This directory contains Dockerfile
to make it easy to build and run LightGBM via Docker.
Follow the general installation instructions on the Docker site:
Build a Docker image with LightGBM CLI:
mkdir lightgbm-docker
cd lightgbm-docker
wget https://raw.githubusercontent.com/Microsoft/LightGBM/master/docker/dockerfile-cli
docker build -t lightgbm-cli -f dockerfile-cli .
where lightgbm-cli
is the desired Docker image name.
Run the CLI from the container:
docker run --rm -it \
--volume $HOME/lgbm.conf:/lgbm.conf \
--volume $HOME/model.txt:/model.txt \
--volume $HOME/tmp:/out \
lightgbm-cli \
config=lgbm.conf
In the above example, three volumes are mounted from the host machine to the Docker container:
lgbm.conf
- task config, for example
app=multiclass
num_class=3
task=convert_model
input_model=model.txt
convert_model=/out/predict.cpp
convert_model_language=cpp
model.txt
- an input file for the task, could be training data or, in this case, a pre-trained model.out
- a directory to store the output of the task, notice thatconvert_model
in the task config is using it.
config=lgbm.conf
is a command-line argument passed to the lightgbm
executable, more arguments can
be passed if required.
Build the container, for Python users:
mkdir lightgbm-docker
cd lightgbm-docker
wget https://raw.githubusercontent.com/Microsoft/LightGBM/master/docker/dockerfile-python
docker build -t lightgbm -f dockerfile-python .
After build finished, run the container:
docker run --rm -it lightgbm