in red and green

Installation

Requrements

Install

  • a. install dependent python libraries:
cd GLENet;pip install -r requirements.txt 
  • b. Install the SparseConv library, we use the implementation from [spconv].
    • If you use PyTorch 1.1, then make sure you install the spconv v1.0 with (commit 8da6f96) instead of the latest one.
    • If you use PyTorch 1.3+, then you need to install the spconv v1.2. As mentioned by the author of spconv, you need to use their docker if you use PyTorch 1.4+.
  • c. Install this pcdet library and its dependent libraries by running the following command:
python setup.py develop

Dataset Preparation

KITTI Dataset

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes could be downloaded from [road plane], which are optional for data augmentation in the training):
GLENet
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & planes
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── cvae_uncertainty
├── pcdet
├── tools
  • Generate the data infos by running the following command:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

Waymo Open Dataset

  • Please download the official Waymo Open Dataset(v1.2.0), including the training data training_0000.tar~training_0031.tar and the validation data validation_0000.tar~validation_0007.tar.
  • Unzip all the above xxxx.tar files to the directory of data/waymo/raw_data as follows (You could get 798 train tfrecord and 202 val tfrecord ):
GLENet
├── data
│   ├── waymo
│   │   │── ImageSets
│   │   │── raw_data
│   │   │   │── segment-xxxxxxxx.tfrecord
|   |   |   |── ...
|   |   |── waymo_processed_data_v0_5_0
│   │   │   │── segment-xxxxxxxx/
|   |   |   |── ...
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1/
│   │   │── waymo_processed_data_v0_5_0_waymo_dbinfos_train_sampled_1.pkl
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1_global.npy (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_train.pkl (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_val.pkl (optional)
├── cvae_uncertainty
├── pcdet
├── tools
  • Install the official waymo-open-dataset by running the following command:
pip3 install --upgrade pip
# tf 2.0.0
pip3 install waymo-open-dataset-tf-2-5-0 --user
  • Extract point cloud data from tfrecord and generate data infos by running the following command (it takes several hours, and you could refer to data/waymo/waymo_processed_data_v0_5_0 to see how many records that have been processed):
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos \
    --cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml

Note that you do not need to install waymo-open-dataset if you have already processed the data before and do not need to evaluate with official Waymo Metrics.

Generate Label Uncertainty with GLEnet

step 1.0: prepare data for GLENet

ln -s data/kitti cvae_uncertainty
ln -s data/waymo cvae_uncertainty

step1.1: Train GLENet:

cd cvae_uncertainty;mkdir -p logs;
exp_id=exp20 # you can set other exp_id
for iter in `seq 0 9`;do
    sed "s@# FOLD_IDX: 0@FOLD_IDX: ${iter}@" cfgs/${exp_id}_gen_ori.yaml > cfgs/${exp_id}_gen.yaml
    grep FOLD cfgs/${exp_id}_gen.yaml
    CUDA_VISIBLE_DEVICES=0,1 bash scripts/dist_train.sh 2 --cfg_file cfgs/${exp_id}_gen.yaml --tcp_port 18889  --max_ckpt_save_num 10  --workers 1 --extra_tag fold_${iter} &>> logs/${exp_id}_gen_fold_${iter}.log
done

step 1.2: GLENet Prediction:

cd cvae_uncertainty;
exp_id=exp20
for iter in `seq 0 9`;do
    sed "s@# FOLD_IDX: 0@FOLD_IDX: ${iter}@" cfgs/${exp_id}_gen_ori.yaml > cfgs/${exp_id}_gen.yaml
    grep FOLD cfgs/${exp_id}_gen.yaml
    sh predict.sh ${exp_id}_gen fold_${iter} 400 0
done

step 1.3: Generate and Save Label Uncertainty

  • mkdir -p output/uncertainty_dump
  • python mapping_uncertainty.py
  • python change_gt_infos.py

Then you can use the new *.pkl that contains label uncertainty to replace the origin file.

We provide the kitti_infos_train.pkl and kitti_dbinfos_train.pkl that contain label uncertainty.

Probabilistic Object Detectors

Training

cd tools;
python train.py --cfg_file ./cfgs/kitti_models/GLENet_VR.yaml

Multi gpu training, assuming you have 4 gpus:

CUDA_VISIBLE_DEVICES=0,1,2,3 bash scripts/dist_train.sh 4 --cfg_file ./cfgs/kitti_models/GLENet_VR.yaml

Testing

cd tools/

Single gpu testing for all saved checkpoints, assuming you have 4 gpus:

python test.py --eval_all --cfg_file ./cfgs/kitti_models/GLENet_VR.yaml

Multi gpu testing for all saved checkpoints, assuming you have 4 gpus:

CUDA_VISIBLE_DEVICES=0,1,2,3 bash scripts/dist_test.sh 4 --eval_all --cfg_file ./cfgs/kitti_models/GLENet_VR.yaml

Multi gpu testing a specific checkpoint, assuming you have 4 gpus and checkpoint_39 is your best checkpoint :

CUDA_VISIBLE_DEVICES=0,1,2,3 bash scripts/dist_test.sh 4  --cfg_file ./cfgs/kitti_models/GLENet_VR.yaml --ckpt ../output/GLENet_VR/default/ckpt/checkpoint_epoch_80.pth

Pretrained Models

We provide the pre-trained models for car class on the KITTI dataset.

Method Simple@R11 Moderate@R11 Hard@R11 Moderate@R40 Download
SECOND(Baseline) 88.61 78.62 77.22 79.94 -
GLENet-S(Ours) 88.60 84.41 78.42 84.81 Download
CIA-SSD(Baseline) 90.04 79.81 78.80 84.16 -
GLENet-C(Ours) 89.81 84.54 78.82 85.19 Download
Voxel R-CNN(Baseline) 89.41 84.52 78.93 85.29 -
GLENet-VR(Ours) 89.95 86.49 79.18 86.23 Download

Citation

If you find this work useful in your research, please consider cite:

@article{zhang2022glenet,
  title={GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation},
  author={Zhang, Yifan and Zhang, Qijian and Zhu, Zhiyu and Hou, Junhui and Yuan, Yixuan},
  journal={arXiv preprint arXiv:2207.02466},
  year={2022}
}

License

GLENet is released under the Apache 2.0 license.

Acknowledgement

Thanks for the OpenPCDet, the implementation of probabilistic object detectors part is mainly based on the pcdet v0.5.2.

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.7%
  • Cuda 8.1%
  • C++ 5.4%
  • Other 0.8%