-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoruga_word2vec.py
240 lines (198 loc) · 7.56 KB
/
oruga_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-
"""
ORUGA: Optimizing Readability Using Genetic Algorithms
[Martinez-Gil2023a] J. Martinez-Gil, "Optimizing Readability Using Genetic Algorithms", arXiv preprint arXiv:2301.00374, 2023
@author: Jorge Martinez-Gil
"""
#print(r.flesch_kincaid().score)
#print(r.flesch().score)
#print(r.gunning_fog())
#print(r.coleman_liau())
#print(r.dale_chall())
#print(r.ari())
#print(r.linsear_write())
#print(r.spache())
#Coding of individuals
#-2, candidate but not synonym
#-1, special character (if necessary)
#0, not candidate
#1, replaced by 1st option
#2, replaced by 2nd option
#N, replaced by Nth option
# Modules
import pygad
import gensim
import gensim.downloader
import language_tool_python
from readability import Readability
google_news_vectors = gensim.downloader.load('word2vec-google-news-300')
text_array = []
index_array = []
#text
text = 'Austria emerged from the remnants of the Eastern and Hungarian March at the end of the first millennium. Originally a margraviate of Bavaria, it developed into a duchy of the Holy Roman Empire in 1156 and was later made an archduchy in 1453. In the 16th century, Vienna began serving as the empire administrative capital and Austria thus became the heartland of the Habsburg monarchy. After the dissolution of the Holy Roman Empire in 1806, Austria established its own empire, which became a great power and the dominant member of the German Confederation. The defeat in the Austro-Prussian War of 1866 led to the end of the Confederation and paved the way for the establishment of Austria-Hungary a year later.'
r = Readability(text)
initial_score = r.flesch_kincaid().score
#Creates a dictionary in order to store all the synonyms in main memory
resource = text.split()
Dict = {}
for i in resource:
if ',' in i:
i = i.replace(',', '')
if '.' in i:
i = i.replace('.', '')
if (not i[0].isupper() and len(i) > 3):
if i in Dict.keys():
print ("Processing...Please wait")
else:
try:
synonyms = google_news_vectors.most_similar(i, topn=6)
except KeyError as e:
print (e)
synonyms = None
if synonyms is not None:
Dict[i] = []
Dict[i] = synonyms
def listToString(s):
str1 = ""
for ele in s:
str1 += str(ele)
str1 += " "
str1 = str1.replace(' ,', ',')
str1 = str1.replace('_', ' ')
return str1
def correct_mistakes (text):
my_tool = language_tool_python.LanguageTool('en-US')
my_text = text
my_matches = my_tool.check(my_text)
myMistakes = []
myCorrections = []
startPositions = []
endPositions = []
# using the for-loop
for rules in my_matches:
if len(rules.replacements) > 0:
startPositions.append(rules.offset)
endPositions.append(rules.errorLength + rules.offset)
myMistakes.append(my_text[rules.offset : rules.errorLength + rules.offset])
myCorrections.append(rules.replacements[0])
# creating new object
my_NewText = list(my_text)
# rewriting the correct passage
for n in range(len(startPositions)):
for i in range(len(my_text)):
my_NewText[startPositions[n]] = myCorrections[n]
if (i > startPositions[n] and i < endPositions[n]):
my_NewText[i] = ""
my_NewText = "".join(my_NewText)
return my_NewText
def Synonym(word, number):
synonyms = []
if (Dict.get(word) is not None):
synonyms = Dict.get(word)
if (not synonyms):
return -2, word
elif number >= len(synonyms):
return len(synonyms)-1, synonyms[len(synonyms)-1][0]
else:
return int(number), synonyms[int(number-1)][0]
def obtain_text (solution):
res2 = text.split()
text_converted = []
index=0
for i in res2:
if solution[index] < 1:
text_converted.append (i)
elif solution[index] >= 1:
number, word = Synonym(i,solution[index])
text_converted.append (word.upper())
else:
print ('Error')
index += 1
result = listToString(text_converted)
return result
def fitness_func(solution, solution_idx):
#preprocessing
a = 0
for i in index_array:
if index_array[a] <= 0:
solution[a] = 0
a += 1
res2 = text.split()
text_converted = []
index=0
for i in res2:
if solution[index] < 1:
text_converted.append (i)
elif solution[index] >= 1:
number, word = Synonym(i,solution[index])
text_converted.append (word.upper())
else:
print ('Error')
index += 1
result = listToString(text_converted)
r = Readability(result)
return r.flesch_kincaid().score * -1
print (text)
res = text.split()
for i in res:
flag = 0
if ',' in i:
i = i.replace(',', '')
flag = 1
if '.' in i:
i = i.replace('.', '')
flag = 2
if (not i[0].isupper() and len(i) > 3 and i[-2:] != 'ed'):
number, word = Synonym(i,6)
text_array.append (word)
index_array.append (number)
else:
text_array.append (i)
index_array.append (0)
if flag == 1:
cad = str(text_array[-1])
text_array.pop()
cad = cad + str(',')
text_array.append (cad)
flag = 0
if flag == 2:
cad = str(text_array[-1])
text_array.pop()
cad = cad + str('.')
text_array.append (cad)
flag = 0
newText = listToString(text_array)
print(newText)
print(index_array)
# Parameters for the GA
function_inputs = index_array
num_generations = 100 # Number of generations
num_parents_mating = 10 # Number of solutions to be selected as parents in the mating pool
sol_per_pop = 20 # Number of solutions in the population
num_genes = len(function_inputs) # Number of genes
# Initialize the GA instance without the 'on_generation' argument
ga_instance = pygad.GA(num_generations=1, # Set to 1 because we are controlling the generations manually
num_parents_mating=num_parents_mating,
sol_per_pop=sol_per_pop,
num_genes=num_genes,
fitness_func=fitness_func)
last_fitness = 0 # Initialize last fitness for comparison
# Manually iterate through generations
for generation in range(num_generations):
ga_instance.run() # Run GA for one generation
# Getting the best solution after the current generation
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Generation = {}".format(generation + 1))
print("Fitness = {}".format(solution_fitness))
print("Change = {}".format(solution_fitness - last_fitness))
last_fitness = solution_fitness # Update the last fitness value
# At this point, the GA has completed all generations
# You can directly get the best solution details without passing any arguments
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Parameters of the best solution : {solution}".format(solution=solution))
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
new_text = correct_mistakes(obtain_text(solution))
rr = Readability(new_text)
print (new_text)
print ("Difference " + str(initial_score - rr.flesch_kincaid().score))