From c7ad3bd6ccf0cf6ca9a0c690685357849b7973d5 Mon Sep 17 00:00:00 2001 From: Jon Baer Date: Fri, 16 Feb 2024 08:12:59 -0500 Subject: [PATCH] Created using Colaboratory --- Collab_YOLO_WORLD.ipynb | 6658 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 6658 insertions(+) create mode 100644 Collab_YOLO_WORLD.ipynb diff --git a/Collab_YOLO_WORLD.ipynb b/Collab_YOLO_WORLD.ipynb new file mode 100644 index 0000000..5114e22 --- /dev/null +++ b/Collab_YOLO_WORLD.ipynb @@ -0,0 +1,6658 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rlsGVhscqjY0", + "outputId": "8a4b2a43-9fa1-41be-b462-5a0b9bd6199d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cloning into 'YOLO-World'...\n", + "remote: Enumerating objects: 197, done.\u001b[K\n", + "remote: Counting objects: 100% (64/64), done.\u001b[K\n", + "remote: Compressing objects: 100% (34/34), done.\u001b[K\n", + "remote: Total 197 (delta 41), reused 43 (delta 29), pack-reused 133\u001b[K\n", + "Receiving objects: 100% (197/197), 508.25 KiB | 4.58 MiB/s, done.\n", + "Resolving deltas: 100% (69/69), done.\n", + "Submodule 'third_party/mmyolo' (https://github.com/onuralpszr/mmyolo.git) registered for path 'third_party/mmyolo'\n", + "Cloning into '/content/YOLO-World/third_party/mmyolo'...\n", + "remote: Enumerating objects: 4944, done. \n", + "remote: Counting objects: 100% (1388/1388), done. \n", + "remote: Compressing objects: 100% (290/290), done. \n", + "remote: Total 4944 (delta 1180), reused 1102 (delta 1098), pack-reused 3556 \n", + "Receiving objects: 100% (4944/4944), 3.61 MiB | 17.01 MiB/s, done.\n", + "Resolving deltas: 100% (3195/3195), done.\n", + "Submodule path 'third_party/mmyolo': checked out '4d97b3a06609dba94b8ec584be2f2029cfdb7519'\n", + "/content/YOLO-World\n" + ] + } + ], + "source": [ + "!git clone --recursive https://github.com/AILab-CVC/YOLO-World\n", + "%cd YOLO-World/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "uE1GmCSAJHXC", + "outputId": "3c80c766-5af9-4df9-b8f8-23cab8aa25c3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting requests==2.28.2\n", + " Downloading requests-2.28.2-py3-none-any.whl (62 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.8/62.8 kB\u001b[0m \u001b[31m936.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting tqdm==4.65.0\n", + " Downloading tqdm-4.65.0-py3-none-any.whl (77 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.1/77.1 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting rich==13.4.2\n", + " Downloading rich-13.4.2-py3-none-any.whl (239 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m239.4/239.4 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests==2.28.2) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests==2.28.2) (3.6)\n", + "Collecting urllib3<1.27,>=1.21.1 (from requests==2.28.2)\n", + " Downloading urllib3-1.26.18-py2.py3-none-any.whl (143 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.8/143.8 kB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests==2.28.2) (2024.2.2)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich==13.4.2) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich==13.4.2) (2.16.1)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich==13.4.2) (0.1.2)\n", + "Installing collected packages: urllib3, tqdm, rich, requests\n", + " Attempting uninstall: urllib3\n", + " Found existing installation: urllib3 2.0.7\n", + " Uninstalling urllib3-2.0.7:\n", + " Successfully uninstalled urllib3-2.0.7\n", + " Attempting uninstall: tqdm\n", + " Found existing installation: tqdm 4.66.1\n", + " Uninstalling tqdm-4.66.1:\n", + " Successfully uninstalled tqdm-4.66.1\n", + " Attempting uninstall: rich\n", + " Found existing installation: rich 13.7.0\n", + " Uninstalling rich-13.7.0:\n", + " Successfully uninstalled rich-13.7.0\n", + " Attempting uninstall: requests\n", + " Found existing installation: requests 2.31.0\n", + " Uninstalling requests-2.31.0:\n", + " Successfully uninstalled requests-2.31.0\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "google-colab 1.0.0 requires requests==2.31.0, but you have requests 2.28.2 which is incompatible.\n", + "yfinance 0.2.36 requires requests>=2.31, but you have requests 2.28.2 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed requests-2.28.2 rich-13.4.2 tqdm-4.65.0 urllib3-1.26.18\n", + "Collecting openmim\n", + " Downloading openmim-0.3.9-py2.py3-none-any.whl (52 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m52.7/52.7 kB\u001b[0m \u001b[31m897.1 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: Click in /usr/local/lib/python3.10/dist-packages (from openmim) (8.1.7)\n", + "Collecting colorama (from openmim)\n", + " Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n", + "Collecting model-index (from openmim)\n", + " Downloading model_index-0.1.11-py3-none-any.whl (34 kB)\n", + "Collecting opendatalab (from openmim)\n", + " Downloading opendatalab-0.0.10-py3-none-any.whl (29 kB)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from openmim) (1.5.3)\n", + "Requirement already satisfied: pip>=19.3 in /usr/local/lib/python3.10/dist-packages (from openmim) (23.1.2)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from openmim) (2.28.2)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from openmim) (13.4.2)\n", + "Requirement already satisfied: tabulate in /usr/local/lib/python3.10/dist-packages (from openmim) (0.9.0)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from model-index->openmim) (6.0.1)\n", + "Requirement already satisfied: markdown in /usr/local/lib/python3.10/dist-packages (from model-index->openmim) (3.5.2)\n", + "Collecting ordered-set (from model-index->openmim)\n", + " Downloading ordered_set-4.1.0-py3-none-any.whl (7.6 kB)\n", + "Collecting pycryptodome (from opendatalab->openmim)\n", + " Downloading pycryptodome-3.20.0-cp35-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from opendatalab->openmim) (4.65.0)\n", + "Collecting openxlab (from opendatalab->openmim)\n", + " Downloading openxlab-0.0.34-py3-none-any.whl (299 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m299.2/299.2 kB\u001b[0m \u001b[31m34.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->openmim) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->openmim) (3.6)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->openmim) (1.26.18)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->openmim) (2024.2.2)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->openmim) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->openmim) (2023.4)\n", + "Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (from pandas->openmim) (1.25.2)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->openmim) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->openmim) (2.16.1)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->openmim) (0.1.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->openmim) (1.16.0)\n", + "Collecting oss2~=2.17.0 (from openxlab->opendatalab->openmim)\n", + " Downloading oss2-2.17.0.tar.gz (259 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m259.5/259.5 kB\u001b[0m \u001b[31m27.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting setuptools~=60.2.0 (from openxlab->opendatalab->openmim)\n", + " Downloading setuptools-60.2.0-py3-none-any.whl (953 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m953.1/953.1 kB\u001b[0m \u001b[31m62.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting crcmod>=1.7 (from oss2~=2.17.0->openxlab->opendatalab->openmim)\n", + " Downloading crcmod-1.7.tar.gz (89 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m89.7/89.7 kB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting aliyun-python-sdk-kms>=2.4.1 (from oss2~=2.17.0->openxlab->opendatalab->openmim)\n", + " Downloading aliyun_python_sdk_kms-2.16.2-py2.py3-none-any.whl (94 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.0/94.0 kB\u001b[0m \u001b[31m13.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting aliyun-python-sdk-core>=2.13.12 (from oss2~=2.17.0->openxlab->opendatalab->openmim)\n", + " Downloading aliyun-python-sdk-core-2.14.0.tar.gz (443 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m443.0/443.0 kB\u001b[0m \u001b[31m48.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting jmespath<1.0.0,>=0.9.3 (from aliyun-python-sdk-core>=2.13.12->oss2~=2.17.0->openxlab->opendatalab->openmim)\n", + " Downloading jmespath-0.10.0-py2.py3-none-any.whl (24 kB)\n", + "Requirement already satisfied: cryptography>=2.6.0 in /usr/local/lib/python3.10/dist-packages (from aliyun-python-sdk-core>=2.13.12->oss2~=2.17.0->openxlab->opendatalab->openmim) (42.0.2)\n", + "Requirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.10/dist-packages (from cryptography>=2.6.0->aliyun-python-sdk-core>=2.13.12->oss2~=2.17.0->openxlab->opendatalab->openmim) (1.16.0)\n", + "Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.12->cryptography>=2.6.0->aliyun-python-sdk-core>=2.13.12->oss2~=2.17.0->openxlab->opendatalab->openmim) (2.21)\n", + "Building wheels for collected packages: oss2, aliyun-python-sdk-core, crcmod\n", + " Building wheel for oss2 (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for oss2: filename=oss2-2.17.0-py3-none-any.whl size=112371 sha256=f0ac6420573ba0e6285f1345aaf18a4c4c6c502fad95d02347ccd91fe14a96ae\n", + " Stored in directory: /root/.cache/pip/wheels/87/04/7b/7e61b8157fdf211c5131375240d0d86ca82e2a88ead9672c88\n", + " Building wheel for aliyun-python-sdk-core (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for aliyun-python-sdk-core: filename=aliyun_python_sdk_core-2.14.0-py3-none-any.whl size=535289 sha256=2b0f9fb585c3aebd37583ce6a916ca24de0b9703ca9a9a5036be25c54618b83c\n", + " Stored in directory: /root/.cache/pip/wheels/16/3c/68/b7eab618d9f1d5e7d386296f1e07e2cf36aaa1eb5161885038\n", + " Building wheel for crcmod (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for crcmod: filename=crcmod-1.7-cp310-cp310-linux_x86_64.whl size=31408 sha256=9560ce6ccb95c437ca14e7f8ee93c16d04412fae59f8dbcbf3d79336178550c2\n", + " Stored in directory: /root/.cache/pip/wheels/85/4c/07/72215c529bd59d67e3dac29711d7aba1b692f543c808ba9e86\n", + "Successfully built oss2 aliyun-python-sdk-core crcmod\n", + "Installing collected packages: crcmod, setuptools, pycryptodome, ordered-set, jmespath, colorama, model-index, aliyun-python-sdk-core, aliyun-python-sdk-kms, oss2, openxlab, opendatalab, openmim\n", + " Attempting uninstall: setuptools\n", + " Found existing installation: setuptools 67.7.2\n", + " Uninstalling setuptools-67.7.2:\n", + " Successfully uninstalled setuptools-67.7.2\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "ipython 7.34.0 requires jedi>=0.16, which is not installed.\n", + "lida 0.0.10 requires fastapi, which is not installed.\n", + "lida 0.0.10 requires kaleido, which is not installed.\n", + "lida 0.0.10 requires python-multipart, which is not installed.\n", + "lida 0.0.10 requires uvicorn, which is not installed.\n", + "cvxpy 1.3.3 requires setuptools>65.5.1, but you have setuptools 60.2.0 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed aliyun-python-sdk-core-2.14.0 aliyun-python-sdk-kms-2.16.2 colorama-0.4.6 crcmod-1.7 jmespath-0.10.0 model-index-0.1.11 opendatalab-0.0.10 openmim-0.3.9 openxlab-0.0.34 ordered-set-4.1.0 oss2-2.17.0 pycryptodome-3.20.0 setuptools-60.2.0\n" + ] + }, + { + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "_distutils_hack", + "pkg_resources", + "setuptools" + ] + } + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in links: https://download.openmmlab.com/mmcv/dist/cu121/torch2.1.0/index.html\n", + "Collecting mmengine>=0.7.0\n", + " Downloading mmengine-0.10.3-py3-none-any.whl (451 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m451.7/451.7 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting addict (from mmengine>=0.7.0)\n", + " Downloading addict-2.4.0-py3-none-any.whl (3.8 kB)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.7.0) (3.7.1)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.7.0) (1.25.2)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.7.0) (6.0.1)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.7.0) (13.4.2)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.7.0) (2.4.0)\n", + "Collecting yapf (from mmengine>=0.7.0)\n", + " Downloading yapf-0.40.2-py3-none-any.whl (254 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m254.7/254.7 kB\u001b[0m \u001b[31m22.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: opencv-python>=3 in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.7.0) (4.8.0.76)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.7.0) (1.2.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.7.0) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.7.0) (4.48.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.7.0) (1.4.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.7.0) (23.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.7.0) (9.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.7.0) (3.1.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.7.0) (2.8.2)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->mmengine>=0.7.0) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->mmengine>=0.7.0) (2.16.1)\n", + "Requirement already satisfied: importlib-metadata>=6.6.0 in /usr/local/lib/python3.10/dist-packages (from yapf->mmengine>=0.7.0) (7.0.1)\n", + "Requirement already satisfied: platformdirs>=3.5.1 in /usr/local/lib/python3.10/dist-packages (from yapf->mmengine>=0.7.0) (4.2.0)\n", + "Requirement already satisfied: tomli>=2.0.1 in /usr/local/lib/python3.10/dist-packages (from yapf->mmengine>=0.7.0) (2.0.1)\n", + "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata>=6.6.0->yapf->mmengine>=0.7.0) (3.17.0)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->mmengine>=0.7.0) (0.1.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib->mmengine>=0.7.0) (1.16.0)\n", + "Installing collected packages: addict, yapf, mmengine\n", + "Successfully installed addict-2.4.0 mmengine-0.10.3 yapf-0.40.2\n", + "Looking in links: https://download.openmmlab.com/mmcv/dist/cu121/torch2.1.0/index.html\n", + "Collecting mmcv\n", + " Downloading https://download.openmmlab.com/mmcv/dist/cu121/torch2.1.0/mmcv-2.1.0-cp310-cp310-manylinux1_x86_64.whl (94.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.1/94.1 MB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: addict in /usr/local/lib/python3.10/dist-packages (from mmcv) (2.4.0)\n", + "Requirement already satisfied: mmengine>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from mmcv) (0.10.3)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from mmcv) (1.25.2)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from mmcv) (23.2)\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from mmcv) (9.4.0)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from mmcv) (6.0.1)\n", + "Requirement already satisfied: yapf in /usr/local/lib/python3.10/dist-packages (from mmcv) (0.40.2)\n", + "Requirement already satisfied: opencv-python>=3 in /usr/local/lib/python3.10/dist-packages (from mmcv) (4.8.0.76)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.3.0->mmcv) (3.7.1)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.3.0->mmcv) (13.4.2)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.3.0->mmcv) (2.4.0)\n", + "Requirement already satisfied: importlib-metadata>=6.6.0 in /usr/local/lib/python3.10/dist-packages (from yapf->mmcv) (7.0.1)\n", + "Requirement already satisfied: platformdirs>=3.5.1 in /usr/local/lib/python3.10/dist-packages (from yapf->mmcv) (4.2.0)\n", + "Requirement already satisfied: tomli>=2.0.1 in /usr/local/lib/python3.10/dist-packages (from yapf->mmcv) (2.0.1)\n", + "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata>=6.6.0->yapf->mmcv) (3.17.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.3.0->mmcv) (1.2.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.3.0->mmcv) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.3.0->mmcv) (4.48.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.3.0->mmcv) (1.4.5)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.3.0->mmcv) (3.1.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mmengine>=0.3.0->mmcv) (2.8.2)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->mmengine>=0.3.0->mmcv) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->mmengine>=0.3.0->mmcv) (2.16.1)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->mmengine>=0.3.0->mmcv) (0.1.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib->mmengine>=0.3.0->mmcv) (1.16.0)\n", + "Installing collected packages: mmcv\n", + "Successfully installed mmcv-2.1.0\n", + "Using pip 23.1.2 from /usr/local/lib/python3.10/dist-packages/pip (python 3.10)\n", + "Non-user install because site-packages writeable\n", + "Created temporary directory: /tmp/pip-build-tracker-ebv4bpax\n", + "Initialized build tracking at /tmp/pip-build-tracker-ebv4bpax\n", + "Created build tracker: /tmp/pip-build-tracker-ebv4bpax\n", + "Entered build tracker: /tmp/pip-build-tracker-ebv4bpax\n", + "Created temporary directory: /tmp/pip-install-trsbpnp0\n", + "Created temporary directory: /tmp/pip-ephem-wheel-cache-6qkffa7v\n", + "Obtaining file:///content/YOLO-World\n", + " Added file:///content/YOLO-World to build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + " Created temporary directory: /tmp/pip-build-env-yc0qx5yn\n", + " Running command pip subprocess to install build dependencies\n", + " Using pip 23.1.2 from /usr/local/lib/python3.10/dist-packages/pip (python 3.10)\n", + " Collecting setuptools\n", + " Downloading setuptools-69.1.0-py3-none-any.whl (819 kB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 819.3/819.3 kB 5.4 MB/s eta 0:00:00\n", + " Collecting wheel\n", + " Downloading wheel-0.42.0-py3-none-any.whl (65 kB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.4/65.4 kB 7.5 MB/s eta 0:00:00\n", + " Collecting torch\n", + " Downloading torch-2.2.0-cp310-cp310-manylinux1_x86_64.whl (755.5 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 755.5/755.5 MB 1.9 MB/s eta 0:00:00\n", + " Collecting filelock (from torch)\n", + " Downloading filelock-3.13.1-py3-none-any.whl (11 kB)\n", + " Collecting typing-extensions>=4.8.0 (from torch)\n", + " Downloading typing_extensions-4.9.0-py3-none-any.whl (32 kB)\n", + " Collecting sympy (from torch)\n", + " Downloading sympy-1.12-py3-none-any.whl (5.7 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 36.3 MB/s eta 0:00:00\n", + " Collecting networkx (from torch)\n", + " Downloading networkx-3.2.1-py3-none-any.whl (1.6 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 34.6 MB/s eta 0:00:00\n", + " Collecting jinja2 (from torch)\n", + " Downloading Jinja2-3.1.3-py3-none-any.whl (133 kB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.2/133.2 kB 14.2 MB/s eta 0:00:00\n", + " Collecting fsspec (from torch)\n", + " Downloading fsspec-2024.2.0-py3-none-any.whl (170 kB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 170.9/170.9 kB 21.6 MB/s eta 0:00:00\n", + " Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch)\n", + " Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 18.6 MB/s eta 0:00:00\n", + " Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch)\n", + " Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 823.6/823.6 kB 39.4 MB/s eta 0:00:00\n", + " Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch)\n", + " Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.1/14.1 MB 41.1 MB/s eta 0:00:00\n", + " Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch)\n", + " Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 731.7/731.7 MB 2.2 MB/s eta 0:00:00\n", + " Collecting nvidia-cublas-cu12==12.1.3.1 (from torch)\n", + " Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 410.6/410.6 MB 1.4 MB/s eta 0:00:00\n", + " Collecting nvidia-cufft-cu12==11.0.2.54 (from torch)\n", + " Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.6/121.6 MB 8.0 MB/s eta 0:00:00\n", + " Collecting nvidia-curand-cu12==10.3.2.106 (from torch)\n", + " Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.5/56.5 MB 10.0 MB/s eta 0:00:00\n", + " Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch)\n", + " Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 124.2/124.2 MB 8.2 MB/s eta 0:00:00\n", + " Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch)\n", + " Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.0/196.0 MB 2.5 MB/s eta 0:00:00\n", + " Collecting nvidia-nccl-cu12==2.19.3 (from torch)\n", + " Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 166.0/166.0 MB 4.1 MB/s eta 0:00:00\n", + " Collecting nvidia-nvtx-cu12==12.1.105 (from torch)\n", + " Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 99.1/99.1 kB 12.9 MB/s eta 0:00:00\n", + " Collecting triton==2.2.0 (from torch)\n", + " Downloading triton-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.9 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 167.9/167.9 MB 2.6 MB/s eta 0:00:00\n", + " Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch)\n", + " Downloading nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux1_x86_64.whl (20.5 MB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 20.5/20.5 MB 52.9 MB/s eta 0:00:00\n", + " Collecting MarkupSafe>=2.0 (from jinja2->torch)\n", + " Downloading MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)\n", + " Collecting mpmath>=0.19 (from sympy->torch)\n", + " Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n", + " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 45.6 MB/s eta 0:00:00\n", + " Installing collected packages: mpmath, wheel, typing-extensions, sympy, setuptools, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, networkx, MarkupSafe, fsspec, filelock, triton, nvidia-cusparse-cu12, nvidia-cudnn-cu12, jinja2, nvidia-cusolver-cu12, torch\n", + " Creating /tmp/pip-build-env-yc0qx5yn/overlay/local/bin\n", + " changing mode of /tmp/pip-build-env-yc0qx5yn/overlay/local/bin/wheel to 755\n", + " changing mode of /tmp/pip-build-env-yc0qx5yn/overlay/local/bin/isympy to 755\n", + " changing mode of /tmp/pip-build-env-yc0qx5yn/overlay/local/bin/convert-caffe2-to-onnx to 755\n", + " changing mode of /tmp/pip-build-env-yc0qx5yn/overlay/local/bin/convert-onnx-to-caffe2 to 755\n", + " changing mode of /tmp/pip-build-env-yc0qx5yn/overlay/local/bin/torchrun to 755\n", + " ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + " ipython 7.34.0 requires jedi>=0.16, which is not installed.\n", + " lida 0.0.10 requires fastapi, which is not installed.\n", + " lida 0.0.10 requires kaleido, which is not installed.\n", + " lida 0.0.10 requires python-multipart, which is not installed.\n", + " lida 0.0.10 requires uvicorn, which is not installed.\n", + " gcsfs 2023.6.0 requires fsspec==2023.6.0, but you have fsspec 2024.2.0 which is incompatible.\n", + " openxlab 0.0.34 requires setuptools~=60.2.0, but you have setuptools 69.1.0 which is incompatible.\n", + " torchaudio 2.1.0+cu121 requires torch==2.1.0, but you have torch 2.2.0 which is incompatible.\n", + " torchdata 0.7.0 requires torch==2.1.0, but you have torch 2.2.0 which is incompatible.\n", + " torchtext 0.16.0 requires torch==2.1.0, but you have torch 2.2.0 which is incompatible.\n", + " torchvision 0.16.0+cu121 requires torch==2.1.0, but you have torch 2.2.0 which is incompatible.\n", + " Successfully installed MarkupSafe-2.1.5 filelock-3.13.1 fsspec-2024.2.0 jinja2-3.1.3 mpmath-1.3.0 networkx-3.2.1 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.3.101 nvidia-nvtx-cu12-12.1.105 setuptools-69.1.0 sympy-1.12 torch-2.2.0 triton-2.2.0 typing-extensions-4.9.0 wheel-0.42.0\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Running command Checking if build backend supports build_editable\n", + " Checking if build backend supports build_editable ... \u001b[?25l\u001b[?25hdone\n", + " Running command Getting requirements to build editable\n", + " running egg_info\n", + " creating yolo_world.egg-info\n", + " writing yolo_world.egg-info/PKG-INFO\n", + " writing dependency_links to yolo_world.egg-info/dependency_links.txt\n", + " writing requirements to yolo_world.egg-info/requires.txt\n", + " writing top-level names to yolo_world.egg-info/top_level.txt\n", + " writing manifest file 'yolo_world.egg-info/SOURCES.txt'\n", + " reading manifest file 'yolo_world.egg-info/SOURCES.txt'\n", + " adding license file 'LICENSE'\n", + " writing manifest file 'yolo_world.egg-info/SOURCES.txt'\n", + " Getting requirements to build editable ... \u001b[?25l\u001b[?25hdone\n", + " Created temporary directory: /tmp/pip-modern-metadata-m5zxeuem\n", + " Running command Preparing editable metadata (pyproject.toml)\n", + " running dist_info\n", + " creating /tmp/pip-modern-metadata-m5zxeuem/yolo_world.egg-info\n", + " writing /tmp/pip-modern-metadata-m5zxeuem/yolo_world.egg-info/PKG-INFO\n", + " writing dependency_links to /tmp/pip-modern-metadata-m5zxeuem/yolo_world.egg-info/dependency_links.txt\n", + " writing requirements to /tmp/pip-modern-metadata-m5zxeuem/yolo_world.egg-info/requires.txt\n", + " writing top-level names to /tmp/pip-modern-metadata-m5zxeuem/yolo_world.egg-info/top_level.txt\n", + " writing manifest file '/tmp/pip-modern-metadata-m5zxeuem/yolo_world.egg-info/SOURCES.txt'\n", + " reading manifest file '/tmp/pip-modern-metadata-m5zxeuem/yolo_world.egg-info/SOURCES.txt'\n", + " adding license file 'LICENSE'\n", + " writing manifest file '/tmp/pip-modern-metadata-m5zxeuem/yolo_world.egg-info/SOURCES.txt'\n", + " creating '/tmp/pip-modern-metadata-m5zxeuem/yolo_world-0.1.0.dist-info'\n", + " Preparing editable metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Source in /content/YOLO-World has version 0.1.0, which satisfies requirement yolo_world==0.1.0 from file:///content/YOLO-World\n", + " Removed yolo_world==0.1.0 from file:///content/YOLO-World from build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + "Collecting mmyolo@ git+https://github.com/onuralpszr/mmyolo.git (from yolo_world==0.1.0)\n", + " Cloning https://github.com/onuralpszr/mmyolo.git to /tmp/pip-install-trsbpnp0/mmyolo_57516c23240c4701958a1bf45fbfded5\n", + " Running command git version\n", + " git version 2.34.1\n", + " Running command git clone --filter=blob:none --verbose --progress https://github.com/onuralpszr/mmyolo.git /tmp/pip-install-trsbpnp0/mmyolo_57516c23240c4701958a1bf45fbfded5\n", + " Cloning into '/tmp/pip-install-trsbpnp0/mmyolo_57516c23240c4701958a1bf45fbfded5'...\n", + " POST git-upload-pack (175 bytes)\n", + " POST git-upload-pack (322 bytes)\n", + " remote: Enumerating objects: 2870, done.\n", + " remote: Counting objects: 0% (1/576)\n", + " remote: Counting objects: 1% (6/576)\n", + " remote: Counting objects: 2% (12/576)\n", + " remote: Counting objects: 3% (18/576)\n", + " remote: Counting objects: 4% (24/576)\n", + " remote: Counting objects: 5% (29/576)\n", + " remote: Counting objects: 6% (35/576)\n", + " remote: Counting objects: 7% (41/576)\n", + " remote: Counting objects: 8% (47/576)\n", + " remote: Counting objects: 9% (52/576)\n", + " remote: Counting objects: 10% (58/576)\n", + " remote: Counting objects: 11% (64/576)\n", + " remote: Counting objects: 12% (70/576)\n", + " remote: Counting objects: 13% (75/576)\n", + " remote: Counting objects: 14% (81/576)\n", + " remote: Counting objects: 15% (87/576)\n", + " remote: Counting objects: 16% (93/576)\n", + " remote: Counting objects: 17% (98/576)\n", + " remote: Counting objects: 18% (104/576)\n", + " remote: Counting objects: 19% (110/576)\n", + " remote: Counting objects: 20% (116/576)\n", + " remote: Counting objects: 21% (121/576)\n", + " remote: Counting objects: 22% (127/576)\n", + " remote: Counting objects: 23% (133/576)\n", + " remote: Counting objects: 24% (139/576)\n", + " remote: Counting objects: 25% (144/576)\n", + " remote: Counting objects: 26% (150/576)\n", + " remote: Counting objects: 27% (156/576)\n", + " remote: Counting objects: 28% (162/576)\n", + " remote: Counting objects: 29% (168/576)\n", + " remote: Counting objects: 30% (173/576)\n", + " remote: Counting objects: 31% (179/576)\n", + " remote: Counting objects: 32% (185/576)\n", + " remote: Counting objects: 33% (191/576)\n", + " remote: Counting objects: 34% (196/576)\n", + " remote: Counting objects: 35% (202/576)\n", + " remote: Counting objects: 36% (208/576)\n", + " remote: Counting objects: 37% (214/576)\n", + " remote: Counting objects: 38% (219/576)\n", + " remote: Counting objects: 39% (225/576)\n", + " remote: Counting objects: 40% (231/576)\n", + " remote: Counting objects: 41% (237/576)\n", + " remote: Counting objects: 42% (242/576)\n", + " remote: Counting objects: 43% (248/576)\n", + " remote: Counting objects: 44% (254/576)\n", + " remote: Counting objects: 45% (260/576)\n", + " remote: Counting objects: 46% (265/576)\n", + " remote: Counting objects: 47% (271/576)\n", + " remote: Counting objects: 48% (277/576)\n", + " remote: Counting objects: 49% (283/576)\n", + " remote: Counting objects: 50% (288/576)\n", + " remote: Counting objects: 51% (294/576)\n", + " remote: Counting objects: 52% (300/576)\n", + " remote: Counting objects: 53% (306/576)\n", + " remote: Counting objects: 54% (312/576)\n", + " remote: Counting objects: 55% (317/576)\n", + " remote: Counting objects: 56% (323/576)\n", + " remote: Counting objects: 57% (329/576)\n", + " remote: Counting objects: 58% (335/576)\n", + " remote: Counting objects: 59% (340/576)\n", + " remote: Counting objects: 60% (346/576)\n", + " remote: Counting objects: 61% (352/576)\n", + " remote: Counting objects: 62% (358/576)\n", + " remote: Counting objects: 63% (363/576)\n", + " remote: Counting objects: 64% (369/576)\n", + " remote: Counting objects: 65% (375/576)\n", + " remote: Counting objects: 66% (381/576)\n", + " remote: Counting objects: 67% (386/576)\n", + " remote: Counting objects: 68% (392/576)\n", + " remote: Counting objects: 69% (398/576)\n", + " remote: Counting objects: 70% (404/576)\n", + " remote: Counting objects: 71% (409/576)\n", + " remote: Counting objects: 72% (415/576)\n", + " remote: Counting objects: 73% (421/576)\n", + " remote: Counting objects: 74% (427/576)\n", + " remote: Counting objects: 75% (432/576)\n", + " remote: Counting objects: 76% (438/576)\n", + " remote: Counting objects: 77% (444/576)\n", + " remote: Counting objects: 78% (450/576)\n", + " remote: Counting objects: 79% (456/576)\n", + " remote: Counting objects: 80% (461/576)\n", + " remote: Counting objects: 81% (467/576)\n", + " remote: Counting objects: 82% (473/576)\n", + " remote: Counting objects: 83% (479/576)\n", + " remote: Counting objects: 84% (484/576)\n", + " remote: Counting objects: 85% (490/576)\n", + " remote: Counting objects: 86% (496/576)\n", + " remote: Counting objects: 87% (502/576)\n", + " remote: Counting objects: 88% (507/576)\n", + " remote: Counting objects: 89% (513/576)\n", + " remote: Counting objects: 90% (519/576)\n", + " remote: Counting objects: 91% (525/576)\n", + " remote: Counting objects: 92% (530/576)\n", + " remote: Counting objects: 93% (536/576)\n", + " remote: Counting objects: 94% (542/576)\n", + " remote: Counting objects: 95% (548/576)\n", + " remote: Counting objects: 96% (553/576)\n", + " remote: Counting objects: 97% (559/576)\n", + " remote: Counting objects: 98% (565/576)\n", + " remote: Counting objects: 99% (571/576)\n", + " remote: Counting objects: 100% (576/576)\n", + " remote: Counting objects: 100% (576/576), done.\n", + " remote: Compressing objects: 0% (1/104)\n", + " remote: Compressing objects: 1% (2/104)\n", + " remote: Compressing objects: 2% (3/104)\n", + " remote: Compressing objects: 3% (4/104)\n", + " remote: Compressing objects: 4% (5/104)\n", + " remote: Compressing objects: 5% (6/104)\n", + " remote: Compressing objects: 6% (7/104)\n", + " remote: Compressing objects: 7% (8/104)\n", + " remote: Compressing objects: 8% (9/104)\n", + " remote: Compressing objects: 9% (10/104)\n", + " remote: Compressing objects: 10% (11/104)\n", + " remote: Compressing objects: 11% (12/104)\n", + " remote: Compressing objects: 12% (13/104)\n", + " remote: Compressing objects: 13% (14/104)\n", + " remote: Compressing objects: 14% (15/104)\n", + " remote: Compressing objects: 15% (16/104)\n", + " remote: Compressing objects: 16% (17/104)\n", + " remote: Compressing objects: 17% (18/104)\n", + " remote: Compressing objects: 18% (19/104)\n", + " remote: Compressing objects: 19% (20/104)\n", + " remote: Compressing objects: 20% (21/104)\n", + " remote: Compressing objects: 21% (22/104)\n", + " remote: Compressing objects: 22% (23/104)\n", + " remote: Compressing objects: 23% (24/104)\n", + " remote: Compressing objects: 24% (25/104)\n", + " remote: Compressing objects: 25% (26/104)\n", + " remote: Compressing objects: 26% (28/104)\n", + " remote: Compressing objects: 27% (29/104)\n", + " remote: Compressing objects: 28% (30/104)\n", + " remote: Compressing objects: 29% (31/104)\n", + " remote: Compressing objects: 30% (32/104)\n", + " remote: Compressing objects: 31% (33/104)\n", + " remote: Compressing objects: 32% (34/104)\n", + " remote: Compressing objects: 33% (35/104)\n", + " remote: Compressing objects: 34% (36/104)\n", + " remote: Compressing objects: 35% (37/104)\n", + " remote: Compressing objects: 36% (38/104)\n", + " remote: Compressing objects: 37% (39/104)\n", + " remote: Compressing objects: 38% (40/104)\n", + " remote: Compressing objects: 39% (41/104)\n", + " remote: Compressing objects: 40% (42/104)\n", + " remote: Compressing objects: 41% (43/104)\n", + " remote: Compressing objects: 42% (44/104)\n", + " remote: Compressing objects: 43% (45/104)\n", + " remote: Compressing objects: 44% (46/104)\n", + " remote: Compressing objects: 45% (47/104)\n", + " remote: Compressing objects: 46% (48/104)\n", + " remote: Compressing objects: 47% (49/104)\n", + " remote: Compressing objects: 48% (50/104)\n", + " remote: Compressing objects: 49% (51/104)\n", + " remote: Compressing objects: 50% (52/104)\n", + " remote: Compressing objects: 51% (54/104)\n", + " remote: Compressing objects: 52% (55/104)\n", + " remote: Compressing objects: 53% (56/104)\n", + " remote: Compressing objects: 54% (57/104)\n", + " remote: Compressing objects: 55% (58/104)\n", + " remote: Compressing objects: 56% (59/104)\n", + " remote: Compressing objects: 57% (60/104)\n", + " remote: Compressing objects: 58% (61/104)\n", + " remote: Compressing objects: 59% (62/104)\n", + " remote: Compressing objects: 60% (63/104)\n", + " remote: Compressing objects: 61% (64/104)\n", + " remote: Compressing objects: 62% (65/104)\n", + " remote: Compressing objects: 63% (66/104)\n", + " remote: Compressing objects: 64% (67/104)\n", + " remote: Compressing objects: 65% (68/104)\n", + " remote: Compressing objects: 66% (69/104)\n", + " remote: Compressing objects: 67% (70/104)\n", + " remote: Compressing objects: 68% (71/104)\n", + " remote: Compressing objects: 69% (72/104)\n", + " remote: Compressing objects: 70% (73/104)\n", + " remote: Compressing objects: 71% (74/104)\n", + " remote: Compressing objects: 72% (75/104)\n", + " remote: Compressing objects: 73% (76/104)\n", + " remote: Compressing objects: 74% (77/104)\n", + " remote: Compressing objects: 75% (78/104)\n", + " remote: Compressing objects: 76% (80/104)\n", + " remote: Compressing objects: 77% (81/104)\n", + " remote: Compressing objects: 78% (82/104)\n", + " remote: Compressing objects: 79% (83/104)\n", + " remote: Compressing objects: 80% (84/104)\n", + " remote: Compressing objects: 81% (85/104)\n", + " remote: Compressing objects: 82% (86/104)\n", + " remote: Compressing objects: 83% (87/104)\n", + " remote: Compressing objects: 84% (88/104)\n", + " remote: Compressing objects: 85% (89/104)\n", + " remote: Compressing objects: 86% (90/104)\n", + " remote: Compressing objects: 87% (91/104)\n", + " remote: Compressing objects: 88% (92/104)\n", + " remote: Compressing objects: 89% (93/104)\n", + " remote: Compressing objects: 90% (94/104)\n", + " remote: Compressing objects: 91% (95/104)\n", + " remote: Compressing objects: 92% (96/104)\n", + " remote: Compressing objects: 93% (97/104)\n", + " remote: Compressing objects: 94% (98/104)\n", + " remote: Compressing objects: 95% (99/104)\n", + " remote: Compressing objects: 96% (100/104)\n", + " remote: Compressing objects: 97% (101/104)\n", + " remote: Compressing objects: 98% (102/104)\n", + " remote: Compressing objects: 99% (103/104)\n", + " remote: Compressing objects: 100% (104/104)\n", + " remote: Compressing objects: 100% (104/104), done.\n", + " Receiving objects: 0% (1/2870)\n", + " Receiving objects: 1% (29/2870)\n", + " Receiving objects: 2% (58/2870)\n", + " Receiving objects: 3% (87/2870)\n", + " Receiving objects: 4% (115/2870)\n", + " Receiving objects: 5% (144/2870)\n", + " Receiving objects: 6% (173/2870)\n", + " Receiving objects: 7% (201/2870)\n", + " Receiving objects: 8% (230/2870)\n", + " Receiving objects: 9% (259/2870)\n", + " Receiving objects: 10% (287/2870)\n", + " Receiving objects: 11% (316/2870)\n", + " Receiving objects: 12% (345/2870)\n", + " Receiving objects: 13% (374/2870)\n", + " Receiving objects: 14% (402/2870)\n", + " Receiving objects: 15% (431/2870)\n", + " Receiving objects: 16% (460/2870)\n", + " Receiving objects: 17% (488/2870)\n", + " Receiving objects: 18% (517/2870)\n", + " Receiving objects: 19% (546/2870)\n", + " Receiving objects: 20% (574/2870)\n", + " Receiving objects: 21% (603/2870)\n", + " Receiving objects: 22% (632/2870)\n", + " Receiving objects: 23% (661/2870)\n", + " Receiving objects: 24% (689/2870)\n", + " Receiving objects: 25% (718/2870)\n", + " Receiving objects: 26% (747/2870)\n", + " Receiving objects: 27% (775/2870)\n", + " Receiving objects: 28% (804/2870)\n", + " Receiving objects: 29% (833/2870)\n", + " Receiving objects: 30% (861/2870)\n", + " Receiving objects: 31% (890/2870)\n", + " Receiving objects: 32% (919/2870)\n", + " Receiving objects: 33% (948/2870)\n", + " Receiving objects: 34% (976/2870)\n", + " Receiving objects: 35% (1005/2870)\n", + " Receiving objects: 36% (1034/2870)\n", + " Receiving objects: 37% (1062/2870)\n", + " Receiving objects: 38% (1091/2870)\n", + " Receiving objects: 39% (1120/2870)\n", + " Receiving objects: 40% (1148/2870)\n", + " Receiving objects: 41% (1177/2870)\n", + " Receiving objects: 42% (1206/2870)\n", + " Receiving objects: 43% (1235/2870)\n", + " Receiving objects: 44% (1263/2870)\n", + " Receiving objects: 45% (1292/2870)\n", + " Receiving objects: 46% (1321/2870)\n", + " Receiving objects: 47% (1349/2870)\n", + " Receiving objects: 48% (1378/2870)\n", + " Receiving objects: 49% (1407/2870)\n", + " Receiving objects: 50% (1435/2870)\n", + " Receiving objects: 51% (1464/2870)\n", + " Receiving objects: 52% (1493/2870)\n", + " Receiving objects: 53% (1522/2870)\n", + " Receiving objects: 54% (1550/2870)\n", + " Receiving objects: 55% (1579/2870)\n", + " Receiving objects: 56% (1608/2870)\n", + " Receiving objects: 57% (1636/2870)\n", + " Receiving objects: 58% (1665/2870)\n", + " Receiving objects: 59% (1694/2870)\n", + " Receiving objects: 60% (1722/2870)\n", + " Receiving objects: 61% (1751/2870)\n", + " Receiving objects: 62% (1780/2870)\n", + " Receiving objects: 63% (1809/2870)\n", + " Receiving objects: 64% (1837/2870)\n", + " Receiving objects: 65% (1866/2870)\n", + " Receiving objects: 66% (1895/2870)\n", + " Receiving objects: 67% (1923/2870)\n", + " Receiving objects: 68% (1952/2870)\n", + " Receiving objects: 69% (1981/2870)\n", + " Receiving objects: 70% (2009/2870)\n", + " Receiving objects: 71% (2038/2870)\n", + " Receiving objects: 72% (2067/2870)\n", + " Receiving objects: 73% (2096/2870)\n", + " Receiving objects: 74% (2124/2870)\n", + " Receiving objects: 75% (2153/2870)\n", + " Receiving objects: 76% (2182/2870)\n", + " Receiving objects: 77% (2210/2870)\n", + " Receiving objects: 78% (2239/2870)\n", + " Receiving objects: 79% (2268/2870)\n", + " Receiving objects: 80% (2296/2870)\n", + " remote: Total 2870 (delta 500), reused 476 (delta 472), pack-reused 2294\n", + " Receiving objects: 81% (2325/2870)\n", + " Receiving objects: 82% (2354/2870)\n", + " Receiving objects: 83% (2383/2870)\n", + " Receiving objects: 84% (2411/2870)\n", + " Receiving objects: 85% (2440/2870)\n", + " Receiving objects: 86% (2469/2870)\n", + " Receiving objects: 87% (2497/2870)\n", + " Receiving objects: 88% (2526/2870)\n", + " Receiving objects: 89% (2555/2870)\n", + " Receiving objects: 90% (2583/2870)\n", + " Receiving objects: 91% (2612/2870)\n", + " Receiving objects: 92% (2641/2870)\n", + " Receiving objects: 93% (2670/2870)\n", + " Receiving objects: 94% (2698/2870)\n", + " Receiving objects: 95% (2727/2870)\n", + " Receiving objects: 96% (2756/2870)\n", + " Receiving objects: 97% (2784/2870)\n", + " Receiving objects: 98% (2813/2870)\n", + " Receiving objects: 99% (2842/2870)\n", + " Receiving objects: 100% (2870/2870)\n", + " Receiving objects: 100% (2870/2870), 455.06 KiB | 3.79 MiB/s, done.\n", + " Resolving deltas: 0% (0/1679)\n", + " Resolving deltas: 1% (17/1679)\n", + " Resolving deltas: 2% (34/1679)\n", + " Resolving deltas: 3% (51/1679)\n", + " Resolving deltas: 4% (68/1679)\n", + " Resolving deltas: 5% (84/1679)\n", + " Resolving deltas: 6% (101/1679)\n", + " Resolving deltas: 7% (118/1679)\n", + " Resolving deltas: 8% (135/1679)\n", + " Resolving deltas: 9% (152/1679)\n", + " Resolving deltas: 10% (168/1679)\n", + " Resolving deltas: 11% (185/1679)\n", + " Resolving deltas: 12% (202/1679)\n", + " Resolving deltas: 13% (219/1679)\n", + " Resolving deltas: 14% (236/1679)\n", + " Resolving deltas: 15% (252/1679)\n", + " Resolving deltas: 16% (269/1679)\n", + " Resolving deltas: 17% (286/1679)\n", + " Resolving deltas: 18% (303/1679)\n", + " Resolving deltas: 19% (320/1679)\n", + " Resolving deltas: 20% (336/1679)\n", + " Resolving deltas: 21% (353/1679)\n", + " Resolving deltas: 22% (370/1679)\n", + " Resolving deltas: 23% (387/1679)\n", + " Resolving deltas: 24% (403/1679)\n", + " Resolving deltas: 25% (420/1679)\n", + " Resolving deltas: 26% (437/1679)\n", + " Resolving deltas: 27% (454/1679)\n", + " Resolving deltas: 28% (471/1679)\n", + " Resolving deltas: 29% (487/1679)\n", + " Resolving deltas: 30% (504/1679)\n", + " Resolving deltas: 31% (521/1679)\n", + " Resolving deltas: 32% (538/1679)\n", + " Resolving deltas: 33% (555/1679)\n", + " Resolving deltas: 34% (571/1679)\n", + " Resolving deltas: 35% (588/1679)\n", + " Resolving deltas: 36% (605/1679)\n", + " Resolving deltas: 37% (622/1679)\n", + " Resolving deltas: 38% (639/1679)\n", + " Resolving deltas: 39% (655/1679)\n", + " Resolving deltas: 40% (672/1679)\n", + " Resolving deltas: 41% (689/1679)\n", + " Resolving deltas: 42% (706/1679)\n", + " Resolving deltas: 43% (722/1679)\n", + " Resolving deltas: 44% (739/1679)\n", + " Resolving deltas: 45% (756/1679)\n", + " Resolving deltas: 46% (773/1679)\n", + " Resolving deltas: 47% (790/1679)\n", + " Resolving deltas: 48% (806/1679)\n", + " Resolving deltas: 49% (823/1679)\n", + " Resolving deltas: 50% (840/1679)\n", + " Resolving deltas: 51% (857/1679)\n", + " Resolving deltas: 52% (874/1679)\n", + " Resolving deltas: 53% (890/1679)\n", + " Resolving deltas: 54% (907/1679)\n", + " Resolving deltas: 55% (924/1679)\n", + " Resolving deltas: 56% (941/1679)\n", + " Resolving deltas: 57% (958/1679)\n", + " Resolving deltas: 58% (974/1679)\n", + " Resolving deltas: 59% (991/1679)\n", + " Resolving deltas: 60% (1008/1679)\n", + " Resolving deltas: 61% (1025/1679)\n", + " Resolving deltas: 62% (1041/1679)\n", + " Resolving deltas: 63% (1058/1679)\n", + " Resolving deltas: 64% (1075/1679)\n", + " Resolving deltas: 65% (1092/1679)\n", + " Resolving deltas: 66% (1109/1679)\n", + " Resolving deltas: 67% (1125/1679)\n", + " Resolving deltas: 68% (1142/1679)\n", + " Resolving deltas: 69% (1159/1679)\n", + " Resolving deltas: 70% (1176/1679)\n", + " Resolving deltas: 71% (1193/1679)\n", + " Resolving deltas: 72% (1209/1679)\n", + " Resolving deltas: 73% (1226/1679)\n", + " Resolving deltas: 74% (1243/1679)\n", + " Resolving deltas: 75% (1260/1679)\n", + " Resolving deltas: 76% (1277/1679)\n", + " Resolving deltas: 77% (1293/1679)\n", + " Resolving deltas: 78% (1310/1679)\n", + " Resolving deltas: 79% (1327/1679)\n", + " Resolving deltas: 80% (1344/1679)\n", + " Resolving deltas: 81% (1360/1679)\n", + " Resolving deltas: 82% (1377/1679)\n", + " Resolving deltas: 83% (1394/1679)\n", + " Resolving deltas: 84% (1411/1679)\n", + " Resolving deltas: 85% (1428/1679)\n", + " Resolving deltas: 86% (1444/1679)\n", + " Resolving deltas: 87% (1461/1679)\n", + " Resolving deltas: 88% (1478/1679)\n", + " Resolving deltas: 89% (1495/1679)\n", + " Resolving deltas: 90% (1512/1679)\n", + " Resolving deltas: 91% (1528/1679)\n", + " Resolving deltas: 92% (1545/1679)\n", + " Resolving deltas: 93% (1562/1679)\n", + " Resolving deltas: 94% (1579/1679)\n", + " Resolving deltas: 95% (1596/1679)\n", + " Resolving deltas: 96% (1612/1679)\n", + " Resolving deltas: 97% (1629/1679)\n", + " Resolving deltas: 98% (1646/1679)\n", + " Resolving deltas: 99% (1663/1679)\n", + " Resolving deltas: 100% (1679/1679)\n", + " Resolving deltas: 100% (1679/1679), done.\n", + " Running command git rev-parse HEAD\n", + " 4d97b3a06609dba94b8ec584be2f2029cfdb7519\n", + " Resolved https://github.com/onuralpszr/mmyolo.git to commit 4d97b3a06609dba94b8ec584be2f2029cfdb7519\n", + " Running command git rev-parse HEAD\n", + " 4d97b3a06609dba94b8ec584be2f2029cfdb7519\n", + " Added mmyolo@ git+https://github.com/onuralpszr/mmyolo.git from git+https://github.com/onuralpszr/mmyolo.git (from yolo_world==0.1.0) to build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + " Running setup.py (path:/tmp/pip-install-trsbpnp0/mmyolo_57516c23240c4701958a1bf45fbfded5/setup.py) egg_info for package mmyolo\n", + " Created temporary directory: /tmp/pip-pip-egg-info-nyy_zvmv\n", + " Running command python setup.py egg_info\n", + " running egg_info\n", + " creating /tmp/pip-pip-egg-info-nyy_zvmv/mmyolo.egg-info\n", + " writing manifest file '/tmp/pip-pip-egg-info-nyy_zvmv/mmyolo.egg-info/SOURCES.txt'\n", + " warning: no files found matching 'mmyolo/VERSION'\n", + " warning: no files found matching 'mmyolo/.mim/model-index.yml'\n", + " warning: no files found matching 'mmyolo/.mim/demo/*/*'\n", + " warning: no files found matching '*.py' under directory 'mmyolo/.mim/configs'\n", + " warning: no files found matching '*.yml' under directory 'mmyolo/.mim/configs'\n", + " warning: no files found matching '*.sh' under directory 'mmyolo/.mim/tools'\n", + " warning: no files found matching '*.py' under directory 'mmyolo/.mim/tools'\n", + " writing manifest file '/tmp/pip-pip-egg-info-nyy_zvmv/mmyolo.egg-info/SOURCES.txt'\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Source in /tmp/pip-install-trsbpnp0/mmyolo_57516c23240c4701958a1bf45fbfded5 has version 0.6.0, which satisfies requirement mmyolo@ git+https://github.com/onuralpszr/mmyolo.git from git+https://github.com/onuralpszr/mmyolo.git (from yolo_world==0.1.0)\n", + " Removed mmyolo@ git+https://github.com/onuralpszr/mmyolo.git from git+https://github.com/onuralpszr/mmyolo.git (from yolo_world==0.1.0) from build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + "Requirement already satisfied: wheel in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (0.42.0)\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (2.1.0+cu121)\n", + "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (0.16.0+cu121)\n", + "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (4.35.2)\n", + "Requirement already satisfied: tokenizers in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (0.15.1)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (1.25.2)\n", + "Requirement already satisfied: opencv-python in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (4.8.0.76)\n", + "1 location(s) to search for versions of supervision:\n", + "* https://pypi.org/simple/supervision/\n", + "Fetching project page and analyzing links: https://pypi.org/simple/supervision/\n", + "Getting page https://pypi.org/simple/supervision/\n", + "Found index url https://pypi.org/simple/\n", + "Looking up \"https://pypi.org/simple/supervision/\" in the cache\n", + "Request header has \"max_age\" as 0, cache bypassed\n", + "Starting new HTTPS connection (1): pypi.org:443\n", + "https://pypi.org:443 \"GET /simple/supervision/ HTTP/1.1\" 200 13270\n", + "Updating cache with response from \"https://pypi.org/simple/supervision/\"\n", + "etag object cached for 1209600 seconds\n", + "Caching due to etag\n", + "Fetched page https://pypi.org/simple/supervision/ as application/vnd.pypi.simple.v1+json\n", + " Found link https://files.pythonhosted.org/packages/fd/e4/94635501dc8880abadfb76a1f944cf3f138f779184a671b092df28257da2/supervision-0.1.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.1.0\n", + " Found link https://files.pythonhosted.org/packages/fd/a4/20cb918bb33059895a9d6c5b975f679c8e3ff09b225b14b75da9ddad3e06/supervision-0.1.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.1.0\n", + " Found link https://files.pythonhosted.org/packages/90/7c/414b3aef5cd7b976779a68ac8f23e56841aa7498211b8beda6100a6324b4/supervision-0.2.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.2.0\n", + " Found link https://files.pythonhosted.org/packages/dc/b6/c7e96cc29bc648ff9b8f440d8ed3a8059aa966dd6acd7cfda657ae78112c/supervision-0.2.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.2.0\n", + " Found link https://files.pythonhosted.org/packages/46/03/efac3649c5c4e83ccdb9c3295a0d5b49f9acfbc8c640cd0c151c272462bd/supervision-0.2.1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.2.1\n", + " Found link https://files.pythonhosted.org/packages/82/ba/48698d0c8d6a267d01986350288d0614de478521848f462dcaa2124bce35/supervision-0.2.1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.2.1\n", + " Found link https://files.pythonhosted.org/packages/c8/0f/c040ccc808c5b27a7b498bd393b22a1bbc745af54cbe764766c4c0eda2e8/supervision-0.3.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.3.0\n", + " Found link https://files.pythonhosted.org/packages/36/80/edaab20d547c70f442ca7e131a9a91d65347b404f7cce589d52ee9a5a2c0/supervision-0.3.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.3.0\n", + " Found link https://files.pythonhosted.org/packages/f2/ef/b0a54fc4ce698ee65561d8f5ed30ae345f6d2267cb3b5d67558829e9dee7/supervision-0.3.1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.3.1\n", + " Found link https://files.pythonhosted.org/packages/55/b9/175c1e472b1c6595c4c055419d900e7ea45bf2dc95702603705fb1522747/supervision-0.3.1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.3.1\n", + " Found link https://files.pythonhosted.org/packages/af/12/e22abc4915388f919843d6c9562bd31d33da3643c63844a0c000bfe643db/supervision-0.3.2-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.3.2\n", + " Found link https://files.pythonhosted.org/packages/df/13/3f82c1c6adc23e47d53432354d4310e0c2dcda6a3e9aafa9a8649b16f328/supervision-0.3.2.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.3.2\n", + " Found link https://files.pythonhosted.org/packages/7b/1d/1220d2c6ab60eea454be28667d578a8327df2a57a6f00934e9aabb86fa9b/supervision-0.4.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.4.0\n", + " Found link https://files.pythonhosted.org/packages/ae/ac/e215af33c531ea7f79f93ea59befcfef738b8395d09cd0cb1b61c50fa7f5/supervision-0.4.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.4.0\n", + " Found link https://files.pythonhosted.org/packages/1f/3f/f9ba8887bc8aec13800daf8fae0a44629e10884fd523271b09711563ed68/supervision-0.5.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.5.0\n", + " Found link https://files.pythonhosted.org/packages/66/c2/3aeb81cfed8d86be7126584d8ea024209e025bc8d16f3a902cbb4c1f4e65/supervision-0.5.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.5.0\n", + " Found link https://files.pythonhosted.org/packages/34/83/f73b802205466914a40ec2045966b31b74c8a8facb6fa1fef5d71dceb938/supervision-0.5.1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.5.1\n", + " Found link https://files.pythonhosted.org/packages/eb/a5/8a0b65dc181fe250cf65ab006307a24ecd30a7d6555213ff33843ea95d18/supervision-0.5.1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.5.1\n", + " Found link https://files.pythonhosted.org/packages/9d/74/d3db35df20fe401c9820f8b684a261d639495e0247f05cf511a48e840173/supervision-0.5.2-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.5.2\n", + " Found link https://files.pythonhosted.org/packages/23/8f/22985d1c61df9bf128ea9ccd937d6abcd69ef76b5199b9e108b373f93d08/supervision-0.5.2.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.5.2\n", + " Found link https://files.pythonhosted.org/packages/42/7a/4fe657cae29eedeca34756a80a053ac3b1b3c80462cdb6768f428625f9ca/supervision-0.6.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.6.0\n", + " Found link https://files.pythonhosted.org/packages/4f/95/2e94efc178f17275a6e2cbffee079681695edf72d125b78d4755f49128aa/supervision-0.6.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.6.0\n", + " Found link https://files.pythonhosted.org/packages/80/46/c5a0f02d127458d28916794e607d8ba50e251eb6281dc3bc422652e77cc9/supervision-0.7.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.7.0\n", + " Found link https://files.pythonhosted.org/packages/77/60/7c25ad0ce6199b508d30bcb5d23cbc1d4aa9ed41287643bbf0f333b6dff4/supervision-0.7.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.7.0\n", + " Found link https://files.pythonhosted.org/packages/c4/36/9cc4821ec83dd1963c11df81593f48b313c69684f192c9dbdd88c992e9db/supervision-0.8.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.8.0\n", + " Found link https://files.pythonhosted.org/packages/fd/46/504e103d0921ed63e9e221ea4f3a1e6e23c70f8b7bd69114ec09cda3d87c/supervision-0.8.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.8.0\n", + " Found link https://files.pythonhosted.org/packages/9b/48/18c5e8528d467bc42d49fa8fb83b68609708dadf03ff8c89681931c21bfb/supervision-0.9.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.9.0\n", + " Found link https://files.pythonhosted.org/packages/2f/2e/d3b88227b65bdc7baf25b7c2c6f46b214b5926f7dc583ffbe2d8abcf496a/supervision-0.9.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.9.0\n", + " Found link https://files.pythonhosted.org/packages/5a/04/a4d3a361fea9549ce45d1dd7b6a61018eb237f07123eac8dcb37165def96/supervision-0.10.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.10.0\n", + " Found link https://files.pythonhosted.org/packages/83/35/fc6da33a8a4fe84eacf33e63aa9ae1937a113559e97bba9ebfc02e9bfd63/supervision-0.10.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.10.0\n", + " Found link https://files.pythonhosted.org/packages/7a/28/bc57f0ba90a66ab411a9fcaab7659f25c454b4c17dcf05334002809e7daa/supervision-0.11.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.11.0\n", + " Found link https://files.pythonhosted.org/packages/a2/d2/8792b9acbc278b7e678ddb07d575c05239ebbbe3b7026ec1efee2292b951/supervision-0.11.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.11.0\n", + " Found link https://files.pythonhosted.org/packages/c6/19/79e200fcc51fe2bb19da9cb6e51839e1bf96326a89c7a56ca78a41e358d4/supervision-0.11.1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.11.1\n", + " Found link https://files.pythonhosted.org/packages/cf/4b/00ef98d35ae882eafeff6a6e607aa652605c7005eb3f188e530ef6305213/supervision-0.11.1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.7), version: 0.11.1\n", + " Found link https://files.pythonhosted.org/packages/3a/22/401ee57f125dfffabab7151be185777789484fdd894aa149cafbc6104319/supervision-0.12.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.12.0\n", + " Found link https://files.pythonhosted.org/packages/26/47/d9096c72a39593bb2310fe35a714e3b3665c9f91703babf5bbb3e815b78a/supervision-0.12.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.12.0\n", + " Found link https://files.pythonhosted.org/packages/4a/5e/33104865bd643d289318d14ff6dd12d41a5fac0219e2cf98c25e64ec5586/supervision-0.13.0rc3-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.13.0rc3\n", + " Found link https://files.pythonhosted.org/packages/55/85/f798d12a7c8d9e777ae5614632cbf566a054b04fb01ae1fd0fbe436574d4/supervision-0.13.0rc3.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.13.0rc3\n", + " Found link https://files.pythonhosted.org/packages/bc/94/16897da14a079b097b174b9d3d1cf414c24bbf9b70732ca87226c8892f4d/supervision-0.13.0rc4-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.13.0rc4\n", + " Found link https://files.pythonhosted.org/packages/a9/e3/b1eb58c7f0021dd83f24d0f153bba20c7be54103d3eea0666a0b796f3e9d/supervision-0.13.0rc4.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.13.0rc4\n", + " Found link https://files.pythonhosted.org/packages/ca/e8/4d0e1f866ae4cad3bebdfbd91d1e257a53090e103499a3e77c461e28f1b5/supervision-0.13.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.13.0\n", + " Found link https://files.pythonhosted.org/packages/a6/98/ebfa29bcad23b76a830101dbbb4c967701ff82c6d34849ecfb86ae7382b7/supervision-0.13.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.13.0\n", + " Found link https://files.pythonhosted.org/packages/cd/8a/9eaf928ed5bac9a664e74bb6173f12434ab5156dff73b20897fe499f0f06/supervision-0.14.0b1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.14.0b1\n", + " Found link https://files.pythonhosted.org/packages/d0/b7/379fd3d7da0bca9b75647386a1f169256b8156f5b059c35147768af329ed/supervision-0.14.0b1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.14.0b1\n", + " Found link https://files.pythonhosted.org/packages/3b/6b/2e70be5ac353d48cb60af934a1afa400d0bebce9c1dce439e82115272ffb/supervision-0.14.0b2-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.14.0b2\n", + " Found link https://files.pythonhosted.org/packages/5d/d5/b86607dde5262016c8e29cc0bfbe9040935c58ecbf197c1a577fef0545ce/supervision-0.14.0b2.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.14.0b2\n", + " Found link https://files.pythonhosted.org/packages/38/31/19d39cde7723206ecc1e054d16c792204a76ab884fefa656ea297b26af9e/supervision-0.14.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.14.0\n", + " Found link https://files.pythonhosted.org/packages/89/bb/163b5ce74fe9ced7351ed4b3aa120f06d6cc2964112f1834aef82f88d633/supervision-0.14.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.14.0\n", + " Found link https://files.pythonhosted.org/packages/76/c5/3f9c31b3a84b7979fd3305037f17ca0e84e186838076b1cc399bcad58381/supervision-0.15.0rc1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0rc1\n", + " Found link https://files.pythonhosted.org/packages/52/d0/31ec12cd470f67b2ae7de0bef05474f8d9e30fb68ed81314ac5c7da0d87f/supervision-0.15.0rc1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0rc1\n", + " Found link https://files.pythonhosted.org/packages/24/e0/2fe5520daa3309f20843e3e5f1517c2050b3e9680622a6ac1eff15691617/supervision-0.15.0rc2-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0rc2\n", + " Found link https://files.pythonhosted.org/packages/f1/8e/6c4337d211f2db56c97be37b19a3c0a06b5c7473136a73dc90b0c862ede3/supervision-0.15.0rc2.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0rc2\n", + " Found link https://files.pythonhosted.org/packages/79/f8/3dd1b7e00a27ca4d0d0f94c9ffffd82d20df14f23e64963e9cb98287d679/supervision-0.15.0rc3-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0rc3\n", + " Found link https://files.pythonhosted.org/packages/65/97/a1a2e936943ad3e249cd12883e5a1e5399091844d11b97226330860faadc/supervision-0.15.0rc3.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0rc3\n", + " Found link https://files.pythonhosted.org/packages/3e/07/1b60ff71be45f351b86cbb7f0fa35624751374ed2f9b5fd22d07b091c457/supervision-0.15.0rc4-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0rc4\n", + " Found link https://files.pythonhosted.org/packages/91/a9/e2c53fcaf672b6832d774a322c55398999d24b01b5329989803327965649/supervision-0.15.0rc4.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0rc4\n", + " Found link https://files.pythonhosted.org/packages/51/81/3314df2b9f84c0101ba3980499f2b3d87632e19ceaaeaa922fa7c697fa2c/supervision-0.15.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0\n", + " Found link https://files.pythonhosted.org/packages/b1/f0/9072f1b862562e968a8fb704202654e6f2192f68f2b4caef4cae5e2fb39f/supervision-0.15.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.15.0\n", + " Found link https://files.pythonhosted.org/packages/f3/7e/85607b1e966d901de97816869bd5b3b17afeca3cac8dfeaa7a87497cf31f/supervision-0.16.0rc2-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.16.0rc2\n", + " Found link https://files.pythonhosted.org/packages/9f/3e/6bc7a89511ebde3cd1a124e178e97f4af66e8f0bcbfd055bf8d504223bc8/supervision-0.16.0rc2.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.16.0rc2\n", + " Found link https://files.pythonhosted.org/packages/58/db/f39e1dfec245a0b14759a890edeeb0a318a1192f7f691af2a6dd0448ab81/supervision-0.16.0rc3-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.16.0rc3\n", + " Found link https://files.pythonhosted.org/packages/bb/c4/580bbd559ba532ceb2d0485ff7c2965a1d40ee1bf041b659a56c296537f6/supervision-0.16.0rc3.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.16.0rc3\n", + " Found link https://files.pythonhosted.org/packages/c0/59/6bc863f530c0ba5da4c565fd40f17b2b333c2ab28b783202937293ae494a/supervision-0.16.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.16.0\n", + " Found link https://files.pythonhosted.org/packages/7b/74/f205c1be895ae8994448c2829757cf4cbd7c7edb573df41f06b13295c19f/supervision-0.16.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.16.0\n", + " Found link https://files.pythonhosted.org/packages/0b/d0/9e085cf7a826fd1cb58651c2a3cc13f526e8612532c3aec647bae6636fe5/supervision-0.17.0rc1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc1\n", + " Found link https://files.pythonhosted.org/packages/ae/07/d24e0d214df7b76338961e66c97b621c4baeeaad54375550821db499f36f/supervision-0.17.0rc1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc1\n", + " Found link https://files.pythonhosted.org/packages/21/3f/a6fc9205d3c0eb112195b243dbd50f263c085cbc776fc554cbcc26e42e1c/supervision-0.17.0rc2-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc2\n", + " Found link https://files.pythonhosted.org/packages/11/1a/6789a56cb689c2234744a136ad2914a55d0db2e8674ad62250777510f802/supervision-0.17.0rc2.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc2\n", + " Found link https://files.pythonhosted.org/packages/ef/5c/d656ae1f344e5cec7d4ad509bf59c3bda523b9a5da4b04c8653376ee57ab/supervision-0.17.0rc3-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc3\n", + " Found link https://files.pythonhosted.org/packages/3e/d5/f561c809a1601be944307f34d3bda7b24c5c01cf47e4d600568363a008db/supervision-0.17.0rc3.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc3\n", + " Found link https://files.pythonhosted.org/packages/6f/a1/25f8d51a094e1b277f5a55fa1d87a266b2ba9acbf892cf615e6f9ad3bb84/supervision-0.17.0rc4-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc4\n", + " Found link https://files.pythonhosted.org/packages/46/14/fd4f40d7f12483fd7f619bb37a522f38da328ea5e569bb45fdfb1be5c6f1/supervision-0.17.0rc4.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc4\n", + " Found link https://files.pythonhosted.org/packages/d8/53/0a6f3c838f56e9090b690725d0461621da6da522d0ba028592db877fdad6/supervision-0.17.0rc5-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc5\n", + " Found link https://files.pythonhosted.org/packages/fe/ff/63f866601ed84e218a9949a93b25b8cac6b75d8db952b68eb1c123c7561f/supervision-0.17.0rc5.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc5\n", + " Found link https://files.pythonhosted.org/packages/b3/cd/dc583295296c9f74bd47a490a89fd4986701ae622cfc52a3781314748a96/supervision-0.17.0rc6-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc6\n", + " Found link https://files.pythonhosted.org/packages/3a/7b/78022a579e0c5c727bbaa52717540fd9833164dff528c06ddf01ca0611c8/supervision-0.17.0rc6.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc6\n", + " Found link https://files.pythonhosted.org/packages/ae/c5/15ef5ab49ae807fca88641670818b2dbbb5c96236cab8c896aefd0c21158/supervision-0.17.0rc7-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc7\n", + " Found link https://files.pythonhosted.org/packages/04/8b/26e508139ae8a4f19b51392f3cd607520d97c2bdbcb0eb93937487301936/supervision-0.17.0rc7.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc7\n", + " Found link https://files.pythonhosted.org/packages/65/14/7fb0a3be3a98acf91a9e20012508a46c26615cf289f7b5f9bccc15da7d7b/supervision-0.17.0rc8-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc8\n", + " Found link https://files.pythonhosted.org/packages/7d/34/e5c9befc8b4e290038c557eb84f5fb34b7c9ec7e6e9b49aebc3257dbb9b9/supervision-0.17.0rc8.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0rc8\n", + " Found link https://files.pythonhosted.org/packages/32/bc/8a49af935c9974c4900cb8411c56ae57ab316825bb2550457341de5f776d/supervision-0.17.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0\n", + " Found link https://files.pythonhosted.org/packages/42/e2/204c0dccf67e100cbba287ecc113cd18e04c5dc36257c29a55771e8929ef/supervision-0.17.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<3.12.0), version: 0.17.0\n", + " Found link https://files.pythonhosted.org/packages/ca/ac/42364086569dea9d00b220ca3e72d28fd4e4f78c5349379ffe6cc7d6d8f6/supervision-0.17.1rc1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.17.1rc1\n", + " Found link https://files.pythonhosted.org/packages/63/bc/1171d0c906965542354d2dd143f96ebfa5105fa31cf660813192036affe9/supervision-0.17.1rc1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.17.1rc1\n", + " Found link https://files.pythonhosted.org/packages/b9/c5/8bb6e9f51e5e8cc9b80fcb5f30a2b7289c0ad94d848c08ef3691fb4196f1/supervision-0.17.1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.17.1\n", + " Found link https://files.pythonhosted.org/packages/b1/8b/598f98567c9a30b22e38a45439693890c78bf225a68fe1cbcfa8ab413628/supervision-0.17.1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.17.1\n", + " Found link https://files.pythonhosted.org/packages/43/b5/741381f58bf3de227a472c0b9b21ac50e459574b70938d023a9cc7c5ab6a/supervision-0.18.0rc1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0rc1\n", + " Found link https://files.pythonhosted.org/packages/c7/43/8664d341c5aff9dcc8ab080d6621ed6d34f9b63318c92010ac620bc69813/supervision-0.18.0rc1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0rc1\n", + " Found link https://files.pythonhosted.org/packages/1a/30/6fb2b118262648b493f6563594efb5301f39748ef1ab131914443ce236e9/supervision-0.18.0rc2-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0rc2\n", + " Found link https://files.pythonhosted.org/packages/81/90/c273137c3fd148faa13fabb824a1b17bf43d50250d7ee34db6a5236cc3b4/supervision-0.18.0rc2.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0rc2\n", + " Found link https://files.pythonhosted.org/packages/c5/8c/bdbb29d64e51b8cb69cb576df20b67d6d3b9449c05b9ab6c7287b92f9a0f/supervision-0.18.0rc3-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0rc3\n", + " Found link https://files.pythonhosted.org/packages/fb/f2/24e5eae311759c80047bc413c5c5626d7b941a9a74226d59b1bfd3201181/supervision-0.18.0rc3.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0rc3\n", + " Found link https://files.pythonhosted.org/packages/a0/1f/56d192205013dd776049f17ced90ed0b48c5cc1006111c78179b56217592/supervision-0.18.0rc4-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0rc4\n", + " Found link https://files.pythonhosted.org/packages/9b/07/dc18c0554e0d5d257a1445e75211813f81e3ed69c22f7ca43318ede83f21/supervision-0.18.0rc4.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0rc4\n", + " Found link https://files.pythonhosted.org/packages/53/f7/490cf47d2141f5cc8eeb944b90108cdea5ccfcd100fd6f669bc86cfb6278/supervision-0.18.0-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0\n", + " Found link https://files.pythonhosted.org/packages/28/5b/ab449586561f8f0c6721481ecdb0e9e7e70bb4b8eee96276d9f9555e9b2d/supervision-0.18.0.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.18.0\n", + " Found link https://files.pythonhosted.org/packages/f1/0e/b79754d08586481867b5a44f4cdd2651c2cff04ba20131dc8135c7d48923/supervision-0.19.0rc1-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.19.0rc1\n", + " Found link https://files.pythonhosted.org/packages/63/d5/2fb017db2cbaef9cf1abf9c306fda8a99dc99247a5b879b16eb5fb033a40/supervision-0.19.0rc1.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.19.0rc1\n", + " Found link https://files.pythonhosted.org/packages/fd/be/79a6ad8aa5d3622c844af05fbb07c4abb0530e1cdd270ffe93e10c9a97da/supervision-0.19.0rc2-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.19.0rc2\n", + " Found link https://files.pythonhosted.org/packages/ca/7d/14ef80f88950f9d5bea58455a3a4fb5f940fd8ef7580f0ae3e0b86f887db/supervision-0.19.0rc2.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.19.0rc2\n", + " Found link https://files.pythonhosted.org/packages/92/e6/78d0283c980dbc3817f8d337d98ec9f793dcd91d7050809f13f514633fc3/supervision-0.19.0rc3-py3-none-any.whl (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.19.0rc3\n", + " Found link https://files.pythonhosted.org/packages/42/f7/6657fe0fcee97cc6887e4e8e42b2bcb85c86719a9e75fd757e5cffffec00/supervision-0.19.0rc3.tar.gz (from https://pypi.org/simple/supervision/) (requires-python:>=3.8,<4.0), version: 0.19.0rc3\n", + "Skipping link: not a file: https://pypi.org/simple/supervision/\n", + "Given no hashes to check 2 links for project 'supervision': discarding no candidates\n", + "Collecting supervision==0.18.0 (from yolo_world==0.1.0)\n", + " Created temporary directory: /tmp/pip-unpack-26636vu3\n", + " Looking up \"https://files.pythonhosted.org/packages/53/f7/490cf47d2141f5cc8eeb944b90108cdea5ccfcd100fd6f669bc86cfb6278/supervision-0.18.0-py3-none-any.whl\" in the cache\n", + " No cache entry available\n", + " Starting new HTTPS connection (1): files.pythonhosted.org:443\n", + " https://files.pythonhosted.org:443 \"GET /packages/53/f7/490cf47d2141f5cc8eeb944b90108cdea5ccfcd100fd6f669bc86cfb6278/supervision-0.18.0-py3-none-any.whl HTTP/1.1\" 200 86683\n", + " Downloading supervision-0.18.0-py3-none-any.whl (86 kB)\n", + "\u001b[2K \u001b[91m━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m30.7/86.7 kB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m Ignoring unknown cache-control directive: immutable\n", + " Updating cache with response from \"https://files.pythonhosted.org/packages/53/f7/490cf47d2141f5cc8eeb944b90108cdea5ccfcd100fd6f669bc86cfb6278/supervision-0.18.0-py3-none-any.whl\"\n", + " etag object cached for 1209600 seconds\n", + " Caching due to etag\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.7/86.7 kB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Added supervision==0.18.0 from https://files.pythonhosted.org/packages/53/f7/490cf47d2141f5cc8eeb944b90108cdea5ccfcd100fd6f669bc86cfb6278/supervision-0.18.0-py3-none-any.whl (from yolo_world==0.1.0) to build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + " Removed supervision==0.18.0 from https://files.pythonhosted.org/packages/53/f7/490cf47d2141f5cc8eeb944b90108cdea5ccfcd100fd6f669bc86cfb6278/supervision-0.18.0-py3-none-any.whl (from yolo_world==0.1.0) from build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + "Requirement already satisfied: openmim in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (0.3.9)\n", + "1 location(s) to search for versions of mmcv-lite:\n", + "* https://pypi.org/simple/mmcv-lite/\n", + "Fetching project page and analyzing links: https://pypi.org/simple/mmcv-lite/\n", + "Getting page https://pypi.org/simple/mmcv-lite/\n", + "Found index url https://pypi.org/simple/\n", + "Looking up \"https://pypi.org/simple/mmcv-lite/\" in the cache\n", + "Request header has \"max_age\" as 0, cache bypassed\n", + "https://pypi.org:443 \"GET /simple/mmcv-lite/ HTTP/1.1\" 200 1514\n", + "Updating cache with response from \"https://pypi.org/simple/mmcv-lite/\"\n", + "etag object cached for 1209600 seconds\n", + "Caching due to etag\n", + "Fetched page https://pypi.org/simple/mmcv-lite/ as application/vnd.pypi.simple.v1+json\n", + " Found link https://files.pythonhosted.org/packages/4e/48/a7dc204ab53d9be1bce7b411ef365a145cf295ff431e48bc5aa98cf0aaa8/mmcv-lite-2.0.0rc1.tar.gz (from https://pypi.org/simple/mmcv-lite/), version: 2.0.0rc1\n", + " Found link https://files.pythonhosted.org/packages/ba/88/67acc574a0e2bdefa0b7ee5f35b43c7c2ec61644e01fba402d2e9772981f/mmcv-lite-2.0.0rc2.tar.gz (from https://pypi.org/simple/mmcv-lite/), version: 2.0.0rc2\n", + " Found link https://files.pythonhosted.org/packages/44/3c/310cde2772b10fd588ceee99b7421fdf08f043912a75a93d0dc6837cd111/mmcv-lite-2.0.0rc3.tar.gz (from https://pypi.org/simple/mmcv-lite/), version: 2.0.0rc3\n", + " Found link https://files.pythonhosted.org/packages/42/7b/99535cdadf239f1184dbc4c7d4253a71b91d051fb03c039e6d2b001edd33/mmcv-lite-2.0.0rc4.tar.gz (from https://pypi.org/simple/mmcv-lite/) (requires-python:>=3.7), version: 2.0.0rc4\n", + " Found link https://files.pythonhosted.org/packages/d6/22/8092260523223ce8b1b5e5c72409b04ef1c9051d33a9f328c589bbfacfc1/mmcv-lite-2.0.0.tar.gz (from https://pypi.org/simple/mmcv-lite/) (requires-python:>=3.7), version: 2.0.0\n", + " Found link https://files.pythonhosted.org/packages/0e/84/9cdea8380fbcfc7301ca93cc2fb5f879d9ac4f6b8696182504c8bc5c8968/mmcv_lite-2.0.0-py2.py3-none-any.whl (from https://pypi.org/simple/mmcv-lite/) (requires-python:>=3.7), version: 2.0.0\n", + " Found link https://files.pythonhosted.org/packages/4c/42/650e426cd22e7a7f353f9620980d478e093da3ebfac06594055f600ba3fc/mmcv-lite-2.0.1.tar.gz (from https://pypi.org/simple/mmcv-lite/) (requires-python:>=3.7), version: 2.0.1\n", + " Found link https://files.pythonhosted.org/packages/2b/aa/32a2e538e9b2d3fdf86e79bfbf6ca6a0e7d8a6e6ab5adcc5e43a8fccfb65/mmcv_lite-2.0.1-py2.py3-none-any.whl (from https://pypi.org/simple/mmcv-lite/) (requires-python:>=3.7), version: 2.0.1\n", + " Found link https://files.pythonhosted.org/packages/88/16/fdf13cf796f5224816e78aa742774bf811783357caa237ee38418e6b4402/mmcv-lite-2.1.0.tar.gz (from https://pypi.org/simple/mmcv-lite/) (requires-python:>=3.7), version: 2.1.0\n", + " Found link https://files.pythonhosted.org/packages/cb/8b/22d3a89ad9cc9fe00af8b191da3d2f488f5162c1e657d41b9ab38540ee51/mmcv_lite-2.1.0-py2.py3-none-any.whl (from https://pypi.org/simple/mmcv-lite/) (requires-python:>=3.7), version: 2.1.0\n", + "Skipping link: not a file: https://pypi.org/simple/mmcv-lite/\n", + "Given no hashes to check 5 links for project 'mmcv-lite': discarding no candidates\n", + "Collecting mmcv-lite<2.1.0,>=2.0.0rc4 (from yolo_world==0.1.0)\n", + " Created temporary directory: /tmp/pip-unpack-qyp7w68d\n", + " Looking up \"https://files.pythonhosted.org/packages/2b/aa/32a2e538e9b2d3fdf86e79bfbf6ca6a0e7d8a6e6ab5adcc5e43a8fccfb65/mmcv_lite-2.0.1-py2.py3-none-any.whl\" in the cache\n", + " No cache entry available\n", + " https://files.pythonhosted.org:443 \"GET /packages/2b/aa/32a2e538e9b2d3fdf86e79bfbf6ca6a0e7d8a6e6ab5adcc5e43a8fccfb65/mmcv_lite-2.0.1-py2.py3-none-any.whl HTTP/1.1\" 200 715046\n", + " Downloading mmcv_lite-2.0.1-py2.py3-none-any.whl (715 kB)\n", + "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m389.1/715.0 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m Ignoring unknown cache-control directive: immutable\n", + " Updating cache with response from \"https://files.pythonhosted.org/packages/2b/aa/32a2e538e9b2d3fdf86e79bfbf6ca6a0e7d8a6e6ab5adcc5e43a8fccfb65/mmcv_lite-2.0.1-py2.py3-none-any.whl\"\n", + " etag object cached for 1209600 seconds\n", + " Caching due to etag\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m715.0/715.0 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Added mmcv-lite<2.1.0,>=2.0.0rc4 from https://files.pythonhosted.org/packages/2b/aa/32a2e538e9b2d3fdf86e79bfbf6ca6a0e7d8a6e6ab5adcc5e43a8fccfb65/mmcv_lite-2.0.1-py2.py3-none-any.whl (from yolo_world==0.1.0) to build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + " Removed mmcv-lite<2.1.0,>=2.0.0rc4 from https://files.pythonhosted.org/packages/2b/aa/32a2e538e9b2d3fdf86e79bfbf6ca6a0e7d8a6e6ab5adcc5e43a8fccfb65/mmcv_lite-2.0.1-py2.py3-none-any.whl (from yolo_world==0.1.0) from build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + "1 location(s) to search for versions of mmdet:\n", + "* https://pypi.org/simple/mmdet/\n", + "Fetching project page and analyzing links: https://pypi.org/simple/mmdet/\n", + "Getting page https://pypi.org/simple/mmdet/\n", + "Found index url https://pypi.org/simple/\n", + "Looking up \"https://pypi.org/simple/mmdet/\" in the cache\n", + "Request header has \"max_age\" as 0, cache bypassed\n", + "https://pypi.org:443 \"GET /simple/mmdet/ HTTP/1.1\" 200 11205\n", + "Updating cache with response from \"https://pypi.org/simple/mmdet/\"\n", + "etag object cached for 1209600 seconds\n", + "Caching due to etag\n", + "Fetched page https://pypi.org/simple/mmdet/ as application/vnd.pypi.simple.v1+json\n", + " Found link https://files.pythonhosted.org/packages/58/82/c8a06565847575b916a040dd28f8e70bf93d1c478892015e9e45d4f8a7dd/mmdet-0.6.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 0.6.0\n", + " Found link https://files.pythonhosted.org/packages/21/d8/e07f264056a163470ef024e2cbee6de709453dcbbd93d0360b984f7ac261/mmdet-0.6.1.tar.gz (from https://pypi.org/simple/mmdet/), version: 0.6.1\n", + " Found link https://files.pythonhosted.org/packages/8e/90/b09baf3a2024737006997a270429252a0627be3b16d291ff325d07f639d9/mmdet-0.6.2.tar.gz (from https://pypi.org/simple/mmdet/), version: 0.6.2\n", + " Found link https://files.pythonhosted.org/packages/70/24/a1873abb9e3a85e84d2a72835d91709eca5c5b8f160a2b8a4f343ee83a2a/mmdet-1.0rc2.tar.gz (from https://pypi.org/simple/mmdet/), version: 1.0rc2\n", + " Found link https://files.pythonhosted.org/packages/4c/c4/619d6d27ec9e797b883080aa4a8f2e1a9844d557f91a1e3086440e57f18f/mmdet-1.0rc3.tar.gz (from https://pypi.org/simple/mmdet/), version: 1.0rc3\n", + " Found link https://files.pythonhosted.org/packages/25/d3/c9694e695191cfa39cd45b615eebfc349b74b66e4a531a531246f47ddf68/mmdet-1.0rc4.tar.gz (from https://pypi.org/simple/mmdet/), version: 1.0rc4\n", + " Found link https://files.pythonhosted.org/packages/d0/37/1a78b3e4d319b3620d7f95a940073311502204578bd639b6a30ef2b96128/mmdet-2.3.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.3.0\n", + " Found link https://files.pythonhosted.org/packages/4c/e6/34415332f54a33d5ce823c19e4159ed367af7f96bf3ebe88f5d7acd0e73a/mmdet-2.3.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.3.0\n", + " Found link https://files.pythonhosted.org/packages/4a/a4/bfeca271e5c838e9faf7655e5e0581b7b2d47989164b9c4cc785cb6a6a89/mmdet-2.4.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.4.0\n", + " Found link https://files.pythonhosted.org/packages/47/ba/e5295637ae26a6696fddb7a6f32b3c4f12deabafe5823dfc0bc79b5ee057/mmdet-2.4.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.4.0\n", + " Found link https://files.pythonhosted.org/packages/f8/0f/b326ba02839df9907f9dc5302dd9a05f3a96927a72c2afb16574132dd215/mmdet-2.5.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.5.0\n", + " Found link https://files.pythonhosted.org/packages/88/1d/36095041d4e4cf538852258738a7d7626b82be5047b72eebeaf1891408af/mmdet-2.5.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.5.0\n", + " Found link https://files.pythonhosted.org/packages/dd/05/34af1115bb167ee8214188fa3f8187bb7d8942cd868904f6459906f988d1/mmdet-2.6.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.6.0\n", + " Found link https://files.pythonhosted.org/packages/91/22/bf726eafe585570d06781f022a9ed056447b513c3618219ac15c263bff58/mmdet-2.6.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.6.0\n", + " Found link https://files.pythonhosted.org/packages/73/b5/92cb974f97835d73e1ca382fbaee3ee1d903f2a42689a6a02d3291c54f2c/mmdet-2.7.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.7.0\n", + " Found link https://files.pythonhosted.org/packages/d1/ef/9a0505933ba7f6240486e599e456755c80685712b1b29812795db771c80f/mmdet-2.7.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.7.0\n", + " Found link https://files.pythonhosted.org/packages/42/fe/07bc9c490f0616100ef03da381ea887973ddddbce77600fd13f285f72a8c/mmdet-2.8.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.8.0\n", + " Found link https://files.pythonhosted.org/packages/7b/4b/1faad24458882d7641689b5b2614b6c0d46e22b2a31ed4fac4aa9f09be12/mmdet-2.8.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.8.0\n", + " Found link https://files.pythonhosted.org/packages/c8/f6/88cd56f81069dd014e1e9f17f475772f2d4d5ce2494836384fc1baf5646f/mmdet-2.9.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.9.0\n", + " Found link https://files.pythonhosted.org/packages/4e/e7/f4cfbe548c3f673a95a08f4b72f2d9d8484b20772f9ad386dd5ba90e7396/mmdet-2.9.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.9.0\n", + " Found link https://files.pythonhosted.org/packages/52/3c/a29753bd14afd2209698a49f21823d3431632d6a49a83d959de3787d2f76/mmdet-2.10.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.10.0\n", + " Found link https://files.pythonhosted.org/packages/43/fb/4315a1e4afdafb0f71b245a56a04404f4bef3be7d56743c97bc7cb98d641/mmdet-2.10.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.10.0\n", + " Found link https://files.pythonhosted.org/packages/b9/45/07f0af04dcba6532fdfa424e2b1f997606feded253524c821f6e94a16ba8/mmdet-2.11.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.11.0\n", + " Found link https://files.pythonhosted.org/packages/cb/4d/515dd9e90ed098f77254ae4b4c29a37649e3aa86a0d357da3e293cc6f1ac/mmdet-2.11.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.11.0\n", + " Found link https://files.pythonhosted.org/packages/98/c9/107507a9a66394f8d031c11b01de1384be24fc629c989fec15b765cbf3a4/mmdet-2.12.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.12.0\n", + " Found link https://files.pythonhosted.org/packages/fb/73/ded981c3e1901a27be1db9ed330b07106eb42220a94281ee455a2057d47f/mmdet-2.12.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.12.0\n", + " Found link https://files.pythonhosted.org/packages/43/a8/1c68d110d92cda0bd5b448b97e59862cdf46d1d585e75717bb5faa37c33b/mmdet-2.13.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.13.0\n", + " Found link https://files.pythonhosted.org/packages/3e/24/a8dca4a050df2f55b23005380eeb79350ee76935fb165d548b8bc5ab6fa3/mmdet-2.13.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.13.0\n", + " Found link https://files.pythonhosted.org/packages/27/c3/a97f6ed8a440f3ba623c0614fca91cd1c53a361435d3bbdcff4ff1aa125a/mmdet-2.14.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.14.0\n", + " Found link https://files.pythonhosted.org/packages/b0/ec/741d34d81bc0cbf4b4946513704187db1987ce706e452145ad3df42ebeca/mmdet-2.14.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.14.0\n", + " Found link https://files.pythonhosted.org/packages/74/c4/6493afad7dfe9d03fdcbe9d6729786ad12955c925ab4ff20392501ff802d/mmdet-2.15.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.15.0\n", + " Found link https://files.pythonhosted.org/packages/0c/d4/8dba6af7c203a58c089a3e0c907d054bc5954df5934dbb650982dfe0a376/mmdet-2.15.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.15.0\n", + " Found link https://files.pythonhosted.org/packages/19/3c/e74f6ed042e6523dac42a0ee037a41948e68d987c6901a839a8c8615d615/mmdet-2.15.1-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.15.1\n", + " Found link https://files.pythonhosted.org/packages/da/c7/93a8147f8dcabe6ec5d5e00cfff3e4cd15609ea9dbdd7fc0f4cad9a7e609/mmdet-2.15.1.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.15.1\n", + " Found link https://files.pythonhosted.org/packages/5c/56/afc9f664318aed1d6c27a592dc239c437de749692554ba88b700dfcb85e2/mmdet-2.16.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.16.0\n", + " Found link https://files.pythonhosted.org/packages/15/8c/e37a492cb8622a06c26f7eab7b48eb88621ae80752ed78616b6f27b4383d/mmdet-2.16.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.16.0\n", + " Found link https://files.pythonhosted.org/packages/80/15/117e275bf1b234435be1bfedbc231d5cbdbc16c5237d5624001da9ee2755/mmdet-2.17.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.17.0\n", + " Found link https://files.pythonhosted.org/packages/c0/9e/501e2b9e600b64cf095e77e1a6177c1d6cf92a7b080792a212b55d2c8407/mmdet-2.17.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.17.0\n", + " Found link https://files.pythonhosted.org/packages/d1/a2/4fa76a9257d8c9b11655f0477276174a06de9f3743f97e52fb8882349dc6/mmdet-2.18.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.18.0\n", + " Found link https://files.pythonhosted.org/packages/09/f6/baf60e1c2980f15cf06f79f863618c59bf21d9eda947dc11d6dd07071d5a/mmdet-2.18.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.18.0\n", + " Found link https://files.pythonhosted.org/packages/cf/29/ccafca8b8853eb4b59e178289dc7bdaba58504f24d05d3d004aac3278ed1/mmdet-2.18.1-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.18.1\n", + " Found link https://files.pythonhosted.org/packages/28/f9/9999871fa036b5252ef1c365bdbc7a49c2f923c82d8542b349d47f0f53fb/mmdet-2.18.1.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.18.1\n", + " Found link https://files.pythonhosted.org/packages/6f/85/f9af0cefc6d8c59c623d403946db99d40315005fdee69e582809543f332d/mmdet-2.19.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.19.0\n", + " Found link https://files.pythonhosted.org/packages/6a/cb/a86c81ec3598cacfaea5bb840d87f97068035e76606fda7d968229956f0c/mmdet-2.19.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.19.0\n", + " Found link https://files.pythonhosted.org/packages/38/ba/bcffbf95641646635558934932e795169d2282eaae2bbca38a7e4ed13734/mmdet-2.19.1-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.19.1\n", + " Found link https://files.pythonhosted.org/packages/13/1b/bb3ba0c6749916966dbe8cb135b58675d746e8c90b89991e61ba76b57c3c/mmdet-2.19.1.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.19.1\n", + " Found link https://files.pythonhosted.org/packages/27/1c/0ba682e65be6e9242ac59902eb494e0577a10eb72c652fce0af8f13253ff/mmdet-2.20.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.20.0\n", + " Found link https://files.pythonhosted.org/packages/cb/a4/7de948b6105951ece45a41a78bf80ef2574b2deb211fae17fc85bfdfde29/mmdet-2.20.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.20.0\n", + " Found link https://files.pythonhosted.org/packages/3d/6e/e058985b9ac8d24abab1ca2045506de97682bff1ab89c6db1373c2687692/mmdet-2.21.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.21.0\n", + " Found link https://files.pythonhosted.org/packages/34/a9/a287a3be60e8ab33aa0bbcd4ee33691dc33edb2b1d8003a5d44d98215891/mmdet-2.21.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.21.0\n", + " Found link https://files.pythonhosted.org/packages/66/61/0e03c564c04d3d84a2d4f6e218c1fa287e61955322dcaa943f66ec4fbae9/mmdet-2.22.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.22.0\n", + " Found link https://files.pythonhosted.org/packages/9e/c7/767f901ef968c0c3a589fe951b97e6758709fee7533da35530242aeeff4e/mmdet-2.22.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.22.0\n", + " Found link https://files.pythonhosted.org/packages/ff/13/db18fe68c3480664b8571674fb9f5258e39b76f759985a510287075a9cce/mmdet-2.23.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.23.0\n", + " Found link https://files.pythonhosted.org/packages/59/1a/f0e34f622d2d0c7be84356c39d2c829fd1e1ffb1d15b4b36d185946f7c8b/mmdet-2.23.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.23.0\n", + " Found link https://files.pythonhosted.org/packages/7a/3b/f0ef99d1f0826b9d7db33f70b027e4a317c98c2bf8f4f28be14c1a4f4fdb/mmdet-2.24.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.24.0\n", + " Found link https://files.pythonhosted.org/packages/d8/b0/5fa5f042efdbd1ccca71e7b412a0f482428f14c20dafc90b3173d60830f1/mmdet-2.24.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.24.0\n", + " Found link https://files.pythonhosted.org/packages/c2/04/fc39234eb27b8d7d377e9ded3b5982b8860c59c9d273b77f32fc2b3f1ca1/mmdet-2.24.1-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.24.1\n", + " Found link https://files.pythonhosted.org/packages/83/05/4b7ae168af816ef01d19cd1cd742f9aa6fe10984aca5be3eac6f7811475c/mmdet-2.24.1.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.24.1\n", + " Found link https://files.pythonhosted.org/packages/b0/11/52ad3563ccb589269a559b8b52b4ce0c6ee5e701a0483baa267f25d88416/mmdet-2.25.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.25.0\n", + " Found link https://files.pythonhosted.org/packages/0d/f7/e29bae8541cdf11fac0bc6327e6e212ffd446d9e7d293a06b6d264d1b154/mmdet-2.25.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.25.0\n", + " Found link https://files.pythonhosted.org/packages/33/da/c979cca457c732e598131a3939c15d7d57b14b7ba6b79cba52a0cd604d99/mmdet-2.25.1-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.25.1\n", + " Found link https://files.pythonhosted.org/packages/a1/02/7834d4dd498a16a8178f318878a753bec017d06fb7697867fd0d685e08e6/mmdet-2.25.1.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.25.1\n", + " Found link https://files.pythonhosted.org/packages/af/75/cd8d6180a35381d1db1ab7a90e58b38478e85accc8eced0c2ec7aa2fcd0b/mmdet-2.25.2-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.25.2\n", + " Found link https://files.pythonhosted.org/packages/a9/21/a2980b30de4e7d76e5c8063a4eb8333fb589555658ab96ebe5d8f930c6e6/mmdet-2.25.2.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.25.2\n", + " Found link https://files.pythonhosted.org/packages/cb/16/e5d7063700caa8f786c8dcc0268a2ceeccb9d3173a5c141b513c604d667c/mmdet-2.25.3-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.25.3\n", + " Found link https://files.pythonhosted.org/packages/71/5f/dfd551a82b115816d3cd0d200200d947060bea3f49ba5b12a377518c5e21/mmdet-2.25.3.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.25.3\n", + " Found link https://files.pythonhosted.org/packages/92/b7/1761ce5c277906b366c6316d0b28dc01b8de68fa32beb4008c11dce12146/mmdet-2.26.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.26.0\n", + " Found link https://files.pythonhosted.org/packages/8f/7b/fd96f8b487b8a5fbdad2f73ee9a00929668a3b0db9fc417173f5876dd0a4/mmdet-2.26.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.26.0\n", + " Found link https://files.pythonhosted.org/packages/7e/70/3db44c9e221aa31ff673107a321ac3c032907abce4745630d8d6b585a715/mmdet-2.27.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.27.0\n", + " Found link https://files.pythonhosted.org/packages/af/08/bff15e3cf5bcb194b6df0fbe3d1abb745f6a3da04964df09669e19a467e9/mmdet-2.27.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.27.0\n", + " Found link https://files.pythonhosted.org/packages/4c/2d/203c9e521b67990d498ee2784a6d5c290202562852e384ba761b9f885234/mmdet-2.28.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.28.0\n", + " Found link https://files.pythonhosted.org/packages/8e/9f/6c25e5c919e1f42bedec079d0a584aebd440568cbe4bbe54bc0b38abfe04/mmdet-2.28.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.28.0\n", + " Found link https://files.pythonhosted.org/packages/1a/79/e0ebdd6e8fb513299b00f030b7efc6b11e7389fe1cea4aedfdddeefd61d6/mmdet-2.28.1-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.28.1\n", + " Found link https://files.pythonhosted.org/packages/a7/9f/ec87ccc1274ee52d64876960f61b1aa945e706380619f0a9f8a4c5d94537/mmdet-2.28.1.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.28.1\n", + " Found link https://files.pythonhosted.org/packages/03/ed/4ebb8197d87930b25d89ad4a72b3f36bb5f1ceea6d8bec89b22640f1a9fc/mmdet-2.28.2-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 2.28.2\n", + " Found link https://files.pythonhosted.org/packages/3c/05/63c730e4fb20522d4eb3375a048a3747237cbab4f177976288b9327ec055/mmdet-2.28.2.tar.gz (from https://pypi.org/simple/mmdet/), version: 2.28.2\n", + " Found link https://files.pythonhosted.org/packages/58/a9/928d50d72806f6f4aca04125bd83a502fc2b0de1e150a9b18d3e4b64bef2/mmdet-3.0.0rc0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.0.0rc0\n", + " Found link https://files.pythonhosted.org/packages/dd/30/ae85cdeaee2deae98b31b8dd64ae4f3ab1bf32f5904b5c1a42a641f0788a/mmdet-3.0.0rc0.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.0.0rc0\n", + " Found link https://files.pythonhosted.org/packages/3b/3a/4ea069e58be74c11f3a895e097096b9e06807bab26985f07fe078e55d678/mmdet-3.0.0rc1-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.0.0rc1\n", + " Found link https://files.pythonhosted.org/packages/81/dd/2817b054f0c5cf0dfa0059918979c9ceb3dd57b75be01b0d482ac2449a7b/mmdet-3.0.0rc1.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.0.0rc1\n", + " Found link https://files.pythonhosted.org/packages/f1/34/40d0d9d8b6f93e287c3a0ec1dbc43d4d613ef61e60198051cc228a044550/mmdet-3.0.0rc2-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.0.0rc2\n", + " Found link https://files.pythonhosted.org/packages/e8/49/8679d4397ccd584a79a804320a73f6d0f3d2df33df0b20ca5045c196306b/mmdet-3.0.0rc2.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.0.0rc2\n", + " Found link https://files.pythonhosted.org/packages/17/ad/3f6d0177707e97979cfc03df046c15fd56c8051c4f47b6286c9828faba0c/mmdet-3.0.0rc3-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.0.0rc3\n", + " Found link https://files.pythonhosted.org/packages/2c/9e/77cbc745369aa294c47d28d5c3447351af7194e89b49bf5e8a923d062d18/mmdet-3.0.0rc3.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.0.0rc3\n", + " Found link https://files.pythonhosted.org/packages/51/0b/0434f468ed3d202da45b46e1049e6d9fb2cb96819d14d42457904ccdccc9/mmdet-3.0.0rc4-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.0.0rc4\n", + " Found link https://files.pythonhosted.org/packages/f9/35/da23611e077a5d02856773a8f36e71800c3cfe4c189a5cd8af5e6658cc79/mmdet-3.0.0rc4.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.0.0rc4\n", + " Found link https://files.pythonhosted.org/packages/b3/34/51a94aa4923bf3573a369acc67c6e18ad2bc159adb95a0ac3ca7044a8982/mmdet-3.0.0rc5-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.0.0rc5\n", + " Found link https://files.pythonhosted.org/packages/16/e5/28b0e39fc564d640644bcd03c5501cf406541b48f2d8404a2af82491d3c1/mmdet-3.0.0rc5.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.0.0rc5\n", + " Found link https://files.pythonhosted.org/packages/80/0d/338e18bb8c3c59857e9b06a7c2af4c6c729c3cddad73706a66a20d4ba0b3/mmdet-3.0.0rc6-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.0.0rc6\n", + " Found link https://files.pythonhosted.org/packages/a2/36/1fffae08aefc12fdafbc0c2f35c19ea2e7e8f8f7e2b91a412fdd3d68d455/mmdet-3.0.0rc6.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.0.0rc6\n", + " Found link https://files.pythonhosted.org/packages/2d/6a/1f97b0f476f64ed46dedc6b235ba51a5ef4c32db65702bf04d7a7de4ad51/mmdet-3.0.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.0.0\n", + " Found link https://files.pythonhosted.org/packages/dd/c2/a8af3485654e6fcd6c814c3998bc8dd25499b220213d38341e71c7cbd69b/mmdet-3.0.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.0.0\n", + " Found link https://files.pythonhosted.org/packages/c5/ba/5e9726a4a1c5dd4df1ee8cbdabc9b255215cf94581cd1b5670c8d6c42af5/mmdet-3.1.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.1.0\n", + " Found link https://files.pythonhosted.org/packages/ed/7f/8a07df0d2848862af78d2378997533267117c6bd131d4c1efb479d9be0bb/mmdet-3.1.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.1.0\n", + " Found link https://files.pythonhosted.org/packages/7f/48/b3fda74475f799f944fccc685d1a31b26cf6d24f3dcac03c43d2240655af/mmdet-3.2.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.2.0\n", + " Found link https://files.pythonhosted.org/packages/7b/63/a4b1faae6cd53508421ff5c980ab6649d7c1e933afe4f8af388776f7dc96/mmdet-3.2.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.2.0\n", + " Found link https://files.pythonhosted.org/packages/02/c7/c2d91161c9b3e1c237ea00e9cefb7f4bfe2854769f56025db415b734aedb/mmdet-3.3.0-py3-none-any.whl (from https://pypi.org/simple/mmdet/), version: 3.3.0\n", + " Found link https://files.pythonhosted.org/packages/5a/9e/c897d2fe3c3aa40fd83ea04c6103412cf0bd4db4bb20db4248f5c09673e7/mmdet-3.3.0.tar.gz (from https://pypi.org/simple/mmdet/), version: 3.3.0\n", + "Skipping link: not a file: https://pypi.org/simple/mmdet/\n", + "Given no hashes to check 8 links for project 'mmdet': discarding no candidates\n", + "Collecting mmdet>=3.0.0 (from yolo_world==0.1.0)\n", + " Created temporary directory: /tmp/pip-unpack-tiplgbwm\n", + " Looking up \"https://files.pythonhosted.org/packages/02/c7/c2d91161c9b3e1c237ea00e9cefb7f4bfe2854769f56025db415b734aedb/mmdet-3.3.0-py3-none-any.whl\" in the cache\n", + " No cache entry available\n", + " https://files.pythonhosted.org:443 \"GET /packages/02/c7/c2d91161c9b3e1c237ea00e9cefb7f4bfe2854769f56025db415b734aedb/mmdet-3.3.0-py3-none-any.whl HTTP/1.1\" 200 2231444\n", + " Downloading mmdet-3.3.0-py3-none-any.whl (2.2 MB)\n", + "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.8/2.2 MB\u001b[0m \u001b[31m52.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m Ignoring unknown cache-control directive: immutable\n", + " Updating cache with response from \"https://files.pythonhosted.org/packages/02/c7/c2d91161c9b3e1c237ea00e9cefb7f4bfe2854769f56025db415b734aedb/mmdet-3.3.0-py3-none-any.whl\"\n", + " etag object cached for 1209600 seconds\n", + " Caching due to etag\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m30.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Added mmdet>=3.0.0 from https://files.pythonhosted.org/packages/02/c7/c2d91161c9b3e1c237ea00e9cefb7f4bfe2854769f56025db415b734aedb/mmdet-3.3.0-py3-none-any.whl (from yolo_world==0.1.0) to build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + " Removed mmdet>=3.0.0 from https://files.pythonhosted.org/packages/02/c7/c2d91161c9b3e1c237ea00e9cefb7f4bfe2854769f56025db415b734aedb/mmdet-3.3.0-py3-none-any.whl (from yolo_world==0.1.0) from build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + "Requirement already satisfied: mmengine>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (0.10.3)\n", + "Requirement already satisfied: mmcv in /usr/local/lib/python3.10/dist-packages (from yolo_world==0.1.0) (2.1.0)\n", + "Requirement already satisfied: defusedxml<0.8.0,>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from supervision==0.18.0->yolo_world==0.1.0) (0.7.1)\n", + "Requirement already satisfied: matplotlib>=3.6.0 in /usr/local/lib/python3.10/dist-packages (from supervision==0.18.0->yolo_world==0.1.0) (3.7.1)\n", + "Requirement already satisfied: opencv-python-headless>=4.5.5.64 in /usr/local/lib/python3.10/dist-packages (from supervision==0.18.0->yolo_world==0.1.0) (4.9.0.80)\n", + "Requirement already satisfied: pyyaml>=5.3 in /usr/local/lib/python3.10/dist-packages (from supervision==0.18.0->yolo_world==0.1.0) (6.0.1)\n", + "Requirement already satisfied: scipy<2.0.0,>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from supervision==0.18.0->yolo_world==0.1.0) (1.11.4)\n", + "Requirement already satisfied: addict in /usr/local/lib/python3.10/dist-packages (from mmcv-lite<2.1.0,>=2.0.0rc4->yolo_world==0.1.0) (2.4.0)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from mmcv-lite<2.1.0,>=2.0.0rc4->yolo_world==0.1.0) (23.2)\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from mmcv-lite<2.1.0,>=2.0.0rc4->yolo_world==0.1.0) (9.4.0)\n", + "Requirement already satisfied: yapf in /usr/local/lib/python3.10/dist-packages (from mmcv-lite<2.1.0,>=2.0.0rc4->yolo_world==0.1.0) (0.40.2)\n", + "Requirement already satisfied: pycocotools in /usr/local/lib/python3.10/dist-packages (from mmdet>=3.0.0->yolo_world==0.1.0) (2.0.7)\n", + "Requirement already satisfied: shapely in /usr/local/lib/python3.10/dist-packages (from mmdet>=3.0.0->yolo_world==0.1.0) (2.0.2)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from mmdet>=3.0.0->yolo_world==0.1.0) (1.16.0)\n", + "1 location(s) to search for versions of terminaltables:\n", + "* https://pypi.org/simple/terminaltables/\n", + "Fetching project page and analyzing links: https://pypi.org/simple/terminaltables/\n", + "Getting page https://pypi.org/simple/terminaltables/\n", + "Found index url https://pypi.org/simple/\n", + "Looking up \"https://pypi.org/simple/terminaltables/\" in the cache\n", + "Request header has \"max_age\" as 0, cache bypassed\n", + "https://pypi.org:443 \"GET /simple/terminaltables/ HTTP/1.1\" 200 2687\n", + "Updating cache with response from \"https://pypi.org/simple/terminaltables/\"\n", + "etag object cached for 1209600 seconds\n", + "Caching due to etag\n", + "Fetched page https://pypi.org/simple/terminaltables/ as application/vnd.pypi.simple.v1+json\n", + " Found link https://files.pythonhosted.org/packages/ec/82/6390ba7f110622d27b02451aaa294dc4b3133b7661e464db9a116e977324/terminaltables-1.0.0.tar.gz (from https://pypi.org/simple/terminaltables/), version: 1.0.0\n", + " Found link https://files.pythonhosted.org/packages/97/65/858bc3ea6cc60edc959ce427a94227932b5d9a95b0bce82f16071419885c/terminaltables-1.0.1.tar.gz (from https://pypi.org/simple/terminaltables/), version: 1.0.1\n", + " Found link https://files.pythonhosted.org/packages/82/42/3f1140f6e538582fd514c765244662cca60885048cf610e7d00eaee8aeb1/terminaltables-1.0.2.tar.gz (from https://pypi.org/simple/terminaltables/), version: 1.0.2\n", + " Found link https://files.pythonhosted.org/packages/80/07/5663569dfd8fa4e4fa3cb645b70f4972e3d79d056b71da12df174668c145/terminaltables-1.1.0.tar.gz (from https://pypi.org/simple/terminaltables/), version: 1.1.0\n", + " Found link https://files.pythonhosted.org/packages/0c/4a/9b80642ac2463908fe77c9dbe138c56902fbf5a5a95d07203c131ec9ba90/terminaltables-1.1.1.tar.gz (from https://pypi.org/simple/terminaltables/), version: 1.1.1\n", + " Found link https://files.pythonhosted.org/packages/a8/65/f9c6bcfb1f81acdfcd1f8d633c6752cfdcc04b5fade7638a2a8dc7a720de/terminaltables-1.2.0.tar.gz (from https://pypi.org/simple/terminaltables/), version: 1.2.0\n", + " Found link https://files.pythonhosted.org/packages/3d/17/14aa6521b337be46c51dd7b31e7e617801e9f8db7f48583c767c02e0e72a/terminaltables-1.2.1.tar.gz (from https://pypi.org/simple/terminaltables/), version: 1.2.1\n", + " Found link https://files.pythonhosted.org/packages/d0/8e/9403573ff8aebc09ee0aacd57885050f74bd9f48a85c0735d33cacfa2469/terminaltables-2.0.0.tar.gz (from https://pypi.org/simple/terminaltables/), version: 2.0.0\n", + " Found link https://files.pythonhosted.org/packages/10/da/9bbb21c1c2f9be4df2056b00b569689b9ece538ef39bf8db34be25f9e850/terminaltables-2.1.0.tar.gz (from https://pypi.org/simple/terminaltables/), version: 2.1.0\n", + " Found link https://files.pythonhosted.org/packages/58/c9/f0c174c4e828365df3593c66ac32474cd994a8ec36fe19a798261c96c3bc/terminaltables-3.0.0.tar.gz (from https://pypi.org/simple/terminaltables/), version: 3.0.0\n", + " Found link https://files.pythonhosted.org/packages/9b/c4/4a21174f32f8a7e1104798c445dacdc1d4df86f2f26722767034e4de4bff/terminaltables-3.1.0.tar.gz (from https://pypi.org/simple/terminaltables/), version: 3.1.0\n", + " Found link https://files.pythonhosted.org/packages/d7/9f/f0f648fd548373d641af6c820f0232c10aa46a64827a3828173d37cdef31/terminaltables-3.1.5-py2.py3-none-any.whl (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.5\n", + " Found link https://files.pythonhosted.org/packages/5a/16/dd906e12ee828fe64da455decb078bb25b06cf80f9f626ca21d278b867b6/terminaltables-3.1.6-py2.py3-none-any.whl (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.6\n", + " Found link https://files.pythonhosted.org/packages/cf/55/c0f3ea1e5d20d3da27bfaa5902edfd7477793bb4d7bd846ecc28e2f8dd98/terminaltables-3.1.6.tar.gz (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.6\n", + " Found link https://files.pythonhosted.org/packages/1e/d0/663ada6aea1ed17d9b9c22a896d1fbecfff24c4e0abe6e7e212443b12499/terminaltables-3.1.7-py2.py3-none-any.whl (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.7\n", + " Found link https://files.pythonhosted.org/packages/b0/6d/19ab8dd9b85b804e4d90fba678156bf4f3dcc04935edbfb5ff8ebcec5199/terminaltables-3.1.7.tar.gz (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.7\n", + " Found link https://files.pythonhosted.org/packages/6f/6b/ad2cbd9bb0341479a5f77f6b97a42792b2fdfc2d33ac07fbbacabaa3c5a3/terminaltables-3.1.8-py2.py3-none-any.whl (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.8\n", + " Found link https://files.pythonhosted.org/packages/95/a5/2b63645cc40dfcb7686725b9ed7c4b016df09eb2dbc7329f2d55742ad015/terminaltables-3.1.8.tar.gz (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.8\n", + " Found link https://files.pythonhosted.org/packages/d3/49/799fcba07ca12a3b6cb141ac744755306a7d7b6e7d580f08388d2b64a00b/terminaltables-3.1.9-py2.py3-none-any.whl (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.9\n", + " Found link https://files.pythonhosted.org/packages/c9/f8/3437904b3e5b4f050f1dc254c0eee706df6ff25098cf5b759a33da94a506/terminaltables-3.1.9.tar.gz (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.9\n", + " Found link https://files.pythonhosted.org/packages/c4/fb/ea621e0a19733e01fe4005d46087d383693c0f4a8f824b47d8d4122c87e0/terminaltables-3.1.10-py2.py3-none-any.whl (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.10\n", + " Found link https://files.pythonhosted.org/packages/f5/fc/0b73d782f5ab7feba8d007573a3773c58255f223c5940a7b7085f02153c3/terminaltables-3.1.10.tar.gz (from https://pypi.org/simple/terminaltables/) (requires-python:>=2.6), version: 3.1.10\n", + "Skipping link: not a file: https://pypi.org/simple/terminaltables/\n", + "Given no hashes to check 22 links for project 'terminaltables': discarding no candidates\n", + "Collecting terminaltables (from mmdet>=3.0.0->yolo_world==0.1.0)\n", + " Created temporary directory: /tmp/pip-unpack-ig1s_yjw\n", + " Looking up \"https://files.pythonhosted.org/packages/c4/fb/ea621e0a19733e01fe4005d46087d383693c0f4a8f824b47d8d4122c87e0/terminaltables-3.1.10-py2.py3-none-any.whl\" in the cache\n", + " No cache entry available\n", + " https://files.pythonhosted.org:443 \"GET /packages/c4/fb/ea621e0a19733e01fe4005d46087d383693c0f4a8f824b47d8d4122c87e0/terminaltables-3.1.10-py2.py3-none-any.whl HTTP/1.1\" 200 15155\n", + " Downloading terminaltables-3.1.10-py2.py3-none-any.whl (15 kB)\n", + " Ignoring unknown cache-control directive: immutable\n", + " Updating cache with response from \"https://files.pythonhosted.org/packages/c4/fb/ea621e0a19733e01fe4005d46087d383693c0f4a8f824b47d8d4122c87e0/terminaltables-3.1.10-py2.py3-none-any.whl\"\n", + " etag object cached for 1209600 seconds\n", + " Caching due to etag\n", + " Added terminaltables from https://files.pythonhosted.org/packages/c4/fb/ea621e0a19733e01fe4005d46087d383693c0f4a8f824b47d8d4122c87e0/terminaltables-3.1.10-py2.py3-none-any.whl (from mmdet>=3.0.0->yolo_world==0.1.0) to build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + " Removed terminaltables from https://files.pythonhosted.org/packages/c4/fb/ea621e0a19733e01fe4005d46087d383693c0f4a8f824b47d8d4122c87e0/terminaltables-3.1.10-py2.py3-none-any.whl (from mmdet>=3.0.0->yolo_world==0.1.0) from build tracker '/tmp/pip-build-tracker-ebv4bpax'\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from mmdet>=3.0.0->yolo_world==0.1.0) (4.65.0)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.7.1->yolo_world==0.1.0) (13.4.2)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from mmengine>=0.7.1->yolo_world==0.1.0) (2.4.0)\n", + "Requirement already satisfied: prettytable in /usr/local/lib/python3.10/dist-packages (from mmyolo@ git+https://github.com/onuralpszr/mmyolo.git->yolo_world==0.1.0) (3.9.0)\n", + "Requirement already satisfied: Click in /usr/local/lib/python3.10/dist-packages (from openmim->yolo_world==0.1.0) (8.1.7)\n", + "Requirement already satisfied: colorama in /usr/local/lib/python3.10/dist-packages (from openmim->yolo_world==0.1.0) (0.4.6)\n", + "Requirement already satisfied: model-index in /usr/local/lib/python3.10/dist-packages (from openmim->yolo_world==0.1.0) (0.1.11)\n", + "Requirement already satisfied: opendatalab in /usr/local/lib/python3.10/dist-packages (from openmim->yolo_world==0.1.0) (0.0.10)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from openmim->yolo_world==0.1.0) (1.5.3)\n", + "Requirement already satisfied: pip>=19.3 in /usr/local/lib/python3.10/dist-packages (from openmim->yolo_world==0.1.0) (23.1.2)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from openmim->yolo_world==0.1.0) (2.28.2)\n", + "Requirement already satisfied: tabulate in /usr/local/lib/python3.10/dist-packages (from openmim->yolo_world==0.1.0) (0.9.0)\n", + "Requirement already satisfied: huggingface_hub<1.0,>=0.16.4 in /usr/local/lib/python3.10/dist-packages (from tokenizers->yolo_world==0.1.0) (0.20.3)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch->yolo_world==0.1.0) (3.13.1)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch->yolo_world==0.1.0) (4.9.0)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->yolo_world==0.1.0) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch->yolo_world==0.1.0) (3.2.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->yolo_world==0.1.0) (3.1.3)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch->yolo_world==0.1.0) (2023.6.0)\n", + "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch->yolo_world==0.1.0) (2.1.0)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers->yolo_world==0.1.0) (2023.12.25)\n", + "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers->yolo_world==0.1.0) (0.4.2)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6.0->supervision==0.18.0->yolo_world==0.1.0) (1.2.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6.0->supervision==0.18.0->yolo_world==0.1.0) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6.0->supervision==0.18.0->yolo_world==0.1.0) (4.48.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6.0->supervision==0.18.0->yolo_world==0.1.0) (1.4.5)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6.0->supervision==0.18.0->yolo_world==0.1.0) (3.1.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6.0->supervision==0.18.0->yolo_world==0.1.0) (2.8.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch->yolo_world==0.1.0) (2.1.5)\n", + "Requirement already satisfied: markdown in /usr/local/lib/python3.10/dist-packages (from model-index->openmim->yolo_world==0.1.0) (3.5.2)\n", + "Requirement already satisfied: ordered-set in /usr/local/lib/python3.10/dist-packages (from model-index->openmim->yolo_world==0.1.0) (4.1.0)\n", + "Requirement already satisfied: pycryptodome in /usr/local/lib/python3.10/dist-packages (from opendatalab->openmim->yolo_world==0.1.0) (3.20.0)\n", + "Requirement already satisfied: openxlab in /usr/local/lib/python3.10/dist-packages (from opendatalab->openmim->yolo_world==0.1.0) (0.0.34)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->openmim->yolo_world==0.1.0) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->openmim->yolo_world==0.1.0) (3.6)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->openmim->yolo_world==0.1.0) (1.26.18)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->openmim->yolo_world==0.1.0) (2024.2.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->openmim->yolo_world==0.1.0) (2023.4)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prettytable->mmyolo@ git+https://github.com/onuralpszr/mmyolo.git->yolo_world==0.1.0) (0.2.13)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->mmengine>=0.7.1->yolo_world==0.1.0) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->mmengine>=0.7.1->yolo_world==0.1.0) (2.16.1)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch->yolo_world==0.1.0) (1.3.0)\n", + "Requirement already satisfied: importlib-metadata>=6.6.0 in /usr/local/lib/python3.10/dist-packages (from yapf->mmcv-lite<2.1.0,>=2.0.0rc4->yolo_world==0.1.0) (7.0.1)\n", + "Requirement already satisfied: platformdirs>=3.5.1 in /usr/local/lib/python3.10/dist-packages (from yapf->mmcv-lite<2.1.0,>=2.0.0rc4->yolo_world==0.1.0) (4.2.0)\n", + "Requirement already satisfied: tomli>=2.0.1 in /usr/local/lib/python3.10/dist-packages (from yapf->mmcv-lite<2.1.0,>=2.0.0rc4->yolo_world==0.1.0) (2.0.1)\n", + "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata>=6.6.0->yapf->mmcv-lite<2.1.0,>=2.0.0rc4->yolo_world==0.1.0) (3.17.0)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->mmengine>=0.7.1->yolo_world==0.1.0) (0.1.2)\n", + "Requirement already satisfied: oss2~=2.17.0 in /usr/local/lib/python3.10/dist-packages (from openxlab->opendatalab->openmim->yolo_world==0.1.0) (2.17.0)\n", + "Requirement already satisfied: setuptools~=60.2.0 in /usr/local/lib/python3.10/dist-packages (from openxlab->opendatalab->openmim->yolo_world==0.1.0) (60.2.0)\n", + "Requirement already satisfied: crcmod>=1.7 in /usr/local/lib/python3.10/dist-packages (from oss2~=2.17.0->openxlab->opendatalab->openmim->yolo_world==0.1.0) (1.7)\n", + "Requirement already satisfied: aliyun-python-sdk-kms>=2.4.1 in /usr/local/lib/python3.10/dist-packages (from oss2~=2.17.0->openxlab->opendatalab->openmim->yolo_world==0.1.0) (2.16.2)\n", + "Requirement already satisfied: aliyun-python-sdk-core>=2.13.12 in /usr/local/lib/python3.10/dist-packages (from oss2~=2.17.0->openxlab->opendatalab->openmim->yolo_world==0.1.0) (2.14.0)\n", + "Requirement already satisfied: jmespath<1.0.0,>=0.9.3 in /usr/local/lib/python3.10/dist-packages (from aliyun-python-sdk-core>=2.13.12->oss2~=2.17.0->openxlab->opendatalab->openmim->yolo_world==0.1.0) (0.10.0)\n", + "Requirement already satisfied: cryptography>=2.6.0 in /usr/local/lib/python3.10/dist-packages (from aliyun-python-sdk-core>=2.13.12->oss2~=2.17.0->openxlab->opendatalab->openmim->yolo_world==0.1.0) (42.0.2)\n", + "Requirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.10/dist-packages (from cryptography>=2.6.0->aliyun-python-sdk-core>=2.13.12->oss2~=2.17.0->openxlab->opendatalab->openmim->yolo_world==0.1.0) (1.16.0)\n", + "Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.12->cryptography>=2.6.0->aliyun-python-sdk-core>=2.13.12->oss2~=2.17.0->openxlab->opendatalab->openmim->yolo_world==0.1.0) (2.21)\n", + "Created temporary directory: /tmp/pip-unpack-vvyhqe2z\n", + "Building wheels for collected packages: yolo_world, mmyolo\n", + " Created temporary directory: /tmp/pip-wheel-swppbzfy\n", + " Destination directory: /tmp/pip-wheel-swppbzfy\n", + " Running command Building editable for yolo_world (pyproject.toml)\n", + " running editable_wheel\n", + " creating /tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world.egg-info\n", + " writing /tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world.egg-info/PKG-INFO\n", + " writing dependency_links to /tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world.egg-info/dependency_links.txt\n", + " writing requirements to /tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world.egg-info/requires.txt\n", + " writing top-level names to /tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world.egg-info/top_level.txt\n", + " writing manifest file '/tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world.egg-info/SOURCES.txt'\n", + " reading manifest file '/tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world.egg-info/SOURCES.txt'\n", + " adding license file 'LICENSE'\n", + " writing manifest file '/tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world.egg-info/SOURCES.txt'\n", + " creating '/tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world-0.1.0.dist-info'\n", + " creating /tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world-0.1.0.dist-info/WHEEL\n", + " running build_py\n", + " Editable install will be performed using a meta path finder.\n", + "\n", + " Options like `package-data`, `include/exclude-package-data` or\n", + " `packages.find.exclude/include` may have no effect.\n", + "\n", + " adding '__editable___yolo_world_0_1_0_finder.py'\n", + " adding '__editable__.yolo_world-0.1.0.pth'\n", + " creating '/tmp/pip-wheel-swppbzfy/.tmp-j6gb19u_/yolo_world-0.1.0-0.editable-py3-none-any.whl' and adding '/tmp/tmpw1vojvh1yolo_world-0.1.0-0.editable-py3-none-any.whl' to it\n", + " adding 'yolo_world-0.1.0.dist-info/LICENSE'\n", + " adding 'yolo_world-0.1.0.dist-info/METADATA'\n", + " adding 'yolo_world-0.1.0.dist-info/WHEEL'\n", + " adding 'yolo_world-0.1.0.dist-info/top_level.txt'\n", + " adding 'yolo_world-0.1.0.dist-info/zip-safe'\n", + " adding 'yolo_world-0.1.0.dist-info/RECORD'\n", + " /tmp/pip-build-env-yc0qx5yn/overlay/local/lib/python3.10/dist-packages/setuptools/command/editable_wheel.py:341: InformationOnly: Editable installation.\n", + " !!\n", + "\n", + " ********************************************************************************\n", + " Please be careful with folders in your working directory with the same\n", + " name as your package as they may take precedence during imports.\n", + " ********************************************************************************\n", + "\n", + " !!\n", + " with strategy, WheelFile(wheel_path, \"w\") as wheel_obj:\n", + " Building editable for yolo_world (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for yolo_world: filename=yolo_world-0.1.0-0.editable-py3-none-any.whl size=30388 sha256=ab9a1c8c0fe11368e71e6f9aea7f519e5c4d136fe410939930db7c0ff50354b3\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-6qkffa7v/wheels/23/f8/e4/3000c791964d3db79fe42bfde788304bc761a8253f2b804c9b\n", + " Created temporary directory: /tmp/pip-wheel-q3j8bt58\n", + " Building wheel for mmyolo (setup.py) ... \u001b[?25l Destination directory: /tmp/pip-wheel-q3j8bt58\n", + " Running command python setup.py bdist_wheel\n", + " running bdist_wheel\n", + " /usr/local/lib/python3.10/dist-packages/torch/utils/cpp_extension.py:502: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend.\n", + " warnings.warn(msg.format('we could not find ninja.'))\n", + " running build\n", + " running build_py\n", + " creating build\n", + " creating build/lib\n", + " creating build/lib/mmyolo\n", + " copying mmyolo/__init__.py -> build/lib/mmyolo\n", + " copying mmyolo/registry.py -> build/lib/mmyolo\n", + " copying mmyolo/version.py -> build/lib/mmyolo\n", + " creating build/lib/mmyolo/datasets\n", + " copying mmyolo/datasets/__init__.py -> build/lib/mmyolo/datasets\n", + " copying mmyolo/datasets/pose_coco.py -> build/lib/mmyolo/datasets\n", + " copying mmyolo/datasets/utils.py -> build/lib/mmyolo/datasets\n", + " copying mmyolo/datasets/yolov5_crowdhuman.py -> build/lib/mmyolo/datasets\n", + " copying mmyolo/datasets/yolov5_voc.py -> build/lib/mmyolo/datasets\n", + " copying mmyolo/datasets/yolov5_coco.py -> build/lib/mmyolo/datasets\n", + " copying mmyolo/datasets/yolov5_dota.py -> build/lib/mmyolo/datasets\n", + " creating build/lib/mmyolo/utils\n", + " copying mmyolo/utils/__init__.py -> build/lib/mmyolo/utils\n", + " copying mmyolo/utils/collect_env.py -> build/lib/mmyolo/utils\n", + " copying mmyolo/utils/misc.py -> build/lib/mmyolo/utils\n", + " copying mmyolo/utils/setup_env.py -> build/lib/mmyolo/utils\n", + " copying mmyolo/utils/boxam_utils.py -> build/lib/mmyolo/utils\n", + " copying mmyolo/utils/labelme_utils.py -> build/lib/mmyolo/utils\n", + " copying mmyolo/utils/large_image.py -> build/lib/mmyolo/utils\n", + " creating build/lib/mmyolo/testing\n", + " copying mmyolo/testing/__init__.py -> build/lib/mmyolo/testing\n", + " copying mmyolo/testing/_utils.py -> build/lib/mmyolo/testing\n", + " creating build/lib/mmyolo/models\n", + " copying mmyolo/models/__init__.py -> build/lib/mmyolo/models\n", + " creating build/lib/mmyolo/deploy\n", + " copying mmyolo/deploy/__init__.py -> build/lib/mmyolo/deploy\n", + " copying mmyolo/deploy/object_detection.py -> build/lib/mmyolo/deploy\n", + " creating build/lib/mmyolo/engine\n", + " copying mmyolo/engine/__init__.py -> build/lib/mmyolo/engine\n", + " creating build/lib/mmyolo/datasets/transforms\n", + " copying mmyolo/datasets/transforms/__init__.py -> build/lib/mmyolo/datasets/transforms\n", + " copying mmyolo/datasets/transforms/transforms.py -> build/lib/mmyolo/datasets/transforms\n", + " copying mmyolo/datasets/transforms/formatting.py -> build/lib/mmyolo/datasets/transforms\n", + " copying mmyolo/datasets/transforms/keypoint_structure.py -> build/lib/mmyolo/datasets/transforms\n", + " copying mmyolo/datasets/transforms/mix_img_transforms.py -> build/lib/mmyolo/datasets/transforms\n", + " creating build/lib/mmyolo/models/necks\n", + " copying mmyolo/models/necks/cspnext_pafpn.py -> build/lib/mmyolo/models/necks\n", + " copying mmyolo/models/necks/__init__.py -> build/lib/mmyolo/models/necks\n", + " copying mmyolo/models/necks/yolox_pafpn.py -> build/lib/mmyolo/models/necks\n", + " copying mmyolo/models/necks/base_yolo_neck.py -> build/lib/mmyolo/models/necks\n", + " copying mmyolo/models/necks/yolov6_pafpn.py -> build/lib/mmyolo/models/necks\n", + " copying mmyolo/models/necks/ppyoloe_csppan.py -> build/lib/mmyolo/models/necks\n", + " copying mmyolo/models/necks/yolov8_pafpn.py -> build/lib/mmyolo/models/necks\n", + " copying mmyolo/models/necks/yolov5_pafpn.py -> build/lib/mmyolo/models/necks\n", + " copying mmyolo/models/necks/yolov7_pafpn.py -> build/lib/mmyolo/models/necks\n", + " creating build/lib/mmyolo/models/task_modules\n", + " copying mmyolo/models/task_modules/__init__.py -> build/lib/mmyolo/models/task_modules\n", + " creating build/lib/mmyolo/models/plugins\n", + " copying mmyolo/models/plugins/__init__.py -> build/lib/mmyolo/models/plugins\n", + " copying mmyolo/models/plugins/cbam.py -> build/lib/mmyolo/models/plugins\n", + " creating build/lib/mmyolo/models/data_preprocessors\n", + " copying mmyolo/models/data_preprocessors/data_preprocessor.py -> build/lib/mmyolo/models/data_preprocessors\n", + " copying mmyolo/models/data_preprocessors/__init__.py -> build/lib/mmyolo/models/data_preprocessors\n", + " creating build/lib/mmyolo/models/losses\n", + " copying mmyolo/models/losses/__init__.py -> build/lib/mmyolo/models/losses\n", + " copying mmyolo/models/losses/iou_loss.py -> build/lib/mmyolo/models/losses\n", + " copying mmyolo/models/losses/oks_loss.py -> build/lib/mmyolo/models/losses\n", + " creating build/lib/mmyolo/models/utils\n", + " copying mmyolo/models/utils/__init__.py -> build/lib/mmyolo/models/utils\n", + " copying mmyolo/models/utils/misc.py -> build/lib/mmyolo/models/utils\n", + " creating build/lib/mmyolo/models/detectors\n", + " copying mmyolo/models/detectors/__init__.py -> build/lib/mmyolo/models/detectors\n", + " copying mmyolo/models/detectors/yolo_detector.py -> build/lib/mmyolo/models/detectors\n", + " creating build/lib/mmyolo/models/layers\n", + " copying mmyolo/models/layers/__init__.py -> build/lib/mmyolo/models/layers\n", + " copying mmyolo/models/layers/yolo_bricks.py -> build/lib/mmyolo/models/layers\n", + " copying mmyolo/models/layers/ema.py -> build/lib/mmyolo/models/layers\n", + " creating build/lib/mmyolo/models/backbones\n", + " copying mmyolo/models/backbones/base_backbone.py -> build/lib/mmyolo/models/backbones\n", + " copying mmyolo/models/backbones/csp_darknet.py -> build/lib/mmyolo/models/backbones\n", + " copying mmyolo/models/backbones/__init__.py -> build/lib/mmyolo/models/backbones\n", + " copying mmyolo/models/backbones/efficient_rep.py -> build/lib/mmyolo/models/backbones\n", + " copying mmyolo/models/backbones/csp_resnet.py -> build/lib/mmyolo/models/backbones\n", + " copying mmyolo/models/backbones/yolov7_backbone.py -> build/lib/mmyolo/models/backbones\n", + " copying mmyolo/models/backbones/cspnext.py -> build/lib/mmyolo/models/backbones\n", + " creating build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/__init__.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/rtmdet_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/yolox_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/yolov6_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/yolox_pose_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/rtmdet_ins_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/yolov8_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/rtmdet_rotated_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/yolov7_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/ppyoloe_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/yolov5_head.py -> build/lib/mmyolo/models/dense_heads\n", + " copying mmyolo/models/dense_heads/yolov5_ins_head.py -> build/lib/mmyolo/models/dense_heads\n", + " creating build/lib/mmyolo/models/task_modules/assigners\n", + " copying mmyolo/models/task_modules/assigners/__init__.py -> build/lib/mmyolo/models/task_modules/assigners\n", + " copying mmyolo/models/task_modules/assigners/batch_task_aligned_assigner.py -> build/lib/mmyolo/models/task_modules/assigners\n", + " copying mmyolo/models/task_modules/assigners/utils.py -> build/lib/mmyolo/models/task_modules/assigners\n", + " copying mmyolo/models/task_modules/assigners/pose_sim_ota_assigner.py -> build/lib/mmyolo/models/task_modules/assigners\n", + " copying mmyolo/models/task_modules/assigners/batch_atss_assigner.py -> build/lib/mmyolo/models/task_modules/assigners\n", + " copying mmyolo/models/task_modules/assigners/batch_dsl_assigner.py -> build/lib/mmyolo/models/task_modules/assigners\n", + " copying mmyolo/models/task_modules/assigners/batch_yolov7_assigner.py -> build/lib/mmyolo/models/task_modules/assigners\n", + " creating build/lib/mmyolo/models/task_modules/coders\n", + " copying mmyolo/models/task_modules/coders/__init__.py -> build/lib/mmyolo/models/task_modules/coders\n", + " copying mmyolo/models/task_modules/coders/yolov5_bbox_coder.py -> build/lib/mmyolo/models/task_modules/coders\n", + " copying mmyolo/models/task_modules/coders/distance_angle_point_coder.py -> build/lib/mmyolo/models/task_modules/coders\n", + " copying mmyolo/models/task_modules/coders/yolox_bbox_coder.py -> build/lib/mmyolo/models/task_modules/coders\n", + " copying mmyolo/models/task_modules/coders/distance_point_bbox_coder.py -> build/lib/mmyolo/models/task_modules/coders\n", + " creating build/lib/mmyolo/deploy/models\n", + " copying mmyolo/deploy/models/__init__.py -> build/lib/mmyolo/deploy/models\n", + " creating build/lib/mmyolo/deploy/models/layers\n", + " copying mmyolo/deploy/models/layers/__init__.py -> build/lib/mmyolo/deploy/models/layers\n", + " copying mmyolo/deploy/models/layers/bbox_nms.py -> build/lib/mmyolo/deploy/models/layers\n", + " creating build/lib/mmyolo/deploy/models/dense_heads\n", + " copying mmyolo/deploy/models/dense_heads/__init__.py -> build/lib/mmyolo/deploy/models/dense_heads\n", + " copying mmyolo/deploy/models/dense_heads/yolov5_head.py -> build/lib/mmyolo/deploy/models/dense_heads\n", + " creating build/lib/mmyolo/engine/optimizers\n", + " copying mmyolo/engine/optimizers/__init__.py -> build/lib/mmyolo/engine/optimizers\n", + " copying mmyolo/engine/optimizers/yolov5_optim_constructor.py -> build/lib/mmyolo/engine/optimizers\n", + " copying mmyolo/engine/optimizers/yolov7_optim_wrapper_constructor.py -> build/lib/mmyolo/engine/optimizers\n", + " creating build/lib/mmyolo/engine/hooks\n", + " copying mmyolo/engine/hooks/__init__.py -> build/lib/mmyolo/engine/hooks\n", + " copying mmyolo/engine/hooks/ppyoloe_param_scheduler_hook.py -> build/lib/mmyolo/engine/hooks\n", + " copying mmyolo/engine/hooks/yolox_mode_switch_hook.py -> build/lib/mmyolo/engine/hooks\n", + " copying mmyolo/engine/hooks/switch_to_deploy_hook.py -> build/lib/mmyolo/engine/hooks\n", + " copying mmyolo/engine/hooks/yolov5_param_scheduler_hook.py -> build/lib/mmyolo/engine/hooks\n", + " running egg_info\n", + " creating mmyolo.egg-info\n", + " writing manifest file 'mmyolo.egg-info/SOURCES.txt'\n", + " warning: no files found matching 'mmyolo/VERSION'\n", + " warning: no files found matching 'mmyolo/.mim/demo/*/*'\n", + " writing manifest file 'mmyolo.egg-info/SOURCES.txt'\n", + " creating build/lib/mmyolo/.mim\n", + " copying mmyolo/.mim/model-index.yml -> build/lib/mmyolo/.mim\n", + " creating build/lib/mmyolo/.mim/configs\n", + " creating build/lib/mmyolo/.mim/configs/_base_\n", + " copying mmyolo/.mim/configs/_base_/default_runtime.py -> build/lib/mmyolo/.mim/configs/_base_\n", + " copying mmyolo/.mim/configs/_base_/det_p5_tta.py -> build/lib/mmyolo/.mim/configs/_base_\n", + " creating build/lib/mmyolo/.mim/configs/_base_/pose\n", + " copying mmyolo/.mim/configs/_base_/pose/coco.py -> build/lib/mmyolo/.mim/configs/_base_/pose\n", + " creating build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/base_dynamic.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/base_static.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_onnxruntime_dynamic.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_onnxruntime_static.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_rknn-fp16_static-320x320.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_rknn-int8_static-320x320.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_tensorrt-fp16_dynamic-192x192-960x960.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_tensorrt-fp16_dynamic-64x64-1344x1344.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_tensorrt-fp16_static-640x640.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_tensorrt-int8_dynamic-192x192-960x960.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_tensorrt-int8_static-640x640.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_tensorrt_dynamic-192x192-960x960.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " copying mmyolo/.mim/configs/deploy/detection_tensorrt_static-640x640.py -> build/lib/mmyolo/.mim/configs/deploy\n", + " creating build/lib/mmyolo/.mim/configs/deploy/model\n", + " copying mmyolo/.mim/configs/deploy/model/yolov5_s-static.py -> build/lib/mmyolo/.mim/configs/deploy/model\n", + " copying mmyolo/.mim/configs/deploy/model/yolov6_s-static.py -> build/lib/mmyolo/.mim/configs/deploy/model\n", + " creating build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/metafile.yml -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_l_fast_8xb20-300e_coco.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_m_fast_8xb28-300e_coco.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_l_fast_8xb8-80e_coco.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_m_fast_8xb8-80e_coco.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_s_fast_1xb12-40e_cat.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_s_fast_8xb8-80e_coco.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_x_fast_8xb8-80e_coco.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_s_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_s_fast_8xb32-400e_coco.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " copying mmyolo/.mim/configs/ppyoloe/ppyoloe_x_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/ppyoloe\n", + " creating build/lib/mmyolo/.mim/configs/razor\n", + " creating build/lib/mmyolo/.mim/configs/razor/subnets\n", + " copying mmyolo/.mim/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/razor/subnets\n", + " copying mmyolo/.mim/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/razor/subnets\n", + " copying mmyolo/.mim/configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/razor/subnets\n", + " creating build/lib/mmyolo/.mim/configs/rtmdet\n", + " copying mmyolo/.mim/configs/rtmdet/metafile.yml -> build/lib/mmyolo/.mim/configs/rtmdet\n", + " copying mmyolo/.mim/configs/rtmdet/rtmdet-ins_s_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet\n", + " copying mmyolo/.mim/configs/rtmdet/rtmdet_l_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet\n", + " copying mmyolo/.mim/configs/rtmdet/rtmdet_m_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet\n", + " copying mmyolo/.mim/configs/rtmdet/rtmdet_s_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet\n", + " copying mmyolo/.mim/configs/rtmdet/rtmdet_tiny_fast_1xb12-40e_cat.py -> build/lib/mmyolo/.mim/configs/rtmdet\n", + " copying mmyolo/.mim/configs/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet\n", + " copying mmyolo/.mim/configs/rtmdet/rtmdet_x_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet\n", + " creating build/lib/mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain\n", + " copying mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain/cspnext-s_8xb256-rsb-a1-600e_in1k.py -> build/lib/mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain\n", + " copying mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain/cspnext-tiny_8xb256-rsb-a1-600e_in1k.py -> build/lib/mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain\n", + " creating build/lib/mmyolo/.mim/configs/rtmdet/distillation\n", + " copying mmyolo/.mim/configs/rtmdet/distillation/kd_l_rtmdet_x_neck_300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet/distillation\n", + " copying mmyolo/.mim/configs/rtmdet/distillation/kd_m_rtmdet_l_neck_300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet/distillation\n", + " copying mmyolo/.mim/configs/rtmdet/distillation/kd_s_rtmdet_m_neck_300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet/distillation\n", + " copying mmyolo/.mim/configs/rtmdet/distillation/kd_tiny_rtmdet_s_neck_300e_coco.py -> build/lib/mmyolo/.mim/configs/rtmdet/distillation\n", + " creating build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_2xb4-36e_dota-ms.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_2xb4-36e_dota.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_2xb4-aug-100e_dota.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_coco-pretrain_2xb4-36e_dota-ms.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_m_syncbn_fast_2xb4-36e_dota-ms.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_m_syncbn_fast_2xb4-36e_dota.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_s_fast_1xb8-36e_dota-ms.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_s_fast_1xb8-36e_dota.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_tiny_fast_1xb8-36e_dota-ms.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_tiny_fast_1xb8-36e_dota.py -> build/lib/mmyolo/.mim/configs/rtmdet/rotated\n", + " creating build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/metafile.yml -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_s-v61_fast_1xb12-40e_608x352_cat.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_s-v61_fast_1xb12-ms-40e_cat.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn-detect_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn_fast_1xb4-300e_balloon.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_x-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " copying mmyolo/.mim/configs/yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5\n", + " creating build/lib/mmyolo/.mim/configs/yolov5/crowdhuman\n", + " copying mmyolo/.mim/configs/yolov5/crowdhuman/yolov5_s-v61_8xb16-300e_ignore_crowdhuman.py -> build/lib/mmyolo/.mim/configs/yolov5/crowdhuman\n", + " copying mmyolo/.mim/configs/yolov5/crowdhuman/yolov5_s-v61_fast_8xb16-300e_crowdhuman.py -> build/lib/mmyolo/.mim/configs/yolov5/crowdhuman\n", + " creating build/lib/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/lib/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/lib/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/lib/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py -> build/lib/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/lib/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance.py -> build/lib/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/lib/mmyolo/.mim/configs/yolov5/ins_seg\n", + " creating build/lib/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying mmyolo/.mim/configs/yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying mmyolo/.mim/configs/yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying mmyolo/.mim/configs/yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying mmyolo/.mim/configs/yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying mmyolo/.mim/configs/yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/mask_refine\n", + " creating build/lib/mmyolo/.mim/configs/yolov5/voc\n", + " copying mmyolo/.mim/configs/yolov5/voc/yolov5_l-v61_fast_1xb32-50e_voc.py -> build/lib/mmyolo/.mim/configs/yolov5/voc\n", + " copying mmyolo/.mim/configs/yolov5/voc/yolov5_m-v61_fast_1xb64-50e_voc.py -> build/lib/mmyolo/.mim/configs/yolov5/voc\n", + " copying mmyolo/.mim/configs/yolov5/voc/yolov5_n-v61_fast_1xb64-50e_voc.py -> build/lib/mmyolo/.mim/configs/yolov5/voc\n", + " copying mmyolo/.mim/configs/yolov5/voc/yolov5_s-v61_fast_1xb64-50e_voc.py -> build/lib/mmyolo/.mim/configs/yolov5/voc\n", + " copying mmyolo/.mim/configs/yolov5/voc/yolov5_x-v61_fast_1xb32-50e_voc.py -> build/lib/mmyolo/.mim/configs/yolov5/voc\n", + " creating build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_l_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_l_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_m_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_m_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_n_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_n_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_s_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_s_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_x_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_x_syncbn_fast_8xb16-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov5/yolov5u\n", + " creating build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/metafile.yml -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_l_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_m_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_n_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_n_syncbn_fast_8xb32-400e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_s_fast_1xb12-40e_cat.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_s_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_t_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_t_syncbn_fast_8xb32-400e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_v3_l_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_v3_m_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_v3_n_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_v3_s_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " copying mmyolo/.mim/configs/yolov6/yolov6_v3_t_syncbn_fast_8xb32-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov6\n", + " creating build/lib/mmyolo/.mim/configs/yolov7\n", + " copying mmyolo/.mim/configs/yolov7/metafile.yml -> build/lib/mmyolo/.mim/configs/yolov7\n", + " copying mmyolo/.mim/configs/yolov7/yolov7_d-p6_syncbn_fast_8x16b-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov7\n", + " copying mmyolo/.mim/configs/yolov7/yolov7_e-p6_syncbn_fast_8x16b-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov7\n", + " copying mmyolo/.mim/configs/yolov7/yolov7_e2e-p6_syncbn_fast_8x16b-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov7\n", + " copying mmyolo/.mim/configs/yolov7/yolov7_l_syncbn_fast_8x16b-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov7\n", + " copying mmyolo/.mim/configs/yolov7/yolov7_tiny_fast_1xb12-40e_cat.py -> build/lib/mmyolo/.mim/configs/yolov7\n", + " copying mmyolo/.mim/configs/yolov7/yolov7_tiny_syncbn_fast_8x16b-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov7\n", + " copying mmyolo/.mim/configs/yolov7/yolov7_w-p6_syncbn_fast_8x16b-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov7\n", + " copying mmyolo/.mim/configs/yolov7/yolov7_x_syncbn_fast_8x16b-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolov7\n", + " creating build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/metafile.yml -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_m_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_n_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_s_fast_1xb12-40e_cat.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " copying mmyolo/.mim/configs/yolov8/yolov8_x_syncbn_fast_8xb16-500e_coco.py -> build/lib/mmyolo/.mim/configs/yolov8\n", + " creating build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/metafile.yml -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_l_fast_8xb8-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_m_fast_8xb8-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_nano_fast_8xb32-300e-rtmdet-hyp_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_nano_fast_8xb8-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_p5_tta.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_s_fast_1xb12-40e-rtmdet-hyp_cat.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_s_fast_8xb8-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_tiny_fast_8xb8-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " copying mmyolo/.mim/configs/yolox/yolox_x_fast_8xb8-300e_coco.py -> build/lib/mmyolo/.mim/configs/yolox\n", + " creating build/lib/mmyolo/.mim/configs/yolox/pose\n", + " copying mmyolo/.mim/configs/yolox/pose/yolox-pose_l_8xb32-300e-rtmdet-hyp_coco.py -> build/lib/mmyolo/.mim/configs/yolox/pose\n", + " copying mmyolo/.mim/configs/yolox/pose/yolox-pose_m_8xb32-300e-rtmdet-hyp_coco.py -> build/lib/mmyolo/.mim/configs/yolox/pose\n", + " copying mmyolo/.mim/configs/yolox/pose/yolox-pose_s_8xb32-300e-rtmdet-hyp_coco.py -> build/lib/mmyolo/.mim/configs/yolox/pose\n", + " copying mmyolo/.mim/configs/yolox/pose/yolox-pose_tiny_8xb32-300e-rtmdet-hyp_coco.py -> build/lib/mmyolo/.mim/configs/yolox/pose\n", + " creating build/lib/mmyolo/.mim/tools\n", + " copying mmyolo/.mim/tools/dist_test.sh -> build/lib/mmyolo/.mim/tools\n", + " copying mmyolo/.mim/tools/dist_train.sh -> build/lib/mmyolo/.mim/tools\n", + " copying mmyolo/.mim/tools/slurm_test.sh -> build/lib/mmyolo/.mim/tools\n", + " copying mmyolo/.mim/tools/slurm_train.sh -> build/lib/mmyolo/.mim/tools\n", + " copying mmyolo/.mim/tools/test.py -> build/lib/mmyolo/.mim/tools\n", + " copying mmyolo/.mim/tools/train.py -> build/lib/mmyolo/.mim/tools\n", + " creating build/lib/mmyolo/.mim/tools/analysis_tools\n", + " copying mmyolo/.mim/tools/analysis_tools/benchmark.py -> build/lib/mmyolo/.mim/tools/analysis_tools\n", + " copying mmyolo/.mim/tools/analysis_tools/browse_coco_json.py -> build/lib/mmyolo/.mim/tools/analysis_tools\n", + " copying mmyolo/.mim/tools/analysis_tools/browse_dataset.py -> build/lib/mmyolo/.mim/tools/analysis_tools\n", + " copying mmyolo/.mim/tools/analysis_tools/browse_dataset_simple.py -> build/lib/mmyolo/.mim/tools/analysis_tools\n", + " copying mmyolo/.mim/tools/analysis_tools/confusion_matrix.py -> build/lib/mmyolo/.mim/tools/analysis_tools\n", + " copying mmyolo/.mim/tools/analysis_tools/dataset_analysis.py -> build/lib/mmyolo/.mim/tools/analysis_tools\n", + " copying mmyolo/.mim/tools/analysis_tools/get_flops.py -> build/lib/mmyolo/.mim/tools/analysis_tools\n", + " copying mmyolo/.mim/tools/analysis_tools/optimize_anchors.py -> build/lib/mmyolo/.mim/tools/analysis_tools\n", + " copying mmyolo/.mim/tools/analysis_tools/vis_scheduler.py -> build/lib/mmyolo/.mim/tools/analysis_tools\n", + " creating build/lib/mmyolo/.mim/tools/dataset_converters\n", + " copying mmyolo/.mim/tools/dataset_converters/balloon2coco.py -> build/lib/mmyolo/.mim/tools/dataset_converters\n", + " copying mmyolo/.mim/tools/dataset_converters/labelme2coco.py -> build/lib/mmyolo/.mim/tools/dataset_converters\n", + " copying mmyolo/.mim/tools/dataset_converters/yolo2coco.py -> build/lib/mmyolo/.mim/tools/dataset_converters\n", + " creating build/lib/mmyolo/.mim/tools/dataset_converters/dota\n", + " copying mmyolo/.mim/tools/dataset_converters/dota/dota_split.py -> build/lib/mmyolo/.mim/tools/dataset_converters/dota\n", + " creating build/lib/mmyolo/.mim/tools/misc\n", + " copying mmyolo/.mim/tools/misc/coco_split.py -> build/lib/mmyolo/.mim/tools/misc\n", + " copying mmyolo/.mim/tools/misc/download_dataset.py -> build/lib/mmyolo/.mim/tools/misc\n", + " copying mmyolo/.mim/tools/misc/extract_subcoco.py -> build/lib/mmyolo/.mim/tools/misc\n", + " copying mmyolo/.mim/tools/misc/print_config.py -> build/lib/mmyolo/.mim/tools/misc\n", + " copying mmyolo/.mim/tools/misc/publish_model.py -> build/lib/mmyolo/.mim/tools/misc\n", + " creating build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/convert_kd_ckpt_to_student.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/ppyoloe_to_mmyolo.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/rtmdet_to_mmyolo.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/yolov5_to_mmyolo.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/yolov5u_to_mmyolo.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/yolov6_to_mmyolo.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/yolov6_v3_to_mmyolo.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/yolov7_to_mmyolo.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/yolov8_to_mmyolo.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " copying mmyolo/.mim/tools/model_converters/yolox_to_mmyolo.py -> build/lib/mmyolo/.mim/tools/model_converters\n", + " /usr/local/lib/python3.10/dist-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.\n", + " warnings.warn(\n", + " installing to build/bdist.linux-x86_64/wheel\n", + " running install\n", + " running install_lib\n", + " creating build/bdist.linux-x86_64\n", + " creating build/bdist.linux-x86_64/wheel\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo\n", + " copying build/lib/mmyolo/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/datasets\n", + " copying build/lib/mmyolo/datasets/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets\n", + " copying build/lib/mmyolo/datasets/pose_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets\n", + " copying build/lib/mmyolo/datasets/utils.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets\n", + " copying build/lib/mmyolo/datasets/yolov5_crowdhuman.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets\n", + " copying build/lib/mmyolo/datasets/yolov5_voc.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets\n", + " copying build/lib/mmyolo/datasets/yolov5_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets\n", + " copying build/lib/mmyolo/datasets/yolov5_dota.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/datasets/transforms\n", + " copying build/lib/mmyolo/datasets/transforms/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets/transforms\n", + " copying build/lib/mmyolo/datasets/transforms/transforms.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets/transforms\n", + " copying build/lib/mmyolo/datasets/transforms/formatting.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets/transforms\n", + " copying build/lib/mmyolo/datasets/transforms/keypoint_structure.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets/transforms\n", + " copying build/lib/mmyolo/datasets/transforms/mix_img_transforms.py -> build/bdist.linux-x86_64/wheel/mmyolo/datasets/transforms\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/utils\n", + " copying build/lib/mmyolo/utils/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/utils\n", + " copying build/lib/mmyolo/utils/collect_env.py -> build/bdist.linux-x86_64/wheel/mmyolo/utils\n", + " copying build/lib/mmyolo/utils/misc.py -> build/bdist.linux-x86_64/wheel/mmyolo/utils\n", + " copying build/lib/mmyolo/utils/setup_env.py -> build/bdist.linux-x86_64/wheel/mmyolo/utils\n", + " copying build/lib/mmyolo/utils/boxam_utils.py -> build/bdist.linux-x86_64/wheel/mmyolo/utils\n", + " copying build/lib/mmyolo/utils/labelme_utils.py -> build/bdist.linux-x86_64/wheel/mmyolo/utils\n", + " copying build/lib/mmyolo/utils/large_image.py -> build/bdist.linux-x86_64/wheel/mmyolo/utils\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/testing\n", + " copying build/lib/mmyolo/testing/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/testing\n", + " copying build/lib/mmyolo/testing/_utils.py -> build/bdist.linux-x86_64/wheel/mmyolo/testing\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools\n", + " copying build/lib/mmyolo/.mim/tools/dist_test.sh -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools\n", + " copying build/lib/mmyolo/.mim/tools/slurm_train.sh -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/yolov5_to_mmyolo.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/convert_kd_ckpt_to_student.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/yolox_to_mmyolo.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/yolov6_to_mmyolo.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/yolov6_v3_to_mmyolo.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/yolov5u_to_mmyolo.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/yolov8_to_mmyolo.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/yolov7_to_mmyolo.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/rtmdet_to_mmyolo.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " copying build/lib/mmyolo/.mim/tools/model_converters/ppyoloe_to_mmyolo.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/model_converters\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " copying build/lib/mmyolo/.mim/tools/analysis_tools/optimize_anchors.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " copying build/lib/mmyolo/.mim/tools/analysis_tools/browse_coco_json.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " copying build/lib/mmyolo/.mim/tools/analysis_tools/browse_dataset_simple.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " copying build/lib/mmyolo/.mim/tools/analysis_tools/confusion_matrix.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " copying build/lib/mmyolo/.mim/tools/analysis_tools/vis_scheduler.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " copying build/lib/mmyolo/.mim/tools/analysis_tools/benchmark.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " copying build/lib/mmyolo/.mim/tools/analysis_tools/dataset_analysis.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " copying build/lib/mmyolo/.mim/tools/analysis_tools/get_flops.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " copying build/lib/mmyolo/.mim/tools/analysis_tools/browse_dataset.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/analysis_tools\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/dataset_converters\n", + " copying build/lib/mmyolo/.mim/tools/dataset_converters/balloon2coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/dataset_converters\n", + " copying build/lib/mmyolo/.mim/tools/dataset_converters/labelme2coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/dataset_converters\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/dataset_converters/dota\n", + " copying build/lib/mmyolo/.mim/tools/dataset_converters/dota/dota_split.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/dataset_converters/dota\n", + " copying build/lib/mmyolo/.mim/tools/dataset_converters/yolo2coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/dataset_converters\n", + " copying build/lib/mmyolo/.mim/tools/train.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools\n", + " copying build/lib/mmyolo/.mim/tools/test.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/misc\n", + " copying build/lib/mmyolo/.mim/tools/misc/extract_subcoco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/misc\n", + " copying build/lib/mmyolo/.mim/tools/misc/download_dataset.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/misc\n", + " copying build/lib/mmyolo/.mim/tools/misc/coco_split.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/misc\n", + " copying build/lib/mmyolo/.mim/tools/misc/print_config.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/misc\n", + " copying build/lib/mmyolo/.mim/tools/misc/publish_model.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools/misc\n", + " copying build/lib/mmyolo/.mim/tools/dist_train.sh -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools\n", + " copying build/lib/mmyolo/.mim/tools/slurm_test.sh -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/tools\n", + " copying build/lib/mmyolo/.mim/model-index.yml -> build/bdist.linux-x86_64/wheel/mmyolo/.mim\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_n_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_t_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_l_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_s_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_n_syncbn_fast_8xb32-400e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_m_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_v3_l_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_v3_n_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_v3_s_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_v3_m_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_t_syncbn_fast_8xb32-400e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_s_fast_1xb12-40e_cat.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/yolov6_v3_t_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " copying build/lib/mmyolo/.mim/configs/yolov6/metafile.yml -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov6\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rtmdet_m_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rtmdet_x_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/distillation\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/distillation/kd_l_rtmdet_x_neck_300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/distillation\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/distillation/kd_s_rtmdet_m_neck_300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/distillation\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/distillation/kd_m_rtmdet_l_neck_300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/distillation\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/distillation/kd_tiny_rtmdet_s_neck_300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/distillation\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rtmdet_l_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rtmdet_tiny_fast_1xb12-40e_cat.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rtmdet_s_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_m_syncbn_fast_2xb4-36e_dota.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_s_fast_1xb8-36e_dota.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_tiny_fast_1xb8-36e_dota.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_s_fast_1xb8-36e_dota-ms.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_2xb4-36e_dota-ms.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_2xb4-36e_dota.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_coco-pretrain_2xb4-36e_dota-ms.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_m_syncbn_fast_2xb4-36e_dota-ms.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_tiny_fast_1xb8-36e_dota-ms.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_2xb4-aug-100e_dota.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/rotated\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/metafile.yml -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/rtmdet-ins_s_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain/cspnext-s_8xb256-rsb-a1-600e_in1k.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain\n", + " copying build/lib/mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain/cspnext-tiny_8xb256-rsb-a1-600e_in1k.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_m_fast_8xb8-80e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_x_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_s_fast_8xb32-400e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_x_fast_8xb8-80e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_s_fast_8xb8-80e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_s_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_s_fast_1xb12-40e_cat.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_l_fast_8xb8-80e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/metafile.yml -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_m_fast_8xb28-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " copying build/lib/mmyolo/.mim/configs/ppyoloe/ppyoloe_l_fast_8xb20-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/ppyoloe\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/ins_seg\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/ins_seg\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_n_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_s_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_l_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_x_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_m_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_x_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_l_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_n_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_s_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_m_mask-refine_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/yolov5u\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn-detect_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/voc\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/voc/yolov5_s-v61_fast_1xb64-50e_voc.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/voc\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/voc/yolov5_n-v61_fast_1xb64-50e_voc.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/voc\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/voc/yolov5_m-v61_fast_1xb64-50e_voc.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/voc\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/voc/yolov5_x-v61_fast_1xb32-50e_voc.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/voc\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/voc/yolov5_l-v61_fast_1xb32-50e_voc.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/voc\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/mask_refine\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_x-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_s-v61_fast_1xb12-40e_608x352_cat.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn_fast_1xb4-300e_balloon.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/crowdhuman\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/crowdhuman/yolov5_s-v61_8xb16-300e_ignore_crowdhuman.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/crowdhuman\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/crowdhuman/yolov5_s-v61_fast_8xb16-300e_crowdhuman.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5/crowdhuman\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_s-v61_fast_1xb12-ms-40e_cat.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/metafile.yml -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " copying build/lib/mmyolo/.mim/configs/yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov5\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/base_dynamic.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/base_static.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_onnxruntime_static.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_tensorrt-fp16_dynamic-64x64-1344x1344.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_tensorrt-fp16_dynamic-192x192-960x960.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_tensorrt-fp16_static-640x640.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_tensorrt-int8_static-640x640.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_rknn-int8_static-320x320.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy/model\n", + " copying build/lib/mmyolo/.mim/configs/deploy/model/yolov6_s-static.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy/model\n", + " copying build/lib/mmyolo/.mim/configs/deploy/model/yolov5_s-static.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy/model\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_tensorrt_dynamic-192x192-960x960.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_tensorrt-int8_dynamic-192x192-960x960.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_tensorrt_static-640x640.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_onnxruntime_dynamic.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " copying build/lib/mmyolo/.mim/configs/deploy/detection_rknn-fp16_static-320x320.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/deploy\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox/pose\n", + " copying build/lib/mmyolo/.mim/configs/yolox/pose/yolox-pose_m_8xb32-300e-rtmdet-hyp_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox/pose\n", + " copying build/lib/mmyolo/.mim/configs/yolox/pose/yolox-pose_tiny_8xb32-300e-rtmdet-hyp_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox/pose\n", + " copying build/lib/mmyolo/.mim/configs/yolox/pose/yolox-pose_l_8xb32-300e-rtmdet-hyp_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox/pose\n", + " copying build/lib/mmyolo/.mim/configs/yolox/pose/yolox-pose_s_8xb32-300e-rtmdet-hyp_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox/pose\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_nano_fast_8xb8-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_l_fast_8xb8-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_s_fast_1xb12-40e-rtmdet-hyp_cat.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_tiny_fast_8xb8-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_p5_tta.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_nano_fast_8xb32-300e-rtmdet-hyp_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_m_fast_8xb8-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_x_fast_8xb8-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/metafile.yml -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " copying build/lib/mmyolo/.mim/configs/yolox/yolox_s_fast_8xb8-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolox\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/razor\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/razor/subnets\n", + " copying build/lib/mmyolo/.mim/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/razor/subnets\n", + " copying build/lib/mmyolo/.mim/configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/razor/subnets\n", + " copying build/lib/mmyolo/.mim/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/razor/subnets\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/_base_\n", + " copying build/lib/mmyolo/.mim/configs/_base_/det_p5_tta.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/_base_\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/_base_/pose\n", + " copying build/lib/mmyolo/.mim/configs/_base_/pose/coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/_base_/pose\n", + " copying build/lib/mmyolo/.mim/configs/_base_/default_runtime.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/_base_\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " copying build/lib/mmyolo/.mim/configs/yolov7/yolov7_x_syncbn_fast_8x16b-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " copying build/lib/mmyolo/.mim/configs/yolov7/yolov7_e2e-p6_syncbn_fast_8x16b-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " copying build/lib/mmyolo/.mim/configs/yolov7/yolov7_tiny_syncbn_fast_8x16b-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " copying build/lib/mmyolo/.mim/configs/yolov7/yolov7_tiny_fast_1xb12-40e_cat.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " copying build/lib/mmyolo/.mim/configs/yolov7/yolov7_w-p6_syncbn_fast_8x16b-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " copying build/lib/mmyolo/.mim/configs/yolov7/yolov7_l_syncbn_fast_8x16b-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " copying build/lib/mmyolo/.mim/configs/yolov7/yolov7_d-p6_syncbn_fast_8x16b-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " copying build/lib/mmyolo/.mim/configs/yolov7/yolov7_e-p6_syncbn_fast_8x16b-300e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " copying build/lib/mmyolo/.mim/configs/yolov7/metafile.yml -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov7\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_s_fast_1xb12-40e_cat.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_x_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_n_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/metafile.yml -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_m_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " copying build/lib/mmyolo/.mim/configs/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py -> build/bdist.linux-x86_64/wheel/mmyolo/.mim/configs/yolov8\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/necks/cspnext_pafpn.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/necks/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/necks/yolox_pafpn.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/necks/base_yolo_neck.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/necks/yolov6_pafpn.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/necks/ppyoloe_csppan.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/necks/yolov8_pafpn.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/necks/yolov5_pafpn.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/necks/yolov7_pafpn.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/necks\n", + " copying build/lib/mmyolo/models/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules\n", + " copying build/lib/mmyolo/models/task_modules/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/assigners\n", + " copying build/lib/mmyolo/models/task_modules/assigners/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/assigners\n", + " copying build/lib/mmyolo/models/task_modules/assigners/batch_task_aligned_assigner.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/assigners\n", + " copying build/lib/mmyolo/models/task_modules/assigners/utils.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/assigners\n", + " copying build/lib/mmyolo/models/task_modules/assigners/pose_sim_ota_assigner.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/assigners\n", + " copying build/lib/mmyolo/models/task_modules/assigners/batch_atss_assigner.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/assigners\n", + " copying build/lib/mmyolo/models/task_modules/assigners/batch_dsl_assigner.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/assigners\n", + " copying build/lib/mmyolo/models/task_modules/assigners/batch_yolov7_assigner.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/assigners\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/coders\n", + " copying build/lib/mmyolo/models/task_modules/coders/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/coders\n", + " copying build/lib/mmyolo/models/task_modules/coders/yolov5_bbox_coder.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/coders\n", + " copying build/lib/mmyolo/models/task_modules/coders/distance_angle_point_coder.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/coders\n", + " copying build/lib/mmyolo/models/task_modules/coders/yolox_bbox_coder.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/coders\n", + " copying build/lib/mmyolo/models/task_modules/coders/distance_point_bbox_coder.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/task_modules/coders\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/plugins\n", + " copying build/lib/mmyolo/models/plugins/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/plugins\n", + " copying build/lib/mmyolo/models/plugins/cbam.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/plugins\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/data_preprocessors\n", + " copying build/lib/mmyolo/models/data_preprocessors/data_preprocessor.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/data_preprocessors\n", + " copying build/lib/mmyolo/models/data_preprocessors/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/data_preprocessors\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/losses\n", + " copying build/lib/mmyolo/models/losses/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/losses\n", + " copying build/lib/mmyolo/models/losses/iou_loss.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/losses\n", + " copying build/lib/mmyolo/models/losses/oks_loss.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/losses\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/utils\n", + " copying build/lib/mmyolo/models/utils/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/utils\n", + " copying build/lib/mmyolo/models/utils/misc.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/utils\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/detectors\n", + " copying build/lib/mmyolo/models/detectors/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/detectors\n", + " copying build/lib/mmyolo/models/detectors/yolo_detector.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/detectors\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/layers\n", + " copying build/lib/mmyolo/models/layers/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/layers\n", + " copying build/lib/mmyolo/models/layers/yolo_bricks.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/layers\n", + " copying build/lib/mmyolo/models/layers/ema.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/layers\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/backbones\n", + " copying build/lib/mmyolo/models/backbones/base_backbone.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/backbones\n", + " copying build/lib/mmyolo/models/backbones/csp_darknet.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/backbones\n", + " copying build/lib/mmyolo/models/backbones/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/backbones\n", + " copying build/lib/mmyolo/models/backbones/efficient_rep.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/backbones\n", + " copying build/lib/mmyolo/models/backbones/csp_resnet.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/backbones\n", + " copying build/lib/mmyolo/models/backbones/yolov7_backbone.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/backbones\n", + " copying build/lib/mmyolo/models/backbones/cspnext.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/backbones\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/rtmdet_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/yolox_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/yolov6_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/yolox_pose_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/rtmdet_ins_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/yolov8_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/rtmdet_rotated_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/yolov7_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/ppyoloe_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/yolov5_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " copying build/lib/mmyolo/models/dense_heads/yolov5_ins_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/models/dense_heads\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/deploy\n", + " copying build/lib/mmyolo/deploy/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/deploy\n", + " copying build/lib/mmyolo/deploy/object_detection.py -> build/bdist.linux-x86_64/wheel/mmyolo/deploy\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/deploy/models\n", + " copying build/lib/mmyolo/deploy/models/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/deploy/models\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/deploy/models/layers\n", + " copying build/lib/mmyolo/deploy/models/layers/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/deploy/models/layers\n", + " copying build/lib/mmyolo/deploy/models/layers/bbox_nms.py -> build/bdist.linux-x86_64/wheel/mmyolo/deploy/models/layers\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/deploy/models/dense_heads\n", + " copying build/lib/mmyolo/deploy/models/dense_heads/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/deploy/models/dense_heads\n", + " copying build/lib/mmyolo/deploy/models/dense_heads/yolov5_head.py -> build/bdist.linux-x86_64/wheel/mmyolo/deploy/models/dense_heads\n", + " copying build/lib/mmyolo/registry.py -> build/bdist.linux-x86_64/wheel/mmyolo\n", + " copying build/lib/mmyolo/version.py -> build/bdist.linux-x86_64/wheel/mmyolo\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/engine\n", + " copying build/lib/mmyolo/engine/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/engine\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/engine/optimizers\n", + " copying build/lib/mmyolo/engine/optimizers/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/engine/optimizers\n", + " copying build/lib/mmyolo/engine/optimizers/yolov5_optim_constructor.py -> build/bdist.linux-x86_64/wheel/mmyolo/engine/optimizers\n", + " copying build/lib/mmyolo/engine/optimizers/yolov7_optim_wrapper_constructor.py -> build/bdist.linux-x86_64/wheel/mmyolo/engine/optimizers\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo/engine/hooks\n", + " copying build/lib/mmyolo/engine/hooks/__init__.py -> build/bdist.linux-x86_64/wheel/mmyolo/engine/hooks\n", + " copying build/lib/mmyolo/engine/hooks/ppyoloe_param_scheduler_hook.py -> build/bdist.linux-x86_64/wheel/mmyolo/engine/hooks\n", + " copying build/lib/mmyolo/engine/hooks/yolox_mode_switch_hook.py -> build/bdist.linux-x86_64/wheel/mmyolo/engine/hooks\n", + " copying build/lib/mmyolo/engine/hooks/switch_to_deploy_hook.py -> build/bdist.linux-x86_64/wheel/mmyolo/engine/hooks\n", + " copying build/lib/mmyolo/engine/hooks/yolov5_param_scheduler_hook.py -> build/bdist.linux-x86_64/wheel/mmyolo/engine/hooks\n", + " running install_egg_info\n", + " Copying mmyolo.egg-info to build/bdist.linux-x86_64/wheel/mmyolo-0.6.0-py3.10.egg-info\n", + " running install_scripts\n", + " creating build/bdist.linux-x86_64/wheel/mmyolo-0.6.0.dist-info/WHEEL\n", + " creating '/tmp/pip-wheel-q3j8bt58/mmyolo-0.6.0-py3-none-any.whl' and adding 'build/bdist.linux-x86_64/wheel' to it\n", + " adding 'mmyolo/__init__.py'\n", + " adding 'mmyolo/registry.py'\n", + " adding 'mmyolo/version.py'\n", + " adding 'mmyolo/.mim/model-index.yml'\n", + " adding 'mmyolo/.mim/configs/_base_/default_runtime.py'\n", + " adding 'mmyolo/.mim/configs/_base_/det_p5_tta.py'\n", + " adding 'mmyolo/.mim/configs/_base_/pose/coco.py'\n", + " adding 'mmyolo/.mim/configs/deploy/base_dynamic.py'\n", + " adding 'mmyolo/.mim/configs/deploy/base_static.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_onnxruntime_dynamic.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_onnxruntime_static.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_rknn-fp16_static-320x320.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_rknn-int8_static-320x320.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_tensorrt-fp16_dynamic-192x192-960x960.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_tensorrt-fp16_dynamic-64x64-1344x1344.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_tensorrt-fp16_static-640x640.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_tensorrt-int8_dynamic-192x192-960x960.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_tensorrt-int8_static-640x640.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_tensorrt_dynamic-192x192-960x960.py'\n", + " adding 'mmyolo/.mim/configs/deploy/detection_tensorrt_static-640x640.py'\n", + " adding 'mmyolo/.mim/configs/deploy/model/yolov5_s-static.py'\n", + " adding 'mmyolo/.mim/configs/deploy/model/yolov6_s-static.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/metafile.yml'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_l_fast_8xb20-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_m_fast_8xb28-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_l_fast_8xb8-80e_coco.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_m_fast_8xb8-80e_coco.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_s_fast_1xb12-40e_cat.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_s_fast_8xb8-80e_coco.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_plus_x_fast_8xb8-80e_coco.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_s_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_s_fast_8xb32-400e_coco.py'\n", + " adding 'mmyolo/.mim/configs/ppyoloe/ppyoloe_x_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/metafile.yml'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rtmdet-ins_s_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rtmdet_l_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rtmdet_m_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rtmdet_s_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rtmdet_tiny_fast_1xb12-40e_cat.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rtmdet_x_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain/cspnext-s_8xb256-rsb-a1-600e_in1k.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/cspnext_imagenet_pretrain/cspnext-tiny_8xb256-rsb-a1-600e_in1k.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/distillation/kd_l_rtmdet_x_neck_300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/distillation/kd_m_rtmdet_l_neck_300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/distillation/kd_s_rtmdet_m_neck_300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/distillation/kd_tiny_rtmdet_s_neck_300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_2xb4-36e_dota-ms.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_2xb4-36e_dota.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_2xb4-aug-100e_dota.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_l_syncbn_fast_coco-pretrain_2xb4-36e_dota-ms.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_m_syncbn_fast_2xb4-36e_dota-ms.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_m_syncbn_fast_2xb4-36e_dota.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_s_fast_1xb8-36e_dota-ms.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_s_fast_1xb8-36e_dota.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_tiny_fast_1xb8-36e_dota-ms.py'\n", + " adding 'mmyolo/.mim/configs/rtmdet/rotated/rtmdet-r_tiny_fast_1xb8-36e_dota.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/metafile.yml'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_s-v61_fast_1xb12-40e_608x352_cat.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_s-v61_fast_1xb12-ms-40e_cat.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn-detect_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn_fast_1xb4-300e_balloon.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_x-p6-v62_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/crowdhuman/yolov5_s-v61_8xb16-300e_ignore_crowdhuman.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/crowdhuman/yolov5_s-v61_fast_8xb16-300e_crowdhuman.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/voc/yolov5_l-v61_fast_1xb32-50e_voc.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/voc/yolov5_m-v61_fast_1xb64-50e_voc.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/voc/yolov5_n-v61_fast_1xb64-50e_voc.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/voc/yolov5_s-v61_fast_1xb64-50e_voc.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/voc/yolov5_x-v61_fast_1xb32-50e_voc.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_l_mask-refine_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_l_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_m_mask-refine_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_m_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_n_mask-refine_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_n_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_s_mask-refine_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_s_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_x_mask-refine_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov5/yolov5u/yolov5u_x_syncbn_fast_8xb16-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/metafile.yml'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_l_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_m_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_n_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_n_syncbn_fast_8xb32-400e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_s_fast_1xb12-40e_cat.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_s_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_t_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_t_syncbn_fast_8xb32-400e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_v3_l_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_v3_m_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_v3_n_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_v3_s_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov6/yolov6_v3_t_syncbn_fast_8xb32-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov7/metafile.yml'\n", + " adding 'mmyolo/.mim/configs/yolov7/yolov7_d-p6_syncbn_fast_8x16b-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov7/yolov7_e-p6_syncbn_fast_8x16b-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov7/yolov7_e2e-p6_syncbn_fast_8x16b-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov7/yolov7_l_syncbn_fast_8x16b-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov7/yolov7_tiny_fast_1xb12-40e_cat.py'\n", + " adding 'mmyolo/.mim/configs/yolov7/yolov7_tiny_syncbn_fast_8x16b-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov7/yolov7_w-p6_syncbn_fast_8x16b-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov7/yolov7_x_syncbn_fast_8x16b-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/metafile.yml'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_m_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_n_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_s_fast_1xb12-40e_cat.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolov8/yolov8_x_syncbn_fast_8xb16-500e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/metafile.yml'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_l_fast_8xb8-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_m_fast_8xb8-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_nano_fast_8xb32-300e-rtmdet-hyp_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_nano_fast_8xb8-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_p5_tta.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_s_fast_1xb12-40e-rtmdet-hyp_cat.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_s_fast_8xb8-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_tiny_fast_8xb8-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/yolox_x_fast_8xb8-300e_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/pose/yolox-pose_l_8xb32-300e-rtmdet-hyp_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/pose/yolox-pose_m_8xb32-300e-rtmdet-hyp_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/pose/yolox-pose_s_8xb32-300e-rtmdet-hyp_coco.py'\n", + " adding 'mmyolo/.mim/configs/yolox/pose/yolox-pose_tiny_8xb32-300e-rtmdet-hyp_coco.py'\n", + " adding 'mmyolo/.mim/tools/dist_test.sh'\n", + " adding 'mmyolo/.mim/tools/dist_train.sh'\n", + " adding 'mmyolo/.mim/tools/slurm_test.sh'\n", + " adding 'mmyolo/.mim/tools/slurm_train.sh'\n", + " adding 'mmyolo/.mim/tools/test.py'\n", + " adding 'mmyolo/.mim/tools/train.py'\n", + " adding 'mmyolo/.mim/tools/analysis_tools/benchmark.py'\n", + " adding 'mmyolo/.mim/tools/analysis_tools/browse_coco_json.py'\n", + " adding 'mmyolo/.mim/tools/analysis_tools/browse_dataset.py'\n", + " adding 'mmyolo/.mim/tools/analysis_tools/browse_dataset_simple.py'\n", + " adding 'mmyolo/.mim/tools/analysis_tools/confusion_matrix.py'\n", + " adding 'mmyolo/.mim/tools/analysis_tools/dataset_analysis.py'\n", + " adding 'mmyolo/.mim/tools/analysis_tools/get_flops.py'\n", + " adding 'mmyolo/.mim/tools/analysis_tools/optimize_anchors.py'\n", + " adding 'mmyolo/.mim/tools/analysis_tools/vis_scheduler.py'\n", + " adding 'mmyolo/.mim/tools/dataset_converters/balloon2coco.py'\n", + " adding 'mmyolo/.mim/tools/dataset_converters/labelme2coco.py'\n", + " adding 'mmyolo/.mim/tools/dataset_converters/yolo2coco.py'\n", + " adding 'mmyolo/.mim/tools/dataset_converters/dota/dota_split.py'\n", + " adding 'mmyolo/.mim/tools/misc/coco_split.py'\n", + " adding 'mmyolo/.mim/tools/misc/download_dataset.py'\n", + " adding 'mmyolo/.mim/tools/misc/extract_subcoco.py'\n", + " adding 'mmyolo/.mim/tools/misc/print_config.py'\n", + " adding 'mmyolo/.mim/tools/misc/publish_model.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/convert_kd_ckpt_to_student.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/ppyoloe_to_mmyolo.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/rtmdet_to_mmyolo.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/yolov5_to_mmyolo.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/yolov5u_to_mmyolo.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/yolov6_to_mmyolo.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/yolov6_v3_to_mmyolo.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/yolov7_to_mmyolo.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/yolov8_to_mmyolo.py'\n", + " adding 'mmyolo/.mim/tools/model_converters/yolox_to_mmyolo.py'\n", + " adding 'mmyolo/datasets/__init__.py'\n", + " adding 'mmyolo/datasets/pose_coco.py'\n", + " adding 'mmyolo/datasets/utils.py'\n", + " adding 'mmyolo/datasets/yolov5_coco.py'\n", + " adding 'mmyolo/datasets/yolov5_crowdhuman.py'\n", + " adding 'mmyolo/datasets/yolov5_dota.py'\n", + " adding 'mmyolo/datasets/yolov5_voc.py'\n", + " adding 'mmyolo/datasets/transforms/__init__.py'\n", + " adding 'mmyolo/datasets/transforms/formatting.py'\n", + " adding 'mmyolo/datasets/transforms/keypoint_structure.py'\n", + " adding 'mmyolo/datasets/transforms/mix_img_transforms.py'\n", + " adding 'mmyolo/datasets/transforms/transforms.py'\n", + " adding 'mmyolo/deploy/__init__.py'\n", + " adding 'mmyolo/deploy/object_detection.py'\n", + " adding 'mmyolo/deploy/models/__init__.py'\n", + " adding 'mmyolo/deploy/models/dense_heads/__init__.py'\n", + " adding 'mmyolo/deploy/models/dense_heads/yolov5_head.py'\n", + " adding 'mmyolo/deploy/models/layers/__init__.py'\n", + " adding 'mmyolo/deploy/models/layers/bbox_nms.py'\n", + " adding 'mmyolo/engine/__init__.py'\n", + " adding 'mmyolo/engine/hooks/__init__.py'\n", + " adding 'mmyolo/engine/hooks/ppyoloe_param_scheduler_hook.py'\n", + " adding 'mmyolo/engine/hooks/switch_to_deploy_hook.py'\n", + " adding 'mmyolo/engine/hooks/yolov5_param_scheduler_hook.py'\n", + " adding 'mmyolo/engine/hooks/yolox_mode_switch_hook.py'\n", + " adding 'mmyolo/engine/optimizers/__init__.py'\n", + " adding 'mmyolo/engine/optimizers/yolov5_optim_constructor.py'\n", + " adding 'mmyolo/engine/optimizers/yolov7_optim_wrapper_constructor.py'\n", + " adding 'mmyolo/models/__init__.py'\n", + " adding 'mmyolo/models/backbones/__init__.py'\n", + " adding 'mmyolo/models/backbones/base_backbone.py'\n", + " adding 'mmyolo/models/backbones/csp_darknet.py'\n", + " adding 'mmyolo/models/backbones/csp_resnet.py'\n", + " adding 'mmyolo/models/backbones/cspnext.py'\n", + " adding 'mmyolo/models/backbones/efficient_rep.py'\n", + " adding 'mmyolo/models/backbones/yolov7_backbone.py'\n", + " adding 'mmyolo/models/data_preprocessors/__init__.py'\n", + " adding 'mmyolo/models/data_preprocessors/data_preprocessor.py'\n", + " adding 'mmyolo/models/dense_heads/__init__.py'\n", + " adding 'mmyolo/models/dense_heads/ppyoloe_head.py'\n", + " adding 'mmyolo/models/dense_heads/rtmdet_head.py'\n", + " adding 'mmyolo/models/dense_heads/rtmdet_ins_head.py'\n", + " adding 'mmyolo/models/dense_heads/rtmdet_rotated_head.py'\n", + " adding 'mmyolo/models/dense_heads/yolov5_head.py'\n", + " adding 'mmyolo/models/dense_heads/yolov5_ins_head.py'\n", + " adding 'mmyolo/models/dense_heads/yolov6_head.py'\n", + " adding 'mmyolo/models/dense_heads/yolov7_head.py'\n", + " adding 'mmyolo/models/dense_heads/yolov8_head.py'\n", + " adding 'mmyolo/models/dense_heads/yolox_head.py'\n", + " adding 'mmyolo/models/dense_heads/yolox_pose_head.py'\n", + " adding 'mmyolo/models/detectors/__init__.py'\n", + " adding 'mmyolo/models/detectors/yolo_detector.py'\n", + " adding 'mmyolo/models/layers/__init__.py'\n", + " adding 'mmyolo/models/layers/ema.py'\n", + " adding 'mmyolo/models/layers/yolo_bricks.py'\n", + " adding 'mmyolo/models/losses/__init__.py'\n", + " adding 'mmyolo/models/losses/iou_loss.py'\n", + " adding 'mmyolo/models/losses/oks_loss.py'\n", + " adding 'mmyolo/models/necks/__init__.py'\n", + " adding 'mmyolo/models/necks/base_yolo_neck.py'\n", + " adding 'mmyolo/models/necks/cspnext_pafpn.py'\n", + " adding 'mmyolo/models/necks/ppyoloe_csppan.py'\n", + " adding 'mmyolo/models/necks/yolov5_pafpn.py'\n", + " adding 'mmyolo/models/necks/yolov6_pafpn.py'\n", + " adding 'mmyolo/models/necks/yolov7_pafpn.py'\n", + " adding 'mmyolo/models/necks/yolov8_pafpn.py'\n", + " adding 'mmyolo/models/necks/yolox_pafpn.py'\n", + " adding 'mmyolo/models/plugins/__init__.py'\n", + " adding 'mmyolo/models/plugins/cbam.py'\n", + " adding 'mmyolo/models/task_modules/__init__.py'\n", + " adding 'mmyolo/models/task_modules/assigners/__init__.py'\n", + " adding 'mmyolo/models/task_modules/assigners/batch_atss_assigner.py'\n", + " adding 'mmyolo/models/task_modules/assigners/batch_dsl_assigner.py'\n", + " adding 'mmyolo/models/task_modules/assigners/batch_task_aligned_assigner.py'\n", + " adding 'mmyolo/models/task_modules/assigners/batch_yolov7_assigner.py'\n", + " adding 'mmyolo/models/task_modules/assigners/pose_sim_ota_assigner.py'\n", + " adding 'mmyolo/models/task_modules/assigners/utils.py'\n", + " adding 'mmyolo/models/task_modules/coders/__init__.py'\n", + " adding 'mmyolo/models/task_modules/coders/distance_angle_point_coder.py'\n", + " adding 'mmyolo/models/task_modules/coders/distance_point_bbox_coder.py'\n", + " adding 'mmyolo/models/task_modules/coders/yolov5_bbox_coder.py'\n", + " adding 'mmyolo/models/task_modules/coders/yolox_bbox_coder.py'\n", + " adding 'mmyolo/models/utils/__init__.py'\n", + " adding 'mmyolo/models/utils/misc.py'\n", + " adding 'mmyolo/testing/__init__.py'\n", + " adding 'mmyolo/testing/_utils.py'\n", + " adding 'mmyolo/utils/__init__.py'\n", + " adding 'mmyolo/utils/boxam_utils.py'\n", + " adding 'mmyolo/utils/collect_env.py'\n", + " adding 'mmyolo/utils/labelme_utils.py'\n", + " adding 'mmyolo/utils/large_image.py'\n", + " adding 'mmyolo/utils/misc.py'\n", + " adding 'mmyolo/utils/setup_env.py'\n", + " adding 'mmyolo-0.6.0.dist-info/LICENSE'\n", + " adding 'mmyolo-0.6.0.dist-info/METADATA'\n", + " adding 'mmyolo-0.6.0.dist-info/WHEEL'\n", + " adding 'mmyolo-0.6.0.dist-info/top_level.txt'\n", + " adding 'mmyolo-0.6.0.dist-info/RECORD'\n", + " removing build/bdist.linux-x86_64/wheel\n", + "\u001b[?25hdone\n", + " Created wheel for mmyolo: filename=mmyolo-0.6.0-py3-none-any.whl size=453694 sha256=830f1f1debab251a3a3225d36bd61db99032c5573731440c2bb60dc2b6749032\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-6qkffa7v/wheels/d6/7c/b8/a78624113a6f593a8251d2d1e7420373491c8c037159f5c39e\n", + "Successfully built yolo_world mmyolo\n", + "Installing collected packages: terminaltables, mmyolo, supervision, mmdet, mmcv-lite, yolo_world\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Successfully installed mmcv-lite-2.0.1 mmdet-3.3.0 mmyolo-0.6.0 supervision-0.18.0 terminaltables-3.1.10 yolo_world-0.1.0\n", + "Removed build tracker: '/tmp/pip-build-tracker-ebv4bpax'\n" + ] + } + ], + "source": [ + "import os\n", + "# Install certain version of requests,tqdm,rich for openxlab (fix for yolo_world)\n", + "# Install mmcv before avoding compiling of mmcv and shortining waiting time installs \"whl\" file\n", + "if 'COLAB_GPU' in os.environ:\n", + " !pip install requests==2.28.2 tqdm==4.65.0 rich==13.4.2\n", + " %pip install -U openmim\n", + " !mim install \"mmengine>=0.7.0\"\n", + " !mim install \"mmcv\"\n", + "else:\n", + " !pip install torch wheel requests==2.28.2 tqdm==4.65.0 rich==13.4.2\n", + "\n", + "\n", + "!pip install -e . -vv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "v_Pgd1urgbj8" + }, + "outputs": [], + "source": [ + "# Restart collab session (required for mmengine)\n", + "quit()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "LGuy6naerg4e" + }, + "outputs": [], + "source": [ + "!wget https://huggingface.co/spaces/stevengrove/YOLO-World/resolve/main/yolow-v8_l_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth?download=true\n", + "!mv yolow-v8_l_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth?download=true yolow-v8_l_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth\n", + "!wget https://huggingface.co/spaces/stevengrove/YOLO-World/resolve/main/configs/pretrain/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py?download=true\n", + "!mv yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py?download=true yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py\n", + "!wget https://media.roboflow.com/notebooks/examples/dog.jpeg\n", + "!cp -r yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py /content/YOLO-World/configs/pretrain/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "d36f97f604e145f5b01fd3925a8baadc", + "1e5784ad09f84e4aa05dd446cf62d0d8", + "e232c02ce91c4d16acf378b088868fae", + "4de592e694054de5a60aeecaccf6a92e", + "cc58b1e5ba954e07a1da1f5227ee522b", + "5ad2925c143b48c38583fd562fb739a8", + "6013eb051a15403cb0e51550370857cc", + "04abdf6514eb44a4ab888797cf8e3c63", + "6f34083d16b9437ca9fc23e6ecdd9512", + "2fd523e0517a4398b9228c3cc55250c3", + "5a01c81cc3924287b2d3dcd41653bf8d", + "f70e90d8ce894aa4a24b7a493d64d13e", + "7b7480f398ed4c32b2aab6cc59694c73", + "36dcfd81ad6a4114b79a4846843dc309", + "c6ceb7466e9743bb8f5fd01924969855", + "d32c81ffe92549cb883d944f30d7dc45", + "7d68420db06240ca89e7bf3644f4ce13", + "8c0c55e183e34b1d97b37d1cfe92cfec", + "7e518ce08f1d44cdb9617c5d710a4420", + "0795faa8e6964b7d8991bc48e7e78120", + "681fa2e526dd4d7f8d39ed9f39a0e51f", + "b812ef69c8fb4fdcb74a69e510511321", + "859fb7e391574b86876e88ba05a37742", + "4743dd424f5d4e39aab7c58c7755f5b1", + "847b497831a64fbdbe0cfd3fb9930b64", + "37a6e009731e4cbc84ccf8a3359317cb", + "33f92e9a5a1b4dc6a1bf88df718979cc", + "ea5f3a93205d45519fc7fccc542a6a37", + "8cd8144ed2754264aabaaf5f5e1f5e8f", + "fc5350c6f75446a1b56bac6cfbb5404f", + "9e7fbccd0a804c08ba492bb2b373c64f", + "8f353bc5399f440bb7bb81a72d10bc2d", + "9ea3fea6e0694aeaa8e9af76abb71ee3", + "a9c4e6696ef3410589e7fe120b3c4987", + "6ce533c593f647b5ad76ac6a92bff13f", + "b59c634d451b4e679460fd1d10beaa32", + "c09e0d909b9041c2a3f13cee7125435d", + "2fd3c755df6b4aa4b1f75565f946ffc5", + "ad8ec70573d74508b037dcdd2f4faa82", + "c4a91037d99344deb400a1d2d0001ad3", + "c81bd545602f4d15b6f8207d6142b667", + "3437532eaf644c238f302e712da4dc88", + "c48aa8d6255f4c3ebcafbe4a5650ab7c", + "1a66e5c531694cf2a4292ab2e209cafc", + "9c269ab113d4461c832d815008f0bad5", + "564261e7438348f0839e714cd9069606", + "8c9597a6d2af4fbfa5d7db3c9e6817a1", + "54c1c22cf18f4fd9abc6ba3d9046b896", + "d2631279bf0e442eb7d2cb96c797f1be", + "937d49bbbde640d696483af51543e511", + "a6f8f17de942478b848e3a3edca8cded", + "2d12af61122144c19e5127cfb8468ee1", + "1f64e7f8d4e6406b8e2e4deb61e08068", + "aabb148f068548bab2072cfdd7380b42", + "0f1804d73c8945caad578ab2e0b40de3", + "b8315505a5b04363b24612682a2d905d", + "ca87707c0f43480da3b4cf04c0c01bbf", + "4919b42ae5974b1d9b3dea9c211b9ce0", + "68118a30741f4722bc7d8c159e36b4aa", + "5db6498089b141feadeccec0973830fe", + "3de4e06210ce408d9ffcd32bbfc9b29d", + "945825c2852842fbbb53b117a760140f", + "5cc83955b68246cd97813e6583fa754a", + "7f5af934ca44427c8968709c4130524f", + "cc375a3f384845bfab59f30f81dd88f3", + "1e180d233e9949ffa48ed620845923cb", + "8bff90860c7f4eb993a0c76a309ff877", + "7814a8ed75a143ee91a4581bdcebeb87", + "f558a9b8f5184236acbffd0ab8a40176", + "5a2f978a4922429eaf3ed68b3dff8d59", + "a72e4c3977aa4574a604337f49c02e30", + "e8ede82b571e4bfc9f21ac50e9bed7eb", + "867598232a1d41c8882f45f7b0d8d5f5", + "7ec0c0159da0497caa68f1c0113d9436", + "d4128649da884eb78806ea9a7b31257c", + "e3b1b856e1254fc9bcdead5e4aa784a5", + "411bac5bf6dd4bddb4372c9b326da1c3" + ] + }, + "id": "tFQXnK-FsXlj", + "outputId": "c643841b-f99f-4721-d900-15cf72313795" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "02/13 14:47:40 - mmengine - WARNING - Failed to search registry with scope \"mmyolo\" in the \"log_processor\" registry tree. As a workaround, the current \"log_processor\" registry in \"mmengine\" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether \"mmyolo\" is a correct scope, or whether the registry is initialized.\n", + "02/13 14:47:40 - mmengine - INFO - \n", + "------------------------------------------------------------\n", + "System environment:\n", + " sys.platform: linux\n", + " Python: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]\n", + " CUDA available: False\n", + " MUSA available: False\n", + " numpy_random_seed: 632884263\n", + " GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\n", + " PyTorch: 2.1.0+cu121\n", + " PyTorch compiling details: PyTorch built with:\n", + " - GCC 9.3\n", + " - C++ Version: 201703\n", + " - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications\n", + " - Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)\n", + " - OpenMP 201511 (a.k.a. OpenMP 4.5)\n", + " - LAPACK is enabled (usually provided by MKL)\n", + " - NNPACK is enabled\n", + " - CPU capability usage: AVX2\n", + " - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n", + "\n", + " TorchVision: 0.16.0+cu121\n", + " OpenCV: 4.8.0\n", + " MMEngine: 0.10.3\n", + "\n", + "Runtime environment:\n", + " cudnn_benchmark: True\n", + " mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}\n", + " dist_cfg: {'backend': 'nccl'}\n", + " seed: 632884263\n", + " Distributed launcher: none\n", + " Distributed training: False\n", + " GPU number: 1\n", + "------------------------------------------------------------\n", + "\n", + "02/13 14:47:43 - mmengine - INFO - Config:\n", + "_backend_args = None\n", + "_multiscale_resize_transforms = [\n", + " dict(\n", + " transforms=[\n", + " dict(scale=(\n", + " 640,\n", + " 640,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " type='LetterResize'),\n", + " ],\n", + " type='Compose'),\n", + " dict(\n", + " transforms=[\n", + " dict(scale=(\n", + " 320,\n", + " 320,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 320,\n", + " 320,\n", + " ),\n", + " type='LetterResize'),\n", + " ],\n", + " type='Compose'),\n", + " dict(\n", + " transforms=[\n", + " dict(scale=(\n", + " 960,\n", + " 960,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 960,\n", + " 960,\n", + " ),\n", + " type='LetterResize'),\n", + " ],\n", + " type='Compose'),\n", + "]\n", + "affine_scale = 0.9\n", + "albu_train_transforms = [\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + "]\n", + "backend_args = None\n", + "base_lr = 0.002\n", + "batch_shapes_cfg = None\n", + "close_mosaic_epochs = 2\n", + "coco_val_dataset = dict(\n", + " _delete_=True,\n", + " class_text_path='data/captions/lvis_v1_class_captions.json',\n", + " dataset=dict(\n", + " ann_file='annotations/lvis_v1_minival_inserted_image_name.json',\n", + " batch_shapes_cfg=None,\n", + " data_prefix=dict(img=''),\n", + " data_root='data/lvis/',\n", + " test_mode=True,\n", + " type='YOLOv5LVISV1Dataset'),\n", + " pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(scale=(\n", + " 640,\n", + " 640,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " type='LetterResize'),\n", + " dict(_scope_='mmdet', type='LoadAnnotations', with_bbox=True),\n", + " dict(type='LoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'scale_factor',\n", + " 'pad_param',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='MultiModalDataset')\n", + "custom_hooks = [\n", + " dict(\n", + " ema_type='ExpMomentumEMA',\n", + " momentum=0.0001,\n", + " priority=49,\n", + " strict_load=False,\n", + " type='EMAHook',\n", + " update_buffers=True),\n", + " dict(\n", + " switch_epoch=98,\n", + " switch_pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " dict(scale=(\n", + " 640,\n", + " 640,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=True,\n", + " pad_val=dict(img=114.0),\n", + " scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " type='LetterResize'),\n", + " dict(\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='mmdet.PipelineSwitchHook'),\n", + "]\n", + "custom_imports = dict(\n", + " allow_failed_imports=False, imports=[\n", + " 'yolo_world',\n", + " ])\n", + "data_root = 'data/coco/'\n", + "dataset_type = 'YOLOv5CocoDataset'\n", + "deepen_factor = 1.0\n", + "default_hooks = dict(\n", + " checkpoint=dict(\n", + " interval=2,\n", + " max_keep_ckpts=2,\n", + " rule='greater',\n", + " save_best='auto',\n", + " type='CheckpointHook'),\n", + " logger=dict(interval=50, type='LoggerHook'),\n", + " param_scheduler=dict(\n", + " lr_factor=0.01,\n", + " max_epochs=100,\n", + " scheduler_type='linear',\n", + " type='YOLOv5ParamSchedulerHook'),\n", + " sampler_seed=dict(type='DistSamplerSeedHook'),\n", + " timer=dict(type='IterTimerHook'),\n", + " visualization=dict(type='mmdet.DetVisualizationHook'))\n", + "default_scope = 'mmyolo'\n", + "env_cfg = dict(\n", + " cudnn_benchmark=True,\n", + " dist_cfg=dict(backend='nccl'),\n", + " mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))\n", + "flickr_train_dataset = dict(\n", + " ann_file='annotations/final_flickr_separateGT_train.json',\n", + " data_prefix=dict(img='images/'),\n", + " data_root='data/flickr/',\n", + " filter_cfg=dict(filter_empty_gt=True, min_size=32),\n", + " pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " dict(\n", + " img_scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " pad_val=114.0,\n", + " pre_transform=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " ],\n", + " type='MultiModalMosaic'),\n", + " dict(\n", + " border=(\n", + " -320,\n", + " -320,\n", + " ),\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='YOLOv5MixedGroundingDataset')\n", + "img_scale = (\n", + " 640,\n", + " 640,\n", + ")\n", + "img_scales = [\n", + " (\n", + " 640,\n", + " 640,\n", + " ),\n", + " (\n", + " 320,\n", + " 320,\n", + " ),\n", + " (\n", + " 960,\n", + " 960,\n", + " ),\n", + "]\n", + "last_stage_out_channels = 512\n", + "last_transform = [\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + "]\n", + "load_from = 'yolow-v8_l_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth'\n", + "log_level = 'INFO'\n", + "log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)\n", + "loss_bbox_weight = 7.5\n", + "loss_cls_weight = 0.5\n", + "loss_dfl_weight = 0.375\n", + "lr_factor = 0.01\n", + "max_aspect_ratio = 100\n", + "max_epochs = 100\n", + "max_keep_ckpts = 2\n", + "mg_train_dataset = dict(\n", + " ann_file='annotations/final_mixed_train_no_coco.json',\n", + " data_prefix=dict(img='gqa/images/'),\n", + " data_root='data/mixed_grounding/',\n", + " filter_cfg=dict(filter_empty_gt=False, min_size=32),\n", + " pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " dict(\n", + " img_scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " pad_val=114.0,\n", + " pre_transform=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " ],\n", + " type='MultiModalMosaic'),\n", + " dict(\n", + " border=(\n", + " -320,\n", + " -320,\n", + " ),\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='YOLOv5MixedGroundingDataset')\n", + "mixup_prob = 0.15\n", + "model = dict(\n", + " backbone=dict(\n", + " image_model=dict(\n", + " act_cfg=dict(inplace=True, type='SiLU'),\n", + " arch='P5',\n", + " deepen_factor=1.0,\n", + " last_stage_out_channels=512,\n", + " norm_cfg=dict(eps=0.001, momentum=0.03, type='BN'),\n", + " type='YOLOv8CSPDarknet',\n", + " widen_factor=1.0),\n", + " text_model=dict(\n", + " frozen_modules=[\n", + " 'all',\n", + " ],\n", + " model_name='openai/clip-vit-base-patch32',\n", + " type='HuggingCLIPLanguageBackbone'),\n", + " type='MultiModalYOLOBackbone'),\n", + " bbox_head=dict(\n", + " bbox_coder=dict(type='DistancePointBBoxCoder'),\n", + " head_module=dict(\n", + " act_cfg=dict(inplace=True, type='SiLU'),\n", + " embed_dims=512,\n", + " featmap_strides=[\n", + " 8,\n", + " 16,\n", + " 32,\n", + " ],\n", + " in_channels=[\n", + " 256,\n", + " 512,\n", + " 512,\n", + " ],\n", + " norm_cfg=dict(eps=0.001, momentum=0.03, type='BN'),\n", + " num_classes=80,\n", + " reg_max=16,\n", + " type='YOLOWorldHeadModule',\n", + " use_bn_head=True,\n", + " widen_factor=1.0),\n", + " loss_bbox=dict(\n", + " bbox_format='xyxy',\n", + " iou_mode='ciou',\n", + " loss_weight=7.5,\n", + " reduction='sum',\n", + " return_iou=False,\n", + " type='IoULoss'),\n", + " loss_cls=dict(\n", + " loss_weight=0.5,\n", + " reduction='none',\n", + " type='mmdet.CrossEntropyLoss',\n", + " use_sigmoid=True),\n", + " loss_dfl=dict(\n", + " loss_weight=0.375,\n", + " reduction='mean',\n", + " type='mmdet.DistributionFocalLoss'),\n", + " prior_generator=dict(\n", + " offset=0.5, strides=[\n", + " 8,\n", + " 16,\n", + " 32,\n", + " ], type='mmdet.MlvlPointGenerator'),\n", + " type='YOLOWorldHead'),\n", + " data_preprocessor=dict(\n", + " bgr_to_rgb=True,\n", + " mean=[\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " ],\n", + " std=[\n", + " 255.0,\n", + " 255.0,\n", + " 255.0,\n", + " ],\n", + " type='YOLOWDetDataPreprocessor'),\n", + " mm_neck=True,\n", + " neck=dict(\n", + " act_cfg=dict(inplace=True, type='SiLU'),\n", + " block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),\n", + " deepen_factor=1.0,\n", + " embed_channels=[\n", + " 128,\n", + " 256,\n", + " 256,\n", + " ],\n", + " guide_channels=512,\n", + " in_channels=[\n", + " 256,\n", + " 512,\n", + " 512,\n", + " ],\n", + " norm_cfg=dict(eps=0.001, momentum=0.03, type='BN'),\n", + " num_csp_blocks=2,\n", + " num_heads=[\n", + " 4,\n", + " 8,\n", + " 8,\n", + " ],\n", + " out_channels=[\n", + " 256,\n", + " 512,\n", + " 512,\n", + " ],\n", + " type='YOLOWorldPAFPN',\n", + " widen_factor=1.0),\n", + " num_test_classes=1203,\n", + " num_train_classes=80,\n", + " test_cfg=dict(\n", + " max_per_img=300,\n", + " multi_label=True,\n", + " nms=dict(iou_threshold=0.7, type='nms'),\n", + " nms_pre=30000,\n", + " score_thr=0.001),\n", + " train_cfg=dict(\n", + " assigner=dict(\n", + " alpha=0.5,\n", + " beta=6.0,\n", + " eps=1e-09,\n", + " num_classes=80,\n", + " topk=10,\n", + " type='BatchTaskAlignedAssigner',\n", + " use_ciou=True)),\n", + " type='YOLOWorldDetector')\n", + "model_test_cfg = dict(\n", + " max_per_img=300,\n", + " multi_label=True,\n", + " nms=dict(iou_threshold=0.7, type='nms'),\n", + " nms_pre=30000,\n", + " score_thr=0.001)\n", + "mosaic_affine_transform = [\n", + " dict(\n", + " img_scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " pad_val=114.0,\n", + " pre_transform=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " ],\n", + " type='Mosaic'),\n", + " dict(\n", + " border=(\n", + " -320,\n", + " -320,\n", + " ),\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + "]\n", + "neck_embed_channels = [\n", + " 128,\n", + " 256,\n", + " 256,\n", + "]\n", + "neck_num_heads = [\n", + " 4,\n", + " 8,\n", + " 8,\n", + "]\n", + "norm_cfg = dict(eps=0.001, momentum=0.03, type='BN')\n", + "num_classes = 1203\n", + "num_det_layers = 3\n", + "num_training_classes = 80\n", + "obj365v1_train_dataset = dict(\n", + " class_text_path='data/captions/obj365v1_class_captions.json',\n", + " dataset=dict(\n", + " ann_file='annotations/objects365_train.json',\n", + " data_prefix=dict(img='train/'),\n", + " data_root='data/objects365v1/',\n", + " filter_cfg=dict(filter_empty_gt=False, min_size=32),\n", + " type='YOLOv5Objects365V1Dataset'),\n", + " pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " dict(\n", + " img_scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " pad_val=114.0,\n", + " pre_transform=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " ],\n", + " type='MultiModalMosaic'),\n", + " dict(\n", + " border=(\n", + " -320,\n", + " -320,\n", + " ),\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='MultiModalDataset')\n", + "optim_wrapper = dict(\n", + " clip_grad=dict(max_norm=10.0),\n", + " constructor='YOLOWv5OptimizerConstructor',\n", + " optimizer=dict(\n", + " batch_size_per_gpu=16, lr=0.002, type='AdamW', weight_decay=0.025),\n", + " paramwise_cfg=dict(\n", + " bias_decay_mult=0.0,\n", + " custom_keys=dict({\n", + " 'backbone.text_model': dict(lr_mult=0.01),\n", + " 'logit_scale': dict(weight_decay=0.0)\n", + " }),\n", + " norm_decay_mult=0.0),\n", + " type='OptimWrapper')\n", + "param_scheduler = None\n", + "persistent_workers = True\n", + "pre_transform = [\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + "]\n", + "resume = False\n", + "save_epoch_intervals = 2\n", + "strides = [\n", + " 8,\n", + " 16,\n", + " 32,\n", + "]\n", + "tal_alpha = 0.5\n", + "tal_beta = 6.0\n", + "tal_topk = 10\n", + "test_cfg = dict(type='TestLoop')\n", + "test_dataloader = dict(\n", + " batch_size=1,\n", + " dataset=dict(\n", + " class_text_path='data/captions/lvis_v1_class_captions.json',\n", + " dataset=dict(\n", + " ann_file='annotations/lvis_v1_minival_inserted_image_name.json',\n", + " batch_shapes_cfg=None,\n", + " data_prefix=dict(img=''),\n", + " data_root='data/lvis/',\n", + " test_mode=True,\n", + " type='YOLOv5LVISV1Dataset'),\n", + " pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(scale=(\n", + " 640,\n", + " 640,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " type='LetterResize'),\n", + " dict(_scope_='mmdet', type='LoadAnnotations', with_bbox=True),\n", + " dict(type='LoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'scale_factor',\n", + " 'pad_param',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='MultiModalDataset'),\n", + " drop_last=False,\n", + " num_workers=2,\n", + " persistent_workers=True,\n", + " pin_memory=True,\n", + " sampler=dict(shuffle=False, type='DefaultSampler'))\n", + "test_evaluator = dict(\n", + " ann_file='data/lvis/annotations/lvis_v1_minival_inserted_image_name.json',\n", + " metric='bbox',\n", + " proposal_nums=(\n", + " 100,\n", + " 1,\n", + " 10,\n", + " ),\n", + " type='mmdet.LVISMetric')\n", + "test_pipeline = [\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(scale=(\n", + " 640,\n", + " 640,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " type='LetterResize'),\n", + " dict(_scope_='mmdet', type='LoadAnnotations', with_bbox=True),\n", + " dict(type='LoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'scale_factor',\n", + " 'pad_param',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + "]\n", + "text_channels = 512\n", + "text_transform = [\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + "]\n", + "train_ann_file = 'annotations/instances_train2017.json'\n", + "train_batch_size_per_gpu = 16\n", + "train_cfg = dict(\n", + " dynamic_intervals=[\n", + " (\n", + " 98,\n", + " 1,\n", + " ),\n", + " ],\n", + " max_epochs=100,\n", + " type='EpochBasedTrainLoop',\n", + " val_interval=10)\n", + "train_data_prefix = 'train2017/'\n", + "train_dataloader = dict(\n", + " batch_size=16,\n", + " collate_fn=dict(type='yolow_collate'),\n", + " dataset=dict(\n", + " datasets=[\n", + " dict(\n", + " class_text_path='data/captions/obj365v1_class_captions.json',\n", + " dataset=dict(\n", + " ann_file='annotations/objects365_train.json',\n", + " data_prefix=dict(img='train/'),\n", + " data_root='data/objects365v1/',\n", + " filter_cfg=dict(filter_empty_gt=False, min_size=32),\n", + " type='YOLOv5Objects365V1Dataset'),\n", + " pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " dict(\n", + " img_scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " pad_val=114.0,\n", + " pre_transform=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " ],\n", + " type='MultiModalMosaic'),\n", + " dict(\n", + " border=(\n", + " -320,\n", + " -320,\n", + " ),\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='MultiModalDataset'),\n", + " dict(\n", + " ann_file='annotations/final_flickr_separateGT_train.json',\n", + " data_prefix=dict(img='images/'),\n", + " data_root='data/flickr/',\n", + " filter_cfg=dict(filter_empty_gt=True, min_size=32),\n", + " pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " dict(\n", + " img_scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " pad_val=114.0,\n", + " pre_transform=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " ],\n", + " type='MultiModalMosaic'),\n", + " dict(\n", + " border=(\n", + " -320,\n", + " -320,\n", + " ),\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='YOLOv5MixedGroundingDataset'),\n", + " dict(\n", + " ann_file='annotations/final_mixed_train_no_coco.json',\n", + " data_prefix=dict(img='gqa/images/'),\n", + " data_root='data/mixed_grounding/',\n", + " filter_cfg=dict(filter_empty_gt=False, min_size=32),\n", + " pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " dict(\n", + " img_scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " pad_val=114.0,\n", + " pre_transform=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " ],\n", + " type='MultiModalMosaic'),\n", + " dict(\n", + " border=(\n", + " -320,\n", + " -320,\n", + " ),\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='YOLOv5MixedGroundingDataset'),\n", + " ],\n", + " ignore_keys=[\n", + " 'classes',\n", + " 'palette',\n", + " ],\n", + " type='ConcatDataset'),\n", + " num_workers=8,\n", + " persistent_workers=True,\n", + " pin_memory=True,\n", + " sampler=dict(shuffle=True, type='DefaultSampler'))\n", + "train_num_workers = 8\n", + "train_pipeline = [\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " dict(\n", + " img_scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " pad_val=114.0,\n", + " pre_transform=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " ],\n", + " type='MultiModalMosaic'),\n", + " dict(\n", + " border=(\n", + " -320,\n", + " -320,\n", + " ),\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + "]\n", + "train_pipeline_stage2 = [\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(type='LoadAnnotations', with_bbox=True),\n", + " dict(scale=(\n", + " 640,\n", + " 640,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=True,\n", + " pad_val=dict(img=114.0),\n", + " scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " type='LetterResize'),\n", + " dict(\n", + " border_val=(\n", + " 114,\n", + " 114,\n", + " 114,\n", + " ),\n", + " max_aspect_ratio=100,\n", + " max_rotate_degree=0.0,\n", + " max_shear_degree=0.0,\n", + " scaling_ratio_range=(\n", + " 0.09999999999999998,\n", + " 1.9,\n", + " ),\n", + " type='YOLOv5RandomAffine'),\n", + " dict(\n", + " bbox_params=dict(\n", + " format='pascal_voc',\n", + " label_fields=[\n", + " 'gt_bboxes_labels',\n", + " 'gt_ignore_flags',\n", + " ],\n", + " type='BboxParams'),\n", + " keymap=dict(gt_bboxes='bboxes', img='image'),\n", + " transforms=[\n", + " dict(p=0.01, type='Blur'),\n", + " dict(p=0.01, type='MedianBlur'),\n", + " dict(p=0.01, type='ToGray'),\n", + " dict(p=0.01, type='CLAHE'),\n", + " ],\n", + " type='mmdet.Albu'),\n", + " dict(type='YOLOv5HSVRandomAug'),\n", + " dict(prob=0.5, type='mmdet.RandomFlip'),\n", + " dict(\n", + " max_num_samples=80,\n", + " num_neg_samples=(\n", + " 1203,\n", + " 1203,\n", + " ),\n", + " padding_to_max=True,\n", + " padding_value='',\n", + " type='RandomLoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'flip',\n", + " 'flip_direction',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + "]\n", + "tta_model = dict(\n", + " tta_cfg=dict(max_per_img=300, nms=dict(iou_threshold=0.65, type='nms')),\n", + " type='mmdet.DetTTAModel')\n", + "tta_pipeline = [\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(\n", + " transforms=[\n", + " [\n", + " dict(\n", + " transforms=[\n", + " dict(scale=(\n", + " 640,\n", + " 640,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " type='LetterResize'),\n", + " ],\n", + " type='Compose'),\n", + " dict(\n", + " transforms=[\n", + " dict(scale=(\n", + " 320,\n", + " 320,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 320,\n", + " 320,\n", + " ),\n", + " type='LetterResize'),\n", + " ],\n", + " type='Compose'),\n", + " dict(\n", + " transforms=[\n", + " dict(scale=(\n", + " 960,\n", + " 960,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 960,\n", + " 960,\n", + " ),\n", + " type='LetterResize'),\n", + " ],\n", + " type='Compose'),\n", + " ],\n", + " [\n", + " dict(prob=1.0, type='mmdet.RandomFlip'),\n", + " dict(prob=0.0, type='mmdet.RandomFlip'),\n", + " ],\n", + " [\n", + " dict(type='mmdet.LoadAnnotations', with_bbox=True),\n", + " ],\n", + " [\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'scale_factor',\n", + " 'pad_param',\n", + " 'flip',\n", + " 'flip_direction',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " ],\n", + " type='TestTimeAug'),\n", + "]\n", + "val_ann_file = 'annotations/instances_val2017.json'\n", + "val_batch_size_per_gpu = 1\n", + "val_cfg = dict(type='ValLoop')\n", + "val_data_prefix = 'val2017/'\n", + "val_dataloader = dict(\n", + " batch_size=1,\n", + " dataset=dict(\n", + " class_text_path='data/captions/lvis_v1_class_captions.json',\n", + " dataset=dict(\n", + " ann_file='annotations/lvis_v1_minival_inserted_image_name.json',\n", + " batch_shapes_cfg=None,\n", + " data_prefix=dict(img=''),\n", + " data_root='data/lvis/',\n", + " test_mode=True,\n", + " type='YOLOv5LVISV1Dataset'),\n", + " pipeline=[\n", + " dict(backend_args=None, type='LoadImageFromFile'),\n", + " dict(scale=(\n", + " 640,\n", + " 640,\n", + " ), type='YOLOv5KeepRatioResize'),\n", + " dict(\n", + " allow_scale_up=False,\n", + " pad_val=dict(img=114),\n", + " scale=(\n", + " 640,\n", + " 640,\n", + " ),\n", + " type='LetterResize'),\n", + " dict(_scope_='mmdet', type='LoadAnnotations', with_bbox=True),\n", + " dict(type='LoadText'),\n", + " dict(\n", + " meta_keys=(\n", + " 'img_id',\n", + " 'img_path',\n", + " 'ori_shape',\n", + " 'img_shape',\n", + " 'scale_factor',\n", + " 'pad_param',\n", + " 'texts',\n", + " ),\n", + " type='mmdet.PackDetInputs'),\n", + " ],\n", + " type='MultiModalDataset'),\n", + " drop_last=False,\n", + " num_workers=2,\n", + " persistent_workers=True,\n", + " pin_memory=True,\n", + " sampler=dict(shuffle=False, type='DefaultSampler'))\n", + "val_evaluator = dict(\n", + " ann_file='data/lvis/annotations/lvis_v1_minival_inserted_image_name.json',\n", + " metric='bbox',\n", + " proposal_nums=(\n", + " 100,\n", + " 1,\n", + " 10,\n", + " ),\n", + " type='mmdet.LVISMetric')\n", + "val_interval_stage2 = 1\n", + "val_num_workers = 2\n", + "vis_backends = [\n", + " dict(type='LocalVisBackend'),\n", + "]\n", + "visualizer = dict(\n", + " name='visualizer',\n", + " type='mmdet.DetLocalVisualizer',\n", + " vis_backends=[\n", + " dict(type='LocalVisBackend'),\n", + " ])\n", + "weight_decay = 0.025\n", + "widen_factor = 1.0\n", + "work_dir = '.'\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d36f97f604e145f5b01fd3925a8baadc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "tokenizer_config.json: 0%| | 0.00/568 [00:00 score_thr]\n", + "\n", + " if len(pred_instances.scores) > max_num_boxes:\n", + " indices = pred_instances.scores.float().topk(max_num_boxes)[1]\n", + " pred_instances = pred_instances[indices]\n", + " output.pred_instances = pred_instances\n", + "\n", + " pred_instances = pred_instances.cpu().numpy()\n", + " detections = sv.Detections(\n", + " xyxy=pred_instances['bboxes'],\n", + " class_id=pred_instances['labels'],\n", + " confidence=pred_instances['scores']\n", + " )\n", + "\n", + " labels = [\n", + " f\"{class_id} {confidence:0.2f}\"\n", + " for class_id, confidence\n", + " in zip(detections.class_id, detections.confidence)\n", + " ]\n", + "\n", + " image = PIL.Image.open(input_image)\n", + " svimage = np.array(image)\n", + " svimage = bounding_box_annotator.annotate(svimage, detections)\n", + " svimage = label_annotator.annotate(svimage, detections, labels)\n", + " return svimage[:, :, ::-1]\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "-BL_keU8moAM", + "outputId": "a31913a0-92e6-4bdc-bf70-7ebe23cc80e2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.)\n", + " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAOwCAYAAACXi7YkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S6yty7ImBn2R/5jrsddr77P3Peeee8u3qrBKlowsIVAZSsjGbtFwkw4dRA/cseiAhBsWHTru0KBBi+pC103cgBIPgYxACKESMlZV2dS9vo9zzn6svd5z/BluREZmZPyR/2PMOddae+8Ze881xvgfmZGZkRFfRL6ImRn3dE/3dE/3dE/3dE93ROlTM3BP93RP93RP93RPP2+6Bxv3dE/3dE/3dE/3dKd0Dzbu6Z7u6Z7u6Z7u6U7pHmzc0z3d0z3d0z3d053SPdi4p3u6p3u6p3u6pzule7BxT/d0T/d0T/d0T3dK92Djnu7pnu7pnu7pnu6U7sHGPd3TPd3TPd3TPd0p3YONe7qne7qne7qne7pTOu198H/6D//v4fWcMwCAiEBEAATBTGmJY3LOICKklJBSwjRNoASkBJRXK+nGpszcf88ZnLnm6T+naUJKqVxjnKbUpW2ftX/MDJYbYGbknGu+OWfM81x5qfyAADjGTR7MjPP5jHmekTNwzgCzpKfpM3N9fg9FG74yA4X57ffLY5n69IYbydZ09/F4yYa0vvy3tantbaRz1xvsjtt+rx+QAQKIej6Vb+1vRIREhImAxBy2ZtSf1nj0/STqW/Z3lF/U9vav9hPMIAKYc/i+ltH/RfzrvWmaav1E/Id8gXHGG1DKSPwU+cMjnOghJrzDVXqJl9/9J/juD/8Mf/Gf/VP8xT//C3z59Gv80Z/8PUxXT/D23Xt898NLZCR88ew5Xnz1Nb759R/j61//GlcPHoOKIpxzLHO+bvw9+/18Pi/KZMtvP337Sb0zOAPMaZG+/d14YZxOTdeutfk0TWDOnQxGMte3IRdFt9Tdnh+w6KtmB4RUj4s+zqHtGvHelT9RJ5/znMEZUmfMYAaIEgAGaAZzy8vWgf412QUIvMjftveoTiNerWz7e779fL335eGgvdH1/f/Zf/8fLPjytBtsRHRUEUeVIjJEYM61YrRhfAcCiu1b4UPfVUXCYGnzAwb9NkkbXDtkdP+e7mlJefsR8+xWVySigui3++xRAOzfs/1xLZ09+qO9T8WQUc1nz59Px9/3BsmXJeIz0QmUMjATQBmgM4jPuD6/w4fr9/j+hx/w/fcv8ejhE/z6j/8Uv/7jP8WjJ1/i/fU1vvj9HzCD8OTZCzz64imePX+B09VDAISceS+mH9JWne4xVkBhw5RfgJ5t13bd5F4MLYV8UJce1aJugdrykvm6BEf2U2Q8Bovj5HuZtzLW5VX+iygCLPIsL+4pyNC/mg9yCDR839rqnyPZj8DGUdJ0Rv1jRLvBxm16eL3nQqWCuQMZQ+HgJS89Ipc0tAH3Kr7bJNuQfUM3o3C0oe7pnmLiGD+QMaxQRbaRklFk0ffoee91RUBlDbysyX+vMCcQiTGLojZrUYkRELFKPipDaDBBSJjAnMBZjMOUPoDyW7x5+z1evvoWP7x8iZkTvv76N/jqq9/iV9/8MR49eYGZGY+evsCcgYePH+P04JFENE4nzJmRlYdhjazXX6R31urEltfXNxODNjhpdadc9/mPQEHlyfFhy7FslyXI8GVun5K298Z9RNnn5z8j3ghArmDGeP71rkQ1UlKwkZFzczg1XRtVs9GH2lcdMBj1kzXwGMnAqC2iqNmoH4/s7xZ91MiGf7citho60ns63BAABR4Lh6ar4TIgIZGgUR8qvSvygtGEuwPn93RPt0bhgAsDqQANApCg38fAAYiN7d4+c0QhbtHSo8xDsLHWtz0gGXnRkfL16eg7OZ+QZ4nKJroGpYx5fonr+SV++OFb/PjjKzx69Bzf/PrP8PzL3+Lhkxfg0xWmNOGrR18gg5A5gdIEpITMhAzIsCxLKP1ohMOHuiOjGZUlqou+nlKXrk1/STmUgRh0LNsiAqstor30xL2c1nvM3fPR34hHy8cQfBSg0eyTTTNBopIypEQkn2oHPNDt22IZhbdAydeTHyLxdRiB662IU7uIjpfI1kZ1t0afJLLh0+RSkbZgNkrRFTLoUPoMEXXjSEUbVJQ7qqw7KxezGSOU4SJL99GNe4opHnIbEaWRD9q8Qhjfa036RwB+9KxX3tG7R6Maa544jOcXeYajtPRZm++W0YnKRERINIGYQHQG4Qye3+Ddmz/g3dvv8OOrH5CZ8OzFN3j6/Nd4+uWvMT34AjMBTBNSkvA5mMShYmCGAA0GUMIlh2hPPa55wJrGor1FcdaogpUjwBlgAvz8jiiCYL8zluDW2wDNy6frAeFWZMNGNNYiBTat7OxSrRPSaCJDotXyWV6uAI0hgB/oDf1alCEFQGOLX09H7ZudT9KKSYCLJkVO/pH8bhTZuJQWCogbctX7zYMRiCU+mYQHfNG8QFiwkigek13jLRJiX7nMvODbp6Nhu5wzMvdq/gjQ2KcUj2qona+06Oid0T3YCsh2jxVvBICEbIMkpJ+pF1mMBS+fWcvH57XKsvO87PetNl4DLH3aqbsXAROb3iJC4oCGz1evjQwxQEi4AqUTCG8Bvsb5+iVev/k9fv+7v8DbN2/w9NlX+PqbP8Wjp79CevAEmR6AJ/GTrs8zQIyUTgCRmZlTNAnHUQ1ff75e1+o4AhxRNKGXqVR0hI/yNCESzz2uY/uOdRprWbgZsy0nkAM9G4GjkZ6MjLYts40a+HR8BIHK8BKTtJP0r2VkRaNwNoKzqAP0bTJqe1/mCGzZtHzfiNplBNT6tlsC/lGee+ijgo2ogqUAItitHBLBSHSSwucaFKtK06P2kdLgzMC0VEyRMrIgxaI9j0hb4yzLFqFpIsJEzZvxaY4Q4m4jfANbveb5CA99Ofemt0zn4wOKNSP0KeimETUv5+LVywoTwlKR6aOk93fkYZUNkYwtr/HjQ7ORDPs0/adXfDIE2kcv2vvLlSc+73FUZLvs0XfLCxFAWQzQlID5+j0+vH+JH1/+AX/4/e9wdXqA58++xuMnX+LFV79GevAYmRJycaCQTmAAc9EvMnxSM8UaqyOeRt6vrb81Q+EjQ1WOchxFiJ61dWzBhRpyP4wg+pEX7RjJUrkTljtqf5ThKM+nnbNhycr4ZsSjAoKMlICcBOzL/RblETldyrpNKwYhjT9bX7adIwAR9YU9QMPyY+2f1OGyTTxvW3Vm6U7ABu9gYOu+Cod/XhqyLCsy90KF4gz7CJDop/K9xxOTRLAQ6gULHWoM8lxB9Gso9p5+rsTuE9UA1egEVJmVzxXFIs9SlxbhmDxtGZq9aXh5HhlANVB6L+cMStwpb+9sRDxdAjIi6tORkHmer0H5Lc7Xb/Dmx+/w/R9+hw9vP+DZsxf48svf4Muvfo2rx49xZioTCkV3i8FqgUUSBjRp8YgDY+l59QZgrc3XyrT6HLFOg6yfHV/etpt7IwOrn5kziOPIypKn5vFYGe8dP6NHjd4/pM9tjsE7qSx5TTWTwneSa4JF+uE9ldlRmkf4iX5HoGOLfL3Z99nIor/v8z5aljuLbOwFG8waploKGLP9bI0ZUQQe2udSqeWcO4+pgg1ggX7XGnBLgXYInJfXIs9uLf17+iWQSuIyJKqkCm0imQRth1IYJNFAHUc2SpjM+3vkaq8C21WqQT+Joh3xu/GEuHVDtY+ices4PUJKQOIZ8/wOb9/+gO++/Rt8/+13eHD1GN989af4+us/wRfPvgSmE87naySkorfUaCraoM5rp6LrRq2xpvjt71sBGq24dQi7DmW7+yVnWFaiyIPlMc/GWLu/iFKJFqwZ3ZZfz8tNaAyaJAMBEwm55kmQ1SjtT9+5FPj0+fZ8RaDDPrO0sw70udU5FbSYaef+nr+2lz76nI0I6cqs3phpCzT0HeamPzVNKxRR5dn8lKwHVf/c+9tAYxy27YEMIRVfJlK2kRBGQCYqxz39zIhioNGtxy/XppQwkYwUdl4OATm7vkaAH1DZCzgWLB6Maug7I9m35Qpn2buJoSMjtcbXTZR85RMMSgzwjPfvX+Pl99/i++++BZjw/MlXePH8G3zx+AXSdAVOjNMDIJ8NgpCxCeG58iP3ibOsVFkZ9NoT2RgZ+Sjqs9b2URShPa+xGf3cxyegendUwgERqq4dyWwrX+/tX2rglzKlQEaH8uWqyCsD1RHuwcalkQClNSMfRSlGdsLXhwKNCGhXcLnSjkfLdTdgg+NpkxHQkO8z1kSvL5SM9QmiJKRESGmKUa/+aQXbjuHACHNZ5z6ITIwoalg/Rip5t+gN1/qxE2EbadTF5n8PNH5pJOBADGkZLpmoRshqqJZIIhvG4Hrl2smM85y35GqPp7y7RDuABrCcQ8DMoKT34/Fp/Rx50lvU6SY7RGuUrvKb5/f48OFtmafx1/jxxx/x7MkLfPXVr/H02Vd4+OgpZk6Yz9fgSca/CQmls0MaQSavC3+q/zKIkzyyUuUR0CjMCr8bDpL/PtZxGn1QQ6/eezb3S5sggYphHTl6nV5FjDbClREE6PDENtBAze+mZOeb1PQ5A5ghS1pFp1Ppp7KzdYIFG55q5OBgn4qAw6jdvP2y+QKQHU9ZduLOdY5I4YfQhrfMpOVmr8xEZk13ZxluFWx0nSC4b6ueVYIBqLcfjQl28+xJxFqAAWFKBKJJ1qszQ7ZunkruZYMwkry4eHWeL/2dmWVsVdBJyY+Quax+oeW7VD0QVmbNdWBKU4cO55JhrhFV4auO6WrW1YsSxKz5aLPqOm/2lbWDlNsjVOybIw4T4vrPPW1RpBRa5IEAlp0xdEVV2ysDVSIIANHUy6ca5bqtcq6eYZ/Xko8lP0uPyV7fq9S9dzxStjay0eVL/YqGtXyOXC+5Alz6F2UwZVltwAXE8QTihIQTEgj5/D3mt3+FH7//S/zw/Q9geoLHz/4ET776U1w9+Qr59ACZWDbqyhkTyQREGwsACHNtMe3RCZk0+rngsL1cQAULZgFn1Z8qG63Dqueq1UaUVuvf11Vv0BrYq/jG3CKXxsjjrkmVFR09tNOIQQ/+uNRJFEvp+Sn58rp8jhw47/kDbkIyCJQmwRwEqFUj8QCg4EOHfUzCUOCGWkZ1h21FxvXngYUts76fuRwHUjYMq8OOJZtcHPW5HPnRgIPWgZSBkKRUpU1btL8lJ8+Zzx20G2wcCpuOrpNrAavQso5XGuRXaqLzXKDmVxCkRgxKgLM2IlEqKB8NpAx4zKyTQ9ud3tNBLwzaWVl5bFxpoxHKmuliBJgZSZdJFSSZTV4CLqhGaNrclKYYEiVBolon1XoMKjwgNv/uIa0/n4W2VZzB2JAsHv8JR2puy+NfppmMdSEQJ0woYEObnDNSLrKRTlgep1Fkj7NCkpImQyMjfvhuywhZGrXbVqRkbcjD34t5WSrgo+HcZbrFgQHAyAI4ypkzUxKAgWvZGA0zI79/ifdv/gI/fveXeP/+Gk+e/wZXT3+D6ckf4Xz1GBlcAOIJk04Kl2zEBaoTxReMQdq7tJuNALWiC79Zw+AlEqJA1KjY6pVyWwLtV0jYOom95ML4ou76Oq+gFtuyYaq9gAu2RSv6VfOXO2L3e73XZKQBNGYG53zI4RmBjZZ3boBDXclFvfgzuGAsjqCkRCi7xNYeCUUt7OrH82Drr3NMDABQ+0WlDlXOcs4ypwTAnBnzbNpKWVBnHwBRBqcy6K/9Gag73NpCHtGBn2SfDU+jsBtgDLH51OvNEJtQln3WRDiAHjR4odL8Du00WkCD53mk/FJRGjVeYTyVZXh5V9Xd08+W1j1PK557jGyVrVFuA2NzlPyBU0q2X9m/6NmPTzIPQ7xTcWCoRDSpbFQFOgOccf7wDu/evsT3332Hly9f4cHDp3j+4it8+dXXePDokXiBJYxE1JmV3jMstPDiedkOa6Fy63EGtrxcp/D+TWgUHYt0nwW2/bs21m0MqInscLGiOc8hSPXDzYA4rnC2wg7RxRHFZTlCENLgBtb66Ch9n5cfUvEAejVteSFMVw+bq3wTRLarvXPvwIKVHatVgLA91uiTg41RYayHtBirc5XhQUj7LWAAWFaUhsns+u+I1pSwBy/2036P0+5FtkVz9B3N4KdFow5wT7dAbDzA7nuN6S4o2ldgRHsjT6O+Is+6FTDFo5PACslup+oh0nK45Eh0ZY3HEY2jJToun1Bn4jPLyCzJtE3gPT6cf8CrV9/h++9/xPXM+Oqr53jx1a/w7NkLnK4etJCzvl/c4M549hwFvGChCyPDJ/pLtwHodY0MPZlm+Ah9cmSglPphFMtPb7x91EqjFZFx87qbmTWQsHjWAg7LpyUiGq5MKi9h1Nci8nYssieRzRjV4R7ytrTKY4rnco2Ale2LfgfWo0AD+AzABrCO3JVsIy3COYgnZcp744bMud94K6VUNpopeqLZ/qH9XAMZXoma0gjP0HkcpXOZIaNbcDI/DZFF/o1uw2v+pVMHbmHC5YPTQmMAf3coVsP90VCJj2hQlZPI4z1GtwE22k6QJ4AnCOhgEM8An4H8Dufza7x5/Vf4/e//Ei9fvcPDL57h6fMXePL0OaarKzkiHm3YFAS7s7X51PKmZVPwui7R7+2vTdZcGNZuVRMPddgRWjeMy2c0/zCyoULcfaIMR6PWhc3HR7hHhntr9ZLnP5KhMBqnK08O1Je3A/4AwIuBxUDXalrW0agyie3hmnav2c9cltL73WB/cmADGEc29J5eY+ayG9/yuWUDMiZ1q3xornzKmSW6YUsfFbGfYaUOQNJIYBYhO+WMSkcyZbyne1oQ268mFCqhseXjB5TXerRi3zs1yOyUahS5kL9mbG8KOG5EZShDhk0ITJNMCkVGAoPmM+br13j/9vf44ds/x7ff/jXS9BjffPNbvPjyG3zx5Bmm6WRspp0zoJFV+cXd9fbRMxMbgBhw1CsthVqHbe4DueGam5A9ndvyQ0iLa5Y6Xa3/OqCh25jr1DbOYuhkwuU+A6d6NDLu+lv5sytNfJTEriZJKclOoyVStZd8lMSm6SM40fNrZQ3j5c4GVrBB6pQsgUZEka0U+6g2UvMbsregi8DGlmIahc68QrEVHIVybBr13SANFZpleEwUmp+80/JK1aNh1j0z0iKqITzq79bJUxDyXHTAoK6041NJryF/dJ6KDSv6tG9K2r9vm7Sje9rD+yUG76dMew0rM2Oec1neWq/KSikiyNLJ/vlxPgzO2+PEVlFHacfbmMsKmPa+XE0V8BsetP85D3QPRZFD+9tTFGnp7oMgJ5ZqX871GjAjzx8wz2/x+tV3ePnD75DnM548e4EXX/4Rnj37Fa4ePhRYwjrJrk3oZM7VG+7ruD9o0nr/oyiGrwPRL+ND6Gz55VNKa9/X+5G3Pcoz1NMmYrOMeMReswdIqndz7vOQc1paBHqkV2taKclKQLI7eS5X4dilrZbPUTSkyvRgczlfVs/jApwH9RkN8Wg5vLy3SOWgHqzdrOOZLW9bD74Mbe6QBb8COGw0Mi9npg/pENiIogiWeSsIa5Xu37Ofo2dqGrQMHI1QoeN+kJ9tAAC1w5g3qUUfOuEwHuUIKMUemwo9O6Bs0rpD+9rC3f31o0Y9btfLvKeRMYjk6SZ0FNDctae9L32dnGbeg0Y3WFZ5raRv+49G0Oy1tfqNPDHPe+ubufaV5lXrCqu+LJLeDGDfuRTa1xoY78sXpeGNy2pdy17ispIBZzBmTARcTRkfPlzj/euX+OHb3+Hdm9d4+OApnj3/Bk+efoWrR1+A6FSiNA7Bl35sHaJeyaujIVvP987Muj68aX+I9HPkGEb5jvMOJh4O9WIDpPaddooqu2fWy6u8y5k1PcCIwEYk/xHAtkDD5xXlf+T6VkRjTZbX0veTtBvgaOK5BdBR39D2Kfaq5qefdwQ2QnYcwLhNw7BFa4LvUXr0nj+YZ00wonLVPThMuv77CN0yq0fFXeeqihi3FfS8Gxoq7p9nEOIzIRPtKkCVEcvaUZDklU+kZKMDu7rniEAkC0iXQKYB6SX4CErqL9Y5Ffu2FV8DlYt7jAYUWDY8kuWYM/I84/rDa3z/3bf44bvvMGHCsy+/wZe/+g2ePP0S6fRAhl1S0q1AGruFclZvHV0fV29enykM7HLAbHm0EE2HlLbpyqzGO05jBAr8M9GE49UowxAMkuG1dwJb1EbeDfbGWvDZRTFoHM0Y8egjB5GhFxkH1pScB26jvDU/n6ev3zUZiMoWyQ4Rtc1Nd6RR7qw+b9toL90IbETI8GMBDSVbuWHl57IUjfR5+csz16ERZZlXhWh5T2ap6/d9S9bavaCTd2HIzxlqrBDRWl+8pxuQer7lV7uOfjXKTaIxkdG2/TwCJTUEbxTxyFtuusL1vS1vnbMBHMHtQf+PnotvpOJVS1Qj8xnI17i+fotXL3+Pl99/i+t313jx7Dm+/uqP8fz5N7h68AXOYGQW1mp0PZPoCw1Q5rGhtryXX8MyxqT17H/37WFBSVj8Qb1Yz9ufhl3z2UEWRKh+86uR7HP6XY1y20MkjqzpnAoFGZPbvGwPnxZURJEfYF0rRwB9Kz9gCTz2Rq4siPfXfRpEfq+WRj7/lpAazfabiMp1WSp+RFJvJbJReftIgMMrPB9Z8SCo224WBWwUBTDPfedZO5CpE1xiJBZFb/NueSx5Uz6ISLydoqiqt2MASMnpNqrrzijqVB8Za/7iqcqOjmTcEGjYPuTDyn5c3+ZHBGPxlt7dMvqJLp3NJbqkE6i3y2A/dxETUOdcZGS8R+JrZH6Pt2+/x/ff/w5vX7/G1fQAz5/8Ci+ef41Hj5+CcQLzLNt0Q9qgharbt6aSbSDbj3drfbL5vm247KmibX6Clr/lrFU7imzYjavsdf20kWCljj9CNUJr1Bu1PprrnkTbDjxhSnptKVtE1AONEt2wz61RvEX6qO7XIw1RHxlRBGjU8EeTcGO+Y7Dh+YLOI0J0r3+3f72L3VeH50j0TekQ2NgKmyxDp7dLXGJu2XTesm+oMdCNFxVk34E88qtLaTcQpU8rw+5LGhhe5ZD7OhFhorpzadHUsGoKGIm1KDUNfhg7s580cOIyqMv0whcc0WjRFdq273vS8U/8bNFKVK6RcpZrCcWZrw6GqVcuN1k9lt74l64y5ITcZw01hJGNpnxTEovKesibERprRGKAsYxs2PfW276dh9Q4b3XVb8Nt70WAeJSPvEuZAVwjz2/w+tXv8fLl73Ce3+PZF1/h2Yvf4PGTXyFdPZRdW4lwOp1wzrPhRdpKYIMHGp6fXrlrE/TtGJXHRjRaG6VkhrtKJVsPOCq7DYtHdRXpzNDR6KJtHmhFDlgvA8x2qI669kypXdP8rXHX737oROvHliUqY0R9GXtTHQGFUWQkoq08o9GCZeS8H8r3ktZJm1M1o8iN3qugokt5CTLuDGxo4pGg2UrxCDlKwzNr0eAaMsxcwpaqBMvMh7o1eDGCVW8ygAwwtc6SmXHOWYx9zl0jzSMhgOnmxcInkOTLRrgByFkV0pMyCG0v6clsM9yQq/xuISuClCNTADxUt6sXVcoYjPIMy8EA0gGbXttB+VGvaTQhlw8E2EQz//wp6A7UIYlWCXq4GnXvyRbV9SlKKmxmhVZLqscOTXrrTA99ltArJED6kCrtVISLCsjQ1LSPogGU4psNCy88cf1MiZDNYPKqkmYCc6p10nLUybOSb87tLBkq4KQNgerKnWZ8AchJqzljSldI8wNcJcb5w2t8/91f4uUP/wyv3v0NHj//I3zxq19j+vLvgB//CmfKtb7m+dxGLLQ4ZVUvZwbXc1248gsAKU3GUxT+5FBJ6/HrcENvPppRzhLJUG+epL1I+1Wt02LcTTSFTGUSEeazm1iIfiMnvR7tPyF136+KKg3XPkVF4zRNpT3LHW4nf+c8V9lgnko+srqkplF5ZExJ0kxJAVf5S8UJBcA8t/2TAOgkVN07AkY+LDjRaJqVyFTAj+7Q6YdwpDyXTeCViHc8h9BHmVTmF5EhKjYJgE520QnkCkht1CQGj4y2wq1VeEq0mOd4hA6DjT2RjREg2YOKuvExj7jKZ0YRMDW4KAqyPm8aKTMytaEOPXAtcxtD3Vtt2tWLCihXVcDKNe3cFbVbz2IqHcvaFoJuYI6avuHfVSN336les2Co3l8BTjGN2ky1AqoVG4UZ21JuZzgGmZKmuUF3PTx3k+GHbWpgbZlvqWPqr00pqNuVvmFlv7/nv3MDDYvu4vIkK/EA6twQqgq6SeAgDZPPIsKRk3t3g7j1PeFfpd4gcHvPdp6N5qWUkPMZmK+R8jt8ePsab179gFcvvwdAePz0OR4/+xXSF8/B0xUY70vZ3BAqL3VYBTta3KzvqB4sL6KPMAhYtIarGQ3bLpSase0FCaZ6nS7lNmHUG7LqndujHsz10VDVyAvn8l+LwvTzNRQI9HVmwEMBDnbFqR/qs5G3jk9TztpAlb9e9vSZ7lkaR3BHOvBSsHH0HWYdhjeTNblfnebby4KV8Gh57uXNrv5q7C3rbg8dPojtpkrZC/ZdU2aWcw4qEMq1oj3YoBXB2ktrgMrm7alTWixrDSKn3yNteRdhZONjG2g1TYnI7AHxcdr5p0qRZzFSYlvnOtwtYPr0FA3HrD0LqIde+s0a+CaA+QzCW3w4/4CXr3+P71/+gPfvJzz+4kt8+exP8PTplzhNQObrEB+zk/mmM5NidPGGE2CPTDcpVCPY+C8nKYVtSzVtKzPjemlDNl4Pe4+aSCMeS8O+JYOR7rPtRsX7JkqdLvTDLP3yVeVnBDL6IRTfn6Jo+k10k887ksePofeitutlr9XDWuQlChCMggJezvbqnd1gw6+3X6NR5t32qR/LABVYG4WhAA2rmXNJbkFhR8IsHxm+2D4axIUH6esBah7keYTtQ3Vv+PACvFA0kAgTV4/CAq17wLFFvUcXRQhiYzLyrn6O4MMDja0yeg82epwYoAwwrkH0Bq/f/Q2+/+Ev8fr1W6T0As+e/RmeP//bePzFV8BEYDpjtJlWVO8614RL1KOecF2f9cp/2VdiAMrlrJl2f6vdw3C804n+MEqiNgGTSIYQfHr2+SGos8CgTP60AMG/1ya8lqEb4gWgiMCG5hXJyG05u34oKUr/KN1UR/p2VP48nyOg0csCACz1vJ3AejQAcTiyMULvl9BRZHQJLYWvIWQAZf7FIn52q3kL9bOwqYYUtU7bp4bvNOS9JF7+pOWjHD07SGJYBqDsgDj2uP0bVHYounRs75dIneIkWhVF76lFyu7nSD6yYa+NngcAnUEk7w66eZ5B+T0+fPgeP7z8S7z88Q/IOeHpkz/Cs6d/Cw8ffoNpeghMM7iuGIk9QSUb2bC3KFGNcvSAXN9To68TPhVQLNs2EdXD7UZ8RPUSGSbluRlvSbuu8pimhVHyRj0y5t7gSdSE6vwvQpm/ory3iqg8UJJ6tBt12XRHG3fZFYBRmY/aIAvI9gCNu+yPGvFZK1Nkr4+AIw/q9FkfOdpDh8GGZyxicsso3XYDbBW2E3agHh/dFNByUmoUUoqQXPT8uvLr95Vv47YGaLB8xjtDRuMl5flwKCVkJXw2pt7TXkPI+rzWbvSsR918jJmfJa3Jzihq4Z8Z9alItvcSM/oJpIP8LZ9r4Vj73UccttKPaLeBAOowit3cyoKRCTOuz2/w5vW3+O77v8abt6/x+OFv8OLL3+LZ099gmp4gc0bO7wEiTOmBcRCW9e/1SsSqRjUsp62v2R0tx/qUzByFkdHXT42mRGDD9tVqvKcWVdA/X/d7gE0s02yiplS3ue+HmKk5URaMD6Ib3ihaPiO+1jx8X49ROlvRgijP2yS1Z3Z41fe1qC729E/7jo8aKYg7SrvBxjRNNRNbsJEyjBDUMspwWThLxu9IJg05AauAAn3eNS/Nv9xTT3KNh1GHRMC734muF1iv+FXxLSe3MtDPbxsIiH7mcvKnr09tN02DmWXG+5Q2z6SRd9AiJ0FHXyovQHZgbIqBmevs7UU9/1JwRgWYY8BaH10YofZcpFT8PjJR+vb5FEw+HfGWcwYjL9o9yidKa03pHml6r3OWxnzFAWCuy9uJ6iT9lh4YfP0aH97+gB+//xZvX73FlB7iydNf4Ysnv8KjJ1+C6Qo0MU6nGefzNWT+VV/20Sq8oio2nJDW7nalml4fvTulCXB6IgIaMkeNyxBObyxs29pzMqaUMJ2mDmSorO01wpq/1xnttt4DAMI0ifZ2NQQwy4qbAPR4YzgifdaW3Z6pZevMfvcHskV9TcvlV3r4eRL+esSjT1f5tPaXAUwpdXZunuchWBj1kygKIt+bzC7brt9xdS/tBhu3hcrWvLA1Bdzz0jyF5p0AUONXlzChoudWkaLkbGXpZEYA4+Wc6MNyzIyTa0RtBF+eSMAio9HlRaiFjDqvf9cKuRd4zyOhLTvzfIYddrCudgE05CoIaeHKRUCzpIKlcvl50siz8O0zetd6XqN+tGbklaJ04nxV4yyV8lra/vsIcHhve0/aVvlGcwsiXqiLzC1BS+Iz5usf8e7V93jz6g14vsKjR8/x7OnXePLsBU4PrzAD5bTpJEsOsS61fT30gINL5FLIpkLCX9FTicwwwsiQ0lI2RkS1DGO52ZK/6Fokc2tgcJS+fI5lbI+T6/O3fz4/r69vg3w9eadadbPOe/F9f802dqDN3dPP6CyjyEHwdWU/LaCwnx5wbNkwTxeDjS3h8YjptsBKSV2UFPoKqpUAruv3Jyq7++mzhW2LOMm8b42kR+8WNESdSBtDT8TUPJrxz64DSFniEgrgUHBA3htlyIKykkZKikYVDOWyxFYiKLrpUUoEsOxgGgldqIjQd4hhx2BRwaSRJ/NM5FX8ksjLy2r/iQMbuwHHHoqAxjJtAGBwAdjzPA+Vly+TV/K+DwHFW8tYXN/i29bFURJj5ncNvsbbN7/Dy+//Cm9+fIsr+hIvnv0Jvvzqt3j4+BEwncs+EAmUE+zhcTchqcdlqJsIZQhD92/YM1dqmXZLr/TF8MiFZdr12oEsI+MVnaXTP69lJ6iOkufG+ViQubW6YgQ2Ihm+DfKAYMSHtVWjvjRKH9BTcFvdWZCRc+6i2ba8e8sgf3paejw8dRRoADc4Yn7sDTVmPLq8DWoeNPSgxgVlbqfpZu5DzOQmiHqi0T7xet8AiuQQZoQE9R1mRuYMXaLMZRMbfS8qp7wrf1bheFTJLJuUCXIW701AUasfIt2BEbX8REsFENYL9Qpg3WBSZdrer2cc3MBA/nRJ66v8GngSTWZWvNMAcIyei4kX748MOBFXOfWgwUYVRulZT86WVT85p0X/3ZINr/xG5fT89p/tnfP5jPO713j949/g7avvQfMDPHv+W3z57E/xxeMXyJRxnV8jUwLhIQgPyuvnYZ5LnldLZOpMgUZb/aGTMo+Qb1N73f/20SF77xDaCHgYX1eZysWgqfyvt73Kk9etes8+Z22PHy6+fed33C+P5LNH9vWTWCL4uq+LtTsjcLW3bwHav4/Ng9miG0U2tpjfAiSXUg1AmFgm641ySVnLptOllPrpWA6dkTy4KIOSBRqn0wmTARseZCwUIQGJl8uGRtQEqOyImJKEVafJOL5mUuj1NZi5ep+610WkdHw+689I5MeXyX5qeWRPE8jEVmrjsHDv/xIBxwho+GuiSIAIcKwZ9nG+sTyvvd8UZX1p8b59hmjZ172ij8CGpLsvjB2BjG3d0g926ByvNuuVcX39AW9e/4BXr/6AD9fv8PDBV/jyxW/x9OmvkabHmOk9Mj4gna4AukLOCRMmAOeb2GJTJtf3SIdPgGmST63fQSpNVMwjEZD1XveoDm+qs7eAsPJlP7Usa1nbiFg0XK3PeFBh5dBfj9K4lNYAvL8W9cs1HuJ7VCU80ic+ghLJ0AiU+nR8Ge31vbr8xnM29gCOCFFegi4VDBDLIWhUUIWv8DZngzCXOC0B4DxLyIOpHWhXlV4PWLp8XcdNKQnYSASqO6wVYJAIsmGPpkhVWbCu1CCAUgFChf+Wb/FuynKvSQGHzgzXLYkBOZ9CtzbOkm8mxjwTciLM5ZS3XMtp9FHlr03W4u6BZd3rK1R0dSpDVFS2Ek6lLNKuLMM14Hp8Ruwr3T4Y/TypDkbJT0ZDINVit3bSVc8VWC/AitbzvjlQlo8KVWvUS78HAIQB4tavdAhCh+G0nbUsVFcj6Z4yCeAssqhJcoZs9t/y9AYjomib7KGx5FxUsQL7CYwE8ARgBvMHIL9DPn+Ht29+h9dv3iPzFb549hxfvHiG06NHwHQFmX50AuEEcALyDFC2ldZRhTetmkufQL3Q9UFiAzjQlppS+xOFwSv5GWNQr5UFvwWLpJIBpwr/S/01vWf1qN7T9hgZFi8vI6CxfF+GhyU8nSBHPiS00WIHBMzZDT5PH8mQizIh1k6ozFUHsujL0ocmoqhqpQ5qrbbv0iepXreaTZY55xJBl+HsROJkJkr1XK/I+DNzPQrDcAEyskTm/Zl7MF3rytRzDyLssJOKkwWeqbY7WRDbWDHXepnbQzcCG1tgwZ9cd2S8fojymOvwhT7Rd5Aqkfp4VeIZqOeUrC0XsjxYlGdRIhFhKlJQFTUIhFTXxavRXXTQ8m9VANzPlpdTC7l817CqzgDOqh1qfYCBKxLDPhcsknMBPiBZsjfLsXFZgQ/LKgMrKdSYM/VddWIBGPJd2yBRMu9IWWeeBeRwrkBDgQhAcl5Mbbz9YOMnHQ2pB6aVn+Vf7eSiBAk8A6nIUi7yk1KRdwc4Wn9qitaGQVe9YctaZWzphQkkSOatyZSHKrioirhu3y+GREwegcyGdtp7W/RuOalNv0fGbTvCwUiKf0h4ypQAXCHzhAkJ8/wW+folPrz5K7z64c/x7n3CF4+/xLNffY2HTx8ADwCcTsg5IXECZoFQia+hQh3VrjpErXuqQ7EshyonKrymRJgmOQdEDF2SPzWkQY5J0KDN3NRlM9J6bh4S1X1zlL+kxrYgW3V0/M6Ytj0ibzkycN7DbzcqQxAfUOSlDi/bIRUuq24cjUAQifcFmbdmV3GouqQKAJmp6reubYBmfPW/rgwx2BB9WcNRxT63bQ2S2gNu8KW+CGVQPYwCLpaYQu4wuZODl/bLUkqTqQ9bjiIr9Z0CqAywIWUxBBn7dPiNj5gf0dEQyxFaK5oPM49eGO1mOgI5y45kDIV513oELoUmcKnJlBp+e1CjPJMqwKjHJgcAqX2KcBATZsziMelhRwXBShBGTzzY3y62OHvC19rB+t8oStV5sbu5+GnTKEzqQQKA4oX1cx2EetnSyELOy4lnl0zEDftOyXdJ1CCGAfb2LAW9JvfTol9EgMEbL/t7b2QDUFtWQFm7CpkfcEaaP+Dt25d4+f3f4NUP3+Hq9CWevfgGT1/8Cg8ePgSXCZpJQVFiJMzFiEVmv9Xf4qj24OnOcKcGulJqR6VbMDaKBFM5LMyTtn8SFKOZCnhJzXCuAbq7p34ycq9jqYKwNQrtiwK88qfDyTphXu2stktm1HbexfWgH0c0arvl88XId0kbyXGPK1hSLDJqyz79/pm1CJQ66KNI1SV0J2BjZBDvkjyCHo1RbfG3p1K1c9jn/Wf8Tj9+5j2F9qzMRteZ6KPd8TreJzKIXsIQzO3QNzndsFbAZhkbM6iofquM6+mot8cK+n9xtLcfZMiQFFDkplxXsFZSC+vQAo7IaGzxsLcvjOR+T5hdP0PDHHjKtjz23TX+mFKJ3NnIyxl5fg/md7h+/xKvfvwDXv3wA+ZzxrMXz/D8xR/hyRfPkU6PcIauKCv1XoZkUALho2qsESFdKTGA07bvax3IpPMl0FjrdyOw4fkgEv1AZadObRfr+etze/asuBVSJ4hRDmNrwIOUZ3lk6JUMI+5mUijXCHsuB5fJczaa3PrYth7390dAwhvqbaOdqiso/XttTpb0fwVOfhQhivbZibJRn+z6m2KOWwQcHy2y8TEAx13l45VCuYrMGq7tAQQwUgy0+O4Ng6ST6/yPaDMlLygtDYBy8YRy60h1zJ0lFHu4imip4I8KHikv6rXUO78M1LFHLmuH5hYyZ+autgBtc9sW43z29odIpsyF8J11I9juWUM2AhsjED3yuu07iygOleXvpENUVIxyRqIPOF+/xLvX3+Llt7/Du9ev8GB6iGfPv8EXT7/C6eoLzDSBMMmS3wQIZJgBzADPBbyvrSCj7iTTEeAAlivY1sK2UVsO9mfr2qRGRBkyv0r5KunphEu70uO2958IOEQ7MZsBtCGBWm+8lG9LQ9nmDNHPzbjqMErHAakjVnT5TpBlZXhvv95nB1Wm+8hkCKggjiQYXTnX+PIRUF8em5fKi97fW9Y1ujOwAXwaoLEfRV7mobf0IbvxUd+4a/lSN1SiPKM7fwAo8y0oFgJPu4QdNqy47HRb5I3dRUSAxAi5d1RWvJafO42VJZdx3iXIsACjBrWmVCfD+aG2S2T8SN/Z82mXPfegmsPfyoP9tOSNwiJ6AyATlekKMjeKmJHoA4hf48O7b/Hq5d/g1Q/fgs+ML//oj/Diq9/g8ZMXYDoBNCGlCfOsYcEMkMxxmvNc5HhpjNveNZUz6etiS8M6tIa9Gn9uO7Zu6VDmpTH27VfrFhpMWBqOmzgSh4mdTtG5GgmYZ67L/JkzpimBZ5m7FiYVh/eAulNqP7wYNQRnmdDZPzem6H5Un3rdb7LoI3U1DXBtG3bPB1wUkEQlAqL6QIRtKRNAzrKRmF+OHpWDSwjotqIawMEJoqvMfSRAsVVor7DW+BpVpEd93pMyT1Zhjjq359muI/cenlW406QTAneGNLmkxybdOglKJpRW4XXlisLWI081im5EnnS9xi2K4oO97bn1uv+lkA1X+siGnWzY6sRGA3R8ewl6L+mXHciFCWkPDLz/bp8dAY1RH4kiG5FcbpaLACQCz9JHTwlIfMb5/Abv3nyHVz/+AdfnD3j04As8ffI1vnj+K+D0EBkJsoLGGnHxkmfOZdLzpFY7rDeZnK1AgCUyOKjn0fbXaqTGuqfxFlWFr6vWZ6detkx+o3yOAMHRu/3FGnwwz+hvLlEh5UXAh/X0rWxFZdVP4dnKLpWpyjHvtvyjso10ps87umfre6RDG2gY60UulcWcCoiwMtB0Qk+X2Wlflpvo5MOrUbYM+RZTa4Z9L+1Ne4v2dpY43WYovdKM6kCFPkq/nVXRQq92nsRIwBdo2qRZl4H4sjCgy2X3kKRl3h907Ogau2ueFGzsNYqj9v1YQPe2aY+8Nu8GiE3WOL2jHon3bAXANlke7W1gr43+RvejNNaAkgdUMTGA4q1CQHhiBviM84dXeP36W7x+8z0SJTx98jUef/E1pqvHmGkCU5KYRYlRE0mIvf0RiCncC4VZ+WvnphAxKDWjZ+tubQiJXb0PQckCxqOm4X+z8XhtHiNdbvkatcfevtc9xwqiG6CQlTMCzNSYNr3YlvsD6HYitmDWp2/1iwIayy2X52RlXSyrozKsAQr7N9pF1X+qU8GVL/9X6knLV95pc/IscIyiXUseIqr3BjbiJlGOQ6e+bjF5E2/qc6E9nnUVpoHyt/VQ682spXdPIzYicn0/ioaZdd22gW5paaEAHc64hNZWOazJIKtC6Z6nS9n4RZBt45ybh+c9Oh3r9nJ3mxQBh63nvM7YAhprdFincAZASJhwQkLCGfP5Pd6/fYlXP36Ld2/f4ItH3+D5l7/F02e/RaaTLMmWzJrrzSq7gA6fsFqEAY99HWVQ5rqU1G61PTJos+tj3nB17bAyDrkwfgA4Z5nPMpgs6HX4Wjt5wLL3GaNhKyDo09DJ7EZ2jM22w4WeX1brLD9KXjpEUi+XAwYVhPXW2UdO/HU/GdOWM/obyfyi7c2kTws0gLJniqmvvjx3o0RvW4ccOvXVRzW8IN2VorsJXeoNq3DYsdNeaNbL2AGNmh7gFcOwroqSi7yeRRmYi4BaBaJC209PI9ChyIblZRhRMZ7DWhowId9WrgN8/EKptqfZedYeKCaf7XkvMzchQm88R9tbd+8EoGLNc74ropwxzYwJsk/G9bv3ePvmFd69e4PMjMdfvMCjJ99gevgcH8pKABKnukzzb/McmAmMqRoEyksNkBWEaDCQNKJZYcwQaDUnoa2e0OfXHKC1KoyATM5zdUrWHJmtttny8kf31IOHLsuvBtT9EUOWS9vIXp+u1tnigEsDruyzmnWdxwG91oYtR3W3VeY1sAFgEZ0K28Y4jJF97cteQNNcnN7aZmWJ+aIpjuqCyx3SER0CG0q2ofX35xzZGIVrt96xnojv8ETxtMnII5DneUUxBJ0UqJOWfNr2e+28zmPJRiBheKIaYdjfRup7jGZI90ZonIb1Yu5pH1lFqVvRSz+zstADvVvtgwZ0j46Zj1/bjmysRUfWDNceSpkLeJA5Fvn6jHevX+PlD9/j+sM7PHz8CE+ff42Hj75Czo+Q8QFMZX4Tl50cy9yBXHYcls2gdGO9gD9dTYHWZ5gZSFzT9brTessWbFiD7484t+/5fU2i+mo6AZiNR4/gU+t+DXCE0QoHXiI+lpENBRH6btvgrEU7yl+GtKdzeLV8Hd/wvPV8M6txlzzbv72MjuooKtca0LAAg7lf9dKnkY3etmlUaar1hbJ6R5fH9g5w1G4EHAAQtg2iMl9CF61GqSjcCehPBWjsua4KVkGW7YBEcvaI0Fgp9nlIQy+zHdVXPCnLfm+dl9tYH9pkq26cz/FxjIo3Zzp0l6KPaLHmY8tnwIneJTrMyS+CqClIbUHmshdBQlFYZJqyN+h31Rf3AAXbRyKwEaW5l/aWh+q/BHAG8TXm81u8f/cKr358iesz49mTp3j05AXS1WPMmIDab9TjzcXBptK/UolzUAUOe/jtiscCSBgMpr6NerBRzB/rBm2MlBSk6KaAjD4qoGXW9JqhkjzFa86GtzHP+9okTMNHIOpQVCm//uj0mf5cLj8lXR6rSRvdl5m7NUHtGf3e618LNCp3xv9hl5bIgjp0JgpSl9FyfS5nPWhTo8ryXTZpW5+fZEEYs+zmwubPaMymG6jpBa2Pfe1m9f9ahH65oqUUFfCNvJMOzdmwqNwbnRHqu01ilsk809B9doaVuW7NS0D3PeKOUHbcK2CCUqpbikM/NaJBut6j8dYPmXgei6rKyiM3wOpGXkUEGEQJxDOqhDEM+lUUT2AizDmBmcrQSUJGLsuiGMUtg3pBXBTbovxBaI+Z5WC1qjFqcSqMSVnqearHEqfSqaXbMNsSSiek0oFT2WQIXJRsx0LUSne9/v/TEwPAREgMAWRUpjsm2VKKQTJ/kcp24tnIXMUgo/5nVFgQ0vUyEIV/196LgfYyrzX94MfE1/RMdD0z44wrpCmB+C3m99/i+t3f4MPbv8bbt28wPfgSj578CdKjL5GvEpjfg88zmIBZJ3bWFSclTcml1SuZkDdEvnVCoxoIIpKoRjV7EubWLbLLSkQAMtGv7nCZrW7lspeGTHadplT6c4tSNr+n6adc9MSsAMYYWuu5ez1OiUpfnMFlnonIlOgQKgXkrACp1Uk6ndBi+M3ZUBCXC4irek7LWqItRACyyDmRyP8sS0eQUtlluUabdZs1LsfGNLM85zJxErKkNrPMYavDXEVeFITNDNAk+ks2gxNQSEQGuBTtxQDzVNOtBw1KSxmAIkBX9TYVoKc7ulYQU34DAM1o0bGKwLhOXm3tVexvHve/Klld39FJskVi9ayU7KMeIlNM1NVXERDz3DE6vBplLbw5emZrfHctv+jZ6A19PlkF6EKOo/GyMA8FFeiBSnvG4eYNb69BUNRPBYlEvWmo3YYqhG0dNusQiaBrGdNUoNFCazlbJG/aJvch4K2xSf29ACKG48ztELbCVAM2A7nU1BIBsz5HY5xtKmaZ1gHveJj0HYDjmxJX8KBhfEBrqKggzBD4VWvAyFc80NceHoGGLro34G1PxHBPfxtRJINb4KMDHOXgtYmvQfkVrj98h7evvwdxwqPHX+HRk2/Kqa4MorkBnDFD9keNFNgrvUZo/Z3kRAxo9EQMh028aZp+EnV5B2WhRpb+bgGj3Yzdcj/PM5gZ8xw7FtEQABG1SA4DzHPX9+2zCjRqhJtkmXEngLBGUIFUu60gKDP3daJGMalk6xADMJX6qLqGAd9qOZu0TQTe1oO9jgIwMmMBXDQbnYSds4BEudZ2aNaytkhDsRDczLgC0wpQPeDjBJR5Q8IqNfBS67CBBs1sy4a2T03T9mpqzrSRXwHEtu3MGxfq20Ngw//p9ejzNqkPq60/F4Vwj4RvR0MXPj35nqGb2ftxOZuGRcjZCGMrU8xLKhZGASZzm6lsOy3IgpDlTPNIsYza6Qj4s+WL8okiYF36JIhaAkbbHu8vjpY6AEDFc62uVOdihyKg5gl7mdXvOoQoxqdE5IKo122APE3r6HMjD04VOYjB8zXm+Rp0vsbbt2/w6tVrUDrhiy+e4YsvniJNsnHXtHpo3T6e1oat1FzoM/1E3zjCIGSVPyOeMxXPo1KwkU0UM3KIfL/1Ey7tu75P27TBjIwZEYVlzKluvKV5ezls3zU6YnXf2N5w7jfzss9FdsyubJnnVgbPt4IlARuxfut5KkgD1NWZL18H+Gq8fMmnf17TWZQ/6CcjoE6kUY0lReVae36LdoMNbYSoY9wl0FDSStXTRqP7dvLU2pkLNr0tsp2gAzHF4/QHsennsn70AKBxB/P82YlP+rw/y6A8LB2fl51A3x0BkK062dOmNo/IC7Lp23oUcG7Dd/egY41GMsx+iAsrYIBg9i+Io37dZFADNm4LXHg+9XOkEKP7kbLtZI0z5nyN+foD5nfv8OPLV3j37hpXT57j0cMnuLr6AuCE83kGJ5KwwU7SLKuBCPt7m8yZy1Zh3pD7vr1GkbEqd+ANkz7vjWHkiHWGrlyzm4nZ/DW9eZ6Xhpao7DrpZaRfSFDLrpsNrrRjrZ+iN8FtkrRSuBSfWyTC1+GItFy+bmweUgeM+dzeGbWfRr8t0Ijbr9Vt5mbI7fMje7tGW31Iedgjd3vz3KLdYCNC1b5AviC3RT6iEKVsV454BRpV/AjlR3xbI2pXXZCbRLOIZnRpA1UxoK/DkZFPTiCZy8ZCNgRYkpXxw6WQdu8OkPht0RqKVlqWtRi0oC3uaUy9TKOTw/V+2Cv3Rd/yf0AY2bhNikBw9Dm6t/ASAYBmEF8jn9/jzZvXeP36LYhOePjoKdLVI4AmZJrAuexOOQAbo3J7YxEBh9YO7ewNCzii97bkfqnTFGzo+7Y+Uf8aQGpp9XW6zKs734VbJCNyeIhIj6jr0vDP1efbuOCiXMuosAxSyaQHFNyxBNg2z4jWZFjBhl8psvxTBynOs89DHSr5y2XiL5jbviHqIJa0fZqRTBxxlLe+b9WJf/4mdHg1ypYhuU0jYQXPKsAUVJDdB8Tz6n9fUom206RUJmmZoa81gANYmGF+80Zkg5tXyTUN81ffo27J1AKMuDKvlfpSARu9F3dC5VodIarabgS+folk5WOrTna3F/XDKBZEj9ro0iGUEf8jmbCe5Jo8bckawCAuYCOf8f7dO7x/f43p6iEePHyKND0E46qdsAqG7KPRG8VRGdVxWFPm3TBA+WcESqKy7Cc7T8DP07KG0Ya/+1C45O3ni+j1xqsFGpqPfXbm5TDK0Al1uMSDDPts9dMAGblGrCv69hrrHb3enMh+VZD2izAazO15n/eynEWvMSDnv5SvMjXDlB11LiklO9/tMsdwDZhvvbd1/ya6+dYOYrNK5ba90goyUqrDKFZRRgK3hQaPVJxNq84+lqnFSKlfB++9LasA2YU714YttLxrdVnTylkmxOWxcu5ASBAi9eW8hNaARfi8vNS9H52B8Eskr7iGbaNeq7vt667+JnkpimKM+FhX6tvlGA11RAdUebBsn/f9zCvj+g4YRNdAfo93717j9atXmOeML754joePn+Px4xeYTg8hJ7dS3VVzOTdm3Eej9ojBj66Ia2WzwxXAMqoUlUuv+/NSZJLi0sFoAASQoV4Z8u3bEdAVY+XpOh+CuUVgbERjRAZWOSL080r6O9FwwhJ0KLBZyqIOfdh9oCLbEPWh9o4Atpwz5nmu812iPZYYS/Bk22zU73zUWYYy+ygIQN1cmxHfPm1bf6NP348i2zmiI8+u0Y3BRmTc78JIhF7XzkrwQOg2+NPIAvMSYCye1UZXhaFIF1H3bN5HMOwIXesvt2TXw70QoZZfflTejgi0L9OePI/QXYDVu6K7AkNrsac9Yf3RPYpQieY5AOexjLZ3jgKPKC8PNkZKczTvaBktYGQ+43z9Btfv3mC+vgalE64ePMLVg8fA9ACZE+Sg0bYJ1G3R0gjoOStLo3SJw6Pv+ehCwAlG7e3TDEFb0F69QzECF10ug+di/a310zlapU3l59JANzClUZ5+f5OturbzxixQifVQtFCgz8c9PsgT8G3Dq70tSuP48LPnd4/e8Olfqp/v9Ij5uyCisgcGjRsdQDiU4GlvpUXPqXhasOGf7ZAlFLmbxlKv1JRtmxcFHEY4iYG8rlg0bVk3T2XvjB6IrXkut0ELI4MWZfR8fmy6Kaj6qZGX09E8gi2gEXl5o+e3PK81sDH6HkdNGIQz5g9v8e7NK1xff0CaJlxdPcaDh0+Q0hXmrJukJdCGUT5CsQHV/Wb6PS7W3o/IR4WsURQ9BHTGnf37ctHOelP9xVwfqPMhmFydt+pdAOISw1lkerT/WLmq72Yu0Vh9yhpMXR6rwEOv6+c4sqHll0fMML0BOl7WiAiEqUs7KkPj1FRavRfLm7Un/u82nb4tkLFFvxiwASzDjr6DW8GI6JLKWrxDIhy5rn3f9g5mXl8K6kOpt01keiIFQzR3GVUYpWt1mI9AfQ70OfFym+S9tzh8va6QtiJ6/jn7fQ1oDAH7Sjr9d5bVKOf3+PDhLTjPuDo9wNXVY5yuHoFIIhvMGO9FcgFFoXthR4zLyFNc96T7sllgKL91k69cNoRSvVcMGjdDrMMFLapZHsl9lMSzoRGFBmgQYrNg3iRGhvUYKYhYRoQ6ENDp0n2Rb6K2lNYCDWvke2NP0N1nRul3Ubfut2mDHXJ3kyjCiG4KOm7Cz08ObERA46ZIbYvCCi7onmjNkBovDGaPDDZKhtuwhvhYZTOVQR9NJDsJZmRwGUbJO1RmVz/SE3eU/DIaiWN0XfvgXsN1lzQyBj8Fsv6SdwD9vaiOvfKu36O8HFgOvdERnyvRirUVb51n3Z0z1IZ72vOMPJ/x4f1bnK8/gBLh4aPHePj4MVI6le2gUzNIi51rL6cF4KjfI6cInf7YA+5821lP2D839KDds6PIkX9+FQzZAi1of+V6nd5OybXP2DQzdNdiLa9Vb94ZjcowqnY/Z0M+Uwg2+iiTkWXXtlvOFGPZNy5xmqN31kYC9tJHBRuR93mXXrhXYl7RRWDDot3RuyOe47BsT4pSZQMWrjvPVfkvQES+SwfQ3eR04y0UJQGSQFuZQtal0ZuOUgaaUHfP12PrN6q/C4trT+w6rNaZ92qqdl9Nc42aoesVn76aj8j8bThJn4TGimXX2xtALBdJtBhV1aKInchZ3S4oSGOk1OyTFrBU2eUoeL5dljCyIRdq2uA2/AgWMC6lYehSVTlPtRiaOskpI5/fIL/7EfP5GpQe4PTwOR48/hKYruRcEsxyZkVKZX+Dtb4+KkxfORJi98pc652qU6Fdr6VdgIHZZ0G2NdeWLOVmkxkwCiVsksqRX12yKB5zWCscfCsJH+LDajdKCsiACszKn9TnEmBKVEInO1pQEYONEajrJ8m2d1Kd2NtArM7vIOg27sp/KVFpskSArkDRvLeARmXe11MIkNaiNbT4HfXvvYAj9LXrtf0K+dDZKP77JWGeI4jKgoW64QqAidrs4wilWUS8thnZWp5bfDOzKDoG6kEVqsyjdJHFI6uH9RTB107C8kuOQlFhl04GaD1k2TMfZWooy+Q2PTtDO9wImFXey2dK/bMyS9mGs8flD+sEIoTtQG2TH8k3LiCqqlladqYh8mYAZhO1LToyB6UaNZ8tIVaih0FPkPZBzyTaEIiIkDHX2FY1aEZRA1QMLFXTHHLoFJIFwxZolNL0/O/UA95js5E/+6flUINHTEi4AuiMTDMyXWNmgDEhpRMSTpjnayTMsux1fgU+/4g8nwF6Drr6EnT1HEgPAMyYUgaI5BC2iUCZwmaOSOqQunkLifoTcWMdKaBJ667uYqJ9v+iB6md0IIi0C4nBq3LZT5Rd8Orac5qmrg38ygv7ztIR8HuCLOvlCN6QYgvgo7JCQtMvi/2ARKBE5XwYtm8CAE4ns++RASoWbOin3R20p+XmZ6ILATnnScpa98ko7xBp+h6o1NrA+QzwzODuqTEt1I8DSvZa9Hv03T8fDQH1ts++612Odu2I+b+VYZQo2nHbtDVc4vNdmyC6Gg4MPC/7uUd4Iz7LMUTQQ3Sid2wd9ih+JKpLI32k/r0AH/F4Nymyz8WK6OcvioLyXtJfImXStU8AKo2TvanxehnsPaKtyOBWWaK+5OtgrDhhPHluAJYJGSggXL3PM+b5jHm+BueMq0cP8fDhY4DKCc4EyEEjE5p1v5y88rbl6vtO/50r4JDf9XvtIGsd5ZjT5j9HQyU9ra2Lukx+I/JOoJW9XBw5SgBhue9StO2A3t/KM3rWO196f2nfRm3D3fdUJiD7pcN7bJCltX7ir22V3T93pA1vYutvbenrXZGtmNHGQ5ZsBCNaKrcr9B8If6SER+mFPJLOSG9gw3f+PirRUOMayLJ5iiO6jMAsylcUbBRi3FWWezpMt1GPkdEQ6o33JflZmRzJuuVjFDU6AuSHG4m5ciy27QfQDSEwylbZDKQZc77G9fU1PlyfwSA8fPgIDx89LpGS+sqt4N01JygGHP39uybPn9Zn3S/oQh5um/cI/Ch/OWckJOh4cd1Kn/oJnVsGMOI5iqr6zz1pj+4lInDaZzf28hzxNnp2La0aRXJn9ezh6RLZuRHYsIZqDwM3QcFbkQ1N3wINrxC9stviMeoAeyo4fI5RIhu9YRghVg3djTy9BVGZQxIYiiWDwou97wX4aKe4pzXSuu2vjuRpj8LsP8dh1aPk5SYCo6ubOx0AG5HcR0pPduyFKSa17zI6KacZI4PAyPM1Ppzf4zxn0PQAVw8eYrq6AojM0IBGESp3Q75H5B0hrbtxZGOdbquvRX060p1b+cnEy3H6l3q4W+lZEkNYzpdJrUweqNr6HlW5l+WRo+gd274ex0MHw+iQuxwBeHvd8xulPQIae+XN1kHkaIzKGTkje+knMYxyBGjY79FyvksiG8qD5QVACGiAfqfDlgBqNMGXKQI4vqybEQgUfXwAiXth9Xlo2eb5bvff+CVQJLqX9pelYlmOUV9CkRKJInz+esRblPbWtUgWO77MvJc6aEIEYokYJs4gzOD8Aefra5xBmK4eYrp6AKSp7C3TR4MAASuXVlukm0aeZ/TuxwL0UZ0qjSJMMty0vK7zPC71cLs8AnDrgS0RyoaIS4ManVvVpGNf/jbKQ0SLoy96nRynO2rDOed63P2aI6vX1mTFfh85imsU2ci1fEZ0qb0/dMT8Wsb29yXp7CHbsaMObiMal2xQNUL+a3l6YMHsdr/r0u47Z/Su52MklP31pXJb3dSMYMaKl4Ks6VtvbcSLS7Y6nfrk3vbelce4rw/T3J//Jb7tXj5iZb+mXNa8LvtdyjjXa/ZznOa6fPk81yISe/ge3dsDWGqehDqzVY0gMwFMyJmRWBaEg2dwvsZ5PoORMF09QLp6CEoneUcnW8vYi0nwsmHEqE30e+R5eoo2kAL6rdz1c8vpss9o2nuHqiLnxoMNrxdGxnMEIiMe1qiVF/DRu6PG2vIf/akuDx3FQZ5rv6vDNrfVLHuA2Zot9bIU2as12YiAhn/H25Uo8hE/u003jmwcyTAS6jVkP+rEI1Cg3/2sfd+Ae6MbntY6rpZjDHIEbHiFYc8fsPluKRZbtmooOTYOS06oLDWLBdej5ki5hJ5Q/WcdFURea5T3Iv2DaGCt/hZpo4GlXc/nvIpOloph6ZHsMfT2U78vZaMchRk8O0p3XMe9x7qYL3GBs3AUgMT8cVmeoD9TWVRKRTB0POWMeX6PnGcgnTBdXWG6ugJNE0BTARk1LlL+bysaRvxFdWnnDugze+XNPm/3c1gzCkfyUMNpdZbXTZHz1JWVxHM4Atqj9jviQXuAJvXT+o8+YwFCJCuavOUnOgkbaO3oT3wdTT71/PrPvt1St2v0kf5jn41WC43eiexeBAA9OF0CkL0TiffRZ7GpVyTMqwgNvbDYe6P09tBIIKwgeuXi31fh9x07lVAgzIYwVrhtp5F7uvQ1Vi49uBEPD67co3og6bkhUrYdsJXhrnz+nydFQGM3ihmkod+9gWptti99OsgHECtUz9tNaaQYm+Er9xTHUpN5gtYNAM5gnuVQ5nSF6fQINF1B9+JgTcMQmeWla1T7qnlyzbvc47nvJet5W9C6puesvIxBXM9LpwsGPI6cuIhuYpyitHyZ/WF26nzZvD0QiPS4B45Hefc6v0Y2mBd8r7XDWmTlLmjkIEdgY8sB3qLPAmwA60INGEEDhmAjencLkY7uRajXd/SRhz7P8wI8gBiJEpjbqY2R4mj3qEPzkVJrQkKYmWpkQ5/3PNZ3V9Ldqpt7WqdIad9WWh7wjpTjXbTfVn+7rTzsZyfDxttmJDDPDcSRgKgkM0XB+VreO004PXiA6XQFUILuuOtyxR6gtohgBH3LR4X02b3p+nrwz42+HzWKI7A4kt2Rjtgr27ctN94Dj+pmBDT0u3f0LIAf5VEB7Ub6jtnFvc9Jv47Ahu0TvV26HAx9crCxJrC+IynYyAOU7hv1Jh3RK4wIbPh3Rp1ThZRSW57qAYcl3VAGWCqteLxUAspwnW5Yfh6H1aK/ezpGsbLeX4+R8owAalO0Lf2tuUpbu816+phRDZv2og4BMHGJShAICXJEfOmf0H40g/MZYGCaTri6eohTARs3pVrnkCWNlj9blj1A46iXaNPdY7jUiNh3onlcq4BDQkb195pujZycI4DkCPnyR0aQCKEui3Svb4uonO2Ztkpwjw3g3KnlnxC1uSaLOxfahE8ONpRGQhl15iORjRENO2mpZPv20psE2s5y2+OR7R15T6/1Y6pW0cpOnsBS6do5HjVUV852qKmYqHBUC1p/UZ3EYOMn2Vs+CUWe1iXKRoc7yPxK1J94rAbB7zUA3F1049bTNGlHkZlanvJdQAfKXI1mAARylX11skyYTdMVptMV0jSV4Rc2OdYc9gY3Kj8K7yx/yvfIeG+ladPoedQ6gcxDgez8W3kfUDS8MIpqjL5X6RsAh+j3pXWgtCVjFshE8m5/R06TRjX02S5i0fkE/caKjS+qQMaTBy1EBE46nIKqnIX/ls9PSb/eBEDeCGysGduIoRGqPoLuASBLa5ftultTVYHy391vAIj2/hRZkyV2CupVCFOSeRfyuxlhL9y+nFUAUxJlWNMlMGeZSZ8EYKSp3yZXhbLrAyroxGVXPcIk1SECnLMcDU25Kl9Ngatgt1rznXdvZGNdKdxh5zniml9ydsTO5GmE5IZJ8iLtlFLdhr+7TiTLMUtO+m+CrLhIlEQWdXUGUOpFX+KVKboM2TE/MOhBpNA/Ez13CVWpLJGKkol44ECZ+imCLZiK+zphiWwkAlI6A/kDTtOMDx/eg88zEiZgeohpegAiObgQBFAq/SAzwAngSaIkdIackUGdkdG+Ko5BGd4EynLZpWHT3+pE7Il8LutG9gxhzNBDl1Jt6xlz8ZYJCd0O2oai/Ef9eWRAaqygnDlDRYRzf6JkmVhdthQnaqJuHLNhWW3def5UxrM0Vb1sjLqfWJ9zrkPQmq6uTrTRjJQSpmkqQD0X3VjAqv4nhqNqTj0AcGTzov6SplIPWewViu4OhyO4Rb5t3djydd+J4j5un20MSX+TDJrTTmLcOHqntIFek+pYnxi/RncS2RgJ71oINopghGmXe5yzTNQKwl9R57Ie1JBvfY4ImRlT+U5JDIt0nFrtdRa78u/Rtv2swIF8jihAA5gmXXqVS6cwHmvHvxXq5vUBLECDM/TYe6QiICjKnTP6KW4rdV2v98Bq9M7NTdA6XQao98nV4aQPeqzRvSH4RvOe24ROgcGp3uOO5+p3FePN7n7NwxhTGx7eKoMFpbcVGi/SLzJbeEaB5FIHXB+UjcUZdfUIJ4gcZwHWNMu5KFlO5rmarkBXj/Dg6iFO06kqcabc3EwmEJe+wNQAW/XoWx0o6BhFNqzO8Ua+lnelDmu/plw/qQPWy8gEUQZn4X8UTbgxMGyKs/1mAzI0v3JPo232XhrIy6J+yrO1jHqRNPuxbo3SjRym6H0u5atAw+rYgrBqW7iijKJFvR0QvZxK3+x57muRjElWoDQEiZL44rqlLvXipIdORSQv1hGweV5In80wyhGyKDbyFiLQEX2ukUW/FMyrAFC9R6+QPfCo4V/AAQ4y+filavH8kC3+NT07dh+HHds7ayDtno5RpMzKl/qMN0yL57kAjXoNXZ+nltBQ2YwAQeoS2PeO3rtNoLHMANbOtz5eLuXiEYIFnFSbVwwR1bCj8Hq6OiGdrnA6nTBNJ8x5gsI4NWXqOEhko5Vz7dMyuxmhCMCkBxy9x9qe037cZKVPs+qWwbF6Y0BznI7ozUtoW6aMYOx81wOMUdROIioI0m/RkZYFAwmgAlYXbWF40e9+OGv9yA1ColNNU98dHg0wSMXmH13v7cDH0/OfLdhYEyIfZhpVYBR62ops2PzrWvUORdvnTWgKW0ItnpnOxWjpUY1itAlLWv5lHcT8U5cusJxI6sONNr1LwNg9jWlpqOSfMBQaPt/iGV0ao/y4LK2uLqUa1GU7EqhEu9b3o/G8RcbxrqmXxwI2SkxH16XpPds3U0pI3PqV9gtmiLEgqsBFh8M0IqRljgxHH9mIn/G82/sR0Ojf61fBWc889GyZF1GENR6O0lH9eUna65Ee/YFNgLx0Npf17+1GNeLEYV2HkVyO9fyeCGE/dBPrcTa44iZO36gvf0qH8rMFGyMKBcD8XusURzpM6oTDAoAmiDToAQthhlFwaIajpYku3ct47r0ti6xHSNZ3sHuQcXNa84jVU9r0iDhKa0XjAmixMzIGKIjGlfSj9j4S2bgrWRmBddQhhoRM7VAuKmEgC86JzPCIoIsCKnRSbakg7YcthyHQsN/tUJS9F/Utn0b0bHun3ddnVIdYA3XJ7siX0sdwQHxf8bpz7b3tqEgUmSrOH9vIBkq/KJ8AOOcK2ivWyOY9x0fUN+zcDLvRWqhvuUTwdpavWSNbrrEet3K3usP0HdGNtyu/5PlRNCKq2L1h21E0I1ICu8gIEOksJSAUqBE/Pt80AWoQlqDJ1oMR7gOdfa3+eo9qX52aVByvS2rXG6j6nMHLEd6ODh3EkY1mTEZpr0Y2XBvU95jr+SAVYGywm2g5MXVNQXm6pD+NDO/e93Qs3c6ZQhlO0XSpGAGCzLOSSdYJiSakSeQ+Y5YJmCTvU7UwcVv4363el9GKtfpY03UdoDKkhmqe23b0CzAU8BrVn6c9keMojT16z6e/9U707M2iaNLhOp1k7nEBosy+T0onVTAxiuxY/emjXl4eFlEx91yffl/vGunW9l/QoF22bO/IuTzatkfb55OADXvfeneXKPWRQOjnkc5GaHt4dOJJoqDVI6xRCL3p8hpti8vgsmwth+WNOvoo9LWMnvSTVb1A2GskzCyUq+d7ra5GlJll/t1RPGPoZopmmz5G2iHgQK+U9PnIkG3l0Ssn871gvbUIC/OSD0teNqMyeQV4tE6179hjSfakwczIyFXhEzJSKqtIjOd4lR4gPXiEKU0FgEwAacRyKuFqKodkzXX7flvOde77/r7mKfp+vemxVhwp6U3TVNucyB2r7iZ7R/zb/GW1Rr9bpud7b+QkkpOoXJqnfc6/b/mz6Xv9biM9Y/nV4bM2zNYMLKq8NF7KpNxB2Xqdu77tu3fu7P1NI03A6XSq5bRtHr03sn++Du370d+6LC7tiKUj/f6zG0a5a0Pj87LkG7abCbziCexDlZeVKUKhHggI34BXOt6QjbwyJT+x1OYR8eU71CXttuU53/T5vWnc5vPL91s6o067iGp4EELcpVMBL5WwiUujphWCjXgVyl5gfpP+OVJuEciNnzHzNcy8DTUqRHJqZy4RDaIJsh9HErCRZAFxoqnMcUmgRMjU3t9TVm3LI4p7D7XhsJbPiI/mPMQ8e70xcuou6btHZGLtTCn/6Xkh0pVVfZnWHElpx8EdlsiE6vfWlywwACwYYbaf+/uJ1bG+3tfaddQXFuBn8N4ovb4OtoMBUbtYHo7KzWcHNj4HYtbZ7ixbj5N06CSxj/acf+eOQdJ6HnHY0r6jwpHIL5xsZE96XUOzXlEoIFPT93Hg4k+TthQvQQBKFxUht/yyKsVxFEONUPuUf1PaXllyG4bTpmXLWcE786IPbafBKKtW9YZxCER+T6cTMk5A0qPCk4CKch+UQCqvWfbZmNEmUFtlH3vvYnTs83Zl3F3QGKDtc4KU1rbmvgsaAZytPC2YQ50zsQQcMcUevLbRMnrShqkk8hxFAtbz9f0lAvkj6sFhXjq64xc7Pm1aPu1xFGidP9t+zG1/kD3Ogad7sDEgBtdxbQG/hMxqBMpDlDohBG6340YdxoMH/eS8DPlZ0mdTSshMoNwjb59mr3CT+R4vxSVjPHSGvy/LEbpLxf1JqNiFEKShv06Zl6fylp0IdffIlEybok1W7mSirpcy3i8RMvoJhx2bDqjaNG9CVnZUVkC9Uvf5WypPAurjKlAp7yZKmE4nXF1dIT+4wpmvwFMBGxaUlT9ZKZuQpgnEEwhtmaE1TENv7hOhac/LHj4UXPRAdexZf0oiJxPi+LHMDUZrE2uQl2kAnKPVPCI7KYku51zmAFGbj+cN6pr+tWRlxkc0RrQsBwFMq/mM0oiet7+PTir2suL/PiuwsZcF3xSL0NDG85fwQaN7xmXhzOAkjTSfGUgS2Wj6ikBJZsf3yPR2Oq+iafs7+owAg3/HK81oNr0+p+/174yX6/nrEtVYpv+5KLXPAcSMvJ76m5YTRAHUXSRFGZqwbwA2AIQARNNWA+RPquw9ytutr05ODThdKK5AVFoMpHi6VK4yyy68U8KDBw+Q5geYr6/A+Qo5nQBqm15RAVoaJScSmJY4gUxET50ML+vKIzMDuTcmd31aZwROW58ae6zKY3RqtVLfN8dp9rSvP28BWk+xB94iHPr+mrGTHUHnhSG2Mt8Zz7rjqLw/z9mlB2g3Gen4RZqu/qPyK9BoUYzWZ/cY8z11u+V8jsjLjH9v1D/WaD/YOGArGNiNCponTG3finJvqyB7GiQK6dfgY/XE23U2z2cw5BRJwpyBiRIolVAkgIlRZ7NHHqHnRP3Q7pqWkW34rnEUd6xIIWyHyyogYDSviNC8TH2v3GuOUxDCRXuPmWXb2wVP5lfUEAMatftdAZYt7+NSasYVIGIQi5ctLa3ArzJRQaBcM1tnUwNylBpY0EjJCGyMyui/j8o4ArFr5fXpR8rPRjYKZpDr5Xt9thvsI9S+Q+0J/UsT4XSakE8TptMJ5/MEYCo6RbbuJ0qgrKtU2DgOAjwyuFwfT56VqAZXfnUXYxCZpZI9rWmxXmET9mzH3zkYyGhjSioT+qsNvaViVCs/JA4VSplZh6dqnba9WvQtBst7rHW/LGWkSsQQp/p7ZKRG3jmXuJOIfILMuRCZb48354zAIJ6lJNomzHJGjjJYrjGAifU0YOrKpn23AZaSukYhTB1ImUrfTuoYLMFdBDR6sDGOQET27sh3LXunqU1D2RbpN5iU5+p26/XdVld76EBkYx9yb4b6AFGZEaEFphLuomaAbQ7E2QjAGNVrOpYzFaazeY9K79MpZ3VJHTP4LEdZS+UDiRMSgAmEfD4jcev8EU9JvUlqs+Xb2SoJRFNVCISyqUvVujJLmjkav4sh1JbXoDyRlpdRvUt9NVWLJ8/bdQddfU7iDWbtKARoUL95qRU6xlo37xfW4172Un5G9TOKNlwSrbJpSOSAcZUIoNyhWZUJrepU5QBlnwhNa+wpUaDQ1kjby3p5Xm69oorqpN/dcr1+Rt6WBRxU+3qLdqjdbcA2gSmB6sBRWd2Vc+mHDEbG1cMH+EAnzLMcRZ9oRmICz6nkdQUqB60wMWacwTxVlprc+HCxqxcUSKhRk6gNFICt1EttP9VDdonORn12YJTa5EYbadFr+glwObxRV2EUI6KHn5Bpn5aJcaoiOSG0A0ws/wLumPvfkRFmZpzP54VcZZTzsNBO92UQiHVIDd2nVInlXT65tBEVu1DzN8PlFmAAS32eMy9koZVLAEfiIqNTWynkIwL2ewMcZdVjbbcYpNT6cr/1eb+BY82Hudoj5d5o52qn1JlO3Laar/Bqzs1OH6S7GUYh97lBFSuJBMiv6i0HYMK/H3hUy5c0fKsp9DDEvqrAtX6WZxTZEUvUg4xCbNnEa6z1swGh/rcKuEYcqjCYiEcrfYSsx0Vf1gWial2tv1qGmiEwc4YeYdTHiH46dJvDBGMy2hB9u2vu9vwI8s/siFYcIR/ZuIs62BsRWboS5pp68OW7OATSP6oXabpHBW+UWsxDjQYySHcM5TIMI5ZBQIpV4uZvNNZthzU2I7A5VyMXtavmlcwZTGsg2RuhNlTSjEU0rNODyr5tiCr2q7qkLxubv8bHWkTXOmFbpHUdgV4N3NQIB7e29z6NgNSlXlZ+uqjQBlgel23U3lZXazvHQ9YerKuzx0ZHWD4jXnKJ2kRAxD5bnUy3KkjTjZwJdUbt3KWjTpenz2KCqC3wHi8p+lO0uni+msF4YtSigQZypGvFmWXiKBMhcZlsh14B9F5FYDA6ENXmgfQNWuMsxtuqCaBXy7GiXKOtoYqFchsZD95us8+Rtgz5bZNgjX6cfwRGiWghU2sg9igdGRq5JO2Iv5tEhzZlufxzOk04nU44z9eADgNQDzjA6hkzUvHkmRkZTS/Y8Ha0oZJtJyJaXYmi7W51nFX+mqecAMygpMs2+zLbPm3r2J5mWs9yCozHqC49aPKf/jn9PtYxTa9JGn2+zFTnHDH35ejTM7535w2ywe68+CyZSOTGkS9Xp7Nd/UR1tleGa3uQGvflJGMPPC3YiIBGCMKY646jHrh4GSCiGtXwz6kctsiY9p7bARlKnwXYAProxGrj2go2f0CMEzo8OvDi2KS3xps9S4JB0KOd2DRW1ElbNGP5vXVGmO9FMToaGgkJuIRCGZU3CmxEiqaG44oL0Qk0sBBEbww/R4oU6MfglzPDREhDL3cknxGfN+HdTwq9LWUyMk6XptHphI13RGkK2MjXZcIf6Qh46SDlk9CWrxbVCz0Z2YONiNbqa63c3qO2IKV6kDmHYMO+b8ts/xRo2Im/I0NleR0BjdggtjbpwvVcXLrK36h+tGzUlbM9b9rGfEpcQx9vAISUf1O2UfN4vVjLAhmmWVsOfARw1HpLTcdHEYVRWlF7jMDGFh+Wn5RsoxDKAsYObNS71rAGaV5CnxxsrFXYyFjqPR/Z2KItsLGH1zrrGIS5oEVuD9jMTPgXfe+jiJeGJBdKjiyQotqxW35Hy7SsB1+HHXo2/GSt80FenzPQsPQxgQYgHgtG4G9FxqPnbsK7B4pbu18epS3A5HnZSss8HAIOeUb64zSVyEbxnKm9iuqWVO/XprH0DLd4i+6PgP3I8lrd1QzUaE5Ay0MBRQQ8knN8LK+jMo0iGhEA9jq3pklc5xtE79i0I+OmZHdLrfkRMAe8j8pHgX6zvPtysktvK58RMbOLEiyBhgWXPrqg80F8e3gevFO31nZWTlLq23MVNBcR9KfW3kRP3AnY4OIyRHx5IfCVE6bVX2heiA40EFbnDIzyXHjiA4U24kkWWAFgmdhDqUwI0uQKeq9LQVlRONXwbkPw4/CdncNhr/d1c8DwRKENk/YoYgGYyUfQ+vcJxV7Ux6IO+Oyok07p3CW/TjzXIhnMZTLXweWUW8AdKNvJl2tbIGMNOBypq0uej0hWIBjRdfXZvGSCPTelgQzRHQQAc4s0ETFQJ4ju3FCp42sDNK08uzDk2UzadPc9qLDtEz1nnaMRn2vA1W8ApnXih5YU8E0TAbyUGWa1CVS2i7cTYvWhxi93k1GV9xzqpC4v9evKfz0PY7ACUz/egPt6XZOLhTNghrk9cPAOGhG1k5sdf0fAos3frigRB1lXYGm5+vJ3Bpup7EOynNB6Ke0GG2sTjiIycnJR2kC8EYl4ZtYtkX9E3I8pBy9YAALjOVC6RX9lIx4NoSoaRB1uZJj1PGTz1nMeYgO/BkJ6gV2O1doy9uXvQcXCk3DXRsqKAtTC1YvcSbSEBFsGMKItBbBGe4z0jcl0cvsXeTAiy2Njf4QW7Yy2Uswrkb0RkyNGy6ft8x2BLZ9eZkZiwsxNiVfJYQYlwjxnMdZqaCEr1+o5Gbks9WJILehsQzCmFWMQ0S7HqPDWfQ7SkDIvv/vniageUx55zPq+97BD42zetftP2GtbTqD1mqdpWjItTwlAKe2UppFck+6vtdBxebbAwxuX5Xd7WJrXZb5OfF355yzIGMmGjVAs62wMIOyOzUgEBJsz+rqufQJLWfVAo8lJmThL8qadw1j7keE5swCfLVtwRD/e2TCKGtg9tLa72VIoB+BmTT/yEqHJZT8P4bhhYZjxVuMVeRLjUTwFauG1Hi32kQrhT3nVonC91z6BlLYVZER7jNlKIOSzochwf87kwWNnlIsXODIQi+dX0o/ABgfPfEzaA6L8/QQI0CDq+kKbRF0+yz8MRp7nsi9JicZlApExiNQiHnNu3nqkvG9CCiCj68HVqvMjTzUCc1G6kVFckxUbwdBnfVTD3/O/R+n7Z6NJrPZ+6FgNjFzsBAvYsLp4ObwRRzDsdwscbJ2OnGCtr2U7cYc1h2C99PuI9jhTEdCovDCX1VjsHDyKgTCPXfcjoNzSnYANIhciW6EtL9bfF9UQGXOKr5fQQhe98GlW7YXdfKPwwSwdITODcu5Oj1TZYS4rVpJFy1ZxWn+zvau8+c63FvUA9nvEWwar1v8tGKMhP7eUdmyAb24obotqQHVgBKIIxwg8jcvb0wJobICN2zCsW7Q3euINglxDh3q5RAMn54VSkn4lS9VlQy8wgzmVfRrQJwSUqMeY370UGhJumikqV5DrAnDYIQ3vdWtaNj2/18IaRQAmmlcRgTDLRz8BsU+PzHyO0XNSTo3raZmk0a/SZK4B6+5POZKBlqcT2zpsTy/lMopSjIDGsh6SsYF9Px5FLJgVBOyXN8IyCqhgbgF6CJgCj5zZagRzveYQU2SHtugOJ4i2DqN01IMaIf9jEQhaRDaiPJiPpdolX/6bOZcdCqtpaUMNnSHRS3IvanAfudBP3fylvdeXY8sANQZo+DxR8wrq9Y/s/R6ln0pkwxuFLeDgyxSV8zbAxscGGkfARrsmUluHKes/kVpkM8TJ9Zsd9lTXBaxDV0sv8QgN5W7QTpGBA7XVKL6+lqHxbR68Udsia7DCCEMAfJtRHqXKFWCozttbv9VZqwa/3hl61qrdbLntcIXfhySZ5zzYaDyXZ1dOsPUAUPmVMgwijYu2OeLtLifeehnp9Dd1FTisP6HRkFhPR85c2Q02hiGV0Qt3pLvWQjuhAHMz9JsdVCVjD5VOkJmRUIZSUpJJOEyCUk1kLNtnWXZny2WZWww2UMbMJJGyuAuZNdqAOpEKAIhqF9vRkWOlZ0k7521FNkb5XAjxhun3AOnWkr450VIJMso8Hiso5l4EnvZENJSi5Y/d9EMF2Jr+JQYWrZr3vB0p5LXnfG4WKDDE0zxjxnmecZ7PmOcz5vO5Lo9v6Xkx5tYghnsx+FRXkYSRCpi2NJ/AUuTsM75co0+Gzp1QAy6Rgd6ALCNERz3NyqPLP9r8aY+B3ZrXtzfNPZHadX2uzpL8RZGVOkkVAOmeHIQyl8Fmjq6BR7Lry0+kbib7ru3fhEqIbVebzvjAuXiZsu9jai/aFKcWHYpM3l7p8YBpi/ZHNoz+rn47kdlSmCuX2SGo26Y41ERhLWmolQiY6xr28nx9onwe5FvHEesO42Vy2kRGgMpnAuOczzIbG0liHtR4KJJep75lzsjl6GNrEFj51DtFGXHZwlnL1m15zITWUMKRplGVGoDMucZiKhHq5mX6PBdPUJL1w1dqflSBAbauPVnU3651VsDdjzu6f64quEgoBkqq41L/uQg0L/PMJMCi7YaICjCoeN7eIHlvp5Wvr99cvHOV9ZonguOqKZXpYahyX1PkXJPXVOxGQJUUaAPVqIc90hgxbxyYj622kXdLRCOpAmWARPKZzzifgfP5GtfXH9BN4iKCrpLo+r/2iXqYBdWaZVfmXu/ZGyz6LrOp0x5k0LJXdXXTt3cCqLSQ4VWMZQK4/JV7fs8Uuz9IHB2yfaS914OG1uQjdeiByWhCqn3e8hL12VEe/pofOvDpELNoRII5S4jrMLaAjQYIdLijFrhmm7uuTGjDc2vGXUlF1PZurnZqEmkjLoq0sEDLyOWwfpjrtuwE6at1SLHcV0ZqVLOeKgvITrsKPHrpZeSyzYHhg9vRFJwZOZf0VrlstD+yYRVFdx2dctqPiy4jqlBzH3ExGNVUc7tThUMlLuggeziSRtRkGZxESKsAloYmIpT1TUVpDPIjLksU2zLTynVVkOY9ZogiUhZUqZozCezsbIfLSFmq2lEucC5CmRKSesbG815va6sQVp6iqDWXE7i2QsGRh1caYZW3MC00CHoR1gjyYwjgIFArM2lYv7QXqQJsnlgDFf0wnAVpnBm6oNV6t7ksF5xzOwETxOCynbcvc+iep6aEyD1SgW/Vl1SDryPjsoe0rEtPvTkG0q/UqDJynnE+Z1x/eI8PH94j5wd9REEeBKrn2gA+9F4526Orm0jvkYK7/oYFIfYeaQcLyulJQuBRCJvAmcCJ0PCFtnurp3meu11FNR8i23oLLisQayyxV09Drz7a80P5iSI5Pk3fzlEUw79jr0dyQshIlGv7EuXCp3wnJCQL6lj1X6dtXTVpvj1YHG0G1viyBrnIIMp0AOaauY1w745SOZCVFEBZvckqrwUsZdsrLKhp9a72x+CMer2BKKsZtulwZGNB1RVAZK9//uTqhZnLaYrOswMwlY1b9LnIiEoYV4xQfIZkTDVU1vlU4zFNBT+Xhlxvq6GbERjk454+YrQ+S6L+07a/Ki5q6HhITX5KZAORcUYX6mRuQw9ebtc8z/rdpNn1dWdkw5YL2m0tFG4Bx2ao1vCaM2O+dJOyI6K1UX9KCTInQE9ajurZXycaR3x6EKbRz+Vw2Z5+MnomMj7RezHv6320i0AEQONS8nMilkDK/4WpbKRfYhS0nDhqy7Jnk7xFv3QyvixPTD7CFPFzJL36fKdPbkfnfvIdRD8l3VTAR2nYhtVGTyBBikQ12lLRbUG6IIKGOZnMveIGW2+2z5DKzPsWmGhRjpuWUXmiHqDQ7SLLNe+n5+UnDjYG1ClCgxulzgtA7KqcG8DPWSJeXHx/VmWhc4X0PZETlRWfv999ck+oe0T2jbUWG41F2/ubCrI+o2BflH1icVSr6ea+b9hQzX6pMt5zcQw0MiUh+xHgWJZt5OmPi9kbDOaMOZ/BZbh1Xx9a5jV+PoaOkVcfARC/IibSi7Y8R3gPuXWy4vkMV9ggXpYcpeuvRb91KMuCvhHQ1j8/FOY/R/LvHRXfb6II4dHdgtu7u18Z0i8SbOxBijdJxytqKgAjFzCwtcyOiCrYkImasiRMw1eL/MCA2eujG5GPXxhGVUYRBZhOSbcJNKqyXu8w7fqWN/bTIr+UkSF+qo62kf2s0cPm2YJlbgY4VlSZyxCOXgMQ1aEqIm+ALgUaXQ7UxedtpvH7gXIdReGkjLlMnG5y76WlRsfZsOIY3T/6LJEhTceethr1n4l7COK9ey/7a3WudTPPc4ls6ERI3rFSRQod5RnlM+prfiKkX91hve2R8VzmdZwiwBKtjthT3jXqDL5uEMe86Cv+ef/dPwP0UZC1z1Ed2fqPIhtR5MSDvjUw1L53uY4ra4V+kWDjrmnkvehqFCWvdDohIchwijltdthR1FEN0huRBRprabfL1D1/exSHlO1GaS3PccfQ96PrnzMNx3sDH3nkDTLWldTeergN73JEUZp5gJ4joFFuLJ5NRDhNJ1xdnXB1RSB+AMwP8f79BJz3csdYhHpWnw14Q+/p28d9n/d1sVdutf3VQMlcnH7ORpTeiNYATutv6+/7/NaM1xat6rgd5I2o5ecIoFvNo8yPGunBPfyPAFfX/wNwsIu/oA4sRZGNkGe26X1mwyh7PKKfgvK/TerDdW35a6zY+mtp0s1vEnIuk+WBcliPggCrDPT9srahPdRyYK5RjRTcG4Xl5rmFBevBXeiV25G27RQBt2tWWY9XKiy9JU8+suSfvQ1juqe8NhpDtPSElmDKpI8lgBx6PrBbkLcEdPhkdjbdbqrk68IPpWytGPG8M7W4Wp1Cybo03AAow4+XvbW6TalNrCYUESfpEw8ePMBEj8DzNU5zwilPACWQ9ruyDLJGNMwwCucZIB2Pb1GAugS8PA7tGxohSLojsJxtUaSuth0DwgPGoN56uVved+fBm2oiaps5Aahbh9v05HPbw2cjRHo4mP6NjLfPy/K5F/RGPFnnY/ROlLadJHtpRCMuh4S0ohU/XsdEAGftz6cxIl8WWzfeeamy4ni1aYW2egC+xT/oIx176/bGYGPUeS5Ftx+D7sJz28yDMWi+mDjLPHMiRdHkPNsGOMKMmsZcCHKCrG3bExEYdSarkPS5Ix2l5lmMU6S4Biks+PFjwxEvlwKi25BZ204R4LCfkmnc2cNQqP6R/CNzNcSKZjb3lZcVL8UqRwuCxlEvBzQQ15cu/SS2IX4u10dy5cqu+cHKTgPOp2nCgwdXOOMK12lyJ1wmpJqb5asrTHle028eHQUyqs8t/0rf7FJo9dWVKTAwW9HI7s/0vTUQYPNOaQqfiUCBGpW9QH2UrwcKI96i9Pbkq+T5v0093/pCk3MfQbGkIMc+F4EL5dt+RnmPfvdttczLks9nq3/voSPvfvJhlBGznwswuTWqBmdP45RTP1cE2hvDSUecaSmMnZfFsqSJYkdhyQkz7IY4lsfbIFXimv66kY89FGv0Rh3oY8vTss32KZKqJPK60VHKzOA0GUVSU67zhBi9kY7qyhugHthu86JyljkeM08ku8vY9ybECvASSlPCNJ3AUwMaukeIyC+BOelq2XKsgJZd6ktXGfiydeUox9drey4nHfYgvAL+oae4H3BEYIASFu03Au5SL8vnrYGy+cg+Cj2g6cs6Jt8nt8p2CXl+vMG1eYYgWJ/h+s+OfESWtHxR1CCqU8/fWj6eRm2wcDw4nrPi87e/bxOQbdEnBxsjOuqJ/rxIFGHV23U1iPUwAFWWAMBJt1zWteQlleJq6SeIgAzMeQ6VUiTAKTVBbh3GsHrTouK4F7NIxiicPeDjprRX4W6BjZGHsyr7xbDXZ7iV3X6Ojkr3UYu9nvUW31jhe6FouURgAo/sUFuxLBFvY9FcgdUpJchpyAnABHDCrNGAJJNwieS7Hg5mDTCzLKO1wt7O7lDUoh8KQKj2VN2sbatOoz639pz9rmApOjMlBgdLY2yfaUAjY577KIHW0VobRTJ11x50VBav20bRGVL9uCN/GVIj2OaJ+BpFMC4FXd4ZszKqcm+H4Dw4ieTAOhkfiz4bsPGpPdHPjYjigHfn1ViDkbl6Xfqm9bE6RaVzOlx+I6V3Pl+DSzg1bxnCo+XEHgVZ+OZY4Y6e12c+FeDYk5/3VP21tff0UyNPe9JhM3QRAXq7ImVPnfWRjXWgYdNWBU8Yy/RuYi47GpZVGVTmUaSERAo4pnLqq7wiBprKrpJcDakd8845I7nhhRYJWdkLQ8tVf+mVuG78557+RcWbGEUrvIFq7y2f1Xz1e52XZZ0KoKyA4eFR8nZStze2vl0vMbaerFz55yJ74su6V8Z63qnqLB/VsuX1Z0t5kOAPiFsrq9dzCix9FEPrf7Spm33nY4IMpQNgYykca+JyxBxFBb/VyMZHxy108zxdlTSH0Cds1FpQX6F3yxoFcX+K8skYDwbOZ3P8dv3c9gZadpdHGaLy7lXInzOxBpmC80v0vidbbVxCv+LMu/bnPvLRG3GbRvHEqeXflis2uep5CCaz1nzXyuvADWMxATZMM8pfv6MN0ZRAH4jNUkCgTuAEBHxosimVaEBqE2YbkNBhBx13z5hnq9i9oWrzZLTuuu62Uk5bVu1z/lwX5c3u6dHgyzbYsJ9pasayGiDOcp6T4SWbYTzbFjnnEGxEsmYBmvJgdcGoLhaOlNMfUb5baW7nTVXkG0gs4KA4cLZb2DrWPqN92fZpnbS7F9xslSFsV9Xb8mBrQ+ZydEZLO6XUAY7QIen6vw4bRiJse+I23XAHUUakYHSy2oJWjhb2GTB4XIZDdubuENzaZLvRG7up2+LWFnjZ+HKmCYNyESb2E5SWYKUq59KGRCUiQqgGTOHEPGD7UnOvHSeV8yj2PN9oObvbfvdGu751m+B1By2VRnRIlS2H1Lsq+egY7raTX+9xsjGEnfKVR3s55XrHvAP4+QqawpYyr/UtXEF3Qta87XeeW2Rj/6kojqPMmGSigsxXKNcTEiZKYCIkEE4kwxkJwESEOQvQyiLsyERyDEkCQDJ/pBntVi8CMnQosSliGeK09VEmoFb5U5CxDpxsHQJlm+i6KUgDGFq/VIdqJPdk+NW09HNp5HJJRWqsuRla7kn0AKGeHWKjHNpnPbDQ99WT9g6ONZT6zJbDcD7LumW7h4SPAq3RKMoRRZCIJsAMfjXBtf1Nhus4r09AjfqLvebBlH1uBDRs3dnIyMyyiCAD9TgRBkCnU4uiEGEupaKA76huAJW5SVMEcz8Jv1ch+/TqzcAGH7t+yDgzelfOXA8vjzr0HYKNj0e9F7Ws3FZKRdgLTxKujkg7VfvUSMZCEYT1HXC5gtzHHalvIx/ujDwmW84jdAnguDTcODLSffZLJdSe3wLmo85nn6LDWDuunv3h7yFX5L8ab6zLfz19UjRs0YwCKLHIRqk6tAPUyAiZawZ+hyBV5aYOE2S/soXav6SKuTdMYVmC/plNZMN20abktfxqHLflYEkFulQHJDL+S4PkDZOPPkTA37+3i7tBna2BjVHUdK3+K+8ZaH2xB+sqG8ytPUdl93Xo62ALdPrvns/FMz49005RlEslZQgwbJlK+iO+L1GLn82cjXu6IVX5G09KWrwyUBZH04nS3cqv/iFWZNGnPVdm1Lnt5+dCkRK09y6t549Dyzq9hEeBTyYMfEETUdP+AY+5OuqVPSNjGickHV6xz2FsGK23Xr8zL/S8vuvB8Frb27B7rV9msJal7OlgM+uhxSVgowdVXJJo/UnLkgAsd5S170Zljvqm36tlzZP3m051IE8sYP1s+QdOikmTWaK2mfWATKmHlv/cOTyjiIT/jBwjDzCiXXmPkn1/D+iPwIZg63WwszdidGk57sHGz4C8Dh4hf09R9EOv38RgbwGcTmCpjz1FvNhPv8nQpd7TXdHRejsanbkrGvPde2ZR+HeLqFj2CizLPANvSLfTQQUUkkpCIkZiqnMzmAhEqZ1+CZU5dAhDfpc5LMbI+nrwu/fK/W3g6A3V6hCU/QNLREaNIvdDFS3KdFn/bLCr8Mga2bA8C9Co7wTRgkgO/F4dHpQs+n5AkWxJWvEwioqQPSyMfRmx1GlNFLgcSb/OmwWPPV/bDpCmubaV/BpFevqonhlJrZXrjrcVYHIPNn7B5MXCC8OeMGj0/G1HCKJ8kslrFJnovUUFHRee7PmJKKrnzz+q0WhNXvZQFMGqEzv3c4HqkdaIRUZCQkqENAHMqawyUYOioNYMidS0duQYAoKSoCM/QVDLuwbeF0aKlv3VKvjF54XDxC2iYYdRqAIQBO01Tmvp9fuJz6PQvie/WqKlOT6szOalsgFagpPIOSEiJE5grO+WGwGJKO0IbNRdaC/UV74O67WN5+38mBrdGJB3JkbP/rLAxuWg/mdLVOZb7I0oRB1Cn/Hv6P2oo0Tvjb5H/GzR0otYdnrPV2TQPxda4+VoB44iUndBXELWW6FgCTZYv1ku6nAJg5HM5nD1yPWVNJe85GZMULYHp4QJU5lISOCyzX+akgyZUIl6lCEJ5U5Ax7ZMh6uFOK77UVRkD9CoVUaEOtVGAVL1utEiRNSn4/O3BqpRGXIoQxGcfb8igK167YdSbJpbRjfiy4OOUZ3E9VQqRIdRirGtTofmUcSDk0mPy5L9csxC1ZdQcNWWjI4Ax6i8/sTWSK9u9dOtiMWwrvUvyNcO4VAJ/9CgbFHUMnJgvTwd1Vl3AjZIe4qjI8pxKJAaXnQ0Ckd/TsbmNigMx4JXPZxwDG/hOawDij3XI4N0NEoSeSuNv6Ux2BOS/Zxp6+wRT75u9yq0y6k3hNZb0ms+WlBHOoLYrUazUqLuXBxPMWjU9Kmcs8KYJsKpRDaIZOXCNCU5nO10AjDhNJ0wg5GZyim4xWCl7TpbN34xRfLvDXbU73Qprhj4fiVGve+9W/M3z22jPvVs7WZlQtn0JdPPMqENRZCaddgGjMBGdDx6FJHZqlP7vI1atmul3fXU1RKW4dyiM/I8kEnARaundqZU4aCWkAAgy7Oj/UN8RFg/R5vm+fbf0oe2DYdgPnISAcwuwhtFr/XZUVnC3y7NkSN6BHD89CIb9/STJO8NVaXlVsCMvLTy7WOy/FnSxwdQVKLSsUdq22Yc2F1JPTDGMXEBGIWHREhA2cDLbNDFLTrAWIaDi1OM4uzpld3gYW/9bwEO/e2fm+pupj3YUKCnB8Up5/PcDke0xk+NNuAP55KFkLmulDEggy24oO7DUuQIjMp/1DnwIKyBp7bk3+fTG+CyRT9zWw7Ky5VrTf8IiEmGP5vmFliyPEfP+p1d/XMjoLCWZyvrMRrxGdX7XWiZe7BxTx+NIsChP72XNgrFhtrvnu6MdL8PrzQXbXRJ8wwiGiPjVRU2lTkZdf6G5JuIAZ2rAZQhASdT3MAFo21xvjZ7ZCGLO1aArHm3dnjFbrKUkkR8pokWYMMDD+UnJdkL5Hw+d4BD8wF81FcBRvuUepFKVDbXHNYomhF55dFvb8yjTxs1kDTKJifk01We+5UqWVq2DeHxcqO0OiwAqltCjYYI/PdRRMM/byOBo429oiizpyHAPRBViNKLHLpaNozBzNHhE6V7sHFPH4Vq53Ydq/rFK2Cj72y/XLDxKYaF1obgfMj7cNoufSA2WmMyKtGACQswNOJSr6FFNORa2RODUjX+lg8vs3K0+z7+ojqz8q3goD2TzMFqcTRpAVzKIXPdVvBYRh8C7lotZi1vm1Oj0Z8j1M0R2KgT5c0DDws02mRRACwn1vb86/tl0MdgXpCsTGqG0/NUZFj/G7SVlXUfGbBA0ZZNgaE+48sdAY6P0bejyMYiomF1b5DGpUADuAcb97STtn059zCg+sB4S8HEsmAYZQ1s3EDW7+kiWp/vswg7H009MKZDD08yBeosRi5h81znY1CVn4y6T2mHSTSyIe+Jd8vgJBKes0QLVHjn2RpxrsMPhHh835apGp8ptUmd3NLInAuosH+EKaVyZgstIkq2voWv+F60x8cyZF92EWWd44FaZwo8RuXT9DyI0miJ8mZNluVX7uWun9t0+rNZZiRKi/KMjLe0nt5LYGTkqof0uvyTzLM+LQ80tH6naerAkI0k+SgUWpYtH6MXtUlaPcanJjfem3LN3WzesYbWO63/oPI9Ahu5VtLt0R2BDQph0Yj1QyNEBHDkWQwqxl79FJ7h50Jr4U6geanhuwia08p97cllvXrxOIgJnEh1bMiLNwRcv9uM7p4ukY2boPw1uoSXm8r2uCxl+jFBjmUnbTL/X0lnhY3MjERA7gzOmPoylSEQavJESMiYkSDno6CcyMkZkK3KZ8w8IzOQOdWt1Jkl0I6SBjHKBEQAiaFnZDFncJFtBQK6YiMHRsF66g0kAFMCdDdTjRhwyTOjqa6UZA4KnIdMulc69atppC6aB61G0Nbb+j4u9VjpwrdEeSRdhu5DsmbUrbdMlCo/OiyjhZNN5Mv+J2WSZwWMzKZNqdZBVmBZgBo7s8Io0SHOspW43iU0ECGNWsBkLa6WGgAwTbLVfTTU4aNa2r6+nrWtLOCQ6wSQibJVdFG+U/kDgygDucw04qyIqMrOQgtnBpXJxC0WUcpM5g3Vt1qWrg5NFEyvFQGNIiFbkas1uhHYGGY6VDiBsGqAayf/PABwQ16yvjfeevXnTKOQ2V6B0e6uHb3KMRe0nZtHSyBMkEl6Sb0sQYdFGTRgWXkJDj+UW7G38UsnXxdrY8dH0hrVcR29LRtXqFLLRuHW5uL1bqyT9xKZd7AM7/rQulzTZ4sEZmpnMCWA6CTXWc2MKGJkOWtkzglMQKYMpixKmhPACcSEnM8FL6u7mcXYFYXTTlftD90alrUaFRReWjnEV2KACXMGctY5GjJfo4wv1fqOvFIFXTZ0P01TORp+rjwsoxm9wbB8yi6sBKnQrrd379u0W/oKfKjgCG0H9coTgCTAlRPAGZypvmlqTuqbEihliQKhzHMhKnpI8lSgIVEiU84iY0lBbTEwzJp+T6fUVuz46J1+Rke42/rzEQ3RfYw0SesJuBS5auVUkGE8rgSpm/KMzu3VqJGtI6JczxjKtREz9NAgyU0HkCiObgCYA/0RaZRoWO8I3Q+j3NPNyMQCE4pAwnpeBjE7oHFPPx1Sw3JTwN6FajUghnWvuVGk5Np21ZJOO6lVrmfoMB2oHMTGRtGXVHJWL37JJ1GJfBAAxEeDr5H0BTP+X/6lK0LK7WCzGsUw9TECNjasr0e/eyPogUY03GJSdN8dGFn53n5rbXpALGkyM5AF8Nl7GtGM2ruJRW/kRsOsWtZE/dyJiGf7vDeio+Ed/7ydm+GjGlTfbxqwHwIbk+0Xy7bSd6d2XcUaLYJRYE6NlMwBPt5yVtaiWkfpHmz8QumowehErTpD6s5KkJTKlTpe2Xmo+moEOO4jFzehI4rgaLv7OTWXklXUOqeCkToTtxz/X0Yk46Jy3bBpKkM9KECDy7hKZhL3LwFVM6uBM4YuMqh7I4J77vnoQmQoq2lSUOaOBO8jUqgTTdfytsZxNI/DU1TeaJy/5DJMx+fVhk3Gq84WUS5TLzbvMdAgGZZKNroRE6EHeFF5R/IftatJuEtnD9DwMrEVSWi8NeCmnaQDeTh+NMJq2S6ge7DxC6SLgYaN4qpMl8iGDel2Ydqan45ResVC91DjcyYfvdUvJvp+RJqa4tPx5jg0uwQc6yzqNvYyb0BC2KqEUfeUaJ86X0BBh5IfXoj4GtFIGevcDaA/HyPa0E0jPgBXY6G13MrY8+CXYkZDAdbL78HbeqRqFC1ZgINhCv27Hdiy9+QLyk3RKc29LzuDLpdcR2CDyp4raZIN3jYNdo5LYMGezSeq7xiQsPtcyghRP1fuCNjo6oPbuVEZCmpQVxqtDXGupb/1zBG6Bxv3dJioCC4RlUlK1A2ftDHLHqg04HEc8NxTTJcogUN1z9yG8q3SLD+ZATvkvCdlMS51Nsim57bmEVKNYhSFWuZWoCph89lxuAQZRLExiHi6hKKhDJ9+zhoP14mBOubfKllBR3kjNLoWyPjwvi/HCHCM6jyMAmFffNK/E+oDH70BygF7feQrBBplKGwtmuNJq3NUBz4iEO2zsQY2umBHAF69UfdgcAQ49FrOWUBFGZ4SsQnalGLHbntI5yNHNo51sM/IW62R/r7CPpfTNm+N7rrC1emIohugOiE06hi6iVHiDKbxqpfbJttpI8U0+r1X1m8KmI68v7ejX8LTWtp1eIy5nKRK6ngWrQ4wy0S+mXONKGylnTkjQdaMeM/Ob1dd7lSlrUM7mRkokz1znpHzDE65myw457lOSBU+M2Q9TDntsxr2knZR/iMDtQcs+/cV7EReq35WY1XMtobFl/k3PiRivlwVcXV1FXrH1pB5Q9nStNEkWvQh+4zdnEx4SYgMk68rjWQswQYjJdk9lTWyY6JqW7Jt653qSpoG0lqb9Kve0kQ1fSt7OhfG100EziwoqfkECCySHx+Fio6lt+3h2yWlVLdnl8iYzFeSCbQlDwCczaoxl45vLy8rl+hHT3cW2bhNj6BPFzhkWQcNfgSlfe5eOOm/tK9DAvvL5IdQCKgGp33XvQFSmUWuBxxZ4UYNb2/xMGqboyFs36F3l/nAs3dNtxG+HKW5lnYN9deolfzXVhm1+slMbUkr2zsrVMACUb8ZlQ8rN16agRC5EmkCZYAzzrN6nOiiaJwZPFm9oX8MXaUgDPcDQiPAMRpG0O/ecFh1taV31Ggz94bdhvPbc2po4nbseDD3FSCoQesBA3dlWEs34n3ruq2zjH4FSb2X5z6P+khv/Ow+In3eba6G1k0q83QUgMh7JSoHBmgCEK8yWSvDGqBr9d8VYhft1T/dc1276DJmzdvMd+F+KMvzvhbNivrmEbofRvkZUBH/avgt3dRYVTSPNkySdCIotbHgE7VJoRmRErg57TGOI4oV0z1ZioxlSlNrd2d8KyApOykmll0bCTvAbBnqyDmehKjpNwXYvN+mPIsXl8/I+WTO+1CD1AZrCBpf1/01DCsVDKDL13/X36NIgP71SyB174w8lNHO2GfZfjwCG5E3HTlenn/7ufaMr3v/fa0eWh3GO6/6Tz9R3H8u+U1hXYd1SoSUuJskWrhbfirqOODAjoZRRjSS74iie3sAnqheqjLX2qcJN+mDLm3t20rR2TcKNCI53Ev3YONnRLbzeSU5QuR7SMYARXCT8W5P04SJEk7lZEmgAZ9quLDeuW6DtkBIpAB/irTlFd9G+l75tG0fnLdrZav8ZiJkJCTixdDIkmH5Rz7iHS8tT9Y77EyGRtDqX7EdFZi4MpYIoMJnAsGfCxLVR89Lyd9FHPw7RFS3H8fgXR+5mGdgnpfRDa1zG8X0E0U979GnrWONakSgwMuTBxran/w5Kb6/+fTqJ8reO4zF9aI1oBG18kBYd2H0ZaX8H4O8HvZyGMlBRGsRh9F7RBJlRGnbVm86/LkcjvFOhN2G/Qio2qJ7sPFzIQNirbHwnf4oVRFkyAxvI6BXV1c4pYSpnFkgY4TmFILqNdwejZTGGvqPFOA99eQVj35O4E55r76fkuzpmbfrmqrBXyqyKLwr6enWRVRNEiDDd+rRQaeeEkFXpsjVkr4e4AaAmEzZaKGILV9RRMfei4C+Kn6ZtNrOXNFPu/mWLl+dZ9nky4ONylMxXhY0RaBqJPf2mm8j5T8678aDrmX0qdR90OQekDDaYWn1mn2xFEnKqy/uH16obR3Uw21QCHBc3xH9qxGfbd00jugso9WjKFAtZ0qgOu8jBjoRCPOA1Na1P3vnEtoPNrj+08hn3g2djYTCFX6Z6l5m7vD5T09bHC+aXYEGKBSoRSfdXSWxwCaSMwKmNGEqSNh6JM1TaX8j2jPKrx5d62DLu+F7tIxs/JQBx0jxrNHScAC9cUWnJLtjzcu23lHeni+ZdCnRLz23gTF+19oSwy2A/kwQ+a6rMFpkRY+TTzz13lkBvIk0DwG9DIYcgaLzPSQ9KnxGPI5D9Vx1Yt3mW+uB2ieKd269Sm0O6z3qzp85J6httidwkjPuNTpBFq5p/1OM3w8PUK26WIaiaETLq0R/Sj5yLXfXeaUf2jTLr/bpRjVqOdGAod6IIjXLjABmrWcCs9a/BYl6r0VUekbMeiniWp8VAGVUG0cApokwnWTYcaJUy5FrHTXmWqAqnmhay09LXR45jnoQXX2PW46pzt9YgoqjuqSXh+O0G2wQlk5qsgi/BtDReSt3QwfSj+plDeH8FBapaJlU4aCcDWFJI2i1/xQB0xMSRyFmWIEv10ssnUDAJCDjNE2yYQ4YnGeTGeMMYOaMOc+Y9VRNYJEnUZloGOoL7cjWg8vmWTKfMjHQdyIJE6OWafskzJ8+ea97SVbZixKepglEqR5xLoo5V4XcDID1ZK2yk78J8n4m2XGTqxU3yhNmDwxw2weglaDyJ8BHjTfK0esSyaiRjcy4So9wOjWQIrt9MphnABMSEWYGEqaim+SvHMAO0u25qYEvNTJQQ0vtjwGReSRQKluRd0MKk7ySkkQ0UtnGm9TgyioBZvVqSx2WTc7Oecac9YRZ4aEa3yTni6Tyu+1sSgaBC8+s+3IkPW8ELTpk+spol826NXxNU++lCjpSKV9GdktyTYsS1ciNHxKqTgRaO+vVZPKm1M/ZUHmyG541sEmo26PzVOS18M8a+Wj85XwuaVs9xYCeuMJzA4gq6wmYinxKe8jw4ZRmmS9SogqUTlXepQ4k7dqnEgF6sBsz5tnWv7xj20fLLHJT2rkIkHyW2iz9Ubfdz5zB5cgBTYe1Lk0rS33k2kZpmiov9b0LI+U3HkapHmNRImuYJwJEO+euX04RQxxvEjSqu9sIv11k4HZUZsiby6rmbYH7hhciaReEnpqhmaap/i2zk9DonDPOeZYDktwyxrAeHCuLkGr9pNJ2vuz7NybaS6ue0y3RSK5uwq9NYzua0zxfbd8t3qIhBvt8VbKUpG+bZDTqxqrwKdWtq/twfpRfroaWiMCUQJyBKZUIRjn6nVtacrAZqnFWg1+YgU4aFUwkqxWiull2FX1uec5Fy4O7Z33KakjsJzNjzqhAo0YCjHFNbIZWqhEqQzRmnaM12i7A0dFapEB0hHViWnpc812C0q6mDL82n5ZaPFFV87fDYNFw0KBQRRbK4XzZNDoUHCtPCiiWkyJRri9kkxJ0ZYuADbQVMNT+RHcKkLJnq2j6ft8TgqRh60vlw4L8+pebzVoMrXD7SwZiqyx5EBNX41If3GQ46hDY8I19T58J8TZoO4JGffiaJiodSyaDTtNUTtlsAsw65pznAjS4O7MhpeVs8rX8o9+iP3vFtKZ07OVL0fhPnZaAw3qo8fNHgJaNIlkv0376Z5UXVXjRcjoPakQeiydNJWLAAHEqSxuziRiUPRYSiewmQmI5yKsO73aetSrkqpJ3k8ry2pJAq6Ct7FuwUf84tZ0gg8mXtj6qwXCyHRkyPa32pmp7FPY/2q/8EEEUMbPPjlKP0rC89UChN9ZS/xmUggmsAx2lQ0qUVD+mAjTkILxJ9SYAXYGUA/4i+ZZTCuM9oDxfwnsBVSq7ld2+zIAcgacbpTZ9IMMrKi8e5K/Vd8TbFu0fRhkojnv6PGjFedk07hFp56nr1UvnOul20MU9PRd4zbMoSwkB50VUow/P7udlMUYYRjZGpCHqeOngz5m8J9KM1T5Qqt85uOdXMXjAMYqQeO/MhsGjFR3997Z8lai47uLuNoe7gCkFyimhzimamUq0JYPVKyX1nVOBGcuIzVZdrXnua2l5o9fARn/fk6+nFIAQm2fPz+3K/55+Fd3vnRk/CTgGM2s0qnMbFbAAzA7pMOcaOxkBjq7/FKA7JXv4WlvunIhCfiL+ogihlmePU6/Rl/pc19Qsq1IkGAziBO6WmTPk5O7yPtrWCQzdEG0jb+VzJxY4BDYiobmnz4EYHbAdPeUEOrpvO76OmZ9SAk1NOVcFkpuHlmfZxXGup20ulYaVodqZzL+WSMOQNZBaDGUQ2fBla3mu18EvgXqgMS6/D9cqjZaw+iiFjVbYfCKPTj/VM/eyMcqPwWWiZJtzRAX01t0RGfV4cg1lU0KZGArMRYT0LxWwoQe0Wdlt3xltOGEJ622UZo3WDHO9xzIEpco+ClszS9SQiNrOrrTcjlyf1c/b0tYj8ASsG34lr2Ps5xDADOotimz0NncJCPvfbfLnWpSmyyfpMErRkTrXx+Sp37PGywz40WcsMG88LfuJlwPNN9Lnvp93m7bNfbnsM7YN7ooOz9m4Bxg/HdryOEYUh69Np8iMOc8NbLD8zvNcQnWxjIzyjJ62k4+JFbU39L6N+Jt+ipTNiO5avm8K2L3xGYWeo7TXDJ1+qsHiVnm1Im16ds5OBCIjfr1BGXlw3tutERlGGy4k4Y1RQsqT3NcDuBIDbVwdoFyiIppCMeYahKbiBgpvqN/bpEf9XNbpmnGydeKNaVh+5Ytgyt7nZd9lANkYn0UkMGyLMVjorsmNYVpR+ddk0RtMbzyj5yvfAdcjMKbkjXm0My2XSZSR3IYRGf3uNm6z+bS2kWOG80D/dM9yD3RtHS31sQKIXJunr09U0FLTBiNV4FyiHerMUdsBWrNSADYmE23cSYfnbKxd31Kcn7tXSYCZdLVNR7ZuXaubyCPJnFeb+hLa8m4jZKuBZmLT6VmE7LrM4taOrN0r6rg2f/2u6UxYhlE1pNelA8iMP0fec9c0ouY5KoNr7Tby4kY08uD35mnfj5T2Go0MonrJ2vbqMet9WdLcyJ//oM/o0s2oHNYIehm0fNlltzKEJ0N5qoinkwyFaNCXiUBceJyA02nC1WnCg6srvJvflenKEimYpoTMMqzCmCGny4mcJaoj2gvDF61gUn60zFF72LLmnCs48x6pfSelBFmRkpCSN0QDQLPR9l19F77FGMWAw05MratZAr2hz/o9OSJZ3Cqz3RPIfnaTZIk60Ot56q5hGUnw+VoA3Axvrz98u2rahCYn0gZ9HWrEBADWVmYu0+Zq3yOQEX3v69XWhT7XQDOdTPvqFN9EVTYr3qUd25IboLLXYbrf1OuzpdgD+Sg5W4VZsL+eZzSzGV/WCW6sar10UsQdI8wnoxiEfQJ7U8C6x9jfFVmgcCkPHnDsiWrsyct7zPo5rTzvQ8K3Va+qyKeyM63wEkfAloMaJcwNQJZKZ8jSxcm8Yf7spgRkFa58ypLy4nVmPc8jBkweHGg9+kPZ/P0ObJSJrKrrtyIHOctwkW2L4SFy3dLL5bwYzxsKULPt4o3xkTZfA2SR0Yo8+wik+nvZPBMdaqbfU5IlzwJo47Zb8OaADhH1QlhAkcwv4hJNwzIdw3P/1/O6rj9Hd/xqy1zWFRFQgbUfdqJ6WmxbwRIA3DbDBYAeXXEPNn7SRAU5Lq8HXobe2532tjdUQ94lXdLOMGfM8xlzWXnC6MclbfprHaYKOct+BwvFEioxDi+PDW6czMcGHFaZ3wXg2HpGf29FXexn9fwGnos+Z3fBvK069Rt6tfKUvE1+utkVQ4wMO0MqoeZcohllPw0G+k0Hs5z8iV5WbeSGmZGRQWZuiC33GuBo0Rm7eVcDBw1oAEAC0wSiHEZV7G/xUNGd+KmTdJu3aspFUhdAHIlZePVI3bM2/9Euo1vkwZUvk61Dn+cI3C3eh5MRB266P7OPCzN30TkL2izYADUdLOn3kLdGFurE43bdzqHwZdNLEciJ+pbmMyIruwyJYhATmG0kqTm1PdCOIYQH/veRjZ8FxYLkUf6lCn4kINohqsIHA+VAK865LnFtChjgLqlxVGOh4EAgym2LIKvwvIKr/3RZbJUyrMM1I31TWqvXiI60n1eyewCLN4bWaN+EonTvnBSAa1ZcIg1qwOcZnKcqPwxGZtnvpQ+BuOgGYpCh3+0wgChwht87wYIJf7KqXXHjD7NaGrMJDBlC0iEtBRBbEaQoT8vfCGyMqd950pbR6549DozlJ5LhSKaXnv8yyuOvJfR7M/r+3um4MjFYy+nbevFJEh3QeR5sLC8DxnEqKoz7yEbEs21f3WpujxFvYKGn2BmpnaYDFc0hiwBHlKdNS08dXmWz0sHtynfS3ejxXxYNG3sZUrzt0ZY+vAbMeRb8GyrLxsIoggE0D5ms1woC5Tbo4pVZLWeXIuv/kn78kETIg+jQCGjcprE8AjguyXdPZCNKe09eCwXrRp1re6vyN9EmKg9YTBByt0M/RGAmIYXPzAVsnOdZom3MRYPKBL3mgQIWYFihEZ6FY1HCXjkzZEsLmTfCBDBPJu2+X9rVKefzeVEeqarew5SPMm/DtLF63Ao+uo3yTHVGusF69swSlZRnYw8aJi2726gFMDd1cmy0ygMMC0SiOSG2bJHxVi+eyERlDcDxkRXZVLNJqgWL5/M5ABxlvxa2vAwit8WQa7+w5Ie6qu7juEzLfq7QJo54rAG3Vh6bpjpm29GSZTlvObIRLfzy31F+H9nxmwZjQ5+E6KDyvyVQFY+NYQAZbcitKM4SCVuk0qx4b5yphc7so0QJJyJMAE4t2Trpk8E4EzATZEvqLs8mCcz9OOmEFimpa9GTmA6axDCI0ZDteon6cVflpDUN12Lb7Ot+TeVS1mftYxXJL+8dpTUPM/SKzL3bAjdr6XSRonYVy3IvlY7yKxsStccYsh15BRp1HkMxJLUdWjoqQ8RtVQFH8mrK5I2zpCO7hDJT2T1xAucMzFROEDUyCBkG4CyRCClEmRPBU8k8gSmBE0EXPFXn1dWVRuKYAM4JM6Hs46GySFIPDOhRFFrtukmXgCBJXL1ervVUNiojiEasWUt5ZXklI88F+GtZzSTO0BFxv+u8P+rL1kY0WhoEBnjuAMAofX89um/7ALeLADeHg/RdLnPBuERUAyMX5c3MyEXmkqZPpHtftfYllEm4Gt1o/TSa0GqdK+Kmiyz4JiNArXzcACFDtvAH2g6j1Fb6ZUj76OqVBrS07vv6J7PFvvY3+1gPyrTfFeHmUglFxlToqXwnLPNbq/s9dHhTr14txd8Tt93KojQsiVDQ4tkRbQn5HloNaa8c27xMZ/ejGxTkGQACYOnxkQKkAS8qaH3vaOi/iCkSA9OUMKWEieS0TwUpFWAwMKMMnaDqub4MRtoTyUqTU0k3UUKaEiZKZSfI8izPmGeWDfRSOVejpKHTThVcTWhjhlzys5JZ/yVgAqph1LqoVWCqZGmML6eoU1pPwyttv7PqGh3t5FE4uPfEovSo/oku4mIfpU7nomwBVGOgwxQKLJtcoZMzZpljoS0Lx5/ybCNcWkcgIOcZYAUMZey5ficQUjsjiBkCm1Mx1u0dZgIjgWgCeAKYkMrujWCjvCEgQEVbQcisZ0zI8RuiuHkuKAMNcNR+WXb5rAJXylt5pZJQUfKUy2drEioAe2ZZkJXrsnN5IJqEauu06oGkZ12ofBQAWD1EI5sChRZy1ElLAKa3VoBUsGGQf71nhpysLJBLb0QKbplFmeiZMKSNR1y2sM9FXqo0Vt40ndPptAS+RWW1pnFWkKgso5a+QySH/1l9BgDE5Uwe6HCyRn0TqNahAGWtpk5fEYMhclKPlSg8sDqksHYiSdREEpCWzZA5K7UUsr+/9FfdC30ZubuUDh3Etof2m+p7WqNRA9/EI/beD1E7RGhCOz6+ovCiFHJqq01q/gLxl3kk03moHBqV5Bj6upyxXAdkTF29OzkXQLysidvkqqydmxkwx5eT8jGgz0kWfb0D3vO43YjH7VADvDr7XAEooHqX26O0LZ9WqZNV4uZ6aLCYoctTYU70HAMn85s1+sJohg6o4YzueTX8fRq9sUMFylQiDjLE0mqmeaQExuRAqKTYZMKm3nuU7R3CNEnYPJeD5gBdLdMPTQBYLENe1gvX37pCZfGk28La8+M/I0AdDdV4h8lSNxxinlnb0t6n0+kFajxwzsigsrFbQkoZORNo6lfc+DxUHolINo8LfcO2CWIbQik6rgDFejBh4UtMPiOXFU/EGtnqeYj0RCsjV3kqTzf+zGmwFShVR6LfwbXWZ82dQOW025FeOjKEAvyMJoiuRit+onSbvHfjlfVai2QkSkbvljA1UE9zZMJizDb0dFBwCJXNwHQbX/tHKtLqOTXvtwp+OfOhdZfKWkdrXld54mhV3Rl5Dz4aWvlUgMMbharIzTOer8V4uvXguN8gbHlWR3PVfDTIbjFd7xODKFe5qa+v1JV6uDqJlAEwaVyOzcTmUYRndK/xqkrbl6PxwABmmDhPNUYyakItcrGit7U+FvVYhl+8IffnqtwWjYYHIwDt37G/NcLlo3oWYGwCVw8ybP/SfNBkGZp2AcW6v0wK9u7R9LyhVwM/qpdFnWg0oTV/xx/rD6BEKpZDOHE+GrERPQ5Q7QpclLfUZd9FfD/3c0e66C+nAjgGut61/Rb9bMDGPa2TNSAKLJJGHhwIARGYyjI9zsjgOhwhx16Xx8y/5tWK7tv5KqmGFgEV/j5SsgxX9uFNWw5vnPW6JQ0Xfi4UeYDA5wE0LI8+5K1zqjxfy+E8CwLaEsyRIeamGetvDzB6JchIk0azdJnoWlSLi3GBbE6VRN4yZwEuNoKQiiUQC2BrxCdq+GnerNxIxZvt66aaJo1EJDJ9xINntvYori/0si5HgI+H57r+NaytY+S94ejeVmTD6psosrWXQmfDOi4a4NDIQ62rps94HhvORRRmwJsvA5FeK2XWe8oiALbIQ9Og5eF8nq9WLq1TqinW/Ay7TZ32afi+bvPRYEmBx6U/mQIT9Z876B5sfKY06nBHwlb+HQUaUxnKICyVAZW8cwla10ladawRVYnGkQ1z3gElo3xkV1QpnH6Il1m9MeOVqdMaOa8jwNHz8TnFNIRG3kFUls8hIuc9L2Db8/SgwS7F9KsQxB8bvwugnQFCDJk+UfbWUMu+QgpXmcskQ6BM0PORDfeSTp7bSp3kxFBR9W1fCgmkKNBBMX6tn9nNypb1uBKpsSCm9lc1NEtP3L53m7QGNuwz0fP2nm97z2tk+PfwVr6UPFreKU2YEhXcZ1fVxRt4aX32TpDnvPGm8yzanikOYLvvmkqdDA8A5gBLBRuep1ZGG5WglmfdoGwchemcz8ghIH1TF3BQd8/W8V76WYGNI4Z4NAZ1Gx3ztjp3VJ6jaevzbTUIYSqAo+vsaN6PGv4MUepUQ7IqfqXzmt0FKxgxAmzPwlCa5zJHo74lOzxKB7NKp8uy5NvXTRTZqAoCMGq4KepRG4vtOg7kNG37fc1L6vOkblOs6Jnbpr19pCpY6pWtrUf/fPTd0p7t/f3eFd5olt0zoK0roFcmhmZus/frOwB0MMh6lQKGG8DOs0Q8UslX703T5FLTumllUVlXGVb+53kuJ8CVfEmHFvV384Jtvfm63DsksowGOVlnBgX7SKylpxuGjYBylI8d6vF9oZYRQdTAvBv1qS0gbuWmPmONdMdTD4jt+z6vbgM2Fx2w/Ijs6snHWso+UqY4uQMHlhfu91MZOVOSr/2uoFonjDJynjvgS606lu/5/ktAhFVYsbp4pWsjfwv6yYGNo579yGAfuX6E1gzaERp1cM3DP7sX9VcwoGm59OqhQWaspHVUgv2w6dp7YYiO7cTCMomJRGlz3QLdeM4M6Rk1Err0ZH397FFIY5DZlMDW8/H7G152cN8blzWvbi8ve2hNxj0PEdAYGStVaJrOwsAMgJh9bvQdKOc7gEt4rczfKMaaiOrJryI26vNve94MlOWVMmUvpRKnSHJGSVWw0AUrbaJpKw9A1DZ3Z2akJJMv54zKI9VoH1qitmdwr0M82LD8E4n7OQJ6i7YMa2JFHoL+tgB/Tvb36i1v4CLnwRvbqJ+tgV5S/aFypP/Ufs6Ld6P0OkdFX2+S3uvPuk8HoPu8LOuhcuP6PnUgLCqf5bN3oOD+VHbKYYJF39o0NQ87mbjmnWJ5uYkO+smBjZ8K3RS0HEn7EpCkwyFAi0qoAmUw5g5wLFV21OmJSJZOpR5oVCVR0TuKZVL0PZeOYYSdlp30c6KR0t1SxpZuCzzcFvlyqDx4ukS2o7R9BGPhlcIq44xEClLLklhjMDoZtrK7YATQCYISI8lyPo/ZsyDnovaZceZ2EJ3yl3WDfmrXgTZXSSnnUrY5m2f8Ft0WiOn1nmXhyWzktVpPcbSAWYatojUqo/ZUFyICECOZH9EIUG+l4w3jljPh31s4PoFnXws74Lcz/u0JtOiE/pa2a+BQD9McOw4R6ForX6dTCrqX7wo8qWyJnzHPXA4KRAlTzN2hdzavheMzx8OM92DjlmhvJOFzoz2dvQttAhrSaOjWnDLbNm2SB/3YuuZpjUQdMiENSlilW9Zsq9emYANcdnzUoYSGyrHUCwAIUVHvsn3W6naPslwDHJ+TXEVgoNzpDPdNQPSorvx3r4Dt+0WIABmAQ0I/1LPJgyQksq/zOajMUDKAI0EmSc/zXDddatdz5zHrPfsnkQ0x8qdup9BGdtWNrXNdHaEgw6a5qE8TDfF/Nk/1yo+caZJII0frQGOt3keASNtire+MTt/dE0m0Oql978FCc2yASNv4vT6U52SiGqKnuIKOnLUsJWq7GEqJ62fovK2+U1hQfV2SmGeNaOSy+Z1y3g8ZjXhQ3Z8H+uxSugcbt0x3GdFYS/9Yvtw+uExEMuPamdD2HUKZ77GXJwaQxfuTVQP1+MqWbeayeU8zZBWdHy7LpyEftdkCHKNO+jmV1StyMVBLT/SSdMPrRJ0h17qwBrG92wevQdS2ebGytQk6uAIOmbAsYxwKNuwwCkENuq7iItnJMgE0WRNiQTCX33ItZ2CiOCQdy1BXyhDE9KVptHbuioINPbtDn+u8fk/mxNSaXwA0LolsWL5H+Vv+/VyOyEh3gCCYpJ4KMKAuIoEhHIgAHJnNCAWn2D6i0Q5tg1wm14/KpgChAQUFd1EEwvLkUjP37DNaf65+mOthgD6SUoEGEMrsRwEbn48Pdrd0W9GNmxqRtfxuCji4/pUVJ2hCJmc+1AShMrumDGy66jFIaLqfWKXKG2wPMdLwsW5oY9IqfNhcPkX0aa2+9yjdzymCsUW+HKoMreLX526WEfQokkWEwC7bbAaWytBam1xMidvGYEZhl1+gsRkBoLtvimzKRk9Udues0gou8y1SAeBMkK3DmcGshkzySWXba/3U8syMuuvqsk6b78usxmU5hKhGxwMxogw9Hl2veZm0fzrnJFrlsMiz7HXT+Lb57gcce2XFA13L32inXR95AFqLK+Br6WgYQJ5Sw9yGbAlWXuR+HzUoqZjyNs+MFc3VqIkMW0VDepwbYGnABbWNAJRlunWb2h4gOUBpt+rv69SUpQBO0pBIAUuUqPzk+tkfRWEZHw5QbtL+yIYy3b52BsH6H9y3WSX7/OdKn6th2AISUVgsem/OGUzAXLy5rP8WrcpF2FTdpoLco3rxSlFzOqVUEQ2jDJugLW0tMi0rDLl1/rbZlxz+pvzrrqSAPVXRoHlVUsx1u+PEsjeIeqVbp2UKh+3f7j5ap6xeYi5h0rIrIBdrMe6Kcafonv98ghwAFCTerMtGhoiKwpcggQxN2JB3PaW1vJ85gzOB6ASAwSkDOKO0Cqac5B7JMB4mQJbKMsAz5vM16PSoRNvKtD0GmGfZtZFlWS2Yy/ZbuRqqPOd2lk8SQzAx1Z32ZTdP5b8fcNQzUdJEnVGRguVmuTQcbyyDflXgovVoj6vnkr+CBzuRVOvSL7O9SmVnXjXeajysB19+w0RTrEH3G4uN2l3qoOertb/RUSVyanuIgjP9PWlUqfR3a/TquSlWzpLZQwhF3lKqkQiGYoypHfJEADKpOgJYtg6X+W2y0mhmxky5trm0+wQUOc3n1jbMhDqQQpKojWho01cRICCdJtnaK5eVS3ORZQW0NVqjPDXAYope5ZdJV7hI7UoZcgnolYic6uQOTEZTW51t6XLdpgORDW3QJichYoNt/AWnn4VCvcQD/ZThbh9uPULR83WIg8rqE5Khk1pE7o0Ec67noKx5Qi3TXnCXt7lKal0z4NK14U8fSlyADY3KtEI3gEC+LMtVEtB315rY37OIu7qliHvfluiQ+zJo4ruUwbW090S1KvEyChKFyb2KsO1Sva1CiRM4lfA3laXSJMtfqR5sJgFyEMl+HFTSLpskqYlREzaDQTUiwGXOaTVfZeiQaji5O4hSPd7MdbWKnmGhRsWWrupL2y/0X7LiYb1XW1+9kVdwsTU0txhG0UgH+r0dFmIbRDM0nbVhKqufRv2/68f6O3COmiw0Pqh45l2F6jNOvpKXN6iusVf6yI0OrygYRjXkxWpXIKZlRddeOjlTz60BFMcUPo2O9ZEofYAzgxKVuRYMTlQOMCwAlACdV1R5G9UvoThDXOy2yL3VelTKIx+Nl2mwSt27TEc00uHIRvedMc7tMwAVPwfaZdwvoDWlET3bOli8fHGU9haAI/+7pHk6nbprEdhQpRunbcQzABqL581zvixr5dtPP78OsahLghh/9HIbgg1gFVT5cxuYuc6Qz5zQhk0KoHRgYlTbzcRa+WSAdRs71EiY573JNLroiw31Rw5BL6NmWCjkMjbWkfwTwX1uOCNd5MRAnNAhWD7n+dB394KMqC6jtFqgYpnXWj4jkBXJX31HHlzkM/xdIj4RH9GE0uwc7LWhIBDJSYcavUlF3wIFbFAdytM+spsM6KkyhQF45PYR1dqltugXM0H06+9f4+nbD9sPHjYi6/T24RX++ldPD7/nlYu/tofWFI/vuHvTtp03EvaRIR4N7RA102CvT9O0yG/ET0Q6/FMy7549AhQihXfkeXNnceVzHbLbQyGYYC5eWG8whooxm8mXKS1ki4iqHDAz5uqXTQIsMlCXP5VIQ0MAA8aZF3LR1LBebvKybE8ZDpzntvutkiwzXBpyPQTO192IRgZc392KLqwSQYYdcxl+zKUKczvNWb33kvlquq2OGNBzZzT8A+nfiXqj7/thrvMXShplUyp9H4WfFtDoowI2zT0AYw9Z0ND9wUQq0IPOzLn+9QClr68RYGKW1XkyMSjVvmHBhmLUi2wCA5T1FFp084i0PGu/D+fn6BcDNv6N/9c/w9//j//io+f7//tbX+Mf/lv/tYvePQo4DkUqLuCl7UKaVjvzWsTDP0c8Ltua4lgLz5YnQCwjtNZzuRws7KefHeAIWJQiUj1rov4FoFLHtj3pDAeVKT8Dv1+uXaZsknxLSMBEMsY+zy2yocZngDYqdwo6SpQhoS/mSCYlqiFGUUwsF8OawSAkhsu/RN8KqCYbcQsZtNEJBRY2fztfIwOYFn1kM7qhXrR63Rw0sVhS4ZUoNOpd/RABeiov9ZWp80bsrsK2LDqvo4G8lqTkHQMNWycjPbEJPOx1NvNXYONfhldbhybvUVmsTFue7HtRRMpOeLZDbQp4gH078vaJOnADldXGl37qtNTbpF8M2Pil0FY4U+mIl5/MOSpWYUSh2FHHtl6Izd9O/txr6L23Eb3LVqMHnuGltBW1GdPNQcynILJFI3udmgGt/6GCOw1Pq8FYGAGUiWxBZENeDULoyoIakAJXcs51+GaTrKJtyKPwHERrFrxwTYYhE01zWbHCc79dueXdML+cI7FgT8b/bW3ZIRwAZR+Ffm7CmmzXMP1OaqH2lrYFjwiu2/hQwzSEaZLJsyOwYfOMh42K4R88PwIYe8vZ+F9GTQRGNuChE8E94ACWS49H/NjyW8ChPHgi82yNIpl89xCVxKN3FlEhINxb6aZ0I7Cx5W3e083Idry9Qx1rIdYjZIU/Te20xK2ohgcBlhe7fK2eCIvWaSMeRuOSe8pJhGpA7HtH6/PI9ZH355cn+mf7NCNX8+NRVy+FDwEScdmSgg0CqMyUr/fqqoe8eFdAbF9+Zq6ecMdTIkyyzEQmOEPWTKUp4ZQegDLhdCoyNgdAtHjqdaoEN69ZjHmuwMgP6bjaKVUiG21klBn+53LQ3Oz26CRGKmnviQyKnHhngerKllZP8rwe/uWdB/2tBpCojPdzW12mnnhr6n7mS3citJNrDzyIzEGLpZ70vp78bOe0yPs6NyahTa5Ufk1KRJjnfj6E7zftuPi04M3WS6u/9jeDu+u2CMwyT4hTaZdcasidV7Omi3o9wIvnu7JYXso1EVuNkHHn+I0cO5hn5BphQjuqZ5R/5RU9kL0Nu3LjyMYRT3Ev2lyjXzqgWTPyN01vHCXow6n6jP+91eFsulXhyt1V3qK0R/XQlNnoelze25aryCuOwqaRlwMz58HSx5Z9z3tkcPo/NqBjPATWFNrKcEfkscJgMHJRF5s2kUTM9Bh3zSsRErguQkhMYA0YDw47G/Y36OZQ7Vk9oXbJk3zmLNEcjYREOJoZdTXDwstmf33sfdoNm6qMya5WXZTAA47GdJzuCEyDMhItX9RylmYxQFTk3C7tbUjQzktRYMXmuaV8+H69xxla1ufSQdrzfFBJYb3pZ/gejZ0u9+Cif/ny2est6oJu/tOnsKP3wyg/QVpDs3dBNZxojgm3323+ax7/cvtgqntwRM/7zzXAYb2GlJKcVom2d9/IyHf3dtfIceC8DY4sGPq0kQ1PynltOyLZ8Mlck++y+VVThhrlIGMZFQBQHeL35Lfx1ny2eEzl9FdOE6Y0YUoZRHMBGkn2auCyLTkIYOW97CvpshhGtdx9KoaSw3YTcCPyLgdzEWn54jLp7v7W0Npohk26LvFdpNHvucHMAjbKCgdJVr10mcRaoxh1aFMjVvGwkvWcqXrZyz015E9tMFf5KE9A9g6TSaFyeF2uoKuWm1t6Hgx6IGCveaPrwQMzl70wuHS71oblDXmXdRiFu+7Z3huTBwC2DJvAJaBRVGx0T9pJhh2Z0ZbDWh7NP1wiKaOyXEr3YOMnRiM0e3dUJqNxO+vB53u0o3RhauahJxBFIez91d/6N0jfG3heVRfjsux/ttjbgRHtFSPw2aANohq2nRxYBBzgAzCVXWNLkLzNUKgebUs62sYZWAGs0fPchhooybAKaCqh+1kMOxd+icpMfDv0UIzqlAD023OvRbyYeiNWjVLAYMoA89y1/TgEDuQ5NpDKU+MvqcM/pM6ostS55zKX9slUzmUx9WIT9zLbDQdRLlGKy6YV2nJZPVPP8kg9OF2LXIRRnUG0InPZNI7G+qx/F3WjrqozRvXPWPT1SKa6fDdUShRRHD3XfWfIHh5aCARREAW3vFGuC+kebNzTJjG3kLHtKPZwpK3QcxS64+JNRWS95faaDufoL3TzCPr3gbLvU4fiSd9zEYV2566ISlni2edrhu1TkgINH5GK5tK0qh5Ht5rRrG8g0mqR99q1s8+CLJCdkMo8ASouNVGZPwAqgZYsu4fmCTKMMgI/y7K0qEDjda3tMvfevMpBOIySqetXvi6sgVgbLujSdMayUnnVrwIiBZjct7/y3kcrqNaxqZ2+/PXY9WU5Rga+N6aEaaJ6rIJP2/cdCyY8mLdRD9bIDnPb5CxwpixPOqMl4jsEw9TeHUXp9vZ73w/XaBHJcaDRy46P9rT+OU77KN0q2PhcFeZR+u78Fq/nD/jtg2eYqO3a957P+Ofvf8DbfMafPfwSL6aH+7zboINvvjLw5D9F/bKGFxEpruPRjS4NAnT8lsKBeBuwVNeG9H+0g5FQluoxANmOF8RVYYqfzWAiTKU8dttjBjBveIl7KZQJ4wFDsylh5ZYnid+ZCDyPvau7poUhoOJZEplxEmVZkZ94RU1RAT4sjTKnowU7ZFiBuQ/5j/gpSZYVAc1D1/NLctmrnNIJU5K5ArLNNTAlOcUyEWSrbsjOpOAky2cTFV40l+LF6vwJUw5SHnSnSGbbhAt7m0H1pFCdr0HEWA6jiDzqvhwdyNa8vcdKDTzX+jFAqDxY27LthKoDJSVfqj0QajYlSdn3QtEHA+U3FxDHBei1MiydCgvIbJm5q29bLo0CCkgh2a5+MmVT2QSBc4k1lPSZW50ocNKcyQGLjLIZF0ykYtDVarm47VVRu2/QlFI1/Y3IwPdpCx/aT6QeNAOC7sfPdQhQPSplnFq/g8oYtQrQ9qmAo+hC+1/L1LSU/GUeVM4O2g021oyq7wCZ24zm26YjoWvguJL+qw8/4t//i/8T/t7jr/E/+M3fr9dnMP7Xf/3/wH/06p9jZsafPXiBf/uP/+v424++jBGt5VkOwsYRz9kj8zWwESH5S2io6KXnFqXR3Q3QegySlNQT0SOfxdDohjUalpXJdqb7F+VRlBO12ext/JvLWGQ55wUZ4LaKRjq/GDYuBw/loriky96OvI68Fs7n/p62p308lTJlkRkNw34agFmtG9Qmcyp1TIRzGRbQyJJymFDO3jAN10cp2qd8n020o6VX+agGQMacUcCYoAvIKoWz8PXhw4w5A1cPTmUVRJmcmDOmYhhnziCeK15KInbln94gMjPmubWBbtYkbZNAatSayW6gAKYnlFNkq11Vw598uzodQbYdFFz0f7Nuk17ezObPV3gF5470OpnnhO0M2UxKIy1U20yNny1/O0AvOAsFVA1k30eWAEQ/iabyaU2qndOhp/YyuJylxCVCxZQqCKz5BcZdhl329a8qp129OTAhBZZ7aay7PdBQEMUVEDQQzUX/ygRjQp7L5OIO5Vg+jKwBAJeVU6ZtLLipPBXeOSmQWtZV9RsGUZo1uh9GMfRXH37E//zP/xH+8Zu/xh9dPamdiJnxH/zhH+P/9uM/x7/7t/51PJse4D/8/p/gP33/Hf7s4ZceBN4aeRQ8ojs3RlVf9fzEkayYF9/hBHSoLtR3VKUs3cOG7i3Aaby0vJvC9spAzEkSo9GKZTrQkvuj0brRs0kzqkZDMlSF1HfkI7D07kk3SczFkaICOEpYCk1AeAGQLJBYpGue6caOwzqUyJZ6sFbtc/FOz2euSyRNJrDhctLoDMrOlmaSqJUt1PQL0ChLTEvQQWNQnUK2XHffeSnPa+WsudO+4RIfAtd3Ixqmot6sAnAVwu4FudDz3frsiIct3dWD0XWnNhp+6dIvxjkasrG/7eeoj4/431L3a/cjsLOlX6yc5cxAOek3JfJPdd+joZ6In63novu2HfYCjnuwYehxusK//cf/Kv7hX/8/u8jMu3zG/+77/wT/xou/izf5Gq/na/z3vvmv4GGa7hRobHWSj0N93KZTsOHTCOsk6tjM3JYjDp7Xdy5B0v1Y8jJdz3nnKNwmsWyfbitHA+9JowJESNXb+KygBqohyYxM5mhygjnMTB5VnzYzwDUS0JahWiXFxv2S6Fm/1bklYioT+cTT9vZbNrnKmPNsdnBswFNCwy0i1oYNbDRlOWlTebV7QOQMcG57iOgcizqZ0UV6R625dq7PYrjEpRt5yd7YHyXfR9l1CAVYuu8DuADPUn+p5m/KgaYz6iZuBdi0qF/z7KcykVdlo4mW2ROl/M5c5CybIScLfk2ZIl26BXIi52qr7vbcH31fedm4Y7K/fIvsxjwtQA0QK2asOwcjmxMBvy26BxuGnp8e4r98+g2uXKjxdb7Gq/wB//sf/gn+Dz/8E7zN1/jXnv9d/A9/86/iSbq6GwOFXsmsNehNhk6O8KGOTuUk4IkRz0ePhZdlqWLxHu2plpGHtjfS03gRL9hOClslipc/RsNk3VwEm0QKlFb5Vz91uSKVsVQyvO4t28ciCwi0Du1ENa9wEqzRaw5zQhMXjTj1m0BxPUU1XnUi9yWyLpWmQxMV+JAAB58/s7SV1HGJYJTy1ClCJksPblU2PdjQe/M81z02rNzWOhrW7brH6XnR3/YZLV90CuwRveCBBlEDxC2CVABHwXDUkIT8zUu+u4hVbsefw7QNs1nmajRMb5R7XnPmBjbQ6ljmOjQJ2mPk99TT1jO79JEHAHuBIS17hLx3d3o/4rWxc9nczHuwYWg09+IDn/Gff3iJ/+qTP8G/9y/8mzhzxv/qr/4j/C//8v+K//Gf/Gt4QNPt87LixXiyhvr2GdGPfYZenKF1tN2+cx0f9AJsPYlRVGOfN7EcGx3x7c/HkOuDZbEx1mhzRPx121kBdV9F4dahAa5bb+/efvvOSUEilcmNzevUwJFGLMAZOtXOk6/3kTKzyxY9XWEqR3AXkFBABFjPX5EISuzli3JmObsbzAKMMud6hg5R7L3qHCPdFGmeGfO5LQW3QFqNa7ctd1CWtZC196L3eK8KOLyBP0oNPA67cZdnxIfybA/TsxEiP2TmzxOJyqdRJ9uu+p7lW/O26Y+8c/+ep0u89y0aRp+IQucNKLpJVwwBsUD5d4IyjV6Lnl1bETV6Z4vuBGxQCb99Th7aTUDgdZ7xkCb8t1/8PXx9egJmxj94+mf43/z+/433fMYD3D7YGNFdRzGi/JZLAssSMN9fAADidWyFHJu3I4DD56mf/vtovDYCIjLXIC+vu87eKXZ2mzORbBYlJbMFduVTUKZ8OtBhDyir5q8ADeY2+VBvVI/8MyAFF/Lde8DUPUjI1UqpHtC3NbKD8mk9c2bGzDPa2gGNipQlliBMicqZZ3LomQAEWSlBSDJpjlE3HFMBzTnXSevsvMTWTn3ERss4CifbPSbspGf7Xk1nUZ/L/hG1tTXYkdJnJyd7QEY01ON/V+DHGoFradfhK+r7Us9HwYBZNumSVRlus63Kj0mjvGNqxXbDNtxi+ouKpg6zEDPSVCKmDgj6z5Hu8PWwdW1EHqiMogNx2y/lb+R07eEDQDlJtucr7Mc7+Fu7N6I7imz04ei1kNVdK9RRhz9CX50e41989DX+8vwK7/IZmTP+/MMPeD49wimY3X3bdFS4buLV+DSad2bjzEANS9v3ARDrZMgYcFgh1dvWI1z7A9CFs316C6+HNV6xXc5gflUpqu3w5roZLvEhd2t46jOKIwpIq0M8mrBcLMrAZYbL2/SmxNyAV9dXE1XFVZ8lUx6iulGnzotQwKEDJbpvQjblN/Hv+jNB1qFkZlDW1RElgoByhgMz9HyNyg80vWJYKDD8aPNERlGNhYFqCddnPNjo0ii8eKCwRlGEYgQ47PNr5N8bRU/bxdYkhDKh1jgazMut1bXEbX4Hg7jUMZZgf1mmkXffnrMHnnm2uQxNRqDiUtpjWNcAyygyEl2vE48HFkv1kYLwPXyXzKocjiI2ozq7rcjO/TBKQN9cPcGz6WFt7mfTQ/w7v/0H+F/85/8X/KfvvsUHnvHt9Rv8j/7kv4lH9POvQjb/VqLlpej6WohSb1llrX9+F0DrRdoQqldeOWfMs04STIvIxh6KvNsojDjygP3ukFwUrvxwea3r2E9P4XAOwe5zYSlbo13rgKpRIGqGiFEOMkMU+UBVurmYKpEJARtEwkOGDDlxzshlQ6w8z0PlmDODIUtfmfV8FC5bmfcG2MpgB2bRrlmKhjI7r30FbKiMpUQgSp3cjQzCUbrYIy5kN9AagYa1dOxndELqqjEv/7YoSvuLnJK1SMbI8K+V/S4ozMOBXmbZ+FBlSwEfkZymq8/sidSoJlyrk7ss98/fUl5A/91v/hVMlDpj8i8//jX+3T/9b+EfvfynIBD+zd/8ffyXHv1qOM/j50RDAVy6idColoZe66MjRUfNq7Rh48hT80rOgg4lD0BGXWfBT/XAzf3iDVSvQC1UuZaMfHTPBkrPV1fnB2pEY8Drp6dxhCp6NArTRrRQdPIjfob0u1gYzkAiLn5282ZH4/81veKua1pznmXOhjs2XfPe8v71mt0h03/63SnDyBoaALcRkrVoRrs2BvSe15ExHpEOV2nY0k7A7flp/YJYnq9Bw5xLX6FSH7mcx5K10UuzD3srFJp2vEOjX2xWe8lQyhrY8PWzFdG6Ke2JYpkfJfpg3u+es3pxPIKwxYf/vhf03YTuwUZA/8LDLwGgAxJEhH/x0df4O49+BQCYOtP086Wjgicgo9Vd1KFV6SkoGeW3FuJTo7JmWI5YcAsyfNSifFkFL8XFWgAN/av7bGBZZjJ/Nbl9bH9eFCj0+LGx4fTGMBrCkuvti65AGMTg+vfQgjWc1T1GiYb1Uanx0MQSBEQevwe8kcGzZfTRPpsuTBr2c1jOgQGNAMw4Ldl1t06McDyEVOsDBnBwqfM+srG/PG3orOPE1FdtUxYIQi59+z3SSXcV2diTTs9PU4qVX/NdYZ20Y679wubTDSWqzBHVTuMjGh8runEPNgIagQgiwukXADBuTmOgob+pRAKqMmKdLJadkueanux+55V6tfM1b4mQTJDHL28vf6qtB0zeQx15vsyqsAMDcDF3msHO50x1hhjMGAObtm65rGqPCf38nY7qcaVAmRCI4vVqGxXYNfTaPdV7RVhEH7uJmCCZQ6LPDPlTubL7xcqz8zyX00fRbZYkK1BUjlu9eL49wOwibINogo3+hNyW6zqs6A30Fo0Ax540BF8swZuV+zD9+i/XT7YzTRmmP6ghNTK5o2gaUbRxHS68keV7IF+2zkdR1Oi9uySNji6EDA4QoJW17ejaUwggwND5a62Htj9fZ3dBHwVsrI0V3ma46vMk7X7edy3EKggfk3jTyo1CjpvPEJUZ/21s0Xp9U1cfqEMPdUtn6UndioJe8UkIfdaNfNicjVKMoWo2Sm0/hT3UFJDklLNsy1y9p8AbMKwBsADFmHTWYzTkd64Ft2cNFMWs5d2LQoiAPNUZ/6jh5qbNJWsJNicGptyuM8k8CzGKDDm9TtJJAK4yY8KEMzOQJvB0hbfXZ6TpCn7yLbGcqkplJgZp2LvsOMpaXip1wK7yys/miOn8BSlnBsmcEJOz9qtEk3i/TEUJJ5UCECXM84wpXZX6LaFqPTcChLoVPssZORItKVEpIpTdryXtoL8OoxoVLC296LFeXEZztC7UiLehizgNu+pk9OeHIG1ZqgGPuBuADIMnSpcUUEFJGrWCJ7TJwfqMvDNewq/wgqltkMcAWMvZl8Dxa8uGMi/GgoweKG4Nr/goVpezA6A6V6vqOfO9fpIO01rORf6k61ADUdTyyM6mVCBZ0tWIRgMnuQ49oQC+XMCgdUDWANtN7PWNwUbcYbiGerZoDdnfBn0OQGatfDob/mPS0l+5TZIOwNSWzNrOJXajdHJG2fG63FFHGK3X2cOq9HsuqL4lnlqf42ImSb2m5Tg1MG6T5XWr3LflabQrZEKbGBnnK1lpNGD3NhvMxbijGPgGOOxmRwIscmefmMo5JuVNGMVbD9KmXOUzExVwUkAJMRJTWW2g+cukSymUmRirsZHaxhiKoG2CCjqAEiEQddkCHmyMologQCew2mEYZmVA00ly8qtu9NWWDFWAhlLetu+Juga9XPlhvc4YbRgvJZEtMnUUAVrltZ90a8kbzRFFHr2+V+Xc4ZlhmsZ/sU8QGiBQw2qTZF4+vxaNVN+8rm7x0UaTto126v1kziuxYMNHa+wGg/azpkjUTZiNngHQnWodDc+NPteoi3IMomuen8x1s/9B1MPxLQ+EeV9qr2/lILZ72qAtwPOxARGt5Bld7yzE4PmF0lRdbZSLAg7tbOQE3WdRFV4/7t09X8MO8bvVeKOh8iHQsHnWi9TxEfJnL4Upa+pGs3K7CmqbKPEorxUizBVkVFNY6pYJBfhJpvOkURYCF0CCEiswcBDq5l9PGdck3n5Nc2IgzUgl+jFxRkIGY8KMEzKp70rVtmu0SK2XHmIWlscr3lY5Ur7q2TGIs0QiSKNC3L3XIgAt7yF1PDWF7IfT9FPzsSukvMdbjVggVx0nBpSMhuPqc66ePC2iGC6dyNj5PjKolFVaHNiM9urII659sktnJUNTnmgOypqVGu2DYnmx90eTfvXPrpqLwIiv/whQ+GvDyE4QTWEnM3201QOK8gwtn100cNEPFrxs6c499IuYs/Hg+oyHH86fJO+/+5ff4n/yv/0/fpK81+kuAA4F30ZP6K/WYbZJO9Bxzu6GYu3qr655a6FhOciFgXkr6WzV8Z42aIqr90atktOoRpzy5WXzFxsXqs4TieeayKx40AUPSKYN2Ca0iUF2kVHql9JtOnQV5EjCaw/eWYzzrqmW7YIy+KgHgA7wbdLBPG2q/+F/41/C//fv/qaLvI3mjQBLuag716KXt2hIp498VJetRgRHzIrLEW/89UkiG5/DEMUe+pf+s9/hX/mnf/1J8r6aM37149tPkvc93dM93dM9fV703/lH/x/8+3/nNzhP6ZABt8+OhlJGQ8UVLCh4wDq+pjIkGUU07hxshAwNQmOfK33/9BH+g3/9X769BPsZPZcn80l8i5FHHYQ6B2LZP28mOkEchDZJFHUEofqi6gATyYmgdZKFS5lN/bB2Jh2bpcWwRN1HAf1cmJbGivcSyrLNo0VWjrZZGsQf9HvdTruk3R9SNiZiCTsTA0wJGanOl9FapDp3gjFTQiYCISNxRsKMiWecwEjIsgOsVhURcpqQIcdZn/OM6+trTKcTmJLUDSbIfvOpHw+WnIXH6illEOvkUUam1I25a0XLuLoZQql39eTXc0ld5lxMTJgIePyI8OLZFR49ZLz/8BZv3rzD69cZ1+cTMD1Cmh6U4+Vl9Frma8icDUp6ZopbslrEpU0k5BbKtyHs3A/xdMOKrWh92+lF6n8PJUuVvs2f4zfUoNj6Y5PGYnzffFevncs4/15K0aPU+rYfTrD8dcVYC4VpOm6Ire7P49/v0mCTj62X9oJMBk5GFfXRVKtHap3ZNtf6VX4y17xevHqHf+v//I9rHUTDWeOTgOPoQm2n0URf+x4tbfbaHByfxk1pN9j4KYGKBZUK/XA14T/+27++vXRvAWzcVr2O0gkjUuBwgHWNlz2RrargDAAgwMyolu2lieRwJtkZb4ns/fjoFn9bfG9N7lx7/5J3lg8r8CrKgbpbACTsP+tcBM5mlcp22tNMAE/IRAVspLIehJHAIJwruJhBOAO4ShknfMDDdI0vrjK+eEA44Rp8ft+GInIG8gngEzIBZ2a8fpeAq0d4NyfQ1Rd4f02Y6REYJ7x/9wYPrmQ1C1MC6IQsLV7yn5EU5HDGPOn8jng8e0EZYMpgXEvBs0jUFU64Sownj4Cvv3qA508J796/wh+++wFv30x4+/6EdPUM09UjAWKUAWTwnIAsgIXxQarTjYsrecPgJ4d2TeJklpMaCZ38GYMDeb5N/Izqw/MxMhyWv2U4fdyXLfiY57lbObVKDEzAIh/lcZqmbsM+P4nWTmq1/I1Os9U5Ff47IGBVhxr8n60TpXluy+310LgQkK2kVYetqO2ETERAzrX6vvnu1aIcvv6jvO18IPuuzsXyfEVzTYikT1ewrMdsFIDkeZKt/5f53uTAz49yNorSWifbS0eNc9RZbxM47eX/CBg4SrdVnqO87HnecmbHGGWy0rKzXZLfFh8W3e8BL3dDEouxX21dWJ6OsUWQBcUTZF7CVKIOwIQZxGckzphwxgkzxKvPeJgYj9MZX1yd8eJxxpdPTnj8IOFqeogHDxLS1QSeGaf5ASY8wIfzjO9fv8HvvrvGOSX88I6RTyf8OCe8ywl0OuH0cALN72TFCiacM4M5gWlCmqgr9GLpM7BQ7p6mNBWwlsCcZXk0k54zDmZZDTLn7bbt6hy8uLao5cC46Tt+6237KUaBq1fpjUjAmdZKqLu2aAtI7NF/F/UL27nRG83oL8ozAlIjmfAgo9+MLWDPAJwo3+h31J4jMOrLbKulJb7kK6KlPhgssy1/fv8Vy7+tE9kzJoiOBGVhbg3qwfQnGUa5p8+bhsYZNw7IrFJNm1DC+6gTkhjtKHc1rDcFXCMFVvlx4cRRqPLOaFThPFhlc0H6TCxGDQxZrsoFaLzHlN/hAZ9xojMepGs8fpDx5ZMrfPVkwpePTnjxmPH0EePBNGNKM6arhOkKmNIJ0zXjwUSYecKrt1d4+fVzXD1+gb/58QNezw/w///r1/j9jz8Cacb8kHG+vsZ1ZrzPCcwnID0ASKMbJcJTVquodwZgYWR2Ezc5ylm2H5/njYgUWSPC7aRfW6WGDzVm6p1boGFlK/J6AWkbSktDNM+zKQar04mcb+6AWP4sL6Pn9lxbz0w+fPTHggLrFa8BqbX+PEp36XFvl3dNRiJQYu+NnJYo+rXFhycfNbPRDXs/c7+UdcQLoHuLoEY0emBmo2lNJ5M5ZPQ2dOY92PiZ0BGv/67miLD7BBqyL3t/FvAh2yDrPIabRhjWOrYHGp8qCrRW5WosZc4Grz+8oAxKMmACSmU+AyGBccI1JnqHh/QOj9I1Hp8ynl+9xzfPZnzz/CG+/OKEJ6cZjwogmd+/w/WHD3h7PiOdTnjw8BESJ5zTVPeQeJpOePHwjN88f4YzXeGPH1/hz3/3Hj++/Q4v3zPeXz3Ej+9m5PfXyJyRaEJOJ+NltWWxQLAEc62kWaIyTFkiGwwkTBLhoKKUM9djy9fruyyTVbCC2GAAqEBDwYamYSnin4jqkCWlslLG7E4KY1S02Zmpzlmxhu2IvO31xFff252beR+tv0dRh2gJsVJdYeGiG97A+rRH0ZIRgPJ102g94hS95yNG/lqfcpxeRLbN7LJqmxcR1a37fFrRkAu4zNvS981KLiISh0XLxhB9YiJsI7k/Qvdg42dOccjyrmMblgHNtGVZO5Pu2kijKahBchcqXft5W3R0CC0ObjB0wlrlz2rt7kXu67NQTteFoeK1AGUy5gdcTR/+C/b+bEmSJEvTxD7eREQXM3Mzd4+IXKq6prpmehrUuMIQbnCDARGeAA+B98Iz4G6G+qobPRgaTPdsPV3VlVmZGRmbb7apqojwdnDBLLqZmrt5LJVLOwd5mJmo7CrC/PN//vMf5k3gWQcXXcPzWeDFvOe8HWmJmLFHxg3kiM4J+kDykagddDO0VayTx/ueFItWIm6+pu0uaBZXXOmW5WcNURpe94Zv+45ZnzErz8rDZiq4hTm8rBNU8xRSeSwuLElQNRKjpl8oA1XRAuXtvXl01sphmEpkcpmFqdDY7hQPZ8/T7x/HBNSZ4t4SVXk+Y8zRwDId//Qxfqp2cmZ8cJM+bn+nmIfjENKHmIupTV4Wj+3/kSt69Nw+dF8/BFL21zm1LOd84L8xsbhPPdb+hOiUf8u03T7YON7+lM7i2Gf1mJGblpVtp+76Idj9RwEb/3iP/qf2se1DIYR/7DZpT4/mGhwvzRT19zS07J/q7pKeAow+NEso62wZhIPB5uGxn9we2+bEKedpkKzblXuk9krMl2GmyA9UHTChuHTug4wiblRK1SyUiJMVhshk020oeo2Fg0WTeD7XvDhzXJ0Zzq3C+TUNARU9sV+DH0snk4Ak6JSQlBGt8DHh40Dfb0ASwY+EYYNzbxB+R0iGbv6Mxfklz80F3fKK1bzhxdzxehX57q5nFQMRh9CUkJoAymyL0ykEqwSRiBHB6HKdWh2KL4tzabkXMSXAYHSDVoJRoHUxFiuiVI2u9ulFJFvCJZWr2BZhU9OXIZOPqmxne0qB0Qql63N6REE/eBxOPUSiUDWWWNIJJ3fbnVAy12FDs9Mxlcwb2Xtmdr/v/9ynvR8Ofsdcoxy9Y08By7tcjcM3+CgM8mBJ+bvctyPRI3v36hh0nph4TDPzaV1d19me/zQgHp3n3sEqnt8Dlif41w8xGnUX9f6rPeAqh/cgZ9Cq2qrvXc+eKL9ydA/u1/GE7JRR3GNtuk+yf70Tq6EmJrHAn+nvbb9YJwU7ljWV9+iYIdm7rR/bns5s/AhhxNOz7I877Y+lrx9Dj4+3j1DbfsS5/1Bdwu6QPwZ4UChlnrjv/U7rQ3t9/O+JwUDVtLCtoOsx+lGd2JNQirE9wPMH8cXD7aYXqsT095u8Zwb8+FXtlupHP5s6ojpDAaKuXZQojFAGPik1Xnbnk8vfSpXwQM4oVTI4JAe0ShiTynCqBGvA6chSvWVuE0ZZWm3pjEXHEScDVwvH5Zlh0SY6JTRhQ1pfY42mcZb7lPAxY40DA4qEsUX7kGVExKCUw3th1i0YkuLuLjDrLMGPpCQM9xvW129R2pF0w7OrL/js4mf8fD7j943wdsi860f6lBmiIiuLc5YYY3EflciytUhYMzPCvNEgI/PWMQ4bJkYnImjjEAx3q5GUDbaZM4aI0hqjTe1sW3TWNBi8RBwaJKFyAiyp6iPICUgoJVize8YUUgzClEapXAe3Wndl0lMchEAeZiRsnwVVarVoFFp02ecehS2qpPCK5JKFm3dpz/sz45xzsf1Wh8evKQYH7005/q6ysojezVhPsArHjIPsDVL76awHW6l6ftM7DahaMn5aPk0kdnb2u/3kI3Age9e0D5y2YGvvs+2/ctJl36dEkiLklHbfzcF5qINjHwCgve/1uAmKtF28uyKlpDrlVu2UlPfeKrv9vtPefgrYON55mVicep6Oi/FN139wjvV3PTEWTP3U1Ffp6UZvASpMWXJ5C8w46r+293X/2TnB7nyofQqjfGo/ejs1BB+g4j30vbPMfvwF37X9ruGwnRYw6W0H+z7q80F88we242NoBSaHetamzr7Ly58VJMlbRkNbhZGMkRFrQRNQaSDnAeKaWSPMW83MwvlyxuX5jIU9Z+YyVhka5Wi0RsWGhhnzJtPaESUjkgd0GIl+YO0DeT7Dak1QmpRzYUWsBaVLx6A1WVviMCICWllK56RJSUgpE2MixYgf+3LdSjHcv2P+/Jb581/yT5+/4EVwvNkI396M3I9CEEuWkfPOsJwZjAjnC2FmWmweaXXCKTg/c0heYExJ8QspFbbFw82dZwyZpEbWw0jIhYlxytHRFl2QSowqkg1Fy6ISaIuIJubClIgkFAqjdMU0eYdRVQGxIpCrB0kd+UA9TK187Lkqgyfbf4fPCtsBgIP1H58k7f987G3Zz8443OfpVPDH3rvH3of9sJKuvhQcFXZ7DID9lGzrh0IQpzVsp/dxar3y2V5wpIqy97coYK18nVl2tYXk2DvnYDZW/pa9yccB8Kt/76fm7p/rqWfuQSjrmGt+gFOm45y4KSfuzcd+j5/Axqf2B2kiQpZJLvgQDDw66E8ZF4c7e/AiHXw87Vf2OoU9qnFa5z3v2MPTeO+6e6EbAElYYpmhAmmvAFqqTE2h6hNaZZo80EiPkYBTicVMOO80c+tYuMhZo1g4YTHzzGegdCbHwLC5R2fFoulwDWjxNCpg8oikDSlskJKqQQge2ZSOLMYKNMyus0mpkLzWGURKHNrawoYZW5ZN4sechRQTOQaMgiRr/Ngz3r9j9uxzFssXXF58zmWjGKUj6hlrH1nOFC+u5jidOJ87ZirSryItgqTIcjZAzjRN6WBDzmSliEHYXFjGIHgRxmAYfcZnT5KBmO/YRENWhmAiGkdShqh1pYpt4S8UBTQAogxSC8uhSthLKbZptjlnkFR74h0z+BhA3h/kps7+MQbkfbH7A2Bx9PfxPvYHmFOD0i6MuCsctzuX+uTK4Tk8JnydBrF9/wxSelCMbtIw/JBB6iltv/+Yjjv9PZ3PSS3Q3vu/v/1j56m2vGXdakco7d28vYUHI/rpY2/3LbuVdgTWXghqYpAm0zHh4Jk61Yc+lq596ufhNZ464cPnRKkHl/De9glsfGr/qO2g00FIsoMJ+w//SbBx8ELvLX4Mip9w4Xwvs3EiXvxY25sInNz/rjuqugDJ1X9CSAhZTyWgSxjByIiVEZM9s7zizHkuF45Fa1m2iosuczm3zE1mpjytTpg8En2gTxGlDI6Mcw0LV8uiq4DKHmQgS0/KPdEnUizX6r0vA5Nt0LoMTlkKY5FSJGeFNg05JpwpoQ8QmqYl+FijYtOgXTKMUvQ01sJ4Qz/eIZt3zC5eMpcNX8yf01x8zvzqBVEZjBlp3Ihfr5jZDQ2eZXtHQ2Jc32CGRAoB7S1KKxoF2jqUspwvGrJoxpgJSYhSlA9JhM3guR0Mt65l0cDaZzZxYJMyEIAWpSxJdDUf0xXDqlq4rlDRk86m1FmpoHCfjj71yD3S+T8l7n48+99nOI5ZiumnHMTkH85oT82Ap5l32XQHQqYne3esD4ONA2bjA5VSfwqQsX9+j7EZH2o7xuLDA/F0zKN6yhyHr7br1Xtdz3C3jz3GY7eQ6kdzeG2PfZ+SoZjAHYIr4PC7OcGEbK/9BACewnfv7QwnoPERRPAnsPGp/UHa7mV+/4t9tNF7B/iHrYwW79MK/dSzLABBk1Rx4cyYymxktM448Zi4Zs6GZZO4nGkubOJyJlydG2ZO4/B0OmDF41RhK2wKkEaMJFarNSgDCQKGlbaIZGadQyRgdEabtBVKUuPpaW82XGakiZQzMUZSFpTReDWSY6RxFmcsWkHXtTjn8D7gQyDFBFoQLFHlEhjLI1oSDB6fVrxZv2F2+QvE3/H8csbi5c9BImno2bDCpYRfXZPHO5QEhtt3GJXIYSQZXQCANVjbYpsWN1tilCGPAQ00KFzbYqzDW+FZC5uFoo8N62C4GQ13vXDbD/QpM2ZLSJqIJoupAlbN1u+xDuTF2TUjuVa5NYWOzvnhYHEcQtj//UNg4zEdxfH+HjAb9Vzf1x7b9/S9PxYGemwkeWwAUxyyIcesyoP1f4SQ5f45P3aPP3icR76Tx/uGfaS5YyJ0HaGVmsAH6D0NoD6pKzts+5Vpp5/HqcNbcKFOP2f77Nb+/qbPTrmyHjc1CVw/0D6m//yoQmw/Zaztp2zqxG9/7O2P515/THDh41vazvwPl8sjwOKjvsEKvR/bF5RZ7P6xTzkMPMZ3nPqOpnDN4TE0QbVFIFY7JSMBnTd0suHMbnjRer5YGj4/t1w0gpMeZ3qcViiJtEbTdRZtLMRE6hMxRbTRfPbZcyQJfhxJIZMzeB+5X62L9Xn2NK3FGkXOisY1oA0pZ0IIxCQopYsGI6VtCIWksKJIMdA0zXZMs9Ywn88ZRo/zAR88PgSUtUhwhH6NyplWZSQNZImkMKCMYcyBxbMzFldnYMvgvZjPUWnAh5FhtcKHDcPqFqMyKka8Ktk3rm0RF8jjCCEiSuF9wDQNWlkkB2haZsZidGbZCrFrGHPL8yTcjYpvr0eGDH1IrIeEj4JPlg0diWqfrgyiLBl1INYsAZTds5VqiGD63ieTrmO9xP6z8ZT3+hSjccoQS2QnMnzqAD7NvrWeRIKTrinXx3bHcmwr+J7YxwMwxO7enGJo9s9x/7Pj5dO1H/87BjDH+9j/+31g4+Q7+8j5HI952+uY/i4LgZK1pLWqdZ5ky8LWoBt7q+4deI/p2Ibnyp73/VgKkFHb7cs5Vc70EWbiOPz2vmfv+BrLv9O9/v41lO716ePDR4GN/Zv/Yw2GPxa6fe+M4YiC/OMZyP+42unv4iO5so9sIvJoSOK4VZLy6Tv/AA24/WV6iR875inQk0+fyamOTpQqzAYZJQGdAw0DS73m80Xmi4Xml8uWKxeZ6xVO1pDWGKBt5qA12gIqbTMSVDvDdvPynXmPUonGtQQi3geUUSAag4YMt/crFNC1HWkcy6w9Z1JK+MGjVAmjpBpzzzJdtybFgHIOheCspes6tNbMdEc76xi9p+97GBM+jyQ9oNRUTyWjUiRrjYkjaX3L669/x8tf/Jzm6iXYOSpD9gGhQdES00iMGh8DOmc0gmscOWoSipwyKY1kMiEmOtFYZ/HeE4ZE181QOdBYRePmWDyNmzEzHXNrCThWg3C7SqzXnrs+0qhz+mRIosmmI5IJeRcu0VpjFEhlgESKZuMx+vrB87LXfx7rLI6fm8d0Gcchg/J8ykEdneOZ7nF/p2s2Y1le9lBYrcdi8I+zggehnaPr3D/++5jF97X9kMjx+LM97hF78r5x4Pjz7ffBYwPr4TH32SSldA1FVbBhFMZolN4BOpGMlt2zYPdCJFptZfFMcKTc/3wCrMoeGJyudcouOl0/5vj+HT8LH3relHp8grbb8MEv722fwiif2h+2fQRxUrR7HwN8fjioFPXIq6QejeqU7fZe6qQUxhosCZXWdPmeq1nkF+eZv37ZcOUCV84zp8fENaQBmhLGIA8o7YjjSIiZXKl+MRatDUYrGjEoIObM4AOSM65xjN6z7jdoDco2pBgZx4jO4KMvg3MIDGPAGEvTtJXtiGQRtC0VXZWUugoxepQS2tbhQ6SbtWhraeMM2zjMZgRtkBjwMRCkFD2TlFHakEePJM31q6+4ef0NLy+eI+KI0RCTRkyHmI6YNsRoiaPHYnDOoGgIHhADpniJxJSJKZMd+OQZxojCkkYw2tO2Giuaxgpd27KwMB8zgcDlTPOzs5a+17y97Xk9Bm76gXUQooqM4kjJoHGIGDQWBFIUYsrVDdSQUiKlhHMO59z2Oz/lfPkx7RiYHO9r3+xKHT1vwIEwczeIPNz39PPYPGs/zHnq3KZ19gcy/SNM4h7TSOxf32M6kgnkHd/7U2zIcciBR4DfKXAzgYwSpqh+LEaX0MOWgaj735uUWLMDHqbUANyySWpLm+2AzQQ6JnAxnU8Bh0LRa5yu+XIMgo+v5xSbsX+vtNbo7/foPto+gY1P7Q/fPuah/qjO+0disE4ccjvLeOyoe9toSbg0otOGTq35bBn4+bnwxTLx0vbM8ho9jogpng/KarCmHCNncK5YkseBGGKhzlMmEfEpMQ59Ca1Iqp0m5BzQSjhbzHj16hUhRtq2JeRMZxqUUvR9T9/3CJr53JFFCCFsqz2OwYOAsxYk0282pBhKxyeCrhbeGMPCLnG2wSpN7jfkoaSYZiVFn2IsISVaJ6Rxxd03v+Xyi79ELy5L9UqBkk6q8D4WZqUiPZGSMaO1RbJCqYykkrGSYyKFkZiEcQgY3aCyYBuNcQ1KDEoZ0AbjNK0kOquRrPBjYiYRJ4IdI43yXG8SmyxIbBiTQzRo25ATBB8QAavLvfLeIyJYaw9mo6lmZcDhIPjUtj8IPgY2oAIOeTionApB7AYTqQT8loivOy9eDLmWRC/bbo/84Pymtg94HguXfOy17/98DAC8D4Ttt8PZ+iFIOgBXH2Cbpn1Mlaq1mizsJ6HsFOqYQhCFdtiXaVi7G26tsYh5WKcpH333j9/TAjZOtX3Aub+fx76XU2nS5Rp/3AjAJ7DxqX1q37edAiF7H04vsCUxi3e0cs9VF/irc83PLhLPXE8nPTMnuNagtIM0dfKKFCNZEibUsu0hkMYCAKy1KK1JIUBIhNGTcyyeFEqIKRBDQBAu5i3X1wOrdyusbRjZoKzFOcdsNuPufk0IAa0nQZkQUyKEgFEKckNOkeAjxmiM1cSUMNaUQcpo5l1LZy02BkZnGZQmioC2GFtm2EaDM0CKrN5+w7tXv+f8lzMao8g6oxXYGi4yWhCdqZJ7gve0TUeOCUkJbSDnSAqBTRoIIRFCpmuXiNFkzkhmiTJtCRFhUClhrUI5RY4RlQecCpy1oK3gdPn3ejMQsxCMIlQ62WdBYqHPtdHEHMk5Y4wp34U6Lbb8QY/XB8BGfcpODtAPz6PGg5TaAxqVxK+/yOTQWna8Jyk4ERo8puXZ2SH+0Os/Feo4VU7+lD7hmNE5BiLHjE494MnU1+nz/UF7MirTRmO0wui9lHHUlg0o4ftyYya3WG2qkaKisGDmUKwpgKrnvx+OOw6f7fQdRSKwn1Z96j7usxWn7u9DUer+nO7HAxyfwMan9qkdtEderpPCkqmT2C0XkT377PKzI/BCb3gxS3x2Zvh8GbhsRpZ2QItHa0UWyKJKSqi2SM7E2tuvb1ekMGCVQqeIRmgloxOEFEiTOViKDN5jraZpLIum4/7+HoDnF0tucuLm9h5lHdY5tDE0TcN8Puf+fkWMkbbrGMexgo9i6x1CwPuRfvBoawneY4yla1tEKzAa1zRgFK1vGOaWfu3w2WJcMdjy40DXWMR7NJHU3/Pmm9/RXr2gO1tirIZGo1pH2xhSUqQhkFMoIEwyRjsgIikACq0yKg+MPhFjJovBdB2tU0Tj8HoGuuhLVDZIFHIOyDAQBo8SaF1DY8EhtI3BKMGnRMoerTuGDKtxQKKlcZYsmmH0JDJd1xYTNNn5VgDbNOLyPPzwJ/KxcAAUbHBKT3dawzABjclZ9Ei6VHUIImnvNXhcs3UwMANZH+YvfJ8Q0mNhlGnwnqzPJxZhWn1/QJ3CDrtBeTpDUFpxnKFWPFT2B+Dp5z5oqedRAYXW+4PyxAZNbJza7k+z03ZMd0cBzllE74ONep/r91AAFdu03L1dlr+1QqOLHixnyIdsz/Y+1tPZLwIoUvssqdegd84a22t/LLf7B7TvDTa+byzyVPvjEmx+xLlMU4NP7R+x/XTl4Xf6DGESlJf6HdNbvseJSgQE0ZZEcaRUkrEINq1pZM25G7jsYK43/HIRuWgzy5lm4SKNCkAus+QYi67BJBBFVgZQWA0pJlLwaMAoXYBCTUtLMRBDraCqBWMNPsIwekp2iZBEs16vS4zZtbRdZBwGQorEnAl+ZHF2QeMsw9BjnMM2DQwD1pjqrCkYY9ms39EtFgTv6eaGGEYSmcXyjNZqhBYWZ3TnI27taZRCG8cwDqjG4mzRZqQgeB9J169I62vU2ZKsGqI5J1qFnY+orFCrNYpIjh7XOMptKYLXlIujZ4qa6BPQ0rRzbHuOcgtc24LNaBVw2qJyJsaApMQw9CUMIxmVWpTRmMaRxg1La7k0a+bzGTdDZJ09/j6R9TNmz37Gt2/XhJwLMNEKpVIpay8JtMJoi1IaMzmPZkDVNMX6KKk6ymttdszCNCjWlY5n7vshkf026Q1Ozcj3QwXb+H8qB1RKbSvebjMnckZlRc3RRm1DKUed3D7bsv/+7Nup83Bmvb9sWn7qvKffD2baenfo7QCv9u6HmsI5qvy+BUGy25Bpu73f0Wi1q1Iie8ABiaUPqActP/JerZcphEUVhsLOZjZTeo+EknIMvXcfjQKrQfRWuFHtzvXupko5H0Gq/8sOAEwsDpNwWe82KqBnulcKY3YeIFvAufeVKrV3r9T0214/OzE/wq4icQ0TnXo8HmsfDTZ+TJABPx7QeOy8HkPKP0rb9RTvPd73aR9zPX/K7cd+nr7v/ic3TGEqfLarC6GKa1VdT9WuROogorbAxGjB5YFnzcgzs+Hz2ZqfLzNnduSiiRiVMRoshY4VraFpUEO/rQHStg5lHOPoCTGSY0ZSxDYOaun0jCLlhB8D3geGYYXWCussomAMkSg9WmlCiESZMjhyqSGiqkNoivQpkZLgug5RwmboabsZKEXMibZryDEScyLmBAjejyhdmBRtDfNZSxgz1rao2YLFlfCCEuLp+54YFfNuTgqxWGotzjDWkIc14fYN+fIzjF0w2obsDLr1hQGx77AqQQ4YY2pheim1KVIxNYoBcrZo29G0ZzTzZzSLM3TXIFYAj8qp1KKJEYmRPI4oRWFvJKOtYexX+GFEMszzyPO54cxmfn/dc+EaPnv5M768fkMUmJ+d0SiFSM0O0kUgWJ63ooOYSt3nDPsFRrbvrxz20VtgATw1VD7N3B99puVQqFrn/oXWPxzRCtgoG0FW1cTs9N4/9EYdayOm3/d/nlpne57HTI6SGqrYQYK9q2Q67cNzeLje6b4zo9gxB0pN6x3qXQ7/7QSdUp/KPTg1nQFqW2u11L/ZViUGIKHVLqwCVHO8aQCXUjdH6jIlIBmlCnNKrbX0oXs8MUAF00z3fPIC2T/nx+/VwX5Fv+devr99CqN8ap9abdOMk9oZbz041K4eKFLI0KTcrjPIESeRVgXmesPni8yLznJphIUNzFxiPmswkgqI0btqopILu2GMIXqPHz3WQvKJsR8wxtBaWws0lc4qV4fPGMcSZiCRohDGgU3fk1LEWrud3eSUSDFtOx+UQRtBiZBiZLVeM1fFPTSMI1nAjyMZmHczMjAMQ+1shBgCXdeRU8I1DSkUtmS+NLh2QRNazi8v2KzWpJSKzsMo+tUG2zYsl2fEnPAi3N/ecL6+Z3axxFqDahxYg3YGbSwKW+5THSTJgqRETtUtsrJDxmlc52hnDd2iA2dJkggxEELcE80lci5/Bz9itIKk6AdPzomhH1jOz1kuO9Iq09DzxdUzNmqE8Z6rxSUxB1Iuo5PSCmMt1lliSlNR3t0gIIdhiFMajAMRI2BOaBKeYsS03/a1CVvQUYHmwTN/AowfD/4P3pNHAPz7JkinsiD2l0+6gVN+Irt00sfP8/u2h7qWXdvXMpwCG2qiq9SxmFbKYF4nIpMrbd67hGnZgzbRDjsiggf0wV6/dCo77zFtyw5s7HupPH4PT4GYGOP2GPs/n9I+gY1P7VNjL0Yp01/TrKqmlzFxubrWNykUuM4BkzwdG84YeOYGvugUzztPl/tS4yQlom9QVmONxdRZcQqlEqnWQmMdVmvGcaDf9CCG1ja0bYMzhmHYcH93R4oRUzu8kmufWc7npJxZr1bkmi2SUxm0rLFohBg84+hBFMqUNE6nNKIMOUbu7ldkAdd2xJjYDAPaGoa+xzlHjHHbsdiqSVCVoUmxgA3nOrRr0VrRtg05R6hlq8ehx7aOy8UcyRnxCWcMvt8wrtd0Z3E7w1Rag3aIMmAcZAg50QhIFlKq/gGVUjLW4lqHbQxYIUrAVKSYq9C1UMC6pPSiCCmSQiTZWBgIP7K6u6ffbLhcLImbFat391wtrxhM5tvv/oHni0t6WXPnRxIzjG0w1qKsBWW2egCpxdwm+j/nXGutHHbQJ1M06/bHor5jseNT2n5WQlkASXZeIB/a32PHfHS77SA8jZM7hmAKUDxgIhTbAVzr6lNRDrINL8E0E98NlsfX+JRz/BhwciycfAiCdkyLHABKOfpcHf2bmj76e9p8okz2qC+p60thN6auStXV90XC++c71cepSx88d08BGsftgCn7yOfxE9j41D612iZmURQ7JqOKsLYAZEt5lpCFkZFOe670huduw4t24GctXHWJRgKdVRjryKJwjSvhEECiQnKk7zcEPyCSMZO4LYK1GmcdREiSkCws5vMCJKLH+5GYPDlnYrI0rmM+n5NzxvviodGPI03T4JyjcY4Ui5BS0MUfIkOmOGZu1mtCisxy6SB9CLSqiEWdc6SUsNZu0/fWqzVd1zFueiRlckqMw4AYQ9fN6bqGpnFYYxj6gZgindY0TcP9/X0ZpLWClBn7DWHoUbot4YiugTjHtjOsGJBEHDaUqPdUIZcyIBmFbRxN57CdRVRmGDeYHNHKkEIkeo9IFeXVkEGOkeB90ZHECDEifmRmDTZHbm9eoYJw+eyKr65fca4ha0Pc3PB8/nMG5cA4ktIEoVi8i9runyy1tHoR8E2z2P2By9TshIOOu247Ld//+bHtQYqqEtIjrMUpluGxY78fbNRz5mGYaEu17Z3bdD8eDo6H1y+SDs7zMQ3Lh9rHgJNTzMbhPupVSoFSItvyMAchrl1fcnQup1iJCWgcf3ZwzLJ1Ic4esg/757sTzD685vfdw/1r3f98v6jex2ZefQIbP1L7c9NS/CfXZO81ropyKdUwtnTotGKZsSW0CI7A0nheNIGfzQJfzCIvu0CnBlTeYFIGUbTzy+rqWdgIybGkuSmFcw0xenJKaKWxztHalpQyN3c3JaXVqm0htJwzSiusc2W+pAxKaVIWUhZQGm0sc1cG9rfv3qFQWOtQ2hJiph+KJgRKbn8WIafMMAwobUpGxd5saMpUsdaWlFhjSnn60ZcAh1ZEP9IuOrQqgAc0bdfg/chsNkNEitOo0jRdS/Bj0WBEjx8H2kWHWIPt5iTxNLMFRroS8siKnEdENEkVEFhCQqCMwjiDdQXAxBTIPmO1Q1Is/wCpWgRJiRQDKYykYAg+EIeRxhrOlkviOLK5u+Hs2RV+9Y4mw4vZnJvxmp8tz1irASUenzNRFEWFY5EsxCRIymjJKBGMUlhryBzS2lM7CSj2gMn7AMdT+5wtwwGlANgRa3KcuXI8kz9uj4ZLtp/vXcTRdscD3HSN+3U8HjvO/nke+1M86fw+so8+PsdT57MPOJSe9BA7NuFg/aPfj89nuj+Hx3j07E6GQx4PgcneNo87i+5f7/45Teudql781PZHATZ+DJHg+y78h+/9sR2rwyfoz7Idz1H+PJtix2ywnZUUHlwpRcoBJbmkW4rQGYPBM5c7rtyal23Plb1nnu7QmwFtI8XvSqNsiyKhUIRxJIWA5GL81HUt5ExOjhAC1hrc7BwllvH+jsViUdiMHOjHHqVKife2bTFWs1lvuL3r0aqkq0oGZRw5FpCT0GQ0q9UayZnF8hkox3ozMIaANcXm24exeGdkoWnbau5UZmqL5ZIswnq1Yjab4ccCHu5ub7c6g67tUFkgJcZ+TYwlPIHSLBYzYkysVz3ONTjXIiJYrdFNiwiElLA5Fy8C15A2imZ5iaSiuSCCzivC0NPMzkjRk3PAGgOUui5ZMkYVHUoII4vZGTkW7Us3mxGGAuiU0UjMaFFEH1BZyCnQWEsOnk3fo1Um+x4fN1xdvKSXjCaS3UBnAjYH7saAJE1KhpAsynQ01iFGCtggFbGosgW0bh8vddDhT00qE2IezKAPt5s+E5FSkXYPJOz/PG4iJZSRUtoe/8CJ9GhAfW+f+mBgnCrJ7oDElLlwcL75UN8wpWSWVNLDWfkxizGd8/75Hs/kT58b9XxOl7o/vl8TKJyYlv195zydy66WTBnES/ppqdo6hajqtefCLKW4A0gxZtKDkWmfRdg/T9iFYQSRVN6tI2ZjHySKlFo9u7+p/ciuMu772vE92Wc6jp/Bp4KOPzjY+DGABjydHvs+x3vKS3cKHf7QfT92vKe2R+9J2dEP2scfW/txnqMdyJhYjfIyJQwJrRIWQauIiT1LPfC8i3zeeZ63PRd6Q5fWmDSAErRp0KZBGVdzaAujIVWgWASfRXSl6jWMw0i/eg3YIhpNkRgT1hnOzy8JKbJerxhDYDbr0HbB8nzO0I8M6xvGwdftcnEHFcG4JdpkVv2KKD3OCT7COEa8SoTgGf1IygmXirreOQvWkrOwWq3IOeOsZRwGYowYrdlsNmhtcMZilcb7kXW/wrUNTdvhrKNpOwRNSL6kDOqS1pskY9sO5TqMdaA0SWmUNqUOSzvHzGMx3zIJgyX1EdWCUQLakscNyliatsFoSwoRwYMIFkUcxxIiyZlhs4GpQ86aHENxQ81pZ6JkDDElVps1IYZSFde1GPGYHDhvDGITJm8I2dGHjA6Gxpyh25aApmaW1gxt2SoVHqOqH75fhxT6qb4FdvUwhMf7nPeBjmOg8aFtPtiq8Bl2Tpr1A3aUP0zeFfvHmyy+d4feFysIHE12TjFDx38/dh2n7uV+H/6UYxRwoSrgODxHyTUMOwGRKeQnbAG8QM1Ueti3qkdTkab7WDKcCtB8PJRx/L2WdfQDkLsP6qa/jwHf/j07DqN8TPuDg40/5aYqs3HqYf3U/tTafud4RD/miCZh8ViJOB1Z6hUv24HPlopLN3Cmelo14oiQIjFCVgWkqOhRSVBal7olrcMYW+j80ePHce8MSh0V7yOr9Wo7kxtDoJt1ZRDvlhhjSSKMwXPz9pZ+07NarRjHsYQdQtGDpJRpmpJK632mlVzcL0WTckmhTVEIMZFSRKQaACmF2IzkzO3tLc457GLBzc0NwzDg+wHvPY1zOG2Io0eUYDuH5EThGyBN1WR9LN4T22qjBuccys0R0yDlTgEGZxrMbIkoQ/IB2wiqmTHKgMktKgcyGp0FraWGkSzJZ2IYi6MnmuDHatiU6Tf9QQx+HEf6zRoobqyj93Sz4lB6t14hWUBZrKjC1GRFOz9D6cxqfY2MPV3uQJ/R68xGEolMViVkUkLvcvBUPbXtd/DHbMb+OrlqQU4Nno8+4XurHjhjngjxPDaQnRrQixGVbAHDMeA4NSOe9lH+VaJY8nb9su40MD4OpI4HyMfasebiYcji9OB5eN41HCd5y3JA3l7DPgNTxofdMdMELirwSCfYhVNnf7hvtrVRpgJ8x8zUIROzX1l2D6SeuPbH7un+c/h9JtRT+wQ2fmB7Ku34qf3xN9myGmpLeyvJGARHxOQRJ56FzfzF3POLec/cBFpZ4/I9Sg24RqNyi1IW08wwpiMpgDKYxxCKxbgI4zDgx0DjHE3TkHPG6iLYNA5sbri7u2f0nrabMQZ4c3tN3w+EWKhUoy3ffPUN6/sVwzCSYtEnaK2LaNN7nLO1Y8zMukzXRbQ2hJRJMRJTIGVBG4dSheI1puo3jGKz2dC2LVprVvf3pX5KiFhjIWfevXlTYu5W0XYW6xzdfMF8vqRpuhKK0hbXzIrYVqlS+K2dIXZGsm0RW1bAIcrg2hlGO7KJmKSw3QKjR3QaGNZ3kHPJpomecQzMlK0+JJkUQVtL9IEsmZwy4zCglS5MgBSPjaHvySnTzWbcb3qCZGIIrEdf0k99wGZFkhVoR+M6jNLMlJCNYBVYGkRGxmyZarBMguJtR/19nsWjTv2xmSgnBoBHB91KLxz3Wcez/afQ4w/CF2oacJ9W1+WxAe9Dfehj1/a+ZY+Fh/Z/7mdo7Ie5HoCvDDmrOujLQebQtKrkwjrswNN0jLTdV8rF3+bBOX/gmo/DIAeBrBPs1+Fnj5u/ve+Yx8tP3b+ntE9g4we0ifo+7gg+tT/lVmKu5WeusCNjVMKqxMwKz+eWzxZwpe+LCDQPWDWiiPhQ9mGNxpoO7KwUDMsBSCi1AwIxxoMZxdD3bNYbXNehTMN63ePahm6+ZDOMXN/ccXu/ou89o4+MPuCM5X7lublesd5sSDGhtaJpW/w4EkKkm3VAKSS2GQLzWVszMzIiieALG9K1ptLcxY9iGDxCJqQAQIqRoS9mYX4cSToSvS71IbTBNRZFw9j3jMPI2A841+LaGcvlGcp2NbNP0diGxnXkpkN3M2hbknNkFFlllO0wRshEyAanMlatsVIycHJMFFFsEXzKZF4pQk6RGGNlcEqYKlXH1LTXWYfgSTHi2oYoid77wtrEiFGGlHqcywxjYDZfMmw2NDEzMw3GZeI4MESD0R2NmTPmjOSETGmlSk/Rsyc3ER6EXt7HXHwoxPtg2YlSnqeAxlP3vQMb29jRk87j+PjH53Cs2Ti1T6XUASDYHyD3af/HPpt+PhZSSikdbDOBDZEaXuUYuG1/226T97JV0q7YDCln0r4eVibm6cMD//Z+KHWw/imAcPh9HopCT7X96z0FLPY1IRPr+glsHLSfKLyh1EHHIMiDnOc/3vancI4/tH3cNWoRRCVQGVGarBSlFphgJbNk5Lnz/HKhuTI3WP8WsqexCmcoM2epsxoUSSDGwBg8Vsfi0FFp1xwDqZp49atVTSktz2kMCZUjzjWkLLy9vuWbV2+5v19zt+pZrXvu7zfc392jlKXr5vR9T0qZFBPBB4wZkZwJ3rOIuYQsgJQVm8HTJDBGYZQmx2p2ZaUUktLFbTSmSOwj2hRDreDLQN+0jvv7FSmWQmTnyzNmM0OIidubNUKmbSOIwSwsYmNxpKyiuskISzUNqplhuxmqnaFtR5TCTijrSjZMjhgp1uASL3EmYYeMCgkZgBSL7bNkkFRNvwSfE55c70Eg1nszjkOhn0Xo+6I/0a6h79fgNePgkZQxxuJzRA8lq0YpS4yCcyPONYwetDln4Rqy9vjcY0UICBmH1JARSpUU2JxrWuMULGNLg9dhC0EzOVjq48FgCjXUXKjtICPHqz3ObEx0fI3xbPcjlPuntlV2OcmYvK9N5lLHg9Tj2+1CA7vLkb3lj2x1FMJ536B5DEIeW7eA/yl8M50H2+tBSshiG0aRHUOhVDWb24KK6RiyTWPN9a+85+I11ULaHadyqqcuvD4P+2GpMt6wDUtO4fydOLWsx6QnkS2xBQdjlGxXrd8gkyvqVgRb+6yyjSlr5FyqG8e0ZW8+1P5swMZ7Y3XbUnxPQ9lPbTKJuabvFFUrJz7ytpxY9AdhQ46Dt+9b9T0v/p9T0wiWTCIgWshWk1WLjg6THDN/zy/mA/9kcc0LXuHiGiTSdI6u7WrFVYOzhpwFpQ3OCSIFZIShuFnmFMtMPHmIHiPFAXO1WeF9BK05WzyjMw0392ve3a746tvX/MOX33B9c1fMxDKs1wVsjD7Rh8LBIBmVMzmXY16cLWmswUWw1hDCiNKGmDUhJTprSr2GbNBZyDGTKVoTkWKRbNHoOihoYxAU9+ueFDMaA1qTtSWIYXO7xmiYz2eEkOnXG3Tt2M6W54QwkETRzi0YhdcKaRqcaTGqg9yUeLYWAhpjNHrWgRhICprP0Y3GLi2tsjC7IawVsb8lDCPWFJFo8oGkNHfrNVkEYwybvuhifCxhlZwzwxgZxhEfb0jJ41oHIRLGQDYNKMXQB7r5gs2mR6mIsQONtpA17XlD23liuCbgUfYcYwIb1TKqhqAcShsaJSjRSDaQLVpplEplIFK5DFDKIlhQoHV84Jq5jddPVPgkPq0A5CmaBYFimAZMqGInUlQVhO1mw4Xfe6iVOFV1tUSONPvsxvsAR+n3dtoHHmil2C7bgZLTHdGpsNCpf4fH3gNSFNFyTpmUZctYTx37NEgXB+EEErchEypomJgsJbsKbVKvsV5F+Wx7UAOqTDCm7zNL3FrbK9hmx2mlYSusnaq9GPIEC9Q+Y1XWnVgSNb2/ilq7Zi+cMgGIyWJfaRJF4TqB4zJBSeRYDPoyBWzlFEtV6hjJf6xg46miko8dgJ+63/e+jI8c80n73nv46kZHO2cPPR4e82OENh9zXx7brzwRaHxoP39OrbiCSqlcqaSUPZGASZGOwHnruZpFzu3IjA2aANbQGIPVqphjieBsg0hB/WEcyTkRQynPnmNEJGFqp65R+JQYw1j0F8bQzRa03YLV/cBvf/cVX337hrc3a27XPTf3I6vNyP1qze3tmqEv+oybdelMjC7F23St63J9E+hazeX5kmcXGWcM2lmUZNIwkqyhaywGkCToWClpo2pRMY02ipwF1zi01vT9imEYaGxLzIkcYQyhhF+gPOO1mqX3nqZxtLkhpVAGUtdibZkdNbOO4CzNbEbORRibq1pGKY3SCsFQ6jFoTDuHVtPEC5QOiFcYnfAIo08kygzUh0DIGZUCOQRiFiQEUs6Mw8jElqdYZmYRRUaIQ2QcPTFmlArElNj0njYI/ZBQxjCfLVjOGhoNku5R0dBIS6eK8VpSCaXBKEtPrY1C3s54a4Hy2k9Mg5baG+DkQdexbdtJzd6iE7T5+8IvH6LQD4Sbslt+/PPBQF4HseNB/Th8sc9kTFT8PrVfzuGRy38EtDylPSYG3ekwZMsQ7PEae+e6f8zyP8X0U00jPuUhV9vlWlcGQgT2aqOUPvhQWLrbB2xhnuxAx7RUK1WNB1M5XAWbxVm4+uNUkMSetsOo6qeTE1kSOafS12lFTgHR5R1Uoor5Xyq1kFKOSExIdQRGpIjbU0Bi+uMFG5/ap/bH2DIwKoPWDhBMjDQ5MJMNz8zAZwvP1SIws4JOFkkBbah6BV39HqDfbA462GkWbbQpIZpci6DlMrCt1mtiFnzKXDy7YnF+yc31hr/7u9/yu6++ofeJ1ZD47Vdv+fLrN9z3gWEQfMnwRGsYM1A7ISV5Oyu67xOtTaz6FbcboXUtn9FwfuYwpiGJEOtsK8ZMkkxD8Z8wtug3Bl/ErNbmkuEyDBhtirmXD0jOjOMIOaM1tG2LNYoYQ80uKSSyDwMmZ7q2RVtFJmOcxQsY54iDYI1F5al+TJ09a41kDUaRrSAGzGwG6gIxGqssVrWEPpHjSCQyxkDwHp0DMo54HxClil9HllJqfhIDi2KMQtYW7xPDWGZ2WTKDj8SouN2sUGpAW8usG3h+4Xi2MEQ14sIK3V1w0YHNESWRxoATjUngJZHUNGyZQigU+gJBl/o6lMFH783eT2kMHmtPEV8ef/6k8MOkI+D9QGPSbEwA4tTnp3QhKZ02lvoxJjeP6VxOaVKypDrY7+aIwhHCqEtRoJbadAABAABJREFUCqULI1GqpO7CFoopq2bHbmhdQIEgaLN/PgmtqwZiCzgqEN2tVb6DOjlRSlWmYgp4aETl3XoAKtcqQjVsqXJlqzI5J2xl09AlZFzuPWgL1lma1hBDoI89IQ9E76uw3RNDYWaRhKRcQEjK26J9H2qfwMan9qkBWSsiGqMtNgk2JhYSeObWvJzd89liZNkMuNyjpOSnlAyTtHXULB3oztZ7imtOnbFRipiFEDx93+O9p+3mmAyr61s2faAP7/j663esh4R2C1a3N/z6y1f86nevuFlFQi71LbKeUkqh+IBqNHVUqzMNZ8ALjKtMH0ecE7Jbk+k4m3eIUphUPC9yBmU1SXSppooqGSv9iHOW0Sc2mw0xJNp5cRJVUspvW0XxqzCGrmuwtUZI6yxdY7FWg2S0UXRdqfdC1ZCIlBmUUq5oOXQRrmqti05j6oCVKjoII9A2GM4KDa1bJBlMu0bkniADfRTICQk1+yfGUik3FXv2IXhiVqQMY1bEDEkbgig8QHVj7XMJT90PAZGAsuCGDaIMs9mMs3bOcgFdl1F6TRs9nQi9GFpRNJLocazEEJHC0tQwq0zXpqYcKDgGGk8Rgp4CGo+tvw8E9rd/bGCezut4/Q+1U6GWh2Dj4XU9FVx9qD22/eNZFILSZZiX6Vzl2MNkF1oRPQUYjkI4dcVtqEpP4Y0Ssto3SDVaUKaQIGV5DY/kw3DSFJ2qgZEyoZiOvd33BNoSqnr3lCd3CpuAIqNNql43qhSCVBZd2QxrdCmnYC3v3r1l3NyTxxWb1T1+HInRk0IgBA9S9V7GYLWp5m0fbp/Axqf2p9O+Tx/0xEmSANlotNLoFOli4sKOfNGs+WK+4rm7o5WeHBLQYU2DsaU4WU4JawxKa2ZdtwUeIcaSJpoSuQ6AucbJQ0iMYyCLJmNZLJ6BdlzfbFj1kd4r3t0O/PrLV/z9b77lzX1kM8JQwcYUGy/1TaaBQSZCHhB8VliBIQuDRGwQzF3JslgvWs7nC8yzsxJiiIVp2Nb0CBlRifvVhtmsQ+mIRnN5+by4ZOaIaRpmXYc1ipQyzpUZlVYw7xq6WYd1plZZLaXcbeOqvXjpepxryLHePwpTlCdB3GQVr0t1Lq3ttsqrchYlDeg5Nli6s5FgGvAjtCtSzmyGnnGETMMQIqIt2rUMaHzOaOsQs4CscO2C1tlSlkQUIUb0ZsNmPdCpGYP3DKPHC5xLA80ZbXfOrG2ZNwpJG0BhiOgYyGxIMkeYMdqzUvUTg6gGUbbG4CeNw1RH5bhc+d5jfAIUTMvh4Yz9Y7NUjj9TSrE/7O0v3z/OzmL840LQ0+kdMyY/pX7tcbBRB/IjK+7TzqpqL7UZdqGjKTsF2Kb/TltM7MWO2rDakNVUEG86P/ZCZRPwrEZ0QFVm1QnFJDqulVeUAAmlBWcqOAK0njg1RWcajFIYW+rQGKPRRmOtRevy0zmHDiuGdWIIG8LmFj8OBXzlTFNBhnOOtmlomgZr9yib97Q/SbDxg7QVf6g2hTU/tR/QZO8eHotkjpfvKNGnNANElTCicHlkSc+V6fms2fDC3TDnGpU85AalF8VWvNFMnY1rmjKjqWyG94W9mEoyp5Awar8aoyZF4X59Rzs7Y3lxzn0/cn2z5u31hv/4D9/xt7/6Dd+9veF2nVmNgG0gCd4Hpm5muk6pWodtSh5gFcQ6SxuioFPErBQ5wTh6jOm4wIJuyETGIKiUMAZER0JMxKwIESDRWAuiGYaxgA2lsEaBlJotiEZyxLUd8/mMtm0QVTJyfPB0SpGybPUtRpfZ1CQ+hTJzQ0/hhtL7Tv1vreqOiCmg0DiUztgzw5JM6IqnSVAav7pnSB2qKWZijAFtG7r5GX42omLGNsXfIwuIKhVys5S7l3Om9Z7ntQbLZvDc398hGc5aIWtYews5QQrMG02nC4XtrMJJxsYem1uGnBEDWWmiNORJGGgKoFI1dKVL8ZLTpcf5uBn/Y5kkHwIi++tPgON4+f72W2MwPdmVqwfAZB9InDr+MQPyGNPyse2YTTn18+E17zQaObMFDeXjCT3s9T0KpnwTpud17z5MMEEBZhKIKrDKFmM6Jm3MTiQ6ZaRs33BhC+J3OhpojMboYqA2MQ1ay063pcFU4GEQOqXQqhQAtLbUP9KmeN4YXWoLtW2DyxeQVjid0SnifTfRPsQQQClcBSYTUHlKezLY+MceyB9HxD/diH1MMX6onQpVPbp9Ra2nPv2hos+Pn8U8LhH9qQS8P1qr1P3uPA4/3s4mag/x1K9TVMZJwCXPgpFLN/BZN/K86VmwwsRV6Rhch9YGY0GpuJ0BDX0PsC3HHkKo51dqddhKhHrvub25Y71aE5LQdkvOL55zs+p5fX3H23d3fP3qju+uV1yvPPeDsA6QlCLEjE+CKFfmMzXObFzp8IwCrU1lTzIx5u0zlwuJz20/IKnMssasuFmPnHcON1uSQl9CGsYQM/gYGMdIFoXVmhQzku9x1tQZTikdL86yXMw5X86ZzRuW8znOWVKKJYxkHDEmjLWVAWlKVo0qGQAVW6CMQYzBKEo8eerA68yxfPe6dOBaU3NeUUZjVUIbuOocbrHg3Zt3eHuF8pGYBdeP9DGzCcJ9hPUQiOtIlPJdDesVwQe8H0FplNHbTBbrHG03o2lamlnLEAJvbz3L+RWLRpGNJ5tEzBuUCjTO12dqIMeBLhkUDVE5RBpELGxLvGu0lGyoqc9OPAQFj7Eap/QXH2IuPpTS+pimY19T8eB85HFh6+lrOR0m+iH26Y+FZE4tPwROu3+7VSe2YKIbpmV7TMTBdjVle0r9UFQgqdFVEHwIPMp6OhXBpUIhKqElgCSmSYzVehtqMVZjqujUWo3VJYSpTQH9poIPo4qzrnV7YEQJnSm6LmtsBSamMBy1GvOkHkqLlvvlGevNwLpd4bQlSkaSQFYopbHGYY3DmZ8AbPwxtT9qBuMP0H5q+vGPp6kq9H6ccj3oTLYzksN2ajtHphFPKwOXzchn7cDzds2Z2dDksaix0WAyoot7p5JUrb13NQfC6IuhVAjFTKoCDx+LiZf3Hj8EUoaUQDvDejPy7mbFZuO533i++u4dv/3mNW/ue1Ze2CQIWUhkEmWqorWha1qs08wWhotnZ8xmM5qmIaXIu3fvePXqNePoSREmOcfGC9ELWnu62zVg0EBb5QRaG0IskjalNaIsKWtSyLTOII0u+yRjl10pX28tXdOynC9YLDus1kQfGPxIlIxrDUgkxcK/CEWI670vzISr4KHOpEVt9fSl85eSzaG1KeeILiySEohTBdfMxgubdeLN9cj9xnDvO+5XGzbjyNvre25uVqyHkTFk+hjxIRJqKmynMimF4h0gEFOs1XU1IRV2yjUNs25Gp1raDG+uB67ONF+8bPnFF2dIsogEmjyibCljn9eFekYc2ggZi9ItEVcMn+o/JbtB+FAtcPrZfh/4gMMy8R/qG45BxJZheMI2ewseDOrTv2PjrRKuOAQDH5uV933b6fs2gYwd4Cjr7bJFyj9dP0+FYVDUdYSavlb0FVMfRaqLNQpB51hPAnT2kHUtk1jBNgljCoOhK3hwxmBtYRKMKW9FYSc01pTsM2NMNREsWozCdEBjpxBJARuNLdeilUZru9WgQGFFUiquprqKV4v42lYRcxFnl75EoZVFK4vSbstKfqj9SYKNP7f2nwp4+kHXKfW1OKAoDz0LC9O5HwOeFh7u5xS9ZCUzl5G5WvG8G3gxH7iwK2zckMeAxpXiX0qT4kBWgtNFDGr2XrYQAt776lqZtv+obntaKbpuRgjC3eqWczMn5FJLJSbF/Wrk1dtbvru+ZzUmvECo/zKCtRpnLYvFgpfPnzOfd9hGsTyfgxRFuTGWtmno2o7vvnvF7W0x2qqngQZuN4H2bkPXtrTWIJ2hc4Vt8MlDimitcNoVJ9MqIlvdr2md4vL5JbNWM2sdrbMYA+M4oJWUkuopMnpPEiFjULaksQqGwUfm8wt8AiMF1CilK3khkIWs827IVYoypzNIjqQYQDI5FpV8v1nz6rtv+e7bb7i/v+Pu9o679cD19Zp3NzeMIbDZjIzeE1IGbYunQC7gxyiLl4hkQdsGyYkQimjWmJKam3JiDJ6wHgjWsA6K6/VbkDVnS/jZ52dcnDlmTjFvHWfzOY1zSBQ61miuIWuinhHpyEpT6LEJcAAyAY2HA/3xjPxDE4zv867tA40P7f+BbkNKdonWhwzxYyGT8tnDff3jtwlo7bOkNUOjArZJ7Kq13ulYZFdxVySh1KS9KSEMoPIaNYwkGcNQdq+gMwFcAQiNKQyDVgalQgEZzpZQrSkZLVqBtdPvqrCL1mCMKroLbSvYKPfYVECit9kyGSHsrllFtuUZ8lSht2zTOEdjC8ixRpGzgqxqFedpD8UdNVf9yFPanxzY+EOEV37K9lOkef1ZthoOmHLKpzDJcSxLHYONE/s5dbuMCF3acGbXLM2Khjsk3kHsaUxTrccd0SgSuczPldnO3KbMk0JP6q1uYwIbrXWcnZ1xe3PD9fU1KSvOludoY7m5X/Pm7S3fvnrH3/3qt3zz+h33Q6QPEDKEVJlZpVgs5lyen3G2XHJxviTnRNu2NLrBx8DmfmDT97x7+xaU4vnlCxrb8vrtNTknnC66iRCFwUdSVqAtScDHhNGxlvw2CEWAGnwqBdeaFiWR87M589kMTalW65xBaSGEkc41iKoOpDERUyarxHLeYmyDcx0x1joskur3NNUsyVCZm+k/tnFvAzEjIZGiJ0bPMK5Yr+54d3PD119/y1dffcvd3Yq7uxXXNytu7taM3hexboilY9QGwZffa2erlUJbRxaNMS1GJ5TJaJ3r+edSyC6MdLMZrg4gs8WSmC1v/Zp3v7+ltZmZhfPW8tnZOZ9fXXG+nNO5AHmNMCebSFKRIBElppp0VZ3A3qz6WLdxDASOn/fjtm8rvf/zsXYSaLxnk2PdRkmoyHs6h/f301NGyg/pu54Chvbb433taf2G1vrBNlqp4qEpgmLnV4HKKF2EzUZRvVY0SvkiytSK+azuH3h2rlFO4awurIQu2iCjLcZqnDU4owuYUGAtWKsrq6FwpgINVbJftCqMxs6lo1rlC4hkhARWn8YFdUWRXEC/orAmBowRVJKS3UUJz5RXJ5NJJAnFrO4J7U8ObHxqp9vHajn+sdujHdDHnKKiDEF7+3osXr2lP2ErpNwecms3LNufTiJnjFw1nnO3xso7croji0Hpc7J05aXSCWVSoTpFTZmMGGNorCWnjM9CDsUIxyiFtY6hprq+efOW1f2GxfIc1zjuVhvevVux6Ue+ff2OL3//htt1ZEgwxJJ5IkDTWBbzJc+fX7KczWidRauE90PpWJTFtS1jjLz+9i3ffvctbdNwefWcxs7obA9xKLMem2mahpBhM3gwxTt1M3icycxmDU3bolRmfb9hvlxirUEpw9XlMxadBZWKOyhCigGrDK5paZuGlDNhjIyDJwksZoYXzz/DuYb5fIkXDVHQqsSNlVJILn6IqoINULUjFyRlVIrkPpBzIIln3d/y+s03fP3t13z3+jWvX7/j2+/ecXc3cH29IqQEqG04RATm8zlKKYZhIIaA0RalS30VnynW5cbV4xvatqOdz7i/vyfEDTEKm3WPVx6tDMGekbQQsRjteHt3R0vmolGsbu65uxZenG/4xV8tSXYk2wZtLrFmgZGGWCLwJd2yUvnCzsb8watyBAhOiTGP34P9rIrvBTgeWe/wpaNa9JflKaUH57j/nhZwztY2/lhEOr2a202mZR+Yl23fZpFStfeoabPvibFbN+eibZoswZWeDLmmsEkNEUkBxKpONrQSMAplFcY4jN3TTthiimd1wmrBaMWzqd9RcPXMoVtNYwzOmQIedBVq2vLP1PlUYQs1Vk9W4hlTmYjpb4Xeem3oqivRqupHpIiTE8VfozCIe/2kqEKdyJQ1o1FGoa1QVMuBTCTlTEyhOKZmjUqaUnzwPzHNxmMq658yRPFRuy6j3on2vvN+2gHKBP+UWvV0B/OHgiD7seGpmRL7qMunpaeve5/ZmNp+oaWDzpat82/tzKu2WymK+iKhpQiyrBLOzB0v9Xc81xsuTMQKqGxJGMacgbHEXnMmq4Cv5lnW2JL+pXUxBvOedd/jY8S6BqN1KbhmDHfrntXgCUmICd58+4ZMy7vbNV51vL4duO6Fmx56mfwzyrXNZ3OeX15ytlgW3wql8CnTp8TdesPm9TuMVoRx5O72Gmc1khObu7sSVjEWbEOIHjTM5wuszmwGj8+CtY5ueY7VQsoBH8rzZ9slpnFIDqAt2hhC9LQzjbOattHM5x1NY9DYwsSEiA8jMQy08xmNU3Sto3UOhWbWnZGTRYxDckNKCmWlhnqqa2HKxJTICciU+556sgTWmzXfvfqO3335O77+7ju+++4Nv//6FavVyOgFox0+eNRkWgS4xrFczAvDkRJdW7xChmFgsxlZDSX01Q/ryoQElFa4xhFirFlFglIWYw1aQb9eYduS+jdsBrQ4lIb7IbPyPe/uA9/erRiMZ3Exx8wczszQkpi3gg5neDqi1oRykcVxMuoPvqT7DMdjTMdjWozj/TyWtaEfew/Vfme2CwPtjq22NuhT6ub+eUAhJBNSB8Oa+lvHPNillU5AQ2rAdBcqLe/yvnvlpANJUobfg4mHCJONd6kDsz3Vsg8FiK5hCFBkJAWUKsJqXb0pnEq0Om5DG6oyDY0txReLSLNkh2itcUYwOmO0ZrnZAZ2XZw2qszTW0DTFl8cahVa5AgbQUrQtWy8OVeqQZGJ9VhoUbrr47X1ky+qqYr5bpwWGTMyJrekYoCrTWW5pgYvaOrRzxZEXIcSE96E4IY9+CxJVZXbVjw02/pR1Bftn/r7r+Fgm4KNvyamJ/WOHVE/fvzyiQ5iyFZ5+0B+nPeVZUaogbl3ZirKMLXX+6HZHF3Sqo93OQrYdlCahydWvQaSIoEzqcWnN3Akvmjs+4y0v5uC0JgWLskuMVsSU0SpUl1ApYlGlwJZaIUmEHBMpRjb9QEwZVcMQMSZGHxhC4n4zYGzD/PKcZxfPGcM1r67XrIbMne/55t2GVYI+l/CJSElfXcw6zuYL5k0Lkhl6T4iBMXpW6w2DaPphxEiGEIje02iF0xpJHqVqGiwlq0VE0NbQtTNW97e8ur7hxbNzlmdXzBpNv75HabDOIErTzBocmejvWW3WvLiYEeJYeA0RjM0o02EUxDAQg2cMAUE4vzhjcb5EW03TzgCLa5ck1WF0CzInJQ1aSHhiiog2ZbAok7bCeqSRMd7y9t1b3r694c3bd/zDb3/Pb373Fe/e3hEiaLsg9RtSFTc2zpBipG07zs7OaduG//q//r/y61/9mr//+1+XGXZKrO7vWSwW5Bzo+xGRyXMhc393i1KKGIunynyxKFmAuQyiOUasMdTkX2LMVRicWafAfcq8+/df8tnzJZcvVnymhPYsMHMdWhqUNAiWqIWoE1rA4E4O9Mfv1TQrf4zp2x/cT4VgPtTKtrv07mnTEsIsIGOXzQGT++W+9kH2GQpk+/8sFME1lJhDpXX29VjTHgVQ1m2BUWGqah2frQhL7TEgejtwTuEBLVKyqaqzpqogtLAYRfBptMZVMzmrKZoIMsaUrBBnCnhoDLjKkmgFzpZCgVqVd66INwsz0ViLMSW1uxt2vh0vny2gqV4X1RhL6YTSJWZaNKeq1lOpBfqKIKSChWKzXt3Da9p7uV5ri+S0+IHUeyyZVIG2tgrRmSRFo4GqaeWqRjJVAYubwdMPpY8Zh4EUY7H4z7nal8uBTu5D7U+S2Xis/SkDoh/aTs1anqJaP17+Q473lG0O/977HZj6jR/rW1STupxdUSFFRkmglQ1tvmeuVlxYeN5smGVhMevoN2vGcaRtLCEkcgg4Z3G2iLaUrjMqWxz0jDGkeOgmaq0tg05OGKNJMRD8wGJ+xrPzS3K2KGNZbUYwDa/evubNzT2rPjHJCZRA1za8uHpG6xo2q/tSKi4EYnXk1AjERGc1pIxpDc1siVVgpAzUSgnGKJJVJDRjFrRrmS2WvH7zhu9ev8NozdnZkq5bYpuu1DLJGjvdAyKtdaAyq03PZ5cLjIqkODAOoTAFzrJaDwx9T0qe5dmCy6vPObt8wWxxiXJzsu5INGA60B2iHCEpMomIkJWi7UqBOGVKeGH0I/1mxe3tLV9++Q2//off8tU33/Htt6+4uVkhotGmYVxvGP1I23YsFnP+83/6T/jLv/yLMsN0DcYYZt0cXVP9Qs0YKhVz01bYO4kBc85sNpvtAOeco21bYv2s6zoa5w4yP7Y6nZyJSfDjiJs33K08a/+aPiuuPtc8b16Q7JIsrs7CdS3Wdhz027WPeZd/jFZ2m7f3YwIcxqq9gX9XzO0ku8oJkEQFG5NhlSoZXXqKe9ZJx3S8YkhbitSVYmI1XVQyer8uxxZYJdRkQV4r/1KdNTUCSqpHTNFJtFawBpwt4khnFc4oZq3FiNQs6z3mwjicLdosrSjum1ZjVAEZdgIbupjcKV3uoet25zqbddCYetoTBauRXJkKDKLMUSepQTlQZitU3bFMUxhKMfpQ0t+FIoKuItYUi0dGSwkVidbbLCglkyh5x74QI37o2azuGIYBSZlh029Bh0zi9ydy5X82YOOnfOn+VNpTwcJjM5wfC6y9bz+72dEeS/FRX9t7qKAH1O7u72KcVMInloEm3XOhV7xsBy5sYMk9ZzOHUkKMoXZ8Cu89khLalEJjShvsJKJqHa0rGoW1v6fve0II21oBOWdiKHU6bq+vkZSZtR1aWV69vebmbsV68GTpuFn19D4yxupYnAs9u5h3dG2DHwaiD1hnsBpU3gEpLYmUMjkEZl3DsrOQcjHesaU0+no9kIMn5kxC08wWZGMZotDExP164O5+w+WzZ3TLC8LYE8aRFCJtU/QoRitQxQ2070vtEYi0rkOiIuSE0ZaUBdfMeP7iZywvXjA/e4Fpz0l6TqYhhiku7FCqQZQuVXJN4aat1qW2SkoEP7Jerbi9uePLL7/my6++5T/+/e/49pvvGLxHa4tk6P3AMIzMZgsuLpb8F3/zV/zNP/0rZrMZ4zhye3vHP/zDP/C///u/ZbVak1Km73v66o8ygYR9v4cJYEwi33Ecub6+xjmHMYYQAsvlkqZpGMexpM3WwmKTG2WMkZgNQ9BsVnfc9AO3HvT8JfNnF+Bm5GzIuSk1N2Tygz166j+gn3hMQPpj9InbQV8X0FGST0pBr0Ndw+ntHzuHytxXMFPs/HdMSCkQNgmIQ9iSH0VjQOk/JFMsuuv5lFLoCU3YVs5Vk+9EDXFoowpLUTOsOhNxpjAZbTMtV1idMbAFItZqtDFo59DWFJM+pYq+otqd67pspxmrKbGqaDne30rl3y3/o2Aq7b4lqfPEdADRo3LJKhEpRdYm0W2ihqrqcyy5FFQzxqBtYU9s7YErD4IWxSR1kZTw44a722vevn5Fv9kgOdNvihdPzrI1MHzqM/ZnAzbgE7Nx3N5Hmz7aARyv/+hz9MgHTwj/bGnSfXzwg9vRjtQuhitQfXYSBk+rRs7MwJUb+KLd8Ez3tPQsGl1MnSoVmesgY7Ump5KREOvLlRE6yaV4GEC1Hu66jmEYCN4jAsEH1qt1SVetNUXGMfDm3S3v7kbWQ+R2XPPmZkUQQ1I7Yri1mnnXEv1AGDYlbdY5nGuIKRFySS9VrWUcRsQqWiVYMl3nuDi/YHl2hveRr795xXqzJuZMM1/g2pZ3t9f4FEnScLta07674ezsjOdXF5imK8qWPDL6AQlCsyiai+ATXmsMUtLkTIemJcVM23Y8s47l2QVf/PIv6c6eY+eXiFsizTm4JdnNMW6O6c4xrkPbqaeWmskSSHHEDz1Dv+Hm3Tu++/Yd//P/8nf85jdf8ur1K0QUISq87wFhNl/w/PkVP//Zz2jahn/+z/9LkMS//Jf/kv/wH/6W9XpN3/fc363o+7FmyxRVTNd1NE3DMAzF+0OprTPicY2PcRwJIXB2dkbXdYgIfd9X+2dDjLEIUCtDYrTh+m7kTGaMEa43t7zb/EdWXvFf/h9nnL+c07i2DBC5uMryNHE/sGMTngIwPnZCVliFMvvfhmr2PClUjVx8n9D0BDIK0Jj+BlVVjuWdyjUcUsBIFoGUkVwrlkpE5yLWLAxCCZ9ak3FVrGmtwbpigNU0JdVUG01jdWUrNY4RqwVXRd7WlvWcKdocN9UPsRrRjqwM2tjtdbgpPFtn+ZO+BJGqZ3hkYncc+pKSGi5SMrgyieKuE2tUWEPSu/opKSLZE7OQci7AQiCETMpCzOUZz5VpCylydrbgmbM4VCnIJtXuvNZbnhhgyYkwDKxvb7h5+5rNegPUdN49i3qtd8zWh9qfDdj42EH1P4X2vs7lY4HZ8doFaZ8SirwfbBzHln86C3dFVqUbEl0OpIho8TRq4KJNPNOeNt6ycCPnC80QU60DkIlRiJXViDkTpJQut7aY4YgqtKOmzGCHYSyGONqgtUWr4hNhbcNsNq+DlmboR5Q2dZBV9GHNt29ueXV9yxBz6Uco1LGp8WM/DFWZLlDZA61UsbgWTepHGpVpZg06J5zKfP7Zc55fXRFCYrPekKIvIjGlmS/mKK24u7ujbRvm8xnDZsX1zQ2/rx4ZV5fP6NqOnAXfj3g/spaA6Qyt0Xgfiy9H1gyjYI2gjUbbhudXFzx7/hlnl1+Q3RzVPSObOXZ2hZ2do5oFpl2gbFsoYS0kiYSwIcYiLO03GzabFddv3vDl777k17/5mr/9D19ztyr1ToRShTaEUMIk1qAk0w9r3r59xf/vf4hcX1/zd3/3d7x69Yq7u/vCPkSp1G/pMCc2YrPZlDo2OW9ZC6XU9u+puN40QK5WK1JKdLUWznQexYp+38zKgHX4pBkC+Aj3/o7xN79C3IJ/Zhecv5jhlEPlQoN/nynTKfH1wdvwPZhfrdUeVV+fP4rAcqfVyPV9/7iz3s7+mbwpKmjSU0i1ih0RRNRWl4AuTIHWqYq8M1aXsIezGqMNrVU0RhefiAlsGFWeUV3c8BtThZlG0TVt8aXQaivw1FWPoabBuDI7GUHqZ+XsqoJZiuPodCsm7iXtC+oO9DR1+z2B7k6DkUjiSXiyBJJEchJIGqn/yJoYe2IeCAlCKu7CMUNKwlCLPa7u7xn6El70MfKXf/EL/gv31zw7n/qkmg0khd0Qyn03gJZSSj6nVJgPVbPGJr1SZTYeC58dtz8bsPHeNr0sH1xNPTnu+MfUfgqgte1gdBUrbUHEjpWYcvGnl2aP63t8vxx+D/td64fu8b7QbJpdbfdy0JmW8xBlStUCKZknTkdmxnNuM5czjdmsId7TLgyaKnjKuZZVTkzK25RKEbGsFCEV6lgbTYyZ9WpTnENDIMWip5h1HW07I8aAMw6rbakngmYMpeT7/Sbw9nbD7drz7ZtrNr1HtEYbRcqloBLsqsiqFAtdnBM5jBirmTlLa0udEMkZqzV+6Pn8+RX/5Je/YL1e8+7tG+7uVoxhBDKL5ZyL8wU3129JceSXP/+CF5eXqBy5ffeGu7s7Zq3j559/VjrxdsblsmVzd8Nwfw1Ny6Zfk6xCdQ0X5y+4uHzGrJvRdA3NrOHZ1UvOn3+OWTzDuAW0z2jmF5juAuVm4FpU06BMg+RSqjqEkb5fk+LI0K8ZNmvu7u74zW9+y//2v/17fvO777i+1sSs8D4RgkckVW1hYRdEMqv1HVorUop89923/OpXv2Ic/fbdHoahzsT09nmJMW5ZwCn8UQDJbjCYnq+c87aib9/3LBYL2rYtbFYItG1L13XbfYFiHAM+xGLPLoacFbe3N/zd3/6vhGz5P/9frlDWYCjpxVMq5mNZJvvtOJPkMdDxlLTX08cRspRqoVl25c13glFdsxN2wPt4fydZV6a+JdfQBuQUtr45uoIYDSgDYqaMlVz0FrowDs4YnIHW7lJIndZYpQsAcTWV1GjaxlRmQ7ZAXuuiHaECCL0Nf5Sz3OOLyKr0XhpBSyp9DBMoKuvIpBEpV78tR3/cQgilRPve/ZIEBksMBWhEAj4OhOgLS5sUEsu/oR8ZomdII+s+cN977jcjfYi8e3fDer1hHMskIaeItZpu1jE/u+Cvc1GvJKneGkCpHFs8bSbWiSxU4Qe5iuK9r9kodVZZQjQ/Mtj4eBXzH0d7KEr8PpTfIy/MH9F1fkz78KB+yD6UdNOH2ypVsPA2GjL9rSYN+Yf3P6VNHR/z8e9ip3DfV73Xw3O4pLwURgINIwsGFrKmGd4Sx1usWfH8as7yzIIfYBzLiyalwuHUeaetadEEwDIOU+OkVZtRrcmHYcBozayboZTCDyNZoFuc0c3OCOqOX3/1G379u1d883bNt9cbru/W2LZFhojS4IwrluBZiCnXoknFpMeYUnHBaE3XtuWFjwmjHForGlXU8e/evObufsX19Q2bsRRVw2iWyxmdU6xubvmLn3/OP/8v/oaXl5csupb13S2/+dXfs7q94dXXX/PLn33Bs4s5bQNnjeGWiCayPD+ndYbGarRrEG2w3YzzF1ecP7ugW5zjFpfo2Tmmu0TPLjCzc0y3LOmuyqC0KeGSnMjRE3xPDAM5BcI4MAwDv/3tl/wP/+P/wldff0s/CD5ZctakJCWclWOpq6JMBWWlM9ysV/z+yy+5vrlhs9mQUt6KP2Vbwvvw+ZqyOqbQyfGzPoGMbUXfynxM4ZlpljcV4JtCMU3TMgz3NcwGmUgmkFRkHF/xq/w/MZ9f8E//8/+KFy//hvvRl+pZHOovPnZC8bGZJ8ftcFt58HPL/B9oo06f56PnoVT1hMjbgnZaJawRWqtpnMHV+h6Tt401tppgVcBhNE5TgYatjpyOxjQ1K0RXrcYuVKOVVGBRziEAWamdKJXK4ogCVbN9tgJzhZ4qAlYmIOVJX8J2wjUBMImRlCpIHUeW9dK9DyUDKcYdQxAiKqkSEtGZKIk+jIzjQAiR9d2Kzd2KsBlZr3te3d1xO4z0PtMn8FkTRDOGSMpC6xyL+ZLFWcNyMacxinZxAa4lK1WE8wJKpmvUsL1HUzilmPMNw1g0SClW59AyuZzE0E9p/2kwGx/R/hAMxk95zJ8aJB6L0kr89SHY2J8h7p+XqbO/4+X7DNPheT00HjrVMRZ6NmEk4KSnY8NZumep7lnINWZ8y+KiGGWNYWDYrEFMoRIlk2IkpkRMiSSCMZMQq7yMjXPYWhhpmgnnlEohtpS2egClFMuzC2y75M27W377+1d8/e07Xl+veHu75mY10M7mXMw0fbxmsxpwXUPbORQwjB6JGofQTCltTIXWAiKCsw4lQgphSwXf3d3SjwEfIz5GUIbZosM5SxzX/PVf/Zx/9jd/w+X5OY3WGDLzZ0vav/5LQv8Z1ih8f8/MnhGHNUYil+dLbt69YhR48fxzGmdZXpxx/vyK589f8Oz5Fd1ygXIzVDOHZo7uzrCzc3S3RLkOZYpNeJJAjAlJgeB7xmFDTiMpFrv3//j3v+Lf/c//G19+9Yq71UCMhdWQFKuxUKqz7OJcKtmjlOC9Z7264261YrPpt9/NpKGYitQdzzb3haET4JjKbk8gYvpsf/IxMSDTsklMuv9s9mNfLZ91GZR0BpOQGHgz/p7/Of8btDQsujNs84yE3mohHn/Of/z2ANhsZQXTcmAfXBxgNtmu+5inx0ErOe+lcFlW5BTQKrLoLDOn6BrFrDE0VqG1oFQqzpq1Fo/RYDTMunabWWJq2qlRppQ/q9/JFBKZTrYoE3aTJK301phK1RiICLUmiCkzflU+M9v7ADkLSXJJv81lnSyZlFMFw4LGbMFGHmuBPhFWqxVBVUa0Pp/BB/r1wOAD9/3AfT9wtyki5mEY2Nzfsb67QcaR4AP3EYJp0d0CMzvDzS+YtXNUEnLKuKZ4AGmnUZ1D6wi2IWO29YeooR8NtXZtvUfGYIxlym5ZbzbFbyN4tDXYpjC2Ysyn2iif2o/T9jUVav/nEcOx/UxJCQEc07iZ7UDNlikpArpTYGOf4TimZgt7MjEcU+e3R3WoKhTLnkY2zPKahVxzlt+xlBuk/5aFDVw2L2lNZogJrCWuR2LwBD8UIWBMZdZiip9GzkKMRYsRvMdaQ1OrHk4Eq1IgqZhSQZnhKGX45ru3/P7bd3z7+pb7PjEEIeuGX/7lFzx78QX3/ciL16/56tvveHN7Rx+KP0fwG5Zti67mUjaW1DtUMeOJMZJ8RELE+7F4AljL3d2KIQRWfaAPoJ3j+eUVL19e8vJqyYurZzROoWJP03V0xrDsOpo0Z60Sm/t77u5uedNmnM50reXy2ZIcFnSNwTrD4nzJiy8+52e/+AWLszOUteSmxbgZql2g2gU0c2jnKNeWeiBSymjHOJJjqGBjjeQRTaIfN/zd3/7v/Jt/89/z9Tfv6D1sBlXqmaRa1C4MKBGarmGxWLBYzBEJ3F5fc/32De+u3xErQBjH4puRa/ZOztNjcjgQnhrIjTF0XbfNNDkGEiKyzUxJRwDTmBIOGce+2DonRY4WpOhtlM0o48EG3n33O/6X//Ff09qWf/Ff/d+KiZwyTwIaP3YG2QHrqCbGcH+SACU8MG25e/8mtvH4nB+EdMrS3WcqQY7MO8Pl2YyzTrHsDPNW4TQolXC2LXWBtmXNizX3JF6dCiJOGSwg26wVqi6Eyk+U5TXsK5UtnDq6iZEQdoZhsrvKLBCikMnkXMTighBTINXQShIh5lQK8YWMpAJim/sVP6P0Y1999XvWYWS1WrFarViv19zdr3n17hafNUPShGxIui3VWXUJn4TRoJImo4imwSyf0Z09R8/OUe0SbIf4WEO/muAsGLBKoXLCJ8iiQFmghK0Ki1HSgrOavnuNoIlJGH3kft0z1hDK/GzJvJszm82xrmiZntI+gY2j9o/NbPyxsBrwfmZDPfJz/zjTS65VfhCmFL3riI63Ueohbb1f22EHOPbZjsNZ14GBmYAi42Rknu6Z5TuW8S1n8Vvm+R06vOXF2ZJnbULSQEilDHlfLcWnwUWpIjIrYEMX4VYuLnw5QU4JbEmPNLrMl8bR0zTNVscx9gPXN2te3Qbe3ay424xsfGJ+dsGzL64Q23L27DmzYWR5tuTZ5TN+++1rrtcjm9Wazf0dKUfW/YDKgRgC3luc0zhnCoUZM6Qy644xcn9/z3oz4LPQzWcsuznz80s+++LnfHa15GKuUDkShhV2MWdcDdi2xXSGs65hvE2IHyAMrK/f8Zd/8QU5BYbNCqcVl5cXzOYdL754yYvPXzK/OMNU+3PnWlTbobs5pltiZgt005G0KUyGBEQiMXpSHCCOpNgjObC6u+NXv/oH/tW/+tf8/qvXrAbhfiNsRqGbd+Q0ElOpi6IQYlKEMBKCKWGdxhUfFClZQOM4krNUjYUQQn40urev19ofKKfsk2nZtN6U3jr9PolLga1INOdMygFRAckKSR2kOijGhDIe5Qoj8Orrf+Dv/8O/4y//5l/A2S9KZsATGI0fI7z7mDakhBXy3mdT6PNwPRFVpBaiTp7zyXPUqhp7Fa5Oa8XZcsazsxkXM3i2sJx1FqszSKx1RnaMk65xkd211vCYACqDTlvQUMCCRmOmmRIVqpQsjByRmplR9GcUQFKFsCUNei+9NymSZGKqxRZzxMdAiIFMJkli9J4YAuN6YNyMbDYbmq9X/DMK8Phv/5v/lk0qfU3RVng2IeNth2nPMe0zdPeMdnaJtg1GQY4ron5F2LzDS6YPikYcznTg5mQ7R7s5QQKBWDQmSiNK0xpdrkfpImndAijZhYnUlAZbuQ5lUdqijcM2HVkVRuPy+RWXl5csFiWrzTaOp7Sng40/TXnCR7WfQmj5fY/7Yx3zY/a9ZUVl+mP7y8kZy7T/Y7AxveBl4RT7VNuHeqvWVg/Twvb3dcxo1CBi/bxOQmS/06uVF8kYIp2sWORr5umOWbym8TfYeEOjRxZmic6BNPakJIxjpB8GYojFMVRrrCuaiDEEck6EWFJNc4ooa7Ha1I52umAp9UGqYPDubkUKgX5MvH4z8OZmQ8bw4uVn+GzIqmFIws3122rslLk4m/OfL/4zom4Z+p6763eMqxXjes3d7TskBsYYGEIuToFSbI3DWEIoMQrdTDFbzvnli8+5evmS+dkF2ja03ZxWRxp6oGgcdC4OmOfzjjQOOKP44rMXvLi64Pe/+QcaJyy6ljdvbrC64/LZOcvFjOX5GZ999pKLZ+elEJSxtF0LTUc2TemoVLFIz1qXezcUUAERSQHyCCmQomfoe37969/wr/71f8eXX35DlIb1emAYwdo5/abH4iFHlBJySvR9zzj0XL95jUJIOTH0Q6G7jcXZndV4imUGty1b/553Yh/gHs/Qp2XW2m3qq6/F3iaAMQlOCxhJ+JTK8CaxmFApkCwYawljT84b5ouWN9/+ji9/87f8k3/xsmY7WfYohPo6yXZM3bIDJ9/mj28PAMIerVk+m0Kl+ghs1Pd0y16qB+zR8T1Xosq11FfH6JLm/exsxrMZXMwM80ZBjuQsNMZVtkHqtmUg3TGgZb8VLpZzUJS+p/5LqbAMpbZJARoKIcURkQQ1JCIVdKRcw5WpMhU5E2PGh0So4b7Re3wIDJUNHf3IerPi9v6efrPBr0b6dQEbL1eK/wf/FBHh629eMdZaKeW5VIgyRDHYZo47u0K3V9BdIKZFyORREfUdAUuWYvolostcI2YwCu00SSxRCrBu0GhrMc6QgmKMgXH05GjQDRhlah9Nnb2VPtoaS9M2zBYLzp89I6ni2WFdw8uXL3nx8iWLszPa2YymaZ70fP0kzMZBKO/PuD0Wl/xD6D4+qk3w/ahNIqjtOkwSKClRzoNY7MRIHO9HcWAUMK27FzrZHkAq8NgDLNu9qMNZUukAEpJDsSnOJSe9ZNlTHANzMfPROtGakWfpO17wNQ2eNLxlfX9N1pH55TNmy89I4litBgKCHwMRRRTFGBKucWhFcQaNhfWIMRJCyVIpjh2RnMGJBoloY5h3ltV65Ob2lpwzi/kC1VpeWEt7Hnn97i0hQewHYtzQuYa2MayHAUFKtcdc/DRfPJvDxby499VBLoZASpHBe+7u76uqXbDGQk40znJxtqB1lvmsK7bKZBYtzDohBY8kXxwQbbFfb51h1lrWqxXdYkk2GWcUtutQyqNMmU0uFjOev7jk/HzBi89fMpt1GOuwrsW5DtoFvepQeo5uzzCzJQEItfBZCiOWjFOJHIvOYhg25AyvXt3y3/zL/y+/+/13DKFBmxkpehqtCWPP2axl3ARiHDG5XEdWim4+R1AM/cA4Dgyjx/tETIKimGSllLeP+xa3nnhHH9D9Ve8xaTEmL41pPe93Mfjp5zTzntiOlNJW6yNEslqjchGLkhRGt0gCv/Gsb97xH/7d/4ef/eVfsHj+S4JZ4EWjdIvEiKtUt4jUWj8/DGh86B4oVC2UR732XabCDnvoau4FKFsnALLd18QMwGE4VOdMay05JtC6lkhJtCYzM0KrMlosKIu2LVNeiDYwzYbyBAZ1dcSssxwlihwVKUmdqpcy6ZL3dE0Kgu8xSiNZ4X0BvUImp0iMgYxijJExRMYY8SGy8QM3qxtubm7p+zKhuLtfMfYjwzAWbVAu6bJkyMmAGBDhIuwG5RANqeb5plzvmYBTGp0LDMrWIM6ANaiYq8eFxWWDiRpSwiSPywElmSyppMZLxJIwOWGzxkkkByGYxDp4UKBTxuZS6wlV69RUF1uriuD27HzB+eUZVy9LtpSg6Lo5f/VXf83V85c0TUvTzra6pQ+1p2ejPHXF8nUfh+x/8vZ9xY1P2cf7GI8fGkv9sXwwPqYdDvofaCL7EOT4w5P7OTz3D/9+fB8PAMZBGGXSviuyqmmE1S9Bk9EkjHiceJrcM1c9Sztg8GxyTxg3oDJN95IgZTbgbINCGMaAMRZPnAol4n1g6Adi3A1YsnXNo7g+KkPOfmtffX17VzMgSun3zegZgyfGOTlHNut7Rl+YkeViTiy+RbjljJRKafExCCmDc5qUE/PzGVo7YiqGX9qWkMR6vaGo4UtFyxwDWhUzMFIkR49TJe7d6oTNA1Ynzs7PCN4zDgPOWjSR9eqO4APRWbz3GGMYxw3LmWUYNmgjzDpX/Aqcom0dTeNwxpT4boaUIBuDcx1NN8e0HQlL9EU8KzkVWl4SKhe7Y4Xi9uaWf/Pf/ff87d/9moxjtrgopd7NmhgzWgl+2JSc/ziJ6Uo667pmmkwDe861AmYFyaALqP3IYXnSXewLlvd1RPvLpufzeJ3JhVSpaktd5stFC6FKkS2RGi6sAOrm3Su++f2v+ZurzxBpiblkX4jSFE+HbeCwhFpOTOuewtCeYhAfbi9Hf+//Pmk0Dtcp92Jy0D1iJrdvL5WWrB4VE5WvCphwRhVjLWuKmBFbUmKrPmtiWRRVVyE750yRwmxCIqdicpWk+FCklOs7IkW/MPYUczhNiJkUi5lc8D3jOHC/umc9jNyvNtxvNqw2G25W97y7vWaIiSwaH4QkmraZocVBUlgEp2q5d9n5hOQ9FjZLrV1SGaA8SUikeK1kmTw9pIaZJrapsJnlVpQKtLVjQlEBB3nbH5Y03ZJdFySU2kNb3wy2NXi2xIZMGhiNaxyz+Yyzs2W539rx8sXnPHt2iTGWxrW0TctQQfeH2pPBxv/z//2/PnXVj27/r//7P2PTPS3u86n9I7cpXsFhB/V92vuA1bGC/RhoSH1pM4ZUFBkkasGuFMtsXXlmemRpI2cmcaU07QibzYZNf4cQWCwXzBcdzjm0M0SEOA6M/UhK1Dh/3qZLrlZrUsylhHQVAoYQAI3WmRBj8bmQnbK8H4YqVgts1ms2Q6RPjpgUd7evuXr+ktl8yet3N8wXZ7SzOU3Tcr9ac317g1aWi4tnKCyrzZqmLSmXm41HVKk+qVTCqTLrzroOREaq8yFFud+2GFUGOKMijdF0bYMmgYFnL6+4u7vDKGE5a1jFEVNDOZvVCqeF5cwR/YbzRcfV5XmNq5/RtQ2NswXkiBAqEBBdym1bV2ZxMQTC6InBIykQdUaRyLHoT5TWvH79hn/3b/8tr16/YnH2nIvLFyyX5/gx8ObNm8IsxFRnnPGghsmkjZlSCPPkpLiXunz8jH3oedzPRpm2ndJetdbb408MxgQspv1NFs6nSrsfg5P9c/Le8/btW3799/+Rv/4//J+Ko2pKiJHtoDSB7noFP14M5Ye2CjImsPF+o6dJSLEVbZTZdi2bniuXOl1ploxRVYOhpIZOJzBZQUTO5KqjyNEj0ZcUaVHELIwhEXMJv6Xg8eNAv1kRQuLtOtMPgX6zYnN3w2Z9Rxg3NeU0MIaATwkfIj4mkjKY7gzsDLOYM5tfMJstUTkT1vcwrhG/IfkByaVC6z4Im+7BYZ9XoGSidLkTQCAVl04m/QV6q7tIqgg7cwUXKUVUTqQ4FofV6sBa0R2kgKQIKSEpkyOI1ZWhnkLd5dky2tC4hvl8zmKxBDTGtlw9v2TWzWvaIYy+hIie0p4MNp7fj09d9aOaAPqJdqd/ju2nZDB+DN2HotKm098/EHAct/0B4dSy/Y4ZoNQOMKT6D3LJv1eJNg8s8oql9CzNhlmzxmoPMhDCuggRVUMIHqWWNM7Rr1fcXt9yv1rhXFtU3NpU6rxWVhSpHaGqHV15OYfR40OkbVtSStyvStGuzWZTin2FBu9LLZGrZwtublf84mfPadqWYVhzdT5DEFqd0TnQWcXFfEbMQqtKgWeHx4hgsmXmcp0BJVCJ1hSwsVjOS1XGlGlMsWk2aFZ373Bdy3LWleJSVjPrDMFHnj+/QAnEwWCNwfcrlrMGrRJhWGFIWJPpGk1jhKtnZzy7WLJcdpydzWmcqeZZQlTV7lgZmtmCZjZHG0vMQgi+FHUjoVWuNSQUoktHu9kM/Lt/+z/xt3/7d1zfD4SoWZ494+LiOc+fP+fNm7fEWDwtYi12t5/1UUJbO1Zj0kxMPgAHz/ITgMbUJrAxAYcJzEzH3Ndz7D+v+wDj1DGOt5lmkdMx4nrN1199xXp1T3f1DKOL2ZXeBxt1wJ1cbKdZ/h+yCVM9mR2jc9y2fQegVN7qtybwVIBFvSYFmVysuBOEHLYgZjpGEiHEUMCGFPARQiAHj8SRYfD0PtL7yHoM3N1vGIae1WrNanXHZr1iGCOve0vMihxHCCNGAlYVh1KRtA0jWduQyGjdMT//AubPMcsXdOef0c2WSBjp331HuH5FuP2WmCNIZNKZHeqCyjUeT6aSqFIXaQs2EpiMUTUDBkhKk7Qpf9f7hESEgOQRa4tgt9adrgaFxT1Zp1g0KxVAa1O1LRVsbH9ohXWuZv+U4pMTGLRNcUnu+4H71ZpNrS/0ofYpG+XPuD2mKZko0Cfv52hG+H2AxsewGvvrH84QFVmV0EmWqheRXCzIZWSpR66s50UbuXSCX90wDreoPNBYYNawWM7YDCtmQ4tpSoxZKU3rWnysgi2tSTETfKh/l3zzidWYVOn7A8wwDIVB2WxQSuFcYeratmVmDEk8Oa55drYsnaVO/OIv/gm3d2tihFdvXhdwU4VrOinQmkUDqFgqVDpL7wdiTMWsaFZDBHGDjBuMElrblOJRWtGcdczbhvncISmiVKB1lvPZgsWi47tX35W01sZBTGhg0S3QyvG73/2Ol88vuLpYYHTi+eU5s9bStqWDMraIF1MJTWO0w7oO184xtim0cUwlZFIi0MVMSRfPgxyhaRxff/Md//7f/++sVms26xFtZtzd3fHs2YrLZ1c0jaPfbDCmzmarjmLKBNk3RZq+D60USaawxdPDpfvP5OSxMbmFTizEPhtxmFG1e473WY56RLbBj0dAyJYlyZGb67e8ffOKn118gdEdIac6q93tTiYR5h8aZey18h3sMjf2SNH6+949Q0pWyxQelRJ2CTETIowhopPCx0xIqdYBycXDJiRiTiUjJCaG0RNiJMTIZujZ3N2zvrvj+u6eu9WGu41nM3r6MZDyLsPINQbBMbolyrZYGxHbo5JHCORUdEVaSqhSsiBZYZqOZnaOvfgMd/lL7NnnKONIw5q8GRB3j2i7DfpOFWcPmY39Z2TS4RjilAsixZlT5QDZlnWmUJKuGXJSABiSEImQS6VmjYacUCpBkmKZrhLOpiJSzqkUUcuJJJZi5qUnFFjYDa22AEtrs2VmhqGvwMMyDFVzJe9jsXbtjwNs/LELKv9A7YeyB48P8B83FzpmNY5/3z/e4wDn9Pnsx3pPZaAcMBzAlNmi64xBi2eues5dzzM2nHPPMq5YqEBrImuVGeNIzgON1SwXc66uLmnblomCjSHiR0+os6aUMv1mqOXFC9hIKRBCqFVCFTFmlDE0gA+B+7s7+n4gpcTZ2VkJ0xhD07YgwmZ1S9dolASW8wXzWUvya84XDcMY0WlEiSoaDhKNKqXLzdwWgyACy0WHZiQgpWAZZUbnbIMOgtEKqxPB94iBy4tzoh9Iw4C1msVsztWzJSJC399hVCTngMJgTeZ8uWA2a7i/u2fRWT57+YJ5a2gdXF2e0XUO62qBMusQbUBZ0A3adehmRtKWjCaGRIipOrHGMmskFdWBqhblQ+TL333Fq1evmc8XrHphGD3DMND3PT//+Yz5fMbq/p5d9cvDmfOUpnwQRkkJjEH0oX32x7xPE7OxA5eH2Sn7YGN/2f5xHnve99c9fg9A6Df3vH39HV/8Zwlti4LQaM02C3VfgiLqBwGOx9iXadcTqN4H2EoVRQyy/37u+U5s97mv66jGWLsJNGr/gpQiJmGzGVkhqFRspnrvGWIqoTgfGHzRQI3es+5H7u7uuF9vWG3WDEMRTa/uVwz9yJgymAbVdCjb4ZpzlHGMaiQ1iWY+x5gGN3+ObeY0KhE3d4TNDTLeEzdFDC7EKnnPu/tvDGIbsusYtEPbDnGJbBxRQyKSiSgp+ojD8Fe5X9P3tv2skqaZAh60REgRHX3xwpCIkFEVtCsFRmeMymiJ5TyVrVmrisY6Fq2lazROC4sGPlsuWHRNqSW0Baz7yh+ptV9qRlf1NZlCiOt18QSZTL+MMXTz2ZOetT8KsDFR9fvtY0MA7+tIDkVNT1nv+x/zxwhd/FjtVJYH8NGh3v0wyqnPDnb9kdd/DCre99mW5VBFcW0INNKzYM2F2fCyGTlPA/O4woSRYXPH7du33N2+Y+g3MGvphw2bvq0ZHiXzBCk2yCGVCokx7MygrG0ARQiB4ENxVU4RHxKubUm5pD72oyfUzAUfSx0MZUyxCVdSQxgNTdvRDyMxQNs0xDhw8+4dWsL/n70/7bUsS/P7sN+a9nSGO0RERg6VVVnV1QOpFmmTNinRkikIAiHrhV8Z8GcwBH0EfwC/8zcwDAiwrTcGaBgCDJgCDdKWCJmUSJa6m91dXVk5RGbEjTudYQ9r8otn7X1PREZkZVZlVTfpXonIG3Hvuefss8/eaz3r//wHqrpmHD2udhg1YbXlbLtGW0N/GFhvKmLQqLblcDiyO+5Zr9Z4P9CaTNuJm2JwidWqYd3WDH2ibRyrVVvC3cQ/JDrNumsZyJA823XHZtOxv9+hiXzvg3exRrNqDJtVzXrV4ppKplujwVhC1pi6xThxDTV1h65XmLolljwSZwV90Vbhp4kpBJraUdeWsfc8++ILrHF874MPee97jp/9/DP2+z23tzfc398z+RFUoj/siX5aUI3ZYGtGOuZCQ66PB1fXUzTim7ROcs4YY3AFQp6LGGvt4qUxSz9ndOXUd+OUUPrqoquWx8xSwdPCZG7RKGXQZPZ3tzTO0qeAVpZZijp7XyqlxfnytUXs68a3nvtKayLGh0JL6+KBo2a04oGrobWao02+UlTNf5/PkclZUlu1JKjW1jEME9ephzFxNIHj8cDtfs++H7nfHTgcB/a7A4Of2B8PXN/do4yV1kIC6xxKG0bV0RsHzlG1a0zdoquWuluhrUOPE9Pk0c5ibIWuz9BaiN44D6Yn0ZOUBQLEcu6z3PukCUwCm/F4jM1gEkkFovZENRLVhDIBXrsOXj29rxab0q5BiJ0pYJOHNKEnmVdUGDDZkw1gFWtb061WrDcdrl1hmjWubXGuwlhDXVlWjaWpLJWB2kQu2harwChwRjhXMUEuah6VH9x1jREH0qqqJJQxl+PUGmPlHjHWosyr8uy3jb8QxcZfjr8cp+N1zsbpV41MUpaBRg2s9J4zc+TSDlzank4P5OnA/v6KfuyJU2AaPCkkrHH044Te7Viv1zhbk8ZA8L5ApGkhIGotLQNZNJAwrakEJyklNubjsBhGSY9ZAp5CisQxkhVUdY2rLe1qTeUsGdi4Cucq/JS4evEFmsz3P3wXYyw3NzegFcM40HUNXW1xdc3TR4/44ssvOd+uuL27RSXPDz58nzB5bq5vubjYUNWO4Xik0oZVbSFNnJ91XJxtmPxAZR0+RIw1rNctgykoSuXompacM3Vl0I2QYWsnLZjVpqVua3Lp22pXCZPeOJKyJOWwpkG7DoxlmIS8WTcVfhqEsBd9eS1L2zimcaLvB25v71itNlTtiqwrjoPn408+5+c//znHY4/WivW6Y7+7ewVdmK+J00V9+Tk8/PkWxe/8WOccdV1TVRXTNC0+GqfIypyRAm8nOM/jdCE3xlBVlRSlhcW//FwpURekWHxIPFa3RGQn/OpSNcMbv5nNzbz7XtCN8sqzMgREgqqXdokc44yiKtSSH6IKKqK0xmopEHJOhKB5cXfNS3/NeLjm6upLXt7d0vtI7w0hiZmWcY6QMofJslqLoVxT1TTtCmMt/TDBsSckhak7bNPh6g5bN6ANSg9k1ZOMhoLEGRGWSlgeBcPIClXUQuLtIe/XGIUiktNADkfieE/wljgciOFASgMpj+Q0SjujbO5SfpCIqjndkhPUKGVIE1ZFnJowccBlizFi6lXVGmMbVAeWFUYruvWG7fkl7XpL3a2ouw5thE9lraayCleyYayKbCrHpmmpC0Ip/h488DYoLS4lsQfOOZqmoW4GfMl/mvklOQcpQNLbi9jT8ZfFxl/Q8WuXvn6LOeqbohq/7HjTgvDVbBR5jNUZkyYaDqzZc8YdZ2lHfbzh9v4Lro93MB0k1MlYaluzXZ0RwsTjR4/YbNe0bUPTtPgp0Pd9aY0IT6OqhCQqahTP4XCEDN7LLsxaK+6AIcp0r0tCqNLiqOeqZVfsnCQ+Bh8JWfwWpmmirmqUMhz7A2fnG2JI7PYvWa3WvP/+Y5TWeB9wVS2LflOx39+icqCpGiqrefL996iqmmeffcHjiy1t0zAOPSp5VuuOi4sNm1WLUpm6ttzfj6xWDYMP1M2K25tbUs60XUsMgclP5JTphx5rLO+99x5d2xLDEWMNWQl5z7gKW9Vi3GVbom3ItkHVa7JrRQqYPJWTQi14MUGLUWzgraqIUQnCdDww9CNd15GVRTnHO0/f4eNPPicEzzSNOGeZcqLrWsLwgGicohWnrZXl3/Oi8RpZ8dSZ9k3DOcdqtWKz2aC1ZhiG5fEzkvGm3z/dxb+OopwSQeu6XgjF87G8ci8g/XrREie0EW8Nlr74Cf+Dt9+b3/WQcyzIxmlbBB4KDmP0G8/L6d9VmXw0CqMMyjiysuTsCTFze73jeP2M3c0XPL/6gv1wlJyd1ROqdk3bdlRtS4ighpGmW+HqRq7LphGgx+wh3ZOnSDQVSlusrUnKQFLEJPyQpOZY+LxIQbMwGJg1CyoLoiEyVimaYoIQPGYaUONeeGTKkKYDjHtUnFA5iEpEZ/RcsJx8WKV7IVbkpUWRjEZ1DauzDc1qi3Er2tU5bdPhjKZxCqcjTgUhgmtFUzc03ZqqabB1g3UObW1pschjTIl+qWpLozQrbalL4m1iLsyllWLKPGuMXgiiVVUJshdKcGJO+OgZx15QxG94EX6nxcZCmCsXE/x6F82/iOO7er+/1mLj1/z4bzN+0c5z+XlGFA/RY9VIpwfOzJELtacNL8n9c6bDlwz7W8kKAXyfsKYSfkAcsPYhb2IYRvp+YL8/kFMWt1AElQ4hljaKwNV9PxSylBQPs4mNtQ6tDTEmjLHUtThKjuPEWEKXZBcs/f8QJTVRIWzueXFs24bt9l3CNFE5WdSTUdS1pW07Li4uyc/Fx+P27p6ubWjqip9/8gld2/Lo7JLj/kAMnrapOduu2axa6soCEec0m82Kyhn2/ZE8ym2vlKKqa3TZxf/xH/8xbd3w0YcfcjwcsM6w7lqqpl6a7dpWUhgYh3I1mBrXbrDthqQsIQr8aqwlpgmQFlKKmRAmJhWpKo1WSEKusVjr6MeAMTVn2zPeffcpn376GXd3d6zXHSkl6tI7ntsjp+P1wiNnSaWci41vcr3NhNCu69hsNjRN8xWb8lP04m2L6pu4GPPO9eEaYlHUvH5MOYlip3K2IABlYZ9vglde9Kvf+k7HCadgfh8pPXhinM4M8r1XYwfehu5Q2kBz24g5QTlZlHLEoPDFv0JpR9Ntid0F7fYR7XqDrWr6cSTnI7FagXUE4whUhBQJ2aGNE+5CaTcZrcTAiozJgUoV4zqTSWSsyhgl8tuoJEY+FQRHEI3SwkqK6BN+9DBOWDuQs0YpgwkDcerJfiKGREqg80M7yZwElp2fnZGctNRmFE05jV03rDbntKtzqnpF255RVQ1OaxoHziSsjjgDlbE4U+Eq2QBIS8OICZ9SS8vLijM7xlpshipnXIKsErkgLMsnpXKhxb2qQNQn7b6YxKI9hCDxDd+1qdcvGiknfnp4zn/+yT/i1vf8h0/+Kv/x079Opf7/Ezz5LoqFX0vBMVfs3/LXXj+U74ybctLOPH1GcQR8dQ+nyVQ60enIRnu6fKAJNzT+FmsG2rVhFx13MeA9GFtD0tRVxape0bUNbbsmoxmGnnEc0UYRUxTSk6sZ+qEcgXhnPJCjzNJXb5qGRmmJac4ZXXaqM3l0GHpiiCitcc6yWq1IGYZRDHUGNeFcxXqzwVlhmnetIBPOWXzItF1H3Uj/9eZW5J8pZSqnwTgOhx1P33nMdnOG7yfIiYuLc87PN7jKUDlTItgN0yR269c399zveqpGiLB1U7NebxiHno8//piz7Zbvf//77O53PHp0SVNXWCNtlyQEFlzdgDEoU5GNEEPr1RbXrDn6Aj+XtpISbR8xidzubLOmqiwpRm5ub7i+fklTS9CUs2JiNI0TP/zoI0KIPHv2jONBuAA5esIYxAclJ4yeF6gTqeny9VW10Nuu21NeQdM0VFXFZrNhtVohstxjKTrld07lr6dFxdsKjYfX0cuxnnJOXm//yGWnsMZQ1zVKicJDL4Tu1577N0gPk4Lj4e85ny5GAGoxnpqdhcUxO79WKpUWihLD8DzbjmNQWrI4QlLSMomiTrEJMA1RN3gqQjQMyRFUjTUdaFfk8JakMjEfSVEUULPPsEledv1kjM2ElKlMwpjMRMRqg0ORjCJqVdopGYqleXnnMgtlQ/QJPUwofSCOnphBxYl4PEAIVK7G6jNqDZWRouJp7OATKQB+93d/G9VIi6JtO+q6xjgNFdRNS9VsqKoV1tYY7XDWUDuN1RGrI0YrGlthsIVDIV+zEo8MtHxe0iiBpMBnQWpySbLOZJI+Ye3yKloWQ5IN2W7P7d0tu92OcRISfCihiD54Qv4NFhs5Z36y+4z//R//l/zu5n0+6p7wX3z6X3MII/+rD/42Tn99BO2b1lRVmNDfxfjXEVt5407mtZ/+sk+s5knyDc+alVoiEfLJY7+rz+KVkYWoBMLBylB042UCTwmVxY2PlHDhwCU3rDmySrdU0wvG/Wckf0OrI8GPDMeBFJBea4Zx7AnRsHadTF5eCKbTlEhZblIfMqOfqEwjFscYrMn0fsBPXs5LCoChacUQLORYHD1lwuz7kX6SXULwyHNYR9YU6R6MSVJl+6MhThOb7Qq6hq5tgMBm0xBj5NgfZXEnsd/fMU4jl48eU7mKY3/EGMPNjdhn59gzDQfOz1q22w1GizpGZVhvVhwOe65fXqO0GBptN1u0bdjtdvT7PX4Y2O92VFZTO0OOE5tVTfQ9blVhVCJFD9qKDK5qwa6IpiHpBtus0HVH0paQPClElIEUNSp5cgpUVgMOPx0Z9gN+mhj2e4bjEa0VtdO0bUNSlt2hZ9W2/JXf/hFxGri5vRWraBSx2EhDktyKKPZPCcmuiGm2JRdHxtfXZ1V2bLI7l+91ndgtN02zoBp1XS+x3rOnxikB9fX2xynq8abWiBAnMynFpXgR7o8UIXHhniicNmjtWK02wonJRtJyUeisycxOmqlwAb7djfkmiflbNzUnK89XlGiv/Epx/5yLt/K9mQewIB3lCWUzPSM+4iIrvhuZrA3JOKKtiaYi60DWGu0qkhETP6vEXdRZI2qPLIRTndRiZqWsQZFxTlM7S201WhX5tZVzqQFSxKmEDl7cNpXktAgRUoFWhQAr6hFlNcaJCsSqERMVlgptrLR4NzV6dY5jQ62hc4bWOZq24b2+gv/2BUopfve3fw9VS55QU0uhq61GOUEgXNVgrbRbtdJYozFGYXRGqYjKCWdsmavn1Okyr2tpjMg1lYq1fcLNqcspSAGslPjh5ITKGqVy8WPOaJXJ0TPs7rl+8SVffP4ph8OBmMLyvJRrOn6tgdvD+E6KDZ8j/7dn/5TfWb/Hf/Zbf49aO/7t7Q/43/2rv8/fvvwxP1q987W/rwD9lZ3zm4sQOZ/fYrFVvPJEM+P8uxjf9nlef4+/7PiVAY/85jM4U72WCeZXfJlfNF55PaWIKhPV3IZDTKBImCwOeefmyIfVDU3aUeU92hzJNhCnxDgM+DGQoiaGwDhMpBDFOjxFDn3L2fkZShvefe8p4xQZRk8iljTDhmEKpCymTWEK+CkwDiPOCjpijKaujNyUStHWjpwNx15kec44mm5FzjuGsWcKEZ0VGU8eS35BihjlMEaCp7abFUplUvKMk6gtlM6M4xHnNMbAb/3oByit+fnHH7PebOjaihdfHlFVxdnmnMZ0NHXDMOx5eX8nhK7qDD+NHA8HpnHk8ePHPH36lKpuefbFC1II9IcjOQYeX5yz3ayonCUGOc6magpkKxkUyhhc1ZF1TVQV6BZTr6m6M7COMQi06qylqgyqJLvmHMhJQtjC0OP9RPITqR+xKFZdzXrVsd8fmMIRnTLb7oxN13L77juomHjx8iU+zjkjcg7FuEtaXv0oKhGlNeiHNpfRM/Qv19s8p7RtI0TXogypqgrnatbrNavVSgq+gmrI7z20bl5fmGeU4xTxmLkdDy2Uh86494LMaGPLzrnwSrLA7MbVWNuwWp0JeTFZopb2kVUJlZVYUee4ZCC/qVh4WwFx6nr6+nv46siv/FxMnfJSULyqMlHLkqdee963Kl1isa5XWbKN8kTMCa8tk7IEZYnaCEE2eXTypFx28ili8JLxoZxcr06u1YBlpKbEgKBnRUmWAsioDEaToth5V0aLp0UWs6tgNZNRBdG0qJSwSoIPG+tQzYrt5YputcJWBZlwNc4YKq0wZJwGpzUr56ido65qLu4iIMXGR9//CFWLlNw5hzVWcl+MJNoaYxd564zWybnPaGUkny/LMZMzOoNRqqiVirdqzsSUiaX9rErh7EPEGEfMmbrp5H2q+fPLItklo1Ig+oGx33Pc7whB2qKkLCbySgua8sYr7avjOyk2Qor82eE5f+/pX6PWDq0Uv7V+gk+Bz/sbfrh6cnIJ/ps//qLzVJTiNNDx1Z+99u9fK1KrkBsBxMW/8EA1YHKg1gmXRmwcaR08qQJd7MnjLf3xJUx3qGmHSSNhHEgxs95sUNbjbCycOsXV9Ut8CJxfXuCqWlIbfZD2AmUxSQnvJfNkmiaGsthopQppsF28F+q6oqodKPCTpEJao0kZtNI0TYN1lqwTU/CSRaA1zjq0FiIdSjF4T7y7o1s1xOiZvGSsaGVZrWSHvdvt2O/3RSEjE+TxeJAQNGPo+yM5RPwkNuur1YrVaoUxhv1+jzGGR48ecXFxwdnZGV988Zz7uztWq47tZo01mq4VWaz3I9YaKmdp24bKWpyBKUaitsiWriIpS+1a6k6kdhFIKWKNoakaIBH8SAieOE2kMDD1AypFyV+ZAihD3bQ0zUhdV4QYWJkKYytc1TJOnvfefYpSihg8d3d3HMex+J1IMm/MQvQzKqOMQMGnSokYsygHlFzJxmiMcUv//OLigmmaODs7o+vWOOdIKbHb7djtdl8JWvtF41QW+3WPySGgk+zi5fGycxUyXl0M0yTRMxcm4byMz2RGclnav0Wh8TaPj7eOueV6UjA8oBRfnStO7d3f9PXV555bXYrZmFzQg7kwg7mFYbRCFZKjUuLbolTC6Iw1oHUiJy88iRjJYcIUTwptNLWByoDWsljHECAFaakYTQ5HckKeT2faymDXHXblxJnYQls52tqhqgrTrVhvz+hWW6q6pW4bdGkLNdbitKKyispaai0Ovc462i+Py/l4+vQxVMVLx8pij1JSiM45KMwtQZmXYpT8lpBFnq1NuSpmVIlSUKXMFDxT8IwhSZsjJ/I4CKpkDK5qpViZC8qT3X1W8rxaPdj2y/FoUk7kFEU5o0qLJv4GkY1IYkqBx9V6uQBbU/Go2nDrj78UbfrrF+xv/mRvuqV+E8XAmyeBX/vLfsPxzR1Ef73nqlTditLZ1ZgsVr2VytRxpOFIWw2sqsxG7zDjjjDdE4d70nBPHneQRpL3HI4D6W6PcZ0EGYVM1bY8fvIOzlnabsXhcGScyu5Sy4Q9eZE3qmJlHkrWhvAtOiprl11wXVclWjwy+QltFHVd0bY1aozsdrfEnKiaGmOsPF+MmLJczDfuNE3sdjKxZKDvDxyPe6qqom07ctrjfXiFUDhnEMxQ/GazYRiGZZE0xrDZbBbJ5mq1oq7r5Tlub2/5/PPPcVXDatVhjKBAGSH+WeNo1itsWTQSkAuBU6kK8Rg1uLrDtR2ubgFF8EFItsYJzyCEcg6LciSIesQoA8iq4aoGpQaGcVgUOqv1hpwlFEuReXR5UQqsRNs23N/fcTwe6IeBEIUNkFImxFjkx2KxXNUNuZwnpURJJK0SUYIYY/jxj38sraS+Z73eUFU13nv2+z13d3dLcXdqTX56T5wupKcEVa31kqEDb+GNJCmUjCn+GTwUAUqLxHMYxYbbVpagFDkm5u6FKsZ2irchEm8vQt7GL3kj14QHI66H58yvFHQz+fX1wuRNBcrr5yBrhUoF/l/8smZ5rEh9jaJkASWsihgVyw48YU1GK0EnDAqxdCmFSxJeBkgyqsqhSG8zOkZI4tVpyRhnhSdTVawqh1YrdDqnNppKQ+M0Xe2oayeql7ahaltc1WKskFGNNhitqYvM1Clw1mIK0mWMwe0fFmVXWamAylYrZYREHX1RxVDeRxIlVwgIsiHnMyhN1VSCgCgtZWj5DLwPHIeBKXiOo2f0E0plQt/jpxHrHE+WQldRG8OMSM0NdqUFYZnlsTFn8SFKSTKQUsRixA34N+kgqtFUyrIPD/kpUwoc48DK1t/FSzwMpd5cQfw5jLcTwt5wo3/Nz77N+K5aQG+cAL7muX8dRUdGmM+pyM9MVtgMDuhItGpipXtadYed9qhwSzw8R/sDnYnQGJJ2kDKqa8hodocR6yxoy/XVHeMwoFBsthti6dVPvtj8Cs28QN6ijpjTWp21oDLbzZrKWvw0UlWOuq5YTIyU2PauWkfOinEKVM3I3W7Hcb8nkXGV4+LiApUyQ9/T9yOuMsWnQch0d3c79rt7lIbN5gznanJiCYR79uwZh8OBmcg4Ixhd1xFjxCm9qBtO3f7mImNOL/Xe887Td6hrUVooYLVaAQmjBLExRi3PVdU1KNDGkXWFx2FMTbvaYmoh5qU07+gNxhppQc3R6knCOkPMRFmZSLkYVxnNOAlR9uzsTEzKdjtxa826KFAqtqsVH33/e6y6huuXLYfjkaEYrsWUSShWqxVPnrzD5aNHdKsO5yqub+94eX3N7e0t0zjy5fPnDMOANYb/xX/yn/Cf/qf/KX//7/99/vE//sccDgf6Xhxjb29v6ft+KRxeV7mc3g+n9//M6zg9/6etlPl3HtRVEncetZZzV+6vmCkW3fLeRLUxEy0L2bIU53Mj8k235tvu16+Tpr7hWZY79aEoWg5/gfjLI75CmP3Kez49Dh72oPKeZCetlEJnMZdSOZfco0wIIzpPWDQW0Fbhyk4bEiol8uRJOaHCAH5EhyCIYrbYrKlnR0wjLdHKOaq6pmtqnDVUlaN1FZWVmPXaGJyGymqqwhGx1mDrCmUdxjqUsSglmxGjNU5lOe6cpC2yFJEKXZ1yF4shXYrEMPONhAcxc0RE4i0LvGTAhLKxachZkUIxdiv9+Zwhp8yh79kdDoze8+Lmhi+vXjCNI9PhSPATjx9d0LYd5+fnRSFTCrSTTbzWGmXEcE0ZUwizCqVtIdpp0EKc/3pG5sP4TooNpw3vdxd8fLwi5oRVhhfjjkOc+KC9+JUWqq/8boEVv+nIX1OZfBcL/7fZWfzleMPQyESTFTYrapWpc2TFxGWV6Bjwu8+J/ZdM0x3D7hqbA1aLBIzkyTkSU0YbQ9N1DONIzJ6qbtjvJb0xC/OL9bqjcfUC16YUl2vETyPDOLFerUqEesV6vUKDuPGtuiX10xhLjBofhJBWOYNzlqp2KC3w/aHv8dNEfzxSWcc4lSh6W5OVoh9GtBbPCWM059szYlK8eHFN13Z4H7m/v0drzfn5OV3X0XUd6/WWzWbD1dUVh8MBp0oGS9tijFkyQ0TR8BD0td/v0cbg/cR6vZYI7xjJWaONWYyMbNUIIc1aUgKfNTEZqFtsu0FVK7KuyUocGGtzEreuZPHQ2pD0vNtSoOS4spIJLOaIrRq2W2jbjnGa2O/3HA49h0OPQhO9J/iRs82KHAPvPL4kxFiC8jTDODJOnvVmy4ff/wGPHj8GoO97zm9u+cEPvs+LF1c45/jJT37Cz372M6qq4vmXX/Jf/YN/wMc/+xnjMNAfj9zd70vR0S+FxalV+el4/d5eJP+FHDJDz6dFyistjFI2GOeKG+cDChATaGVpVmuMqxhDgGItPWfM8NBM+dZo6XyMb+dpnL7PmU6lln+fvOtScChm5c9p4fUm+eur5wxyKm2hZUHW5V0VLgdRuAE64ypoXMYqj4q+MMlFRULOGGXQxqByxhYU0qiapmlYtR1N5cpmwVG5SgimzgjHyFmsVVhjcdZSWyP8C2OwSuOMoBZGa0whmGZVFl4lpFWytHkMmpw8KqWScpSL7btCcl1lDMOBGBBFhw9F6RTRGVKUFu80TXg/4v3E8XhgHEcePb7g/fffp24aUjLkZAsBVBcScmbyns+ffcHPP/ucP/3Zn/Hs+XNSyvTHA04pfu93fpsPvvcD1psNufA+1AM19KH00AZtHK5qqOqWkFXZsEnCtNa2ICvf7CL8TooNqwz/4eN/i//Dx/+Qf7B+j3ebM/7zn/8j/v1Hv8eH7aNf6bnfBu99m/GbXvb/ohcaf15H95VJuoRLzRW9IVMBnY5c1rDOPWa6xsZbfLgh9jc0WpIQp8MerxLGCls8JojZkMqO9/runhRk8vYxc7c7sDsc+O3f/i2BDpsWYxTTNDAMiRQnQvBUlcNYXUiDsjA3VYWtpPhIKSLyvURdVaQ04qeBzWaNNpbbuz3WaoxVNHWF95GhHziEA9572raBkh2itPRhUxRfhfu7vRQjTQ1ohmFkGEbW6zU5K6ytSktD8bOffcw4ys+m4bgUIwDH45Gu614JEwPouk5QCwXb7QalpLUSQqSrnMiNAWMNxjkhl2WFT4rsKtpui2s3JF3LRIvAt0aponYRhYTRlpR88aXKZKUx1hEmLz4dMTH5CaUNTdtibUnODZHhOLJedYzjhFZCor2/vyOnRN02uDkTZZqIwdPUjjANfPH5p1xfvyRGkTFnNE23wihN9IGmqjnbbLHW8MnHH/N/+T/9nxHCZuDQHzkcDotT6FygKSVk0/nfs1x1hsVfRzaUElRoRjZO5a3zY+TfGqUf5LZ1XaNK0nCzecSj93+LR++8C9qiis1SCQEv9+7c21ASyvU2/tVbWimv3IMnhdBXHru4Nc3FVCkE5kNgnp/fjpK+vV0jRMaYROVhlfCedGnVzFwNyhmoDFTZ45TCaC2EVFNRFf+Vqq6pKiFa1irRKEVdOZy1NHVNU8v9bIwUEsZorDGSkOwUZi42jJPvKy0tEKUxSpeWjhhkkWMx+VPF7A5UIZlqJRxGlSMaQ8gil9UnqakA0zQyTkJ03u12jOMoJPdh5HDYc39/z+Gw53g8cDgeOBx2hOD5/d//t9huJXtpPv8zMpuzIGOgGcaJF1cv+fLqJfvjgHUVq80FziiqdoV1TlQ3hcAsz1U+H6XFo0Tb4uHRYKsGHbPkN+URlcHWDZWtcNa9+QJ8bXw3bRSl+J89+h1u/YH/48//ISnDj1bv8L/50X9Ea6rv4iV+6aGWG7P8+zssBL7uub76s19f++OXGm84nF9nkfSmCU2Ty3IlznUOT60SLSN1PNDoA7UZ0XUmJMU4gQ4C6Q0xMQxHlFYkJUVFPwZGn0lJS882ZPrBc3V1g7OGH/zwQyFxGsPQDxir0Vr4EALpW9G4VxUgmSdjTozDka5pixVzkpA1rdhuNjx+/IjDsSfEwP1uz3rdYKymrh3jFElJrM2vrq7ltOfM4XAk+FDm6MwwDChFkV+2WFtxOBy4v7+n6zqmyXN/f0+MkdtbIaDGmKjrhpubG6qSTXB2drZINo0xtG3LOI6vcDnGcaBpa7abDZOXPJa6KSm1SiZcpRQhZRQGnzOq6mg2lzSbS0y9IdqGiMNgSCERpmJHrizGNMU5NBBjQivR/IeYGCYJ1EoxEmNmtdqglOHFixe0bYtCEUPCWsPt7S0xRvb7nqk/ig31YQfKEIJnt9uB0qRYYVzF3e010yTR8vvDgcNxJCuzoDv39/coYByESOsnia0fhoHd4cDkQ4GyX/XueP3e+FqFBQ8k0bnQOw1ze1BuSDE3K2G22y2/87u/x/e+9yGbx+/TXn7I+p0P6Ze7Q3bNOj9stES6WKwTVX7Dcv/2+/AbD/V6GfE2lCIvPzpFcpafveHrQgZZ6pkiL44BqxWrtsGpM5xNbM/PaC/OadoVbdcVR0uRlldVKTYqKcSdMViVaYwQNI02hfQshYcxYEuxKEULuMosoaegBFgR6KW8L0EnfJJNkdVIYWS0tLuStE7GaUSR8UOPQsz8jHOYEqr4sEnODOPIs5fP+eKLL/jZz362JEbv7++ZhkGSaYPwx05Jo9//wfdFHVausYcTP4P+gpQ5V9Ottzx6/JR2O2FdReVqVIo0qzW68DRykb2+0thSqkjvFa5uWG+2nF8+oZ6mwi8bAV0Qo4a6+mZUie/Mcctqw//yvb/Jv/fod+mT5516+wv9NebxTSC9ZfwF4Wv85fhuhpnNswjYFHBqwqkepw4Q7jjcfcl09ylpvEXHiVW1IWewVYsttsEpCSfAOktWsN8PGG2JBu72N2QUvixw2lqy0vgYcc4srqJa5cWW11ormR4p0jY1TV1TV45YjGxyTmw3G9bdCmV1IZxCXTv6aaRuDJfVGbvdwP3uSE6Z7dmZeHoU8qkvtttKKUzZGVR1i7EVNzd3QmDTQiS11lLXNXd3d6/wAfq+53jsefTeuxyPx6VAqeua7XbLOI4FoXGFsJhxzqIQ5Ukux6y1ZLYobajqhphS4bVkfFI0VUfdblC2wSdNTJqsDUZZUo7C/0gB50whtEViTMLwN7Y4KWbaTtQg4zCCigSfCV6Mui7Oz8W/JAZevrhi7I/knNnd3tB1LXVdc+wHYor0xwP7/Y7Hj55Ia6oQRA+HA9ZVRD9xd3dLP4aFQzF7Zszx4sCCXIzTJMqW/GC8dYpinC6eM8oBD7vKN7VaTtEP59wr85s2BX4uBclQFpfz8zO+/6PfYnLn7EIiGSWOkGhMWdCWp5H+BuQ/vwnxoU0ku/u50JrPy4wOfaXQKH+XQsmgVCLHTAqBunJcXpxztjbodEbTiPttuzmjXa3pSrFxykuyxmDndFKtcdpQW4PVD06apnBjtBIeiFKzLwj4MJFiObdZTuncigRVXG4txpql+DDaEmKiH0Z8ErdR2TQkkvdUTlObCkmmzq+dN2n1ffHFF/zkJz/hD//wjxiGXq6llMkpCmKFbG68n8hkKueYfMCnSCgJu9KFLsyXgkRlwFYVq82G8ynQeI+2FrAkP4rsOoqEXFLdCkq1MIPkO8aKlP/88pIhJqaiADscelLM1FVD5Soq980Ahe/U3lMpxaN688v84rd4LH9ZcPwbMxQqKnRKkuKae5Q6ojgwTbeYfEcOA5VztO0lFjjuevpxImZD1hWHcWCYvMD/piJFOB56YsgEZRnGSYKbppH94YCfAnfhnvWqpVt1HI97pmnEaE0kF0OcVBYLLWTT+fbTSjgZSjEOIze3N6SUOA5HCVtrazZnG4bR0w+eYQhUTmzM98eBqqqIUcy4mkZQh2masKYuqIMn+EjbSGrjOI5kA23TMvQjOcHZxTlVVXN7c8vt7S11XRUljeQYrNfrZaLvum7Z2c8yzm7V0rQ1h/0eePBdsIUsZ1yFzaCMZfKRdbeh3V7i2g2TrojKga1BO9AOVbpKoiWSog4kRRfKoo3CGClqYoI8eCY/stlsiUEKgvOzM37605/iveew35OzxKq3TcXjywtSWdhCTEyjo7IGazWH44TFkjLi4ZESx+OB6D1kmMaJlMTdNcbIMIgkV3rsc596Flm+SgZ9E/x/ujF6/XHzwjoXkXOht16vXzH70tpirMNUVSloDDc3N3z2+ec8/eivEIxCWzFRC0GUG6iHVoqc7ULS45u5N/66xlxs5NIuOzU9e9P5e+V7nLaAMpnIZrPi0XmN04+pbWTdGpqmwlXCv6jrGlNaTspoKiuhgcYKZ2P2+jCoRWYuklAxgFNZFB45ZUIhaWYeCkfZCIh6KSsKAmKwSdATpS2pIJL96OlHibIPMdL3R0Kc8MPAetVwfn5GlQw6gjUK8sM1ECOMQxCO0v4oRnwKfPDFrE44ZcEHUo6yKULIwxJ7kF7h7CjFIllFabl+XIVxDmIqnA5IWeFTxif5/cU7ZSYfl7+hFdoYXNVQNx3taoVNwulIyuJ9xNpCtq3+HIqNX2V8U2Tjz7GQ/8vxHY8lSTEhcdN5RKsjSh1o6sjaWIzbwJAJw57dbs/uvmcYRpTRxdbYkMjEmDgeRS9vjUNluN8fyFlx9eKaqjJUdcvVy5c8ujinbZoC0+9FJ65UgWathCwVq/HgPVkrnDHCRzAGhWIaR1SCbt1ycbHFOktMkSl4Qpho2xZXdcA1d/eHhQAXSoiYKkqDtm0lXyUlQojUKwlTOu5vZVdsHTc3tzRNw3a7xVrLYX84UQFk2rZlu11L0WBtIZZ52rZlv9/jnOPy0SOatiXnwPG4Z7/fYYylW61wdYtSWqK6vS+Tkphkdes1tm4JaKaQCQYMBuOqItcroWjRM2WF0g1GWbSTDzZGDwgsm2LCuYrzyxqVFfe3d+wPR9arFcMw0Pc9wQcuLy9x1jKNI6vS1nr+Qhj1Smk26xWQOexFxeNchQ9i7KaNIUyThMtND66fwRcJa0pl93qSsaJl4U75JKaeh+LhdV7GabExIxvz92ZkBCTUbbnWVTHtMkYg7aqhWa24v79fuBsvr17yyefPeOe3nmJsxeADISpq69DEpesgnNu54PjzHQuywatE2VM1zuvFGSAtsJRRaTb1Eo+aVbficlOxbpX86SpsaX1YYzFmZq48cCCUOuVEyJ+UiwKknDEfPDkGUXrEWNxoAymL4ktcXIVD4UMgxEDMiYvLC4kbIOOLl0zKomDr/chhGLi533F7f8fd/T3j2HPY3/H40SU//q0f8fjsMUZDzrNxuAytLEoZUoRpkiJYPlfJT5odSwV9EAM0HcVtFiX3nyrIkZ6RjbklXWzfhcA68+KUOLFaizWS6WS0xi6k3NMhrshZKYyWKHnrGoGvjKWOGeOieO1UDXXdfKNr5S9EsVEKxW84vukDTyGQ09956C+e3qsLa37+5je6j990LLP1Dq+8jpp7fye/o177evoLr3Rh51ba17z+DH39oqHgrYSyX3W8+Wyc/Dy/epTzLWKUQuKYEloFNJ4UBnzs0ckLCYyOHMCZhmkS7fjt/Z2QmKwhxYnohVXdth37Q4+PkSlG+mGgbrb0w8B20/Hhhx/SdY6b6yuU0my3Z+KZ4WpcVXN3e4MuC8U4CPmzqh0hSHT6er3CGQcpgpIkzLqpQIG/27Pf7dB2ZL2+YN1JOFsVI9oqhrFnHCdxv0wBoyxKaQ7HA9Y6himw399jVMQ5x7EfWK/X1HUjbpl9z83NzcIDuDh/h8vLc1Zdy+7+Hm0krtsYzTiOWCsGXbIzygzHnruX17hKdtzKWikslMaaiqQU0zCS0LTdGlN1JO2ISpONlYCrYnscUoSUCs8jFxmeNL9zmlsOhpSkzZHLghKKs+v19Uv8OLFedfR9z/vvvss4DNyUzJTbm0hzeYGfRqZplOPvjwtk7qeRyjm0MRyOYoM+705n98X53+M4loIuyKJdeuhKiwviLNc9JXXOMfJv4m7M1/Ppz+cd/VxszOm0ol4yC5fDhID3gX4ccNYtC4q1mjCNpDBhm0yKAa0rxAdF5MmUz0rNk+Yyr3z9vffLj7mX/zWPOOFrwEORtpyrgh4IAjaTEGXnHkuuhimfyaprOD/r2LSars60jRVPB1UcYcsxmeIDkQopUzgX5VhV4SOkTERUHuPQ44spXAillek9KUrswOQ9x75nt9+Jl0vfM0wjv/dXfo+PfvhDSVUt6qGchATaDwMvb2746ccf88c//TOubm4gSWzC7/z2j/je974n52Y+rJNPZFYlJTRJGbIWk8CQA6Ekmmit0aaS+bHwy9KiOjn1tpBnFsRFbMhVcfcUPkstbrRZobLBOCu8jJQIKeHMjLjIgSrkGjNGCKJN27FeRwLS1kvKMPlAbRuqqqau/zVCNgyar6p1cyGpnA6FIgIS753LyS0PP+k3PQydxfIaBGoy5MUmeP5duRGSxFJnU8g3pSIvvVzI8gHOjy/lQJp98ymkrTxr0UuFkTXMFsNKJuc5v1jp+fKbd0zla6b0kPVygy53dNkFoF59t+kvwC4HyuWqHhwP5yJpng7VfK6KhC/EAYXHEdCEYkOccDox3N/S97ekcUcOA8bWhOjwMTIOhVNRNwLfDyM5ZZSGcQr4mBhi5vbQ44Hj4BmGie32DAUcdntSjKxXa4xR6EETkpBWt6sV0zTiR8npaOuaFCNGaZq6Yr3q2Kw7jNPc3d0VsqKibTveefyYR5ePuLq6Zre748n5ORqP9RmtHCl03N9HxsljuoaUFdMUAC0thqyp2zXTeOQ4iKvmFBL+bodzjrZtmCaRxn344fdELjt5Jp1xVhGCL9bRiXE8sjnbUreOYTwy3UtLoVsLQiK7S8AYbN2Acfgpke2Kuu5o1ufk5owBR8CgXV08TDJh6kVmGyN+CmglKbWZKM6hKUoxhkIruetGH5hGMeXa3+8wJN5/55xhONIfbmnrhro2rDct5My7779D3x+5uZn46Iff57PPv+TZ/gDA4XhktepouzVffPmcyhmMbjkce4Haa4WpZQ55+fIltrKQEmG++nJe0qnNQoh7KCZOUY3ZpOt1BON1nsbrSpYHCbJjmoYHcmjQ6FaRUhAfB1OhCViVMGFPx54UHA5HUq6oQGRHrbNaWj5QHDeXIKyTDZY6XUDm5ks+2f/mV34nnzxu/p1l8X7rUMvDc4ZQHq91aRtQckbgZK4SFDFnj1aZYIppFBljwJnMqoZtp7GmvD/zMIMsiaZKFD1aPczhS8mVohAf588qBsaxZxh6bm6uubm9pT8euL275XA4st/vub2743jYc3t7jVGi0GjbjkfnWz58/3vYeo1NjhTmfBoJhpyGnvv7I/eHQKBDWUWKRzQ1lXKolHFaidV8Oml5KQXWodsNZn2BrjxKg82Rw/6A1pa2bSFD17Q4k1HJo7PDKEPrannvysj5VAZScXDVQkx1dS3GYwmy0lgUKkeRtCsFtiJkShhkQiuNIxJSIGVxKDWVxThH3baopLBVxRQV6djL+mUhfsNW3l+IYuOv/9GXTO6rZNI3arTVm26A126LWbJVDFbeeXEgdRtqVfM//ckzRN1TboFcipqcyUphjRNIMKVizZpRWuAkTiv1maylCpahHo6jPET6mIibHVmitufdiPC7yk2UT3CMUqOIdvsVXODk3c7/np38XkNC/hzHHL5E+XKCFZUHnBZJWZJJc8ASqPJITaZSFr/z5KlGp3NyaEnJgzJkJX3uHEOJ41aQM0+PveycsyWMkTEEfmxGdt2RXEeOh8AHw5Yf3/6Qaq8LHDsXkRCT7HBsiYGOwS8LTVVVpa3isNagPoWQI8pZHjeXPNWG9CLRDwPaWJwxvBfPOe97rLE80h+w73sO/cBut2cYBmZDr5SVuGEa2Uk7XaGBkYEpjui9pprEjCiVxFDvJ8hw8fyc5q6irS11ka76Ir1s6hpVIs2NkX5vVa69lIT4OG8JlTbSb89gs6XSVnZxLhD0DpUVFoXWd2gryIa4jCopwmIUDwJjBCWJAR1lQ1AhUHD0nq587sPoCd7QuIq2VtzfT6x7y3bbMk0TV1eBs7MzrLPc3Qbe9ZdUruJHxw0785ScMqlKi1PoS/temckUvhPnzX6aGIxHacNgB2lvFLfRh0vxQVkSYygKhNdRAll45+LCWjEykkJkJofCvGE4/bvWZslgEW7GA6bnnCWlXFI/W5xzdLnj/GrDxR/uUbViTI6oj6QkKIwud/pc0EvpIKZWp0Od/P/18dWYuK8b3w4C1SeFmlxeJdDsdWR5/qqEQyDi0IQlctYZLtYVbV3QG035ebExm1Ed9XrRdPoSZe4sp0CnSDweMdPIeH3N4cVzxv2epj9gJs+Z0rwbHTmfkeJKOCLWog+GH/+B5Xx3Rd0csKaS9u1fu0R9sFqIptKqMMQsCq6UjaAPQYzJ1DK/PxR41lbUTUe33rA6O8d6yWUxJmHrDuNq1qstWhlWbYvTieQPdKs1aplV5wVIfDbkFcRo0FpLXdU0bUMo/TdbCqS6FuXZktiT5XTNvsHyvpIkx+qyKS4byBgfrvc8W5d/w6Xnz73YUMC/8y8++7W/Ttqc0wL/wT/99b/WX45fdTjgvV/9adry53R8/qs/7ZuGQY76dHQnfz/7Jk/igeG170WgL39eH19806P7ZcYADAiH/dc5elYA1ICQWN/nwZvng1fO3ParhwivHuD899V3eYy/oZGAq/KH3Z/vsfwbNmZx5lPgr/AO8JZwUIPch778+58D//zLVx/yDzum/+3fYraLn9GVECNaKXJKi0X+2+q1DLiq4uzsnKfvPiVm8f7QKrPb77GuZrM+wxrLum0lo+h4V1RtVfFl0cv+V/Z4hTZswFlD20jIoXHSojFaYbWi0mCNwRSuy4xqzY7Oy/tClDu6pAzL5hkgIY2qhEqBb1qUfqt55Oqs4W79izW1X1fovLm3mN9cHb2RDarL9vn1X3jzG84K1oeB9768YaosH3/vcXnquKAL8zNpkqQPnsjZFnCxyMxSFqQiz+xmVEFJHnrUD9BeXj44tCalVwHFGZtQJ0z1uQZ+qDtfPVNvG+qblpe/kfGwqzjpcL/274fvkSIqBywRQ8AUpCPHiRgmcgql/y4mTGVjI0DvrFLwYW6WEYK0KYYxYFzFNI5UztDUEqi2Wbeyy8wPDqKCdukT1ErMg+YDtiWFcUahTOFAzLvhlETRIU8k7Tfv/avEwWI/PiNmMc3R5Xm51AVpk/c6Q/LymNI6zMIgF4+GwsQ3Eq2ds/SyrRNlirG2XKdF+le09SdnftHTZ0BpgymcjJTkODLFz2FJeJTduzazZE5QvTwTK8t9Mu/85/aDLVwSUeNYeVhBRLz3ks5b5LlQwuoQFU0IHqU0zlWiNjkcGcahIAe6hOtNTOMoAXveL+/Ll2wTNU+mmcVPg/nY83yXP+w8FxBTPpTlY30gO56exdcv/5M999KeeUCUZpXK7A9R13V5jPTEbdVgqpaEJStxqZxbqaogAouD6BtbHW+eC36tM8Ty5A/3+dKSmh+y/Dsvj5wfXTwwaZymrS3OqlfO91de5mvfzCwbfXidvu/Z7Xbc3Nyy2+2Ic0owc5BYaZGpTF3VOCeI4KPLSzabrXxeWaP/h2vUsyMqPHhdaCP3RhLv/oIACMl0XsBPm1RKCXl4tV5x+fgxQ8pk7VBWQ4p093uUtqxXW6wWzpUmcDQZ7Wp8Bh8jdTmnakF51JL+arVYrNeVIxZEcxoHORsqMY0DwU8kbclWAv9U1vPEWuYeJShHEmt9P5UMF+/JYSTESNYPUvBfNL5VsfHf//Y7/H//6rvf6LFvUpe8qS2SSSidvoLvvUm7Llenkz9IS+IhMXB+AJzCil5n/uq/+pT/9R/9MftHa/6L/+hvQYr4aZCQH5Uhi5mMiSMNI+PxyG5/oO+PjKOEdPlpKouFEItikLjrqrZUrpKLSWkqV3Fx8WgxR7LW0bYtzaojmVWpSC1Za2JhCCvtSGoGCnWpLpMw0Hnl9n2tXaKWi9ikvyDsdFguWHhgxegCp86f17zkaa1Iwx7td2zZsUq31P4OO7wg9S/ZX39B8EdpQSXwPoulcGUgJY6HA4f9gf2+B23xMbMbB55f3/Dxsx3N6hLfH/jg/UveX2/54XtP+dH3n1LXGu8Hjsc9MUVSznTrrURNkxeHQaM1rnJs1xuMKS2MlDg732CckB3n3nzXrYvWXuNsxd3dHaUWYRiPjNNUFsPI8diz2/eMo8cHcUCdi+gpJEKSUDGtFIfDgaE/Uhezsa5tefL4ERcX56xXHVUN/SAOpavVistHl2zPzlmtO6ZCaq2bhqZtJOgry6cQsxRACUVSErBmV2fEZMSAKyqirkmmwboGV7UkZQgJbFUvvXOdxerd+wllVFFkhNIrHyElKmcZerFcPjs7wxjNdDigYuDzzz/j889fAJlj33NWVDf7/YGbmxtyzjRNizM1Nze3fPLJJ1z7a9rVWgoQFPfTPfvpwP5w5Pbujt1xAOO4v7+XSTHPPhqSHTF5yc3QSpRAp34Qr1iLF9XKqXMoPHA23kSKPLWIlz9xCXXruo733nuPy8tL1us15905l2eXJcXTUHUbtk/ep3t0yWjPyO6MpBqB2GNEleBCIRZKD16prwZhvc27yLxhjnibpfjcYvzGY2GezzviB58LsbAvnTsEpk95TnvWGCI1E9+7rPjB047LrcNahbIGlC4bwZOC5esOLIPRRlQmKaG04pOPf85P/oc/5P/9X/8R/+zL/47dfo8qnyVZEWIoLbLMkyeP2dQrtus1/8G/93f5G/+j73F5fsE617T/2T+U9frkGlHlfS43O5QNxEOhUQ7r4RCVtE3rWlodWVkwlqwyboqgDLausaaiWXU4nQnTEVtV2KoCY0v7ZN7VPVQ0uiAeKUWmsac/HAmllZmDpzKKcLlFYrFz+WqWIiMv74/iMBqJYWIaJjKKFAMpTMRpIhJ/s3blv9pQgOGNwXFvQzYQWGfWfeQcJbxHyv9C2JQTqaNHx4K35oQeb8nR44InhpH7/Y7d3Q23N9cMu1v6uytyikJ8CwGlNCH4xQholsbllEk50LQNdVUVxrv0+SWQqUIr2Xmt12s2ZxfoakVTt2zOzlltz6jbFVXTUrUrjCnQmLagxVsz5/nGKn8/6c0JAUyXnTTAqxI8OX0nPI9vNWv8quMBn5n//pAIwSnwcVJBZwlTCp5p2JOnAZ0irqro2pKqisKPgf544Hg84seB4dizPxyIEdr1iuE4ErJMxt5n9le3PH10RlO3rFdrVqsV97t7VqkmJ4E6Jf5deBEaFiXDzNeZzb6cs9R1hTNCEksp0bZiODVNnsPhiHOOcZyoK704evb9KEFI00hK0NQ1627FxVnk+YuX5KzwMROC8AmSsoRkmLzn7vaW42HPeiWeGeTM+dmWzWYlyAu56OEryYZpW9rVmna9Aq2pKoOrK6qmkR1XIYTmLK8XUhYWu9bUzpK0JI4eek9WlmyswKWV8AyUrYlZzRxnYowFMn64P2b4eOaLRO/pjwdijKxWK6ZJTLfSNHJ//ZKf/exnXF9fc3Z+zgfvv48xhtu7O66uXrDZbLi4uODlyxt+/sknPPv8GSDW6xLFDne3d0uhlVHElNj3A+SENZpY7NFTzjhXYbUhqJm78cDTOC0cTr/O47QAAb6ySJ/+7FT2mcrJml1du66jbVsuLi4wxiyqoaqqipRY/miFbEpSLPf/gx9CVvkVyePrNcQb7ce/9p79VcfJOVEs5zOXNZh5LZaDe/id/IBwZOYirizWqBJ9/oCgve29vXIkOSF+26VFkBXaVviYSGhc3VJHtRQbwzCQYiYqg7aWgOE4JZxPjDESy/Xx+v5dAOsiJlhkt/N8fbKgzQXHKVqmFMYJarFeb8jGoa0ja0VWkq68Xm+pXC0E9akXNNEYshauVwSs4uR1pd7TRZkT/cRw2LO7vWX0HlJiGnoaZxienBPDRIqK2djrlfdW3q8u/Lg4TfjxyDBOBB/wfmQaB3IIJ1j9149fW7HxNmTj9Iad4c0UhdSSUiKVHcQMG74KSYJSEhWTi+zQKMjZk1LEWkWOgeDHAsMmcjighlsA/Njz8U/+G4bjntvrK1FGRM9hdy+5GFYTpoHNeoOuDP1x5Px8y83NNWOR7/k0lXInkXIAHzn090L6K9VsVdWQPVkbphC52l9z9ewTyEiIlDFoV6GNQ1c1F5dPOLt8zGq94fLRE84vH1F35yTdlJTMTIzFeVBJiqZxhpw13gdJ59RjCdV6YM/PBlLf5LP57j735dNmDlnSnLSdlCRq6LIjgIStLSpp1OjReHQKPLk8Y+3WRH/B8bDjfnfPcX9g3a2Zmf5C2KtYrTSTjyWeO3Nzd08uAUlDP7Lf78icsdmuUFp2qilGQpiwtqJp22JX7gje0/cDOUeaqqZyNa60JeYiZBxHfJzoVu3iCNq27VKUiKOeXpw0nXNcbM9JgC+yR5Q4E242K0AzTp79scdoi3Y1h95zOAxEP1FXlqquWHct5+dnrFdtmcwkFfJ+d6RqKrrNms35OW0JjGu6VpJn6xplLWEcGSaPdjWT9wzjgKslZCmXQtd7UY1gDEY7xpDQuqRQhgiE5dxaY9FIOFPlLK6yhBiYpolpGgleUMGcZGeflCTPzouuV4rRizrmvQ8+pOs6cs70fY+rGn78O78nUt+7e8ZxYrVa8f3vf1+sx5WiH0emKRQEUaYyKX48q27FMI5LiyJGD8oy+QlrDWf1moRi8p5p8oSYXikQZvfP2WU0pSQeGcUF9k023K8rWB5cKPNSTIjl/C3AQg6dpmnx2oBiCoa0xAKycRG+3qw5yyXkqxTry2Lz8PX1e/yNSPF3ODI8KHrK66VSsGcNOpccEVWcOwXcLyo6sc1OOVICh5k9Y2bloC4tzm86Qgjiwqm1GGBlMK5Cu5qqWZNNQflCICuHqyNVXbM922KdJkSPT9BP4vYrh/nq688Opsu1UqS51haC6Fx4Sr3zQKCFRQpdNQ1NN4Fx2KphCh5XVcQoa9/cCgUW7kUqaI3UyWL/pUslp0p1l2JgOB7Y39+yu7thfxA/IT8OWJV4/+kFIbxHDAaSWwrRmJKgF0VSnHNcnuf27p5+kHUmxUDyIiXO6U1IwVfHtyo2vuka9bbF7NRZ7uHCF5vVHAtMWXYC4gevoaR56jlGO3iRROWEUqIJznkCIiYmYpzQcWR/d8/Viy+5fv45m1sNdPix50//xX+HypkURtqmQedIlQLr2nLsD/T7A9PxwBTEFMkZxfMvnhGiR6GKKY8jTBMheozVxBCZJr9o95NS7Psjwcsk61xFZS2VUeQ00h8niSY2ViSady/47M8UMWa25xe89/736M7eZfvoPT748CM22y2+MN/9NGJshY4BhcE6Q47+JGb4wazoTTuzX/QZ/aojv9KJfVCezER8gd5neaBAfo22EDR6iFiVWa9qzlYapyYOQ+Du9prD0LPqVpydbckxkPzESObuuKMfBpR2TJOXaOXJ4+o1YIhxYrXqePruE1brFkisNx3B94QQaJoGssYaR9/3aIproLGyADjx1zgcDiUp0pKiyNNC9JydnZdCRDJLJMMkQVbc3Nzw5ZfP6fuhmHfpsuvJ+CA22cMgCbLHcWS321PXDbZqud9LxonSmc16zZNHj2jqis16JSFf3uMqQR1Qirv7HSHJ9ZNRUK4vq4XjFEZp4aSkCKMnpIRSwtFwrkJZcQ+dvJJQu5iIWcSh1om99jhNhNGjrUPbCmtEw69chTZldzcJotF17dJG8dOIyqLGGoaBu7s7xmHEGcM777wjyhNrl8V6XpR3ux1ffPEFh8MBheLD9z5cbNpFUtqQ8yh+JMcj+/0997s9kKnrimEcJbclS+stoxhHgdanaQKlqOua9XrNi6vrpf0xm2+d3iuvoxpvGqepr/McJ06uzXKNzHkozrnl8adheeTZeGxeih/4JnJPPdxjM845L2EiiS9Geerk0flhnXzT0b99Lvh2xckpL+GBQjZbYJ+yM97+vHJ+y5/TJ/za43zDceiT9oVAENRtx/bsgvNHT5h8JCnhC63nlnjTsN6u0UYz+RGrE9pWzMEpr3sknbbMjLESSGY0rgSvzZvnh/9O3otWIuO1wvnISpOVcMgWNLioPWJWpCAxCTmrBfmS57cyt77WwiInxqHn5vqKL559wd39HTEEcop0teV4f0/wHto3G3LNOE1OsikbhyPH3T3HvpdCIwail0ykFH9N0tdfZZE67X8+ZAxkamukZZFmgmVCmxISoxU5i8xR54w1iUpNhNgTJw8pkMJA3+95efUFzz7/hPubl/T9nrHvIUz80F8Af016x2mEBIfDjpubl2ijuDw/5+UXLzj2A4OX1sh2e8Zxf+D6xRXjMLBar6jrmt1ux+7uvthAZ2KSwCmVM05La2McBrlXYhLjmBAxbcNqu+WzTz5lCp66afAhYZ2j27T040D0gdvnO26++IRkG2x3zpN33uXJO+/y+MlTHj95j7bdULcbghcfjqZbEXImxlcRjNlAKH3DqvO7GvPO6/TfcmOWXiIP0KOQjwJpGrBhorOKc1tx4da0euDZJ59yf/cSpRRn6zXWVtzd3S4FAUC36rBVw8vrW764esEUoV1tuL3vOfQjnsT2vOPycgN4NtsN2ggitV53NM2alBTOaA79DmOLY57VOOuwzkn/MyaUKq0W56jbCh88h8NBFsuqJhx7qqoiBPGe6LqOp0+fMgwj+/2x5IREhnEixog2FlTg5e0tdV1zeXlJP4z0/QGIWJNZbdc8fvSIzXqFNVI8WVdxtj1jmgb2hwO7YSABTzcbzi8v5firavkUZqfBFCLjNDD5JAtcXaGNJWfhXqQI0+jxkycjZkqmElJmP/Ro7XDNSsy+XLXwkohS+MOrrpk4WURz16JzJvgREGQIYOr7pT8c5/CzlDgeew7HI4f9gcPxWAq/lucvnkuR4hzTNPHy5hZbFu1hkHMRQlgSMZ2zNE1NTOIgCUI4VVERKBsEhOyaQiTxgE7MyNmMEMLDTvbUJfT1Me90Z5TEWsvjx4/JefbckNya8/NzyWUp52KZE4154w5eK9m96rnUOGlFzFytV9o/peCYu6y/PkxjPooyTjgK8+vOxGENJUSsSFnfgn7PfIdf9qhnvsHM41MYlLFUdcvZ+SVP3xN0Di0o1diL1KvpWjbnW7Q1TFNPf7jF1jW6FMKczqWvFaaSz2LR1lLliFJ6QZofyqeH96MLYVuX/LAQI0yJaepLewPGUUjVOmfi1DMNPZXSBD+Rkydl8WDJqlSTSpVslYRKCVIkeikUxqEXt9AcyRGxHCCXDsBrnyHzfC3PFaaRw+6eu5uX7A8H2exFcWRNwfPg8/L141sWG28mHX3bcQpTphCIeUDlSFU5lMqEELBai1+8FiLgbIFrsmfqb4lTz2F/z8urL/ny2afc3rygP9yTwijmWTlQAylH3EmvL04jL6+umaaJ87MzHl0+4uOff7wEXq3XG5qm5e72nuPxiDGGrltTuZppDITiUhljIue4XNR6Jn4mxORIG0Avz7nZrLnb3XEYJrJSjLsjVVVx+eiMY3/k5curBXJXWtOsI3n0PP/smpvnP+UPsyYry5On7/PjH/8VPvjwB2zOH6FjgKgw9Rlaua9MkL9ZrsbJZ/xAXSr/ftgN6JMdWeU0yU/oHGidplYZFUf+7Kd/SBx3GDLKSNT7brcj+sTUD1ycn/H+++/z+bMv+fL5Mw692F2PQYFJvLy+QWvPo/OKuja4SvPo8ZaUB8ahX9QbMSasqelWa6YwFJKYXpwfU5LC1yi9QOGVNWirCuwr6NVxv+N4HJimif3+wO5+zh4xhJA4v7hkHCeGYcRVChUjCdieSwujqmqJYc87MIauxGBfnJ9ztlkLiTVEurbiyeNHhOD58ssruVbamma15uLyQlo5zlF3ovmNMZCQ3vk4DuwPRzROEjOtRNn7yROz2L73/UT0YKwrvI6AUYGma1hvznHtqihWbLF6jkuxoZUiIYuqqGcKypaE/U6O1HVN13XEEFB1LcqvsihbaxnHkZc3t0w+MIUASuPqGmMM+2GHKQjnDLNrpRcEoW0bum5FSonRe7q2wRjLbrdjf7/Dz+0Q6zCmIqcsbbD9ToyQ1AO8/TphdLE9D+GthcZc4C9OoUYK15yluFutVnRdx2q1euBopHRyjypZtKzGlLZTVjM2MPfkhZ+h1cxae0AMfhPI5S8aBVyRv8/VRl4syBbSoX7L4T34l+iF6/Ht3kt+IBwkgGJbbowgF2fnPI4KpStiyoyj5zq+IJGwVUPVrqjqijo2wneqWml7a/1KDM1Cji426vqV60Z4I7EgG8xI/mkRqQvjMGcm7+knUcWlOBGnAR8yMQT86FApkXyP7/c4ZYl+LGo6UbaBWV4XhGpgrBZPoEzx+cgPSEmQuS2GgEq5NOTmITO1KsWhQiIJprHneNgzHA7S4lMZqzLaFe7gNxi/ljYK8IaiNBfpoJBnFBC8ZxwOqHhkHI7St4uJqqp45513cCYT47i8ueE4cL+75fDyCz75+Z/y5bPPmMYjzkDXWCwjh/4GkieEgRQSVtVM+hwc+Gni+ZdXkOH9976Hqyv+5R/8IXXd0HRbqsqxWnXkDMMwAYoQMiBE0eNxICVwruxefVguMO0UOakid9RFomlYrVqcFRfI28OA6daE4HHGcHZ+jq4q7q/umIKEN6UMbV1R2YSP1wx94BAFxXD1ij/bPef5sz9jc/aI7fkjfvDRj/jx7/w+AYdxq6W3mYoES53Awac7jrd8SCc/ea0F8y0++jc/9kTeycOOK07CkCYFRn/grn+BT3dURrG6OOP29pr7/T1og588GsPjx48Yh54/+ZM/YbeTECOUwKT72x3DMHHsxd465cxq3XB+sQYVMRpSlH3GNE1oXWNMQ/BeVBKKkpHgIeXF7KupanKWXXn0GuMUxpplwRjHsUDmK7puxapbc3d3x/EoyazGya6qHkY+/+IZ/TDgqrokOkqAmY+RqqmwyaKVsOK7tmMajtzf3TH0Pe+++w7ej9zcXCMtoQ1utaXdnAv3AoWtapStyglOjMPE6Cf2h56cM3VTSz6Ckn52zGB0FATAR8hWbMajQNlzLkvVrcT2OGWmaZBechaFg1KZmIWIGeMsH5esiRQEdrVGczze8Pnnn0shj6Bb88LsfeD+fsfxeFxSWuu6ZrPZYLVBRXh5dcU0eR4/fkzdtkv7o+s6MdtC7kE/247niDGauq7QIRBCXFAB52T680nkuJRjOeVewEPbdy7ihVSsvnL7nF4Hc9skRrFmn4uMmVCsy4ZrLpoEEdGCrJWEUW0MWallkX5omJQ7tBQfrxT1f05Fxutj8VUkP/AKXvn5m7Vzr1rAv9ZH+RZDzbsbCtJhNFpbqlo2FkpLnk5m4OLyMTFFXNuwObug6RpyDhzuNKaqZCOp4ZVqQwkfZFYR6fmaicKjilE/WCjwYKOwvE+QvJUYGMaB+8MgRoJxKq3HCGiUMuLEG0bidCD5iv64l7aKca/xJV6V7ctcFghhElRRy3OphKgpc34wmn3LOZydtHNKxDDhrJECNwViDMUM79fA2ZADOFmq3tK/lAyZ+anFu0Ig84hKE0RPCCP3Ny958eXnvHj2M+5ur9jt9xwPB9abDb/zO7/D3/k7f4c0TozTyPF45PPPPuPFZ5/Q314LuXM8oP0koU4ve6apR+cobNwIOSTaTctZew5HSo+24vz8kpQTf/qnf8pqLYTDiwvpvV+9uOLu7haUYrPZYIwp7FuPNYZAljyDmApUJou6SAKFLEgW2F26RInd/R3744GsFTFIv+3Je49p6ob7uzuIZceSwFaGdbvifn/N/e7lAnOjDJVxdE2FSSO7q2c8+/hP+JOf/DP+2T/5x/zN//nf4+n7P2C7vUThMNqCrogzA7z0ECnEswfX0hOjc/WwT4IC1eZvf7vPE8sptJooOxogqgfPgxQzFodShpAiPok65N33vgfhyDCODCEyxQAkpjHw6c0t3k8iO80QgrziOHgmHxnGyDBmxgF+9NFjfvDRh1TGoknEaWLsPVVl2J5tefLkXYytiv35hCITxOhiIUk5I1H0RiuC9xzHAW2NBK8VldI0ThyPR1arDZvNltWqo24adrsdVX1kfxjEodM5Li4vqQ5H6X8W/4zZHdQoTVU5rDFMw8D+/p4wjjhnubw4E85KkhTI9959iraWAVHM1E1D03VCMBtGQgyQ80KSTUmsj6uqLoiLhEtpW6GUFBE5ZVnotCaHQNt0dN0G62qSDySVsa4mpkk2kEoV8mjATyPjNCEyR1UyKUaGfkAhDokvr19ycyPhY9vzM7q2xRpLTIGXVy95/vIlt7f3DMOR41HQP+8DGOjWG0YfcePIzf2e29tblLa0rZDojLF4HzBKMU2e637geBjkPKAgZSpXlVC40mcw0toLWYh8MpE+BLLNclm13BuazCyFVYWkx8JDSjGiUFTGLomkWkEKE8EPpNihVUNVOWm3qnIYBY5X2oJp0MpI7lXOZBXJWYLysprtv19rjqi5iM8FbX342dxO+Lbj2/zejLyw/EqZQ/Ic8aCE7JllxyzzUsE4i+Q75ozPELUmlve/uCLot+S/vHFyyg+0jwxZC/JlK0vTNnRZYWyDjwlbO1KOMEmMu/jgSNFZNxJQKEjnQ7sKEKsCrciI344mYuJQ/GY80VYPrrSpIE8nXkhaZVSO+PHI2O857O/ww0jsR7z3TJMU/1JzRVTyJH8kDQ37+3umccDZCmtrXnmzczsFRUCTsiVmS8yOnBQaAzkxTIkpQsiKhCnF38OsrTIoZD4yKPmMkuZ4OAIJUkClJNYR/JqKja98rG8oOHIyaGVhJnnmhMoexYSJR/a3L/js4z/h808/Zjje4VQk7W5RhwN5v+fLL/+U+8/+iA/PLefn53zy6afcXF+z3++Z+h6GHmsMnU5c7W+IRnYD66ajPx65fXlL3dRcXjxFWVt2xnJDP758REqZT3/+KTF4cIaPfvRDhn7g5voFd7e3pJQ4OztD5cxxv196uEopVq3A00ZrVm0nqaBJJtLgPc5aYgg0Zde0EHuCsPBzDLR1jQqB2+fPGUrMuNGas+2WtuuIPuIHqOw50ySV7vn5GSY5br68WibgTOZse8bh+nP+yf/r/8oPfut3+dFv/VXe/+C3aepzjlPCVp1wOnJmih7rZPeUfFzgtTwXHKqYulAmNgpk+y0KjvlqSKr8zrLDUcV6WEZMkEkYVYGuCFHTNjVnq8ecmYFpuMMPkZfXO/rpSNUYZj+Bum4xhdDZ6Ipj7xmHwDBNxATj5NEKtlvNdrtis1pjTE1/uCdHj8ZydnbB4ydPqFpRUFS1Io6FV5RLgVzgea1Y3PSqAv0fegl6kz6+o6pNeU+KF1dXfPFlZLPZsNlsODuvWG0U/ThJW8IYlILgZafgnBP5XYokn8hBo5yodmpbsW5amqai61qM0iiV6VpJrc1RUbU1bVuxXndUbUPygcNuJ34wSdDC7OfcHSMTmBYFj0+ZSmtSVEw+EFPGak3KEW3EMEtaLVF2c1Zszeu5BRJDkYaX6PaY0CUhN4VEmALjMC6thPX6jIuLx4uFegiRQ9/TD0d2hyMxwtnFBek60w8jZ+cXGCUk7KwU64tL9s+ecXu/J6HFgMlaQUq0IeTAcOxFtoz0xFVMWG2JSlpRprQqUpLpVSOZI6EYPQmyoWQnmAGStI6YoX1NzPGV1E1nrKhHJi/IhjFYpWmspWoFtVg1NVYr/DiKm6N1Qg5kDtaSbKaMI2cNMaJUAKxIjZU5aUPKn9la8PTum6W2v/r45s8jGIR69RvzKLyE5d7PsiHVSgoNWdhEyulzJipNVIqUwGqFTvMi+qZXfv2b0oYR3od8jilnUcJK2qN8tSWGIhlyCiyeE4WUa7TGI202lCoBfg+BYykrQfkQsnaaevz+hugnVAocY8vxsF94G+o1HySVBR3o97fsd1fcXb8kDgE1Zmlb+EhIUZKIoycnQT0IR4bhIG3glErmlrRtMoJUaAxoQ1aOrGuybsk6Ekt3QVuFz1aiH5QlKU1CxBlL0YJCozFKxBkqixxX61n1BRDRJVflm4xvzdn4yndeLy0zaFvIMURJ5AyBFHqc9vzsz/6AP/tX/5Ld7XPidKSuDOM48eLZZ7x8+RIoUGYK/OSf/3copdjtdgsh8P7mhrOu4/LxI/7oj/6I/W7H9773Pay10rMfRpyr6NoVSmmuX77k5THAEznWw+HAs2fPyDlzcXHBRx99tOj+b26uca7m7OxsYb2nJCTPWW3gSzqkcw5figRX1yLxywU1OHFUWzgdBTasqwprDOMwsN/vF1h2hlmHYeBwPJZiVbJa6k1D5Sr645HghdQ2SwgrZ1ltNnz54gX/5NmX/ME//wn/1l/7W/zeX/0bnD/+gBxlJ0qGujLEHBmnEatsqWYLNFtu+FcmDJUKTPstsY25Z8sDSWzeJM27LrWgHSLlrZSmrhsq49FpYvKej3/2MdMwsDrbgI4Y60jOcHd7X5wlAzErQowcB0lTDSEt+Rd1pVmtpCDc7e5Y1RqUZbte8YMffMRq1bE77kRlUlV4rTgeDoyTkPaqpqYqTpxaaw7HI6HIiZXWhHFiKoFkQip1i5ri6uqKm5sbLi8vy+K8JpQd8iylBIHeD4fD4jY6//56fS7+HcOAAlarFXVd4b2EqRltca4mkalaad1UVQUx4sdRoFgfismYgiy7Fh88tmpkF1/g1gxMk2cYxpLqKkTKupHXzDkzjiNKR9nlqICy0iLw00SYRAJHlqyP+T3OkO7Z2dlyaWitefHihchXtWa1XmOUwvuAtRXvv/8B97s7rq+v2W63KKVo2obK1hwHz/39jt3ugNaG8/OLhf8BEEOgj4IYxaxEHdC+6n0xjuPC8bDlczUxQYiL6galGKfAOIk3AfO5UoakMhqLQTNnoxilqWyRD9ri4mqEKKqtZbvdYowoX6S1EhiHgXZll89gJk0bLYVajAFtJGQtE5eb6gSv4JeCHf8cxpsAcFFpCOtEl00NMzmX18iKfJuyp/BCTk7MzD2QmHpBKJWGylisNhyaGm80yoigOEzSxhiPB7ylFAwPMtzloJS8h5wC0Y/0hz1hGtA5URtIQYqYnCOJ+MqJsEqhUsYPA4fbO+6urgiDx3hFiokpBuFppURMnpwCOY7kqWY4HISY+YazIleF5HxRXH8lrE2u14R8X0jTYXEvXvhJ5bPIZeOkjCnqMyu5T7XI0yUUMOCq6hWS6deNb8fZ4KvFxVeQDYWkQkaPNgqfPCr1aDXy+ac/5V/9wT/j+vmnVCZy3N1wddjz8sUtYz+hlGK9WvPo0SWPnjzhsJO2yg8++oj7+3tub25Yr9b4aeLjjz9GlVaH1prD4cDhcJBAo05SKe7u7gghFP26aPCvrgQZmIuHw+HAp59+ys3NDdvtGevVFmNM8QoQguB6vQbE/KWqZPLt+56c0iKNnAmsSsmkkrNUxTMi4pxboNKZhR5CwFqRWK5WK0IoHgXjSMqZKQTOz884Pz/n+voGhST0pbknrjT39/fc73YEMkoZXnz2Of/g2f+dT372MX/jb/8dHr//fbYX74CqxDhMaUJmKYjE9MYU//sHgFaVK/fBsOW7mNXyyf32QJCSqkT6gsdxz7B/znD1DG00l48uGcPA7n6PcRXZCw9AlwV+PA7AbJyUy+ecSIhSZRwH9vt7tuvHNG1DU3V89P33ePz4EUplXONQSrG/v6eqag77g1iPl2jmWZI472ghMY7Cs2jqUgQOA/f3u8UIzpeCUCvN1dVLYeAr4Z1UVVX4CX65DmZC4XKWUiJME3UJfquriqquUUaRvbxLUzmaqiYB67MzVus12hjGfmC/PxT778SqWxFi4vbmFmMsVbvicDyijJWMBeMgRsbg8SHSOjEOCyHQ2eIVESey0jhtgPLvpInB46eJXFoHc9E1k2tnD5K+70VqiswfwzCICqBEr2/W4gSaZ7O8FNls1sQQpJViHYfdkdv7PYdDTyaz3YqF9H6/pz8ei8tqvyBHwT8UdMASqBeKo+p8r4LEYVRKo51bUI2c87KBUOphqc/5gQyrtJH3XYLZgIWLcUowHceRunaiQCrzRMoP0li1HIsClcWleJpwNhRPBXnNfCJvXG7J7wrE+A2PU58lpZZ4uZKi/at4ghTIvyRq6wxJ5TJ3SkrxcDzgWrCVXMO1cwWhC/hhgBTkc/Aj4yBIVKotWT8slzondFZiJlloAtYoslGYbAq6Ekk5Lu/p9MMyWaNiwh8H9jd33F1d44cR5aWVGQvXQ2oDsXLPYWTSkTgNC8n+qydWXkWXdmzbtqxWK2IS5YkBrKV4Aani/ZGXz0ROofT2slIyT1QNrl1Rd2ui7okhomJEK0dVNkHfZPzKbZSvFB8I8SXmiDWW4EcqHYnDkZ/+yR9wc/UMP+y4vbvi+ZefkCZPU51xvtlycXHB+dmZEL18QMXEplthlSaHyPlmi9GaMSV8FrlbXVCFvu8l6a6ul91iSkm8ElJVTmZaCpSLiwtub2/57LPPyDnTdR1d1xJC4P7+funZzlK2eeKZ/zSNkApjjMW4h8I8f5DNzUXIPPmcGg/Nz922LU3ToLUWtUXZEfoQONtuWa/W9MceciaGuBB7jBYr7cNuTz+MdN0GHzzdeo2uNJ99/Efc3j3ngx/+Nn/r3/27vPvBj4hJobVDWSdOknOfo6AMemELyY2h5yv3RM3/y468PFd+ZSJOssUu3gQJHyaUn2i7jnXt+PhnPyWpyMXlObvDgX4/ElPCWpF9hSASUq3FG8PYVJIkJeioWzWcn5/RNBVaKb73wfs8urykbhshV0Xhsjjr6Mcj3hcSYYb9/rAop0CIkta6YjV+oKoq2laumf7YL0qF+TowxtBVNcdhXJKEp7LA5pypaylmhmFYCtumaYTMqGRytFbUG9oYUJm66OK1Fr6B1Ybt2Rn1akXynuOxX+SUYpEdF2fSnIUkPYaEMpa6BldL62GaAtpIXkeIcbmvh/4ItsZWNbkoTTLiUZBiub61lrZAOU/TNC0Ez/lanwvw/X7P/f09Nzc3bLZbqqI0sdZyPATubu+4v7+nazuOhz3jOJJC5OrqmmM/oZS0TqqqYr/fs9vtaMpzny5gs7RwKf6UWr4u/Ag15xYpjJYo7RgiSomMMcZI2B9l0Sq7YRWLD4aCqqpoauG/pJTIMUJ5L/rkfjk1C1vks/NOUovV9SynzTEwjT26P2LqFVkHsoqgHcui8K9RhfHWoiE/cCBmEuVcgM3miL90waHmDVNhi+TZ+CwTpoHDfk+dMnXKRB+BRPITw9ijJo2rLNooxn5Ho4SLlHP36hSYo7TfSgtav8aTme+BGMNDsXHyc40Wo7MQmQ4D474nTBNVMQgRnspsFJZLflSCGMgpYHiQm7/p3Bqjl/lpvVoJum40OidM4bDMirxXzrUqsmFV2ojFbGy13rK56LHDQPABN/RoBZvtmrZ+s1fH6+PbFRuvFRZvMrkRGMagjCs3kqarGz77/KfcvXjO/csr7q6+wOnAB0+eCrzvtpyfXS5thHEcZYJPmbpyXL+4Eib+06coBau25pNPPuGdd94pZj77h4lGPZjvCJpgqWxVjldzeXkJwLNnzxiGYXEE7LqO/X6P0dUCA6/X68UwaN557nY7Li4u0FozFGns/LMZtRADKLsUGKdugnMxMjPWZwOjw0HsnKdJ2Pxt17Fer5mmievr6+WYlFI0TbPsjkMIrLsVlXJMQ49dRRrnOPoDh5ue//7FZ7z88nP+nX//7/FbP/59tFuTiWhbyw4OtcTCn/Z+Xwdtf+WRl/8tu8V5OhCSYSSkiVpBt2pQhwnvBz766IcM48CXL77g9v6epupQCnyI9MPIMAyYqpXIbWVKWNisKshsNyvWmw7nDOcXWx49ucRVhuPhIPI7oxhHITYejgd8DBgnssRpEmte52RXmpBrKpHRRjNOo/ijxIgyGqsdKgrvpXLy+3c312ht0bZimsJiez8rELz33N3dFemmWFmfn224ONvStI0UuUSGQVwrV+sVdSPXjNaabr0RPkFIDMeB3W6HKBwcx8NAf9yVYkZ8P4TwVtweC3Q9F8xt04l9tp+kJZQSkx8F2k8aPyQiI9o6jBO3S10KDVMmRj/5pS00L6zAK4VH34sfyWq1gpzZ7XZcX1/x+eef8+LL56zWMkHWdc1qteKw27NZr2laiirsyP39PX3fS2ZReW5VIs198KDMEvI2o5unplvzfTlflXNc/f1uT0xeyHI5CzkPScl0riJm6ZEbjRj1VTJfTNNEmNstRpGjFA8xKYxpluC1+c+8QZmJp9JODaJIyEcmV1OHDZhKkA0SKetynf9rC2gs42ElmTkWEVRcNmq/utupWpD4Uk+So5ilRT9x8+KI0tcYY9Exc9zv2B/3hOilNZIDioiLl6QwyfV9yrlIUThBqmzFcsaPI8PQo3PGWbkmUk4k4sKumYczhlo7HAabNDZJ6aKSEJITSYQWQRGiJ+UJTRDu0eRJZS1505gxlAXBK3+W86IUMYmaUgq8N5w5rUGLB42tatrNlvMx0oVI8F5a/SnRdS1V9c3KiF9KjXL6Jt+EbOSksKbBkolZoJvpMPL8sy8YdpKY13QdH33vBwzDwP3tEY1A2Xd3d7z77rvkDMPQk2Jiveq4vb7BWcs0jez2Ox49eoRzjg8++IA//MM/XNoUwzAscG7XdRyGHm0LL0HxCsTrvadpGh4/fszt7S1a6WWH+ejRo5J3MtI0DcMg+Srzjmr2D5gLjbn/Oz++ruuFVzH3iadiiT23debJbyaBzhNS13Ws1tIu6vueWCZupRSrrsNoLSqNYkajjSHHyLrr0Dmxu3vJGCdc26Cz5uM//glD7zneH/j93/+bVKtz0I6MYfDT0sPPM6kCsRd+yCNYGivf8CJZRO4PV4WCB+F9+W7OqOLOl2IspESklxkmnLUMx56rl9d4nzg/f0ROcHN9I+2LfhAfFi2+JyFGQswEn9HO0HYdSmUmP7Bdb4XzME00tmEcRLqpnUguQ4ykKEqjylWlt57wkyfFjNaGYRix1vH06bsi0yw76zSOVM6xWq/JKXFzcyOJrihCylRG0XUr1muz7PhnL48Z9m/blsvLS7quxTmzcHVd5aQwSLIzsc5hXQU6YKuK1XqNbRqmceJwOBCCIIqHw5GhHwlhLmAzdd2IM2iMuKoWM7ogpNC5+J2LteA9k5nQtS47qNJjVw8tHyG/lyTVmIgBxl42C6fclJkrMctAQwi88847PH33XYZh4GeffcbxuGccRqqqYrPZ0Pc9RivZgBzFtVAMwxR1VdHvD+x2O6Zp4rAXBMSWDUoIgUSkL8z+2dFz3hjMxXpK4mvjvRf1WOnn+zEQYhJ+lFKAKMvathY75xjEZ8BobOlXV5VjVbxNQowM/UAsZkfCLxLX0NMNiC7FUM6g6pK0mwJZeXIQLoy1AYzsvpV+gOITWSyqXwPTv1tL8m/ep/nWHZ2ZLzYneKt5jpaFUBXPoNnunHl+Wn797fPR3J5VShyoVeHMpRjIwdPv99zc3uFjmaMmWUBDkkIDJVwZrRJh05ELeTSGB+lrSuJiPVuQZ8rnPgj515gaH0umiiqo2Mkx5zRT8HU5DxBDIiTZUPoYFp+OnCPWimdPThJ5kPK8sf8qQVZQb1PQXjEck+tNCVeEUIpi/UqI2qxQTKpwarJCaYurKuHTNQ0qRGzdgLHCWaxrTOX4JuNbczZ+4SgfbI6ZaZxojCX0B95/8g7fe/oBf/TiC955/C5dbfn0ky+FZBUzwV/JTagNfT9wf3dH27a8/977rNZrUkx8/tnnPHnnCbvdnh/96IfknDkcDmw2G5qmWWDaeRGXgJ3IEAboBLK/ublZdjQffvjhklUwy9wALi4u8N7T9/0Cv86BatM0LUjHq8mOeWmdNE2zFBUzue50gRH3UXnecRyXQqZpGmnPBOnZHg6HpcgYhoH33nuP9XrNy5cvCZMsxt57gp9o6gofJ4bBk1RA5cjh7o6sHavtJcP9S/4//9X/g5svvuCv/0/+Xc6ffoCtWlZVw2HsUbYSAmYu/ZXSp9YL4vFtio2Z//HA+VAl4+WBujWjHMU5stxUKXtCmOi6huF+zzhMsjAmMZwSzoOoD25ub3n85CnXt/eyQy95BN265el77/HBB4/oVi1aS16BdUbkmFNfEKXAcRg4HA7sdzt2t3dF0iwmQApOyJ+WDAy9EHsTJYxMaaq6LZ/RJAXMnPjrKnKGvh/4/PNnBVlQS7bGvDBst1vati3ulHK95ORRCoyzSzGwWq+o2gZjLbapaZqWqusY+oHd/Y6+F5Ql+Mjd3T3GWIZBFtzN5oxp8tzvD2jnWGlDmAJ1Vri6YdW2ZOD25obdoadqWrr1hqZriGRi9ChdoQzkHCEV46oSf55CYBpFon567R8OB8kNmttKJ34T/TDw2aef8vLlS87ONozTWO4hmfxjcWhVWc7RFDK73Z5xmhbb75l4PXt7BO8Fwp4C++PAVAr+GQmaW5bW2gUpbNuWYZT73RrD+dkZ++NRkkGBytnSIhL1VooRrGaz6mhXK5E998eSiZFQUUyVtKmo25qz8zPqMiHP7bOmaUW2PI6M04hCs16nRRGQ40SYeky9ln49s+F1uT9PuYpvQJi/i/Gw0fjF422tnbcVBWpuI6mZvSXqB60elH8P8+qbS5m3PjfIaTJqmb10zoRRSJz7+1v29/dFAp2QTD4hcuYsbcKcIymMjGdrwjiQQiSetC2EJClIW4KSYJtBG7Rz6KrBpzzT0eRcnvy+IIsa6yrqtqVuOyFilol3GEdJakXQtcoZnI5YnYlYUhbS5yudndeuAV3i301B05QSkuzszbG4m57MRTOHbvl8NFhnqZuauqnJk8fqIi4ofMOm+XVwNso7+7qLWynIKVK7Cj95nM1UWno771xecPv4CYfdLbfHnovLC4ZpZBp7XF0taMD+sOfd99/j/Pyc9XrNv/gX/4LtVmxkx2lceBoAX3zxBSEI675pGi4vL6nrmsNBdj7DOOLW1XLym6YhpcT5+bkoPw6H5T1pram7B0RitidPKS2eG6e9V80DOgEPvVlfJrzNZsNut0MpkU6t12vpQRcex0yeM8ZwcXGxFCHTNIlcMAoZ0SjNb/3wRxhjuL+7ZzgKohG8ZxpHNpsNSUcJv0oebTQhQvQZ1xgcBh0m9vsv+ef/7T/i5Ysv+Jv/zr/PX/n9/zEpQuccU5bwHoHbZsLWd0EKffUCej0hMC0XeWTyE0F5Gi0Xe1WJXfhwv8MXsmNMifPLCz75+c+L9bHhfrdnvb0gv7jh5qZnCPCuAmM0Sstu0TkhIpqiolAqczge2R/F4nryEoC0WFErqMsOePZ7OD8/BwWHmyM+JIbxAaKfYfoZHp/dIttWUk4fPXpo880L8KnL5JwFYq3h/GzNdrPGGI2fJtCa9aajXXUoK8TOpm1xtcOHyP3dgd1uL22ZKbLf7zkcDrTtSsiyiYUT5GNkfXYmKo4sQWjDbgfHAeVqlLZsNhva1bpA/rKAUoIOtXNkZTG2xhlRYPhpYirk2JmHMqMZs6JrRvgA1us1fd9zfXuLMYbtdsu+eOw46zgc9tSVE2XQOHJ5ccF6veaP/vindJ20Wu+ub9jv98KxurtbdmUhhJKcKtqBuVCEh8JRa0nknc95SonVuiXtQulZKypr2W7W3Nze0TYNzhrCNKKUoa1r2rqiq1saV6MzkBKxbCxEuSOFTVd65sbohcMlLaWAq2uapl7ujXm3rJTA+CJ5DEIOJZU/utxD3/W9+Zsdp+9gKTiUemVB/qWHOklhzWUxLZyaMIwcd5L0vdB+pwhZ2jiStxVRSj6LOPViX/CaRkZUHpqkRa2hrMNWHZ2uqetKSJO2KghOKvKOE7S3qBaVs9i2pV6vUT5glcPHQIqlbQ5AIhlktVaZKVv6UOS3bzq3eY4DMUuI5EzcVqq8dkEAxQ3XvfJ7MxCtVMaoRGU1bVez9RvcMJV0XIPzFW1T09T1G4/j9fFL2ZUvB/XGdwope6xSZC021P3uij/9sz/kxfNPSaHH6ISuLdpZ8jSx2Z4xDkeub244Pz/n/OKCs/NzfvIHfyC7svWaP/nTP6XtOg79gXceP2a32y2FwrxbmWWDs5Lk8ePH6NsbctGd5yQugOfn57zzzjv8/Oc/p2ma5fEXF5fs7g+LSmRGHLque0WieNr7hYcKe94pzTu6lJKYOs27sJMd1fyac6++bdsFYp8nznmRu7y8xFrL7e2ttHuKM+HsB9J2LfeHW5IW6C14sZlxpsVQMex7tJ5omhp/vOOnP/mn+H4PfuSHv/dvY1cXokbRshOXe/Q0Ru07GGpuxqjXvw3kohsP2FrTuQY3wiefPGN3eyD4xDhN+Jh5+vRJSXFVbLZn7A9HfAigNT4m9ofIlJBY92kipar4RVhQmf54JMeJ9XqFW1pfE7v7vWQHKL20GryPYpZVN2htuLu7L3Hqif3+QEiJumlwxSJcKQjH0iqIQXT8xqCMJnnPfr9fdv0Prpmye59Jytvtlu26WRZ5bTRNYZRXdS1BT67GVhXj5Nnt94yDl+K0olxXvqB4d2JGZhzPn78oxkbCMdjt9wzDhE/QrdacbbclDTZinEh+M5IhlIrZlAoeayucEwMxjV7akX7yyz0xc0BmyfqTJ08WCe44jlxdXQl6570gFuPIz372nBAj69Watm2oKws5F4LbGq01H330EeMobRPfddzd3XF7c7MQrfvDsfBTPL70/mdkcG7nzPLT+V5erVY457i7v1/mkBQDRmu26035DGzxxDAiaVWQ/MTN9fXi9Fk3Ipm3O8PLlxM+elKSlE6t1TIHoM2yochKL7LqlObE2gmLwrgao0ERJVlTVWRlFpRR8VVXzn89R3k/ShWC+q+e5TTjsGpGiXLxzlBSqKXgCUNPovikROHhKC0mVVqLp05OojShOF6/ssHWEp6mlMZUDe36jItH74BStE2DNZqmW5fN21cdRDEajEbXFfV6TbvdYn2isi3DODEmAyGgjUJrqCpD6zSKiK7X4NqijnkLuqOlTTKToU0xJtRZlFQzp3BxPj1FNgo0pMthOqtp65qpjWjriCi0gaEXdeQSIvgLxi+lRvlFyEbtFDHcQ7zH+4F/9Qf/lJ/+D/+M26svCeFIs6oJCQ7jkWbd0O93aK14/OQJm+2G/W7Pf/1P/hvOz87JOTOMI03bsj3bcnd7w09/+qcLgvHee++x3+8XXX4uhLMnT57wzjvvgNFchHM4sBAH9/u9SFezFB+nqoJZDntzc8PFxQWr1WrpMy9eGqUNM6Mc8/mYi425X933/bKzmr8HLMWGc47zc3Euvbu7W3Z+4zjSH3seXV7y9OlTrq6EPHdarIQQePz4MRcXF1y9fM6YBpJORC3GTdbUOFPLTsv3bNct9y+fY4zi/PwRt88+5h/9P/9Lrl5e8df/9t+lvXwXnxNRndqbnyYv/GrjgV6VH76jHopAlMIt0Hjg5vZG7KqritH3KAyXF4+om5aPP/6YYRip6ppxCkv7bCp/bxq5yWIKaA3n51suLs4xRmNthTUVFA7N7e0tV1cv8aMsPFUliFZGeCRzy6PrOsZR+DwoLW6nIRILWVEpxXq9XmLSjTFUdb3wA4bjuBQX8+j7fkG65rhxrRXDOKKVpW3FhdQ4x+Qn6q6jW63Q1jH5yP3+wH5/wI8BPwXGUcim3kuMfc6KGCXI8PbmltVqhbZWyMgZrKvZrldcPnpCu97QeyHpig2zqDN8DmIemBLjOJC0w9qGyY+orJlG4RtlBDnwheA8E7c3m82CBHZdRwiB6+trOaerFT//+GNeXl0thOz1es2jx5cEP4rkt6poqpoYEsfhjqurKz777HP6glzOCIJzjl7NhEuBgq01WOteKTZmqfF8/5+fn9O2Lc+ffyn3ZFXx+PEjQkw8e/aFGIrFQDYGZxtcZTFZMIaoRIJtrKFyFZfngsDUdc3+KBuheUc5b1K0dQu/rKoqycXoe0DeR4yhkOOFFAq5uFLGAn8LeS8vfKp/ncfcSjmVIv/qbypLb6CYFs6FB0Akp0iO8lWpjMZg5r5LksIu4lE5iR/K8YCfpA2oTgNdVHEHM46q6dicX/JklHZ7VdXknKibVQmflFbI6ZqZyGSrqbuW88ePCEbjg0JTMwweVa8JMSwbpa5xOANhPKLrFR5byoE3jFP0fT6vOYvKLCWsyct6FmKkOqEBLGt7jqissBqs1VgjxGebhWMyh2qK4OHXEMQ29/Dlkn+lW7TcGIpEmvbksMP3t/zRH/5Lfv7H/5Iw7iGPKBXxvsc1Hc1qxcvrG3744fc57Peg4PPPPwcEwkbBxeUl+8OedtUJ30KLZ8VM3uy6jqurKzabDefn5wvP4nv/P+r+9Nuy4zzvBH8Rsccz3TkHZCaQIACClCjRkl12S1VeZS/XsJZXf+lv/a3/yXb16nJ1l1UqW2WLsklRBAmAQCYSOd35nmmPMfSHN/a+J0FAAmSxy9pcyUzce84+++wh4o3nfYaHD7m8vOThw4c88nfhl7e9qa7rmE6n4wB0dHRElmW8evUKkEHg3v17TMoJdV3RNHWcDGXgEBOhCNX5W0DQexdXxo40TVBKM5/P2UQCmxQcYqSSpgnz+SzGki/H1e2AmpycnLC/tycEuPg7a+1IKBx8BpbLJVVdE3QQW+eQiP9DMok26D2pFjKPdz2J0XjbkBi4Pn/Jf/i3/4ZN0/EH//U/Z+/4rZi2KxCh5DIogYm/dsXx5uDwzSjIQAK7/a/I+BL3Phyp0UySFE2gqWu2mzW97ZjP9lFJxmbbYEzC5cUF280mVuTSrthuK3pvaNse76FIpGDKs5yynLC/f8B8PiOEnnJS4nopMjbbiuvrFcv1htlkhklTPGCD9OWrqqZuRHacbbaYRCbTEGAymUJsjw3FaBvdYIco8fOzC6yzkh5rUtIkFSKrlTyBQYp5cHBAmiaIXbIVxCURa+U0zzFpSj6ZkBdlVETAdltFonKIvBEhvQ6EQ+ccSZKN6qZBNTGdTinnM8rpjKKYYqKLZdM0dL1DK0ORZeSFcHgyk7GuJTVSm4I8svu7tkMrg4v3pLdulHC2bcuLFy9Gdc1wDHVdc319PQ6AIQRMJEtmWcbdu3dJtKhN+q4dZaXbbYXtHdV2y2q5pG2a0atDa83FxYXcVwEp2IyhbnvQohYhIipDQTgELLZty9nZGbOZDOzGGKptJchNVuB6S9s2JBGJGjCF4d4LPuBw+BDQpuPFixcywKeG6WRCZ3tQUNU1eZahtLRnxmdF+geSFqqGBUnkK3iHsx2J7yVYUjlc8JJWGvcwyDn/vm8DAXksDMZ/BVA+DhjfvggZskgGmYXSaixk5JMkJE0IvD3GIbJS5SD0gEPhohqrxw4GdW8e9Rhdb1Lh4BSTGSgdXaR7nGTbMlgH7JqCBT28NyMtS/Kuw1iNDgUqsbQxl0knYtxY5AmpDrRGo0yGF87411794RxKgSWFgw+DzFVccoMSftubC8AB2RjmNZnvxU3Gi8Kq63FKS2vJO4LXMl98i+27FRvBgQsoEnyQyVTjCKEjM57gKoLdovsV9c0pf/mT/4PVzQ3L89eUecrBwSHPvnzGZFJS5gVawYN7d5hOSpZXl1zdXPPf/PF/zU/+4i94/PYjzs/OWF5fMd+bkyYp88kdTk9fke14abx48YIhYrqK5j7ee37xi1/w4MEDvvziKduDCVCSJIYiSVFkVNsN2mge3H9L+uibNUWWsVqtMSZhPplLYWAlQKrvu6heybHeSmWnDEWRi/Oi1mLXDLFHrdnbmyGhXh15nrDZyGrnrbfeGnu3m82K1WopxMJIIF0s9ljMF1R1TVVVoBRN20AcnMupKFK2VUVAWNfGpqjOk6Zib+2cp2q2DA+s9Y4kzVFas9m0KGXRaUZne/7jv/uf2azP+Ed//M+4+/b7ZJN9WmdwZChlUMqiwm2Gym1bVRHiAxXiw+yVQ+nYZvIKMOhIGhbSUSAoH3u2jiTpMP2aaWKZawjrLdXNNXmSsf/ggPOLG7yGg8M91qsVfVPh+46ubimnKc6B0inohKYVSW1i5EFbr2qcNXivsLZnMklYVRXr1Yb1qmK9qbipLI036N5TBkWe5lgnKIFOMg6P59LnVxrnxYRrs97QO08I0t5RJpGCzkls+WKxQJkUkxoypairmtNXL0m0YTafsbe/DyrEOPsEbUTxMSSDFmUuEtfpFG0Mi8UeeTnBWVHb1FWLt548zVnWa1ZbIWW6TrhGtrPYrse2sRAIgYPDIw6Pj5gu9slnU9IsQ+s0wsFCBDOa6HTYo3yH9lC3js31is4FDo/3KJKcru5Ap3Sup2s7bCfuoQHobMum3pBkCfO9OSpR9G2PVx5lFBiYLWYMc4FCCgCtZ5IH0wnicHBwSN/22D5wdbWi3lZcnJ+zur6mrSv6riNRklhru56iKCkLIeo6G0i0ZNyomPUSEnEHTUxC1/dCRgVx020lxbbrOjyKm5sVadYwm8+juRLMypLJZMp6vYJoyqVj4ZDlGffu3UMnYlXfdjVplnN4sEcaJdAASZ5FImCCMlGFFbkl4k3kcUrReciDw/gW1a2E8Z9moDwu0hoSBUmQ9/znNx7+/78NMQAqclSIvAYVJHfMWwhJ9JJQDpmqvmXTSCl8HKS8kkySJMlI84KgNVZpeq3posHbIi9o60ZI4abARUPKxIA3pRCjUXJQw0fgRJGkFYm+ldn6oHBemhAuaHqncV7jMaKOGQ9RFs1pLmnPSZIJ9yPkYHry3mCdJ00T0iQjNQmpUQTbkacao0Utgx4KNSHYgrTkDJAqSA2kJmB0wGQGhZFWkVFY141IvFEaow2oiGbrIGMrGq0NOOFiyrzVEWw/Go3ZYPk2298uiC0YCfryXoh8JmDrFalquDz7kmcf/5SnH/8l2+1mlI9VtuPsdMPenig9Vqs1h4eHZCbhV7/4Kz788EPu37vL8y+f4W1PW1eURU7b1HR1jU96VFFwdHg4rhyttZRlOa7wBzfO4+NjVqvVaJZ0dnoK3CHLMt6++4i2bUfZ3NXVpSgNQqCuK/b39nj33XdHS+U8T7G2I03KUaqmgDwf4qENWou9MIRILJUci+12M5o4bbdbsizl4OBAHAL7npubm9HRsG2F4Pro0UOcc1xeXUYoXFz1RN2QMp/PR5RDtNJCRlVKMcnEsjo4i+06QujjgOZkdR31/V1nybME13fgOlJj+fLTn2P7mv/LP/vvefTej1ChJCtKCemxPcS6/E3+lnnj3hjrZCUET5RC+V30QzEmJwYZYLSxpK4jVR3KNvSbLc22YpKnXF3fUExKNuuK6+sryizn7PIS5QN5DBPbbLa0nWWyyCTcynYkiUiYr69XVNuWqmq4uLxEX/XUVYVWOVVlWW1bqsZjQ0IwKcrIw5/rEpOkcbUvMrMQwq1HRpZF6FBQhaZp2Ww2NE0TfVlqmqYTz4z9faaTGQ/vP8AoHYmR17RtLQ+0l4JjNp+x2F+wf7CPSVLSLBf0BEWSFQTE10PQOFF6La+vWW+3OK0xXrgheZ7jeicZHcqMpnHz/X0m0ykBqOoW3TtM0gvfIfZyffQLyRKFwdN1FW3tmBYlR5MF070DVJITOpGV2ogMSuaPx3m5JwEOjw45Pj6maRqaVsiwKFGViHuqZ70S3kSRFxJIGQfz4+MjvAtcX95grWe13LBZrSnSnMwYMpMQ0kDnpcVwsH9AnpWj9HxAq5MoKU7TlLppxgI/y7IxsXdUlxkh2w68jcGNeFC5zWYz5vM5bdvQ1CLJz/OcNBUjweVqyf7hPt//8ANevnrB5dUVWkNdV9y5c48sz1muV2w2m3iNpdedZhnaOXFFVyBZHvFpCZZgG1y3QScFpDkoMEpLiR+L99tn6+/hpobvIF4UkoG4wxVTPr7mO0xVCoIa1Dtxi3wsZRLSvKSYztE+kGgjyEYfUGmCyVPwniQxEHq8zumsKBn1ThtFzLx85HfIdxja21ZJho6NduB+RDjevEZaK9IkocgzyryUwDSbEFSgKDM8hrIoyZKSRKckeBplyfM0LqhiG/oN4YY0rI3WpIkmS+TvNIGQGGnFBSf3mX+zTB3o+7eWaOJKrYimc7bH9z2ul0V4sFbQtm9ZA37HYkOS7kDczJIkoHxHs7kgUx0X5y/4q5/+ORcvP8O2DW3TjBdgEk2qAObzOdPplE8//ZSDgwPu3L3D+fk5F7F3+/7771NV1QhJD5P8drtlOp2Ojp7z+RyQAUyQBctyuRyJadvtloCjSvfkmwa5IIPCwHtPWZZ0XcdqteLBgwcU+YQvvviCWUyDdc6N5mFVVY0+GoNV8nCRB6LnYEozsNwHxq8xhsPDQxaLBdfX16OxUV3XYuJVlhwfH+O9Z7PZROKdHdUNeR6dJPWt0ygwwsO7TPuBfDpe5CQZNf6DoZg2ms12g040WZnTNg1PPv2YoDKUKnj7/d+lbdegMkHVuGUpD7fmwIuXbaeV9o0yvGhsEwYJX4DBs0DBEIaklGK5XJIVQgLsO3HlXC2XAJTlBHSCQ1NfLmki+98kEjLmEXItvWG93lJXFd1UkxjJmHDO03U91bZiuVrjlbjq1UWK7W8dPncLuUFhkabpSDIE4j1qRtfQ4b9B3bbFlLQpjBKE8uBwD2MOMEmE0RNNOZkwmU3IixylDVleiIV35AK1rRTtdVWz3dZy/FUtBc6kZL6YkaiE89NT6rpGG8Pdk7tMZlPK6ZRiMiHLc3SWo7NCCoWdXq2kEfs3SGWtdWLbXkzJigLbW9pmTe+hbnqyvJAJu2lp2pqua0myhOPj41HyPXAkhkJtKAiMjsQypWIh0DOdlsxmM7z3rJZrvJf8okk55eLsjC+ffB75DVAWBVnkQyRJineMrRUAow0uhHHBQVxJrjZremvpbD9eT+89y9XNuHjZNeobPHIGe3mIuUTaxMlE7s22bbheXuODGPTt7+9zfHwcvU8s870Fx/kJtndkuSTPDmRwrSWYDyXJpy464Ar6IyoK5yzeOKnvY9qsC2EkdP/928JYJwUYjcoG+XoIt22Av12zaKcQCwMJ1ZClJZPJnGnjSL0nMQbd9bjeY9KEZFKAUuR5igou5kkJYqF27MpRtx5EIpWP6cE2GsKhxmdKJvivfAMFSotvTlmUdH3A+4RAQedaXOiwvifNC/K0IDM5yltcn5MmYjX+TZvzjjH2PTC2/quqAQI6WHwaPX+cJYQsElgHW2kVjy+6iQYfF6k9dV0JATua5YXg3vDq+Ou271RseBUhV3pU6HC2RrsG+iX/6T/9B85ffkm9WrJZ3qBCN7YFyrLk4OCA09NTTk5OSNOUjz/+mMePH5NlGcur65Eg9uGHH/L5559zdnY2mnYNCozFYjG6iw6T79XVFTc3N2MfdiBcGmPY29vjZnmNWzlIZJB4/fo1s9mMd999lyzLeP78OUqpKJetcDaMhYqNUr4x8XU6Hcl/u1Vhnot9cpqmYyFwKytinKCstZyfn4+DYlVV436HsKqzszMxKErSNxj0o/9GnACHSch7z2QyGY9pGBSHScQYM4ZjDROnSQ29c6Dlezd1TeI9Sab4+V/8B5q645/9D44Hb79PWsxpQzISR9/oqcabbKzZI+tbDePIOJgMt/FQaESTouAwvscoi8bibYdzPcYo0jxjvV4LCQtYr5fi0Ne2OBdIixKTFgQCeeyphyBpst4Hus5SJCKLfXV6hk46ylxgd0XGthLEo2k7siIlzwsIiq6zJMkgmcxiD10Qg6GP3DTd+BAO9+NQnA7o0TApem9RqSHPElIjXAUbpAWTpJrF3h5JmlCUOUmWitGOyUjTEhN9NwZeSN9Z6rqh7+1ILjXGcHx8TNu1XF6fU29qjo4OODk6Ic8KOe9JQpImJFmCyVK8UmRRojrkdHS9cGeGn6molsnzAp3loFUseix11+ODiQjliuvLS7xzTKdTFnv7zKazkXgLYoTXdw6lYLvdUm2b2DqRwEYhUsvzPZtOOD19zWq9wqiUpqnZrCvOz89Hl125z2WiTiJit64kG2lYoExnU7QRRVnbdbfy1yQhKwqotjFp148qtsGMbygwBhnvbmEvqpJcOBgRkRycImUR1JNlGXfu3GGxWHB4eEjXWW5WSwKKLM3pe8tkOoG4AiUqoHw0ptM+xARhqSuSBIL2SMPEjx4Pt/PX379qY+AbjAyUWGA563FuyAXRcYj5Lo2inUl94CzEEUqrhKKYsrc4wpPTB0hMQhos2+kGnRrSSYlJE8oyJ3iLdj1JUaKSDJXe+kmEWByKl4WQydumptnWEe3WtFW6E8Y2jIKyGTVcW02R5zStw/kEnZToXlE1Kb53ccEi3CBDGH0ztPlrIiSEEDTyokZxg5dfOtfT40YX0uCjrPqrKtNYcEDA2p6mqVkul3RdL8Wvs2Ka9i3lyn+L1NeA8g3Bb1FuzdXZS37+53/G6y++QHtJ75ykKWlRsNlsODo6om1bXr9+zf7+Ps+ePSNNUxkg25bz83OCdbzzzjsopfjyyy+5ublBKcXJyQlJknDv3j0uLy9Zr9fM5/PR/+Ls7IyiKNjfl4TMYfB49EhaJTc3N4TgR8dOrTXT6ZTlcsnbb78tEeVRBTBYl5+enrJYLJhMJiRJQtu2nJ6ejj4Lg0fAQO4bCpFBSbKbj1FVFfP5nLt3745BcVVV/Ybu/+DgYJQEDpLIum5IknQ0exoY/rsTGjAGew2rr+HnwzYoZ4YCKISBIiVmRlmasF6LEqacOJRT/Pqjn6G855/9d/8DD9/9AF0c4ri1do7xSbFdIux/oUHF1UQY7hW18zwMOvPYmx2KDTxpsGBb2npD3zYYLxO8SRJCUEwnBWWWUq03qAC9CzgUnZVYeRPNs4R4q4dPAyWy1m1V0zQlqcnRKsH2nt46mq6n7XpMlqC0kbRYf8udESmiZUjmHQrKAWYflCpiECbs9cE3JYtpiMvlDdfOkhnNneMjFntzEpMxmRTSElNRum2EtCWpo3J9e+vwXlbnm82W66sbiqKMCccN1jomM3HY3GzWpMZw//E7zKfyjPgQWFc1SqvoPJpGkzBxXR2KCr9zL2VFjlKarm0jOU64NzoJ2KBGkvJkWtJ2/eh1sbeYc+fkBJMKWjcgdn3fjwGG1louL6/GCf3s7IKqqimLgtlckE8ZgEXS1/c9FxfPqbb1aOl+i9K5iNKp6LNTj6hGCEEWH0n6BuI3DLpFbK8MCJVSivpqOWa07OYg7dqRD4ZlYWyX5m/4Z8wWMynqUs1mvaZtW+7evUtZFtwslygtRazzokYry8lYsN+2DrQ44gYvkldnJAdDB4Jy9GEI99KS1Kz+PpYayDChGOW7g4OIiwusECIP7G8luQk77ZlhTBL+WJYWLOYHmHRGMNIC6+sNJpGCOpmUJFkS3WAl08skGcTnctgGX5BBPmrU0IQQ6azRAaU8YhAWkY3drk68bloNqb/QO4ftOvq+w1qZ0LXSONUTrBf0lzA6gn79qZH5IfFeAgJhfAbrpoPg8X1DamB5c01Tb5mWop4ZwvCG/e7ycq2zkibdVPR9VEYNkuBviTt9t2IjBFToIFR4u2J7/YInn/yMen1KvT4nUwl5MSF4S9uIFfirV6/GFcPz588lctv7URp37949vvf4MZcXl1xdXb1huJWmKZeXl9R1zfe///0xwGmwC5/NZhhjuHv3Lp988gmPHj2iLEUaObRhDo/2BRINt3HeWZbx8ccfc3R0NAa4LRYLjo6O6TvLkMY5pMcOq7D1es10OuXg4IDVajXCzVmWcXNzIzdRhF/ruqYsS/b29qjrmsvLy1vTss2GsizZ39+XAKqqEug7tkCA2C++7UMD4yA9DOIDajEcLzAWQLv2zIMaYCCjheDIy5zgHE1dkRi5KevVinwyJU8VX/76I/409PzX/+y/48EP/yt0OjCqTSR4yn9rFWI8/ZstlKEYeeNGjK0SKTQ8OjiM7zD0mGDBWVKjKLOScjrFB8X5+RV9ZyXUz1qSNGO2N6XrLedXN3gnpNmm64S4awzWBZR3dL2lsxZrvcjJ8GRJwmpZs1rLBN60PeVsElGMlr4Vu+3B+2QwkBuUJsP5bdueLkbR971IpieTgslkEmWOokiaTCbMZxOO9hdkkVOUFnlEFIQVb4wmEGIBqzGJwntHb2Xg7bqOvrOUpfi9XF1d0XUde3v7ZFnGertmMZ9zfHRMnqQEF8ZVd9+1lLOUrMwxaYJKDIQEG1t8Q2EVQiDNBo6CGI9t6ob5IiMER1VvqVqLVwlZVtI0NW1nybKUxfwu+4s5k3LCtm7ekNDtpqx2XReNyxLOzs54/fqMosiZz2SVX1WVJMn2PW3TsN3U8pqsZG+xh+9bNpt1RPFu2ybeS1E2SMzFgfVWoj4UA+IsKm6fxKJ9OK7hWR7QjIFP1ff96Bw8IBs65rOIGkbuh8Exdb1akRfiQzJEG9h4HUHOQ5Zn0dq6wY9SemkDmiwRAqp3uL7Da6CvSUIvPjqhxwYNiKGa+S+81PhGZ1OlRgTUK+E5Ds1VP87LalTE/efLfBVKaZIkp8gnOOxYbCQq0PUdXombrskS0qLE9S3OJNhAzKXRb+wv7jX+TwoKyc2JpNHguYWg3lSzDJktapjcg8fbgPNRjNC19H2DGLAEDIlUKF7M3r4pGyWqXAHh+lnbRyuFis2miuN1j85E+Te6YEf8WSzQd5gbEVkKg4rOiSGC0ZrBzuDbGiN8RzWKxbcbfH/Nk09+yic//3Pevn+E77YyYWho6jX7h8dsWuknD2RNa62w9ONdM51O+dGPfsTl5SWvXr7i7OyMR48ecXNzM2aXXEeTr729PbbbLa9evSJNUx4/fsz+/j7r9ZqnT5/y7NkzHj9+zJdffsnV1RVZljGbzeIKsObOvTtwCl3fse23HB0dUVUVl5eXpGnKdDrlnXfe4eLikrfeeovtdsvl5SUhBG5ublgsFiOqMqyOlFLs7++PduOTyWS0ZQZ4/PgxAOfn56N8dXfSOjw8pCxLVtFMaGjBDEZEQ/9/6PsPbZuB/zGdTkcDpd0o+2GgHwbNXWvswVhGGyPSLGtH1sUQ7pNqhWsrkjTn6a8/4mZ5zX9rNe98//eY7x/QOYsfzYVib/WNini3h6JueywqPpRBgQ8EZwm2JaGnSB2hrvF9w958ysn+grptOT275Ga5pEhzur7j6vqa6XSG847JdMb2+SuaridNM2FgG4NtW7TSJEmKtQ7vFev1lpuJRlFyub1GkeKDwjofi0tpI7TLG6alyEuLvOTo8JiiKEZC8WazwfYOZyUKvSympFkqXIUkicodxXw+o5wUMRo+ZVoWKO+YTKUYQWvJdFGK9VpsxqezGblJo9JKEYIUxsubFdY6FosFSQKnp6c4F9jfP6DrejbrDUmeMJtMwDk659Da0G072r6nKAuSLJGVEh6DFuVGlo0mckZr0jQjMYOHixsdTkPwowV627R4LQ6iPmiM0cxnMxaLOUapGKLYjQTQPC+YTKT1OLQ7Z7M5VVWz3VZMJhOyNGG72dJ1wtuothvquholtHfu3KHMS26urthuq5G4OSAsYrwnBkbDZowh4Eeb8rIoaGN7pYvI4/B8Da3HgBkXCO+//z4//elPcc6xWq04ODigaZqRc6a1wroQCxgp+lOVxWdXWjcnd+7w8OHDuECSOIT5fCFOs0H8PZQSRZksBKKUVamYEurxtoHUQ7fFN2sIKSrNMCohqIRvCBn/e7OFnX+4uGAR5EbaRNY5nBPFR/gOCI5cByU7ZZzrhX8UvVv6oMGIMEDM1VLKoqCczcCIwkgXOV1q0CZFaSXIZ9wG8z+TJKSpTKOJFnTX9x2NtWQq0Lc1Wh8JSrGz8FJIGFuiJK/EaA30eNvRbFZ0TYW1HbZtcCanzCe03pEZR7VZ0jYbgpf5KDUS83Er75WxV/iOZiS2yiIPeb1SNHU9erhIvROkXRpVQQS5FwVRNCSJ2MkrrUlMQp6mpInkCX2b7TsVGya09NuWT37xH/hPf/6n7JWai1ctfdMwm03w1nN4fMzF1TUmy95obQzkyaZp+OCDD0Zi5suXLynzgn/+z/85H3300UiuvH9f7MovLy/H1Vye57z77rvcuXOHm5sbXr58ObY1hn8PhUoIQRxEjRqJnFmasTfZ44svvuDhw4dje+L8/Jzr62sePHjIxfmXAOMAk6bpOAglScJyucRaO7p6hhBYLpfj6ma73fLee+9RFMXorii95WREUQbp6+npKUVcAQ19YjGlktVl39+2RIZV4i6UX1XVuO9hxT3AxsCIkozx1REW1kkSw45iDoEXaC5NEry19LFwsd5xff6Kf/M//z/5p87xw9/7MSafoXQGicH5rzC+kThnFYhS2NsBJeBj31HU51oFjAoURtGsrnHrM9453uOtg4Kbq3NWqy2Xl1copUmzjO1ajLOKchKVEIPzHRINHh9lZRSSemToesv19ZLDwwk+wGZb4ZxnWoqdfV3H6PegxBY+Tk5Dm0uMwroRhRtaBpJp04nxlZGHcFJOyDJpj5RlQVFmFEXObDZlPp2KTMzZ0Tkyz8WsKzFJJBI7UBrbezbbmvW6wnmRMmstyNVqtSFNc+bzIhJFxWF2bz5HK9hWG2xnx4whGyApMkmedD1lkUUCqiaJ37VtW8rplLIo8UGkoFXVCNKWZhhtqNqGm9WGqrXkkwW5gtl0ynS+oMgL2mZIYW1xXuG9eL60bTc+Y23bkWU5SZJGFG+LUgYfPF3TEEiZlPlofLZer+n7niwrYnvQ0TT1+BxsNhuqqopFkcH2fgw4CyGQRJ7Uzc3NmKUynU5Zrld450VqGtE+AB88BwcHopyrKo6Pj3n58iVDSu1gcb6bZST8EMWdO3fwBOq2lt52W1Ntt6Nt/HCt+74nzzzlVNCvspwwn824Wa5EmZCl2N6KhDHxJEpRGE+ROBQd+BbnOzAZnnSE8v/+blH9EIZ/Kwi76dO3eP53/5Zvcg/QEl+QZYY0M+i+BwNJkjKfZqLuiLHsJJqizMDLgsjoW5OsNz9hZ00fEM5N3xGc8CH6VFqUKnLZdvsowVtBQWLmjrU9TbWlaxxNtcY1lfC9lBI+VW/BOZxx1GlHX1eCcPhk5F1IAGbAeUGZpSUvKhwCKOeFPNpZVCpRCMG5EZUWiDrEgjd6SBtI85T5fMrhwQFGp0K21oY8TcnT5LdTbDSbK55/8pzP/uovcdstq41loyxHh/tY32PSjMb1dM5SqpyXL14wm804OTnh9PSU4+NjHjx4QFmWfPTRR6Rpyh/8wR9w9vo1f/mXfzmS6j744AOWyyUvXrwY+6Tf//73mUwmpGnKn/3Zn8nFjpDpH/3RH/Hs2TNBMe7c4Xvf+x6fffYZVVVxs7ximz0GhKVrreXevXt0Xccnn3zCD37wA8qy5PT0VFjjsz329vbw3vPll1+OfA+RvYnE8dGjR2PM9WAmNhg7/fCHP8QYw+Xl5egOOfApBvWMjsZFXRwELy4u8N5zfHw8KmW6rn8D1RgQj69yMIbzAIw950FFMxDbhteNcfdx5aQUKC/JimkqHIMuJqBq20OiUcqzvnjB//G//r8IfcU/+Mf/DVprmtahk4KAilr2SGhDEmM9t5KsoAbL4KEvKGIwo8B3FXZ9w739OUf7JTfXZzR1jXWSlbJ/cEy1WnNxccHdO3dIs4K2c9RNh/PiM1CkKbaXlkQIiuCFqW+CqGhs9L/QWqM8rFZblss16+0WtKKqa7ZVzsm0IEtNlCf76Ayqo/NoEkmiRGRLoHylPGkqBFwhOhryXNCOvpc/1XZNmWZkqZHCprdsNkJoVtoIAcx38fi3bGshCM+ms5FsutlUkQgsaFWSpBwfn6A0ZGmK1kikemwVhgCzPUESldaoRP5oY9BK0e0QjYW7ofCdIAUD/yHRolja1A113ZLmE2azKZPZlKIoSRNhtK9XK2zXk2cZLhiurq5joaw4P7+Q9khsGwwqlaqqpNBOE6azGdNpgTG3duZt0zOfLiiKgs1qQ9e1O0TNbrQ/z7J85CINrRApvN3Iw0rSlNVqJbybPAelaPtufG6890yms1E9cnp6OvI5hlakc47lciloULRnF6l9zuvXr9k72Mc5x7ScUk4Kur4fi5U8LykmJWYgaUfllLWWNMuYTidizqY12kjRkZuePAnk2qH7LegUrQq0LvEqR5s0TsrmawuOb2xf/BeyCaIgdYCPaOigOhmQjeHPYDT17ZEN9YYX0GBwpZTHJEroF9qhTEJRGhIUk7LAR/I8RongZ2hvODGtI3nTKVP4GsOnyOu6tiFYaXV0CfR9R/Di9fnGwixE7yElRn59Jy3cZttg6w2uq6IUXOEt9GEL1tKoHu1SNsu7uO4uPhUBg9d+NHkL0WhyuC+sk2DPpq7xtgPv8Lmhbxuc63cKoV0FjyzklBLUfTIthW+WpBBEiZioSPD9bRBET58/4aX/jO+9dZefvX6O7XpMoljeVDLLOMvl+pxJXvLy1Uv29vZGxcd8Ph9RiF/+8pe8/fbbzOdzqqri/Ox8XE0cHR2xWq3Gdsg777zDZDLh7t27fPrpp7x8+XIkfP3xH/8xfd/z61//mnsxrto5x0cffTQiHAcHhyRdCr1Mtvv7+zx58oQkSTg6OqLve7788kveeecd+l6kb7IayXnw4AFffPHFqELZbre8++67I8TsvR/VJdPplKIoRuntgFIMhcL+/v5YdJyfn4/tkPV6DQiSMrRV5GdRPhUH2KGQ2LU+HpCVIdFyKDQGeHgoOgZFixAZHX3fCg8tMMq2EiNGQ661oDRV04rnRK4xruH6xef82f/aUBQlv/sP/4hUy4p5cDTcDWZUYUehMmyKaB88SGQ9Cke1uebt4wNOFinnp09YXbxib09cHo+OT+h6z2a74fDggP2DA05PLzFJQr1e4pys/JM0xbdNbJsEAg60xgZBbNq25+rqhqPDGbbrWa9aut7jbMAFkZXa3rFcrckSQ5YJ2pQk2ajkERWQJc8lm8SYBGtjlkUiq2mTCFqg9MAHUCRpMkL2qZmitKbva/rOorQUG5K9IgZpg5RzOp1SNw3X1zcRHRPXSmsdfeci4dHF1N9G9P5aY3TMZkhTyW1JDGmeoNMMVKC3PVmSso6oTT6kJa83NE1L00ksvfOe0PeopkFpxf7ePuV8j7SYEpRYgXd9S103keluCT7QOz0W5V8teHcj5wfipQ+e3Mi/66ahqrY8ePAAhabIJmw2FTdXN5FrFKL9u6hyBLFrIuKXSz5KXcvzpxRKCwF8Mp2OShaVmCgNDGNA1YBADk69y+WSvb09Tk5OpJUVowSGsL2yLMmzPD7bws+y3jGZTehtj206ZlpzeHgYFy6wWq8JCvIsg0gwreuaru+ZzeaC3HQdaW5QKpAoT5kqJmnAaEfvG5yt0GaK0R1O56CSKJlld9H8X/w2op2D3pWdTNsg7AZxyAzj9LcTJP03bLsnYyBxSusryTRpqtDGE+ikDddaEm9QIWB0cttWjqZVeB+RCX8rJx0+RkXuBbL4a9qaarMmOAfekapA34tSSdzKdtooQyHQ91TVlu1mQ71dU28raaH0Fc5LOzJ4hVEJ9D29q1l7TVut8b4f5eu7+1U6tqsRtNv2gqh2bQPOoXXAe3Ury925MkFFyq4Ss8ghJ2bkmChGKa/zggj+hqz3G7bvVGxcnb8kOWjYmx7x9v2HPHv2jLZqcA5Mbji+d0xzdc62bdjf2x9XFnt7e5RlyatXr+i6jnfffZfZbBYzLhpc1/Pee+/x+eefjy2PxWLB/v4+P/jBDzg7O+Pf/tt/O1p1z+czFos9vvzyS1ar1Ug4G9CCt956iydPnrBYLPDBcvfOHXghA97Z2RllDLbqum5UowxWrmdnZ+zt7Y39YGGcGzabDWdnZzx+/HgMb7u+vh4H08ViwXw+5+zsLMK/2RgW9+DBA6bTKc+fP49Jmsl4Y4graTFyNgaPEFBY699ImoVbstvuNhQao9nXYK8bORyDFHjw/QjBo7wjBI3RqTjHoSBo6R0nCbZrwDoxZOoappMpp19+zv/+J/8f0nLOow9+hIrtmvFWVbf33UAdGh/74TuE28oZHyizjGBvePn8JWm3YTETl8Y8L0jSkrPzSzFUKktWyxV12zKbLdhWFShNWU5Ba4H+/O6IJIhG34uxjnVebM3bjrZ1OG/iwBapaFpcPPM8xzk3cmxMVC4MBcNwvYUca8iyfHwIJVsliVJcJRKzHrx1pMrQ1pHc60IsigA0s5miNQ4fRBESCGOh0TRNVFuVEq/etJHoXI0hZ9DS1FtskGCkLBcVU5rnJHmONgnjQSpG6axzjknkBw0cCJCiXOkYIOccaVEymc+YzOdgUjoH6/VanDCVeLz0tqdua6rmtrhYLpfj74c/A1IzPMt5nlJmmTwXpiQ5uRMJc5oQT/UQVjbc596HkZAp+7HjMzV4e3hgOhM/n3ynVdlXUgyaxIzQeJqm2OjTMZBGV6sVi8WCk5MTnj9/PrYvh/OWmCRmMQnB1w8EX+QaOmvHseno6AQXPNuIfqIVrq5RStPH0MckkcBA7zwm9VK8WXCdx4ZASAE9RfkegpX+u7pFB3Yn4tuxf3ctrfjKy/5P3UJQvNmCFUMq+d3wIuEuCbLx3fc/YCHDRJkYUX2AuBx776hrS65TEpXgg6S/qujoa3TAu15I7SJ3e+N42RmXg/fYrhdkw0mL2vaJmD0Gv8NjG94uZZS1ls16LQKJyytsVWO7RorL0EvLz4JCQ29RvsG1UG9WBOd3TsuuOkaOXx55QeeSmLcj/CwlsRVuSKkO4/HsHuVAEFUaQvDRZ6cV8z8fUN6L18Bvo9jo24bnz55yvHfAbDrl+OiIs4sL5osZQQdevTjl4OSAblvTbiuKvGBvsYiQ9JI7d+7KairL+eUvf8l8Pud3f+d32axWfPHFF2RpirU9aZrye7/3e+R5xl/85Ce8Pn0djbsU/9U/+q948eoFXzx9SpaL4dTB/iGXl5ccHh7StjVXV5e89dY9tNbcLG/G9kyWZZzsH/P06VMSY/jR7/1oXDkmiaHIc5wNXF5esLe3x8OHj5jPZvzio18QQuDtt98meM/55QVpIh4A89mc9977Hl3XcXp6GtM6JVVSa83x0RF5nnMZWyXDcewWKYO518DpGHgBxrwZ4rZLBB0KB631CPkOK7RhG9CPYUUmvwtopeN+RPqotIkojDhAplomTJMYXG9JTcp225BkJc8//5T/7V//K/55onnnvd8RK1+T4zyQpNIS0APLXEmlrCOiETwGRMrnPcpZjLcE3zCb5KRFie8rDo8OCaR8+eUrEjRZUXJxccnr09fsH91FJ4agiIZkKa0NaCNyTgKSjhnELbBxsuqdTScE16CUkSyQ3tFZhzHxOfOBrMwwJqVuWxSKopySZWns49dUtUD3s9kcozVZmlLkOW3bsN6sWd0suXNyjFZGwp6sxwZL3/Ws256+7TGJoZzMIvlSMZnOSMtCJLZeciCapmN7fUPdtFGF41mvL6mrmjRJR56PVopJmbGpGjyCpuSTCWVRUk4EgUgzgYedDZGQllDvtCSGIKWu72RV7sT4TGmNVinT+QydCqnOOktV1bhgSPMJIpHtWa221FsxvNtsY+siMUynE5bL1SgT3m43VFUd24dSqBoj6pwkybC2wzkhhgYXcNazWt5wfXnB9eUVLoaWXd8sIcDBwT5pmlO3HduqYlVt2azXOKCcTDg6OmC9qXh1+pqul5ZR13djG6jtop9GUbK9vqHpmpEkK23Rnul0QpYJAuLiwLxYzLk4vyCEwIcffoBznsvrSzaVmPElacKdO8fcuXsH55wo3w6PSE1CVTWiYCtyeivXYL1aM53NSdOM1lkSm0AivJppkaKVp/PQ+o7gW6DHKodTw6p7SJ+OKIAioo7EyeNWnv5bR0C+bv9f+dnA5lKx/bpbBgWlRoSDmMqhIqIwrODHCf4rk9zwc4UaP1POiUy8Ho91HXghwmsd3Vr7ns51dNbhlSLJMkyi0ARs00ZzSksfdkIqw6DHUxgCBiX7VOB1bJEksuDxYWTJj+8f4t5D5ARdX19ydvqK0FYEb/HBjpN4CAhSYR0qdKRGrMz9zvkYiws8qEHtB3mSMCtKFtM56tCTJomgO8pRTmdonRAwEOSbKC+m58MxD5qT4AOu72nbmqaRuATbi6jgq4vfb9q+U7FRVw3rassnn37K/v4BSZ5QTvPoHtiRaIXdtKyulxRpwr07d+IEnHBydMzRwQHPnz/n2dOnvPf43VEV8urlc2zfsn98zHwusc6ffPzLMb01TQwffv8DTk5O+PnPf85yeUOeGRSesigp8pSyyMmzhPe+9y5KKW5urlktV7R1hUv6eBNCWeScHB9xdXXF65cv+eKLL7hz5w5GKS7OzyiKCQf7e6zXa1bLa+pqw2w6oW1qPvzwQz766CMInsmkIFslpKkheMflxXmsIDVtY8lSMRUzxkSFTTPeZAPxdEjE3G4lM+XNguE2rGpYdQ4P11dbK3DrJDr4CQx+HGmavtFWub3RJTbc+YB13diXTlMtznlGvldvPX1S4HzCLC0hOJ5//kv+t/+343/8v8K9R+9jg0epAh8MLnhSE7MJFAStUcpBbKGY4DAhQPCY4Em8JdOe4Dps6DGpSEKXlxdM84KymPHi5QuarsUrRdN2XN4sme0tuLi+HjMlSBQ6SWkbgaI7ByFY6q4RC20bKNKCxnagPTY40IYiT8nTlEwbmfCCuE/2vaXfbEekwTuPNhIZ3luHSRSzcsJ0WtIVOQf7e6SJoSwLfHC0XUfXWpq2id4bmawygqJdbsmLjL39fenlJ4bOdljfcbWqqOqetnNjHsvF5VIce42mLHP6voMQOD45wXmLUprJdC5OlIkhJCleGZIslWMOSK+ahK5pJdjMdRRFCRAJsJIpNKgspjG9lMhFSfICHTxVXWGSEutr2mZN0/QQDKicrpOWxna7Ge/DpqnGQnm73YwFdZIY8jIjzTPamLY6m85x1tG3jrrZ0rUt29WSpt6QZhrXw/X1DavVmqOTEzyabdPQRXLtdDrFpDmXl5corZjMJpxdnLHeLClKSeMtTUlRlOR5MaoSJ9MZTiO+PFqs4D0enWguLs8kktsoeu+wfcdqeUNvOxbZnG214frmhtV6hXWO/YMD8qzg5avXTKYzIQ0XJZcXF8zmcxQK1/eoPMf1FmVEMdA1LRolhWgi6gcXFOiMBCdukr5Fqw5Fj6UjqBS8wkTehjQQxPpLa1FZuIguer6hvfkdt2/kgoz7fnPvX8e0GPag5QVj8SFIgcH6gPegVcxVkh4afE2R8XV8lVHOGQayozRktNYk2qAIuF4CFY1JIwlcJtGgJH1aJwqcI3jL1VWO9e+OXkMQWwk+kAAJSlyQjUErJBHaO7LeUDctHi1x9non3iGEOIkL18P2HXW1IqUl0Tq2KpS0txViEa4s4LFe0fXQWzlP3nu8chithHiKQuNJtWZelhzvHdAe9cxnRyRGYuoDlsniEJXmomwKCZoEPfi9RJM1b8HbQN82bNZLVqsbzi+ucD7QRdOxr3o7fdP2nYoNYYS3rNZrLqJsNE1TbCsqieVySVM3ZGmCc55nz54JmnByQtM0/PSnP0UpYW8rpTg9PeXJkyfkmfAn7t+/T5IkfPrpp2MqYwiBf/kv/yX//t//e375y1+SJGZEP/7wD/+QO3fu8Cd/8id8//sfMJlM+Pjjj0mShM1mww9/+EM+/vhjcYeMN6HkGaQ451iv1zx69IjJZBIlrntstxVXV1e8evUq9u3lFJVlyX/8j/+Rhw8fjr4YgwX469evmU6nWGu5ubnBGMO7777LdrtltVpxcnLC2dkZdbMeiWwnJycYYzg7O2OwTR4KDSkUUkJgRDN2yaIDnDww74do+11r9IFIOjDpgbG9Mvx+96EdipkBRh4IqEqLqiMERdPUJLkoVp5+9gn/2//6v/Df/8sZi+OHpHlBazuyrMA7Kzes2h0UorNoZG3rmGvhrcWqlm1zQ5k7FtOCm8srynLKzdWGi/MvcV48VdaVTIjr9ZqTe/eYzWbcrM5wKPquAzTOB4z3oov3ImkNxIEAT55n1L0gFyaJMfB5TlFkGJPgvJVBKCJMzY6vSVEUTMoJwXuatmGzucGYgLVuzLYZ/C2kH99RVxXbqiIvxLNDqQ7rPWku/fxyOhHEoK6jc6Kstqz1AtTE/mhqNE5B07UYpZnNRXZbr8T2PitLEpPiEWOwLM9Jc7E+Z1AXWStpsesKjIF8sFQPo+lW3VRobchSaR+aNJHJL8Kzk7Kk6eOFVGKkFpwleFDajA63QxtyaEcNHKosy0ZS9XwxJ8tziZafTFgtlyxXa05fvgTvcRFxPDjY5/rqGoCLi0vu3r3LnTt3eP36dLT0T5NcVDdBvGSyPI8kaBVl0JY0zUmMZr6Y4z3YzRalFZtqy8mdE9q2EfOwSDy3k5J2VcccHjWqT3zwTCYlBwf73Lt3j9VqRVVVlJMJ2+2Whw8f0p2dsVqtOD4+Jk3TsbViolGfyLMTXJAVYvDRtTaIgZfwWaDre4Lv6LoepTJMcCjXEroGlRcoIlF0WEiMnIXdSXiAx789yfK3uX3zEcptFULY4X/97cqjN2kskfvhZazsuo7tZkPTdtK6iWha03bSih1Yn8FDsOzNctq6wRXJVz4j7LQQBofdlqYTG3CtA20XHZ1hvEaAKNm8Q+udjBMCfeQ1KTTBSWsueDs6dkr4WkZnvSh73zg10goRxFrGt7Is2d/bp+0DvVNx4dTiXEsZCecjiZad1pPs6da2v2lZLm+4ubnm8uqSrnPUnSzifyvFxsnJCWotK/EhOnogPQ7yz729PTHm6VpmMyFNPn36FIDDw8PRtfOjjz5iOp2yv7+Psx0ffvghP/vZz0a3wcPDQ959911OT0/5yU9+wna75erqit/93d+hrivyPOfP//zPR4XAarWibVuOj495/Pgxl5eXfPnll6P8B4TF/vr1ax49esTdu3d5/vw5p6envPPOO6NvR9PIpHHnzh2urq744IMPODs7YzKZcHBwIDH3cSKX9ktCWZbR7fCC6XTKo0ePaBoZuC4uLiIRdDPKUgeirDichtFtdPDvKIoiOkd2o5x1qNaHQmEgqO6qVYZCZJC+DgjI8N4haXCQI+7+fvicAU0ZNu8c1voYPtYRgiZNDY1t+cXPf4r1iv/b//3/QaoMWTohuHa8ZcdnIbKaB3hzsO4doqW32y2LWcn+Xspmeclmu+H11RlHh3eZlBOarqFuK0KA+WzO6/NzgNHQLMnEh0MImrHS1sJhUUivNk1TEiyJNkAjK32VkBgjltlVRdsMZmo5thdUQlaMkqfi40opzTKmiyllZiS5NUtJ0uh9ohTLVUtVSzR9kubs7ecsl0spOvKcw6Mj7tw54eDoSFQOqxXrmAjsgshG5U8vnACtaQkURU6eZySpkFPr6O9CosVCWHv2DvYpywlaG9I8Z7OtWEYlhrOeurMivS1KacVELoTWGmc9bduNmSx934FO8Bg26y0md6hUQuiatsI7Rd93uD5EH456LAbbtsVaGyW7K7quY39/f8xI2tvbI82ycbCs65rXr19zfn7OYrFgeX0thV7fsVwuxcistuPiYCiynZOFTpGX1E2U7MasmqbtSLOc6Syw3VagFav1hqwo0dqQpIJUXVxestgXa/HLyyvwsgrWSmODDLRaaYHGEVv8g4N9Xr9+zc3NzaiSc17ukdVqRTkp2Ww2sljxYeT92EgSHBYVGh3VWjKO6q6Lbq+GJBGFkUYJf8D3uK5C6Qmp6elsjdcZQcd2hNp1coguukHg9REd+C+i3Pjm7Q1PoLFN8HfT/fEx46NpGjbrDevtVop6GwPUnCPaAIn3hALlLfVmH9s1hKz45n17h42GdFIsxJ8PZorhN029UCoCNirakKe4YPFK+GC9tXRdHE9VTArWAUxGGHl2v3ksu+dL7PlzyskU1Vl0kpCYCV23xXnhho1FUDwmtXPeBx6IjXL0Fy9e8OLVKW1naTsrDsS/jTbKfD7n4cOHnJ6ejqvxQX4qE6QfGeeLxRyt9Rj5XhQFR0dHPHnyhFevXo0n+K233uLli+f8+Z//ObOZSP2GIKftdsv19fWoDtnb22M2m1OWBc+fP2fIL7i8vOTy8pIf//jHKKVGGezjx4/FVOfpNfCQyaTkH//jf4z3nidPnoz5BYNboDGGBw8esFqtmM1mLJdLfv3rX3NycsLl5SV37tzh+vp6TLMcIu0H4tiQcTKZTMYCJYQwKlpm8/not2GtuE7WdT1KAgeVjZxD3iCH7uakAG8w+yH2ECPicbsP/0ZRMpD1hoJieJh33ztcw0H25/qeLM9IMoP3lqpek/QJwSTgFR9/9HP+j//93/BH/+1/R6pAmQJU9AAYViXqljAKsY7WcizaSBiRdT2bTRuDs3qOjo/QaNq2wkYb8DzPRkMzH82rjNZkmZA60yQT2asT9ri3gUlZiJJlb4HvGraVFAFGG4xJ0EpQkXoLxTRHOUdVNzvSSjFhmi0WY0iXc5J26HzABCMrX6Np2obLyyucExMuYxKur67ZrDdiKmUMxycnvP/B++wfHIx2wnlesL9/QFBweXnFdrulaex4T5oiJ0kFeWka8U7Jphk+IjeZkUk7z/OonEIUFH2P84F+2I8xZJl4kAykZKVuSZdlOaGczkfjo03dsLy4RJsMneUkHlzdsd7UrLYNfR8IQZMlOX1rWd5cs6nEj2TgCA2LgAElHPwuDg8PmcymbDYbrq6uqLZbjFJ88MEHBGu5jMGM2/WKuq6ZlBP2ZgcMi97r62tpHSLXCCWk1aZrMSZhW1Vsq20ssHOy3GEi8bXvHSKDTEizlKyqeP3qlJM7J2RpTogGXGVREJwkg5bFhKIoODs7G5+VLMvGjKM0TWP7QvPq1SsePHxI73qurq7QKA4ODmSMjN452mis8/IcIDJqMU/rIERjucxQ5oYUcLajrrb0NsHokjyf4kMnGRdht52gIz9jIGf7v1fpsF8tNP5O9x1zhpqmYbPdsl6thffmHMFaad8E8amwPppwBU9TbfGux/yNEs9IOFaDpb0e7fC/2u4Z7Qwi8lbkBcVkRvC58MqUxrNFBU2aJNHWXHJIdKLwKhkJtV93HEC0gw/RRSPgkAWEjXYHSSINFRSjf3og8k2GsVohhNOIcFgr9utpkmDSnDzPv/W1+m6cjbrm+PiYuq5H7sFAQhwGlyzPyDJReJydnSGOiuJR8eTJE/I85+LiIjroKT7++GMU4vg2uPVVcQX4+vXrUSLX9z3vvvsun332a9brFXfv3h2dSafTKUdHRzx9+pT79+/z/e9/n08//ZRnz57hnON3yzvQCtzz9OlTyrLkn/7Tf8qXX37JT37yE6y1/OAHP2C5XFIUYrjz+eef8/777/P69etxkj89PeXx48ecn59zeSkhU/fu3RvVKffu3aPve7744otRFnubneHI83wsnvb3xUb95uZmDIEaOBsSsJWSpskIPwMj0XNY1e1e5F2PgUGxsltUDByOoZh4kyDox3aR3GC38cOyz0DbVoA8jN5bIVGlKa5v+Hf/+/+Xxf4ev/fjf0g+TcT0Nhi82oFAgyK6cMgAqwxGi8dCu7G0riU1cjyz2YwiKbCdEGg31Zb28oxiOuX169fRRj6qHJJkTHsdSIfOiWlYXiiOjg4oJyWKQDnJ6V2PMRoTI6MTo8mzhKIsmEzKcWAYVpq7SZ8DAhC8o8w15WQmBU5wONezXm9izk7LdiOk5CRJeefxuyz255STguPjY/JCVr03qyVt149SU1FwrNlsa5RKUYm0JUIthb0LxNRFuSfSTLw4VKJkciwn0UiqomnFt2Oxv88ihvz1ncXXLV4ZtDYRAQ5kaU5ZzCjLCcpo4WZtNlTbWvxLQkC1jm65Yd20dL2j9wqjM5q6p97W9E1HZ3swanxeh2Tl+Xw+Ihr379/nrbfeknTXeF92XSetHoR79MlHH/H8yy+5urwE79jb2+P4+Jj1jRhlZXkREdJS2gwhsFmv2Ww3pDGnZrPZIgqhGdoo8qJAKQNs5XO1om876qal7TqulzesNxtp0ZokesmIM2yWZiMPakAAnz59Oha+TdPEED0zGsOtViums6mEKsaE2DRNSbJ8VLhVTSuTWxArc5mQQiw4EjTCATBBkWlNrj0q9IR2i8q3lJmshK2+LeMHMqhWt9iiIqBDiL/7L3sb7QJ+C0caQqCPbs43N9fc3Mj8kXpHcC5yzyRs1HtPojUES981BO/+mjRrSJOUyaQUp99MSP15LkW9Scz4+bcHI+Nskt6+b7+uxfhQJ3gbaHsojIT+Be9IE00IFud7WqewX1NseCV26ToxohZLhDgftCJoyZ5JE0NSlEyKhLwsRpUa3BatOrbxgpf8oTzLKMuSxXxO2/UonRB0MhpMfpvtOxcbr1evx1V8kiTM53Nubm5Yr9dCepzNqaoNq9Waqqo4ODgYT/RwI00mk0jivJHBud6OMfHee2azmZC84sD/+PFjTk9Pubi4GFUpQ7LiNGroz8/PxxXGUGTcu3eP9957j6O/uoIbWXWcnJygteZf/+t/zWaz4Q//8A/ZbDY8efIEYwxXVze88847bDYblsslIQROT0/5gz/4A54+fcrLly9Hn427d++yXq9ZLpdvBE+VZcnl5SVN04wkUefc+H2NMTE97zaTIYQQ7Z4Homf4DQdSY8zoXvjVguDWQ6Mfi4vhvA+tlWESGDgew+tGGD3+fChYANIsE8OnId/BO7x3kgDsGxwtnbX82Z/8Lxzszfj+7/yBDHFa4R2oJMEog+17iViXo5diWisWizmnL0PUcxv6rmc6mTBJp1zVK9bris5243lbb9bcW8yjyylSICQpeZ5R1T3OxwTu4MnShOAd11eX6DZlMZ3grCPRmjSRloXSUJaFrGKDGL+BWJnX0c47TbNRAyZZIAuKUnrlnRW1CQrSLKWqatpOVBUEBImbTjg4PGC+mJOkkoXT9j1aG/I8AdVRb8Tnou2khYJG5GqRWOacZ7u5AaDTiuVyyWIxZ39vnzQTz5PBLTMvSo6Pj5nN5yNUut1uxWo9yPcQhVNMPM2LETFrmpb1Rp5f5wMKLfelddEZBYJXNNsaVMtmU1GtJZF2IHoOPe+iKDg8PBxRlPl8zsnJCUVRcHl5yXK9GvlVBzFD6Mnnn3N+cUGapmK+19Tcu3ePtmnj851hY/GdpglN2zKZTlitNiRGsmi22xrnA9NpgTLiR5JmmXAbtKJuG7Isp++lKKibGucsm3VFmor9ctOIMmVSlFR9Rd/1NI0gNIv5gs1mPRb08/lc9ts0OGRRUDc1WS5y2SwRPlZdN+Rl+YbEuHeW0Hu8R4LylMYoRZposizB2x4fOvJEo3VG5QLbdoVpC1Gr6QU2WG5jEE0khgZ0lH+K2ZOsTP9LKTbe5FTESS4usgdnYKUUu0mpf9M2Tno7iC3j59wuInYDAr336Ij8GK2ijD46ewaH8ozy1a9O7cPHGaOZTCccH5+IcilLSbKExCims2m0FvjK99WiITJGk+U58/mcI+cI0ZW4a3ssBtv1ZGmG0ZBlCcH3NG1FMrR0xu8YTcqjmicIJIFODEmRkc8maAcmMUzKDK09mQmi7JMLEP8e/++WP4MaYz2Oj4/FsweDV7chhN9m+07FxuA/MLgBDgSwpmkoyzJWauJw6KJjptZ6lHYOIWjz+XxMKDXGcHBwyNC7n06n4+phNpvRNA2vXr1Cax3bD/2YCzKs1K+vr7lz5w7L5XJMgv0H/+AfjGhK9fQaEFfIFy9esNlsRqdRay1PnjwhyzJ++MMf8vz5Sy4uLjg4OODp06dkWcb3vvc9Pv7445FhP6TBDnJVpSQmfuBzhBDYbDYjyTVNxeJ1u92OeSXDd5Sb1YzkzuGBEBhfj8jOrgPjwMHYJYvuemwMx/BVvseuPTPxxtx1SBzeMxyHjv4VLvYvBzq7UQYzeuIFvOs4ffEFH/30J9y//4DJ/j0IGq0kJkopPTqMClFL1CBBu1ikShLrtmpkskJxdnZOU/VsthW97emdZbnZMCmF1NRZycSYTCasq5bJZMr5xYWw2I20UqyFrm1o65pGO7R3IvP1njRJSZB45zLP0UbROU/X35IZ5fzKw9i0XSRvBvYPEqbTGfgu2mbXeC+tJ4JisbfHZCqKh8V8wf7+AZP5hGxS0lYVTddGDogUNVVds15vqeuGqmpxAYwSu3q5bp7lzQ1aKVG7JIYyz5lOZ1JINFXk4qTsHexzeHhEkmZ0fU9VN3TxuzjnQCUCiQawvcVahzYJXdfTdlv63mF7i3cO5wUlapuOqmlkgEvSeO9XEDSX5xecvT7HOU+SpqR5zmQ6ZR5bhsOf6XTKIraidg20IDrbJgkXFxc0TcNbb73FqxcvePDWWySx3fbRLz4akb0hWddaNw62KiJdu61FlBT5zgcSZFWntGa5XKG03PfbqsJ5h3eOJIlZQ53HOU9ZSKHlnfBmhsWTMck4NsGg7pL3DobWQ1jbdDoduVpDRsWAkqFuQ7DEUlpI00ZBZgxNtWVSahSezeYGpRPSbMosyej7Nd0moKZzURSYBHQWFxkmmmJJoRFQI9LxXSiiv1UXUvWbSpLdlvHw33+bTc5p/De3E+bQ0hhe470fxzcZzRTBOVzw0sZwFo2IIqTltWNXruLoF4SQPQRrTqclyqiIFFuKvPgNm3P5bpIzkiQJRZ4zX8xxWhOSFK0TmrrBWiKHSmzBxYHYsq3WmNjeHThlu+dQHFjlD1qR5RmTGbR+SBrXhNCjjRBSgx7kxiGm1w6eRbfXfyg2FnutFLNe0XtxA/667/d123cqNgYJJUjhsQvrDxPm9dXVOOE5Jz4Qm81mREKGlsN6vUY8C2Ysl9fRCOl2UhxMe6bT6XgTai2R3UmEpc7Pz0dItqoq9vf3AZGwPXv2bEQZfv/3fx/+k6x25/M5H3zwAZ9++inL5RLnHD/4wQ84ODjgz/7sz0hTyXN5//33efToEc+ePeP6+pqrq6sYhiUrsUlknj948GAM6Voul2MhorUeiaDOuRHNub6+HhGFobUxFBNDITGgE2Ihbt5oe3yVVzG8f1CdDAUM3EbYD5X8cA6HQWSXSLp7XYfPMcbIzYgoFhSGLEnAixTLBFDKkKqArbd89qu/Yv/wmD/8o3/OdO8Eo01UtQTSJAHfgx9ipT0ueOqmpkhS8PLa4HuabYUKCVobZtMZm2pD09VkWYqzwuDu+p5JfJCXyyV5XmJtx/D1g4e+9Rgj6NskU+gQVyhafDmSNKPMcxTQdx1VK25/uwjTEDk+cI4ODw8l5Xe5pt4u47XUbLdSdKZZwiKbs3+4P3qoJKmm7xvsWla3fd/TO0/fW66ul9zcrFit1mzqmuAlKC9YH4vbHmdjFouWdkCeF2RFQdW23KyXzOczTk6OOT4+ZrG/h9YJfdfRWyuIxm7LjIBB07a3LSLTWfq+GpU3oAQRqWqqbc9yXdH7QFZA67as6wrr4ezsgquLa6ptjVaavf19jo+PmS8WHB8fI0Flt6jUYrEgz3PqumY+n9P1Pb0VkvWXX37Jer3m4OCAT3/1KxZ7e9y5c0KZ57x69QqTJPg+jAuU3rmYXdMTlLTQmtaMipcQhLSa5uKZsFqvafueumrZ1k0svIYsHMmnGMYyILaFO7zV5Gk2oq5d18W0WSG/9jHsLo2fORb33BJBXeZGb5QA8TskuGDHNlCSmFiAhOjw6Fhtl4TKcm9RkBpFU2+wbUsycYSuI58mWFehVQEUkj7xrxsAAQAASURBVJCqVMQChnHgP1fs+i03NShH/g52pZQUXjuF5N9FW0U4YlHBZ110+xXuDD7gul7KMa0JypEa8fPpnae3Fvs1K3gZU1XkIk2wNhXDOK3wXpDrkYC5U7xZ2+MTg5huDUV5SshSjEnxAfKyRGlDkRcShGYCSmV4JYug29RVfqOIDABa2jTFdILPCqYDtyszaGXRvqcoU7QRVMx5h/EixR73gbgFF2XJfD5nU9X0cSFHjNQoim8mzu5u36nY2FU0DEXBdrsdiXTDCWvbBqVkMmvbdnRlnM/nY3shy7Ix5Krabsnia7uuGyfI+/fvc3FxMZJFHz58SJ5nvHjxnEUc0LquEwlkbFEopYRYtt3yve99j+vraz777DPg+6SpyM5evHhB0zT8/u//Pjc3N/zqV7+KapND9vb2WS6XzGYzPvnkE0DaLz/60Y948uQJ2+0WY8wYMT/kPoQQODo6Gg2Mhgsg3hXp+L4hGn4oGoA3iJwDqiDfRY8W7ENhMRQeAyoBvGHkNWy7iMUwiO4WObv8jmH/u8TQYYWhGOR0sjpKtJE+c/zOzrekMwlxW15e8POf/gUnDx7zuz8+xnoLpIgLoBjHoCSh05CA78Qie3lDnvSkiaA/fdeTktHWDu+l+ErTlKwsWC3PZYCILaYBbdKpZAyoEQlVTCaGxChs1xHSlLIsSLMcU3j6aPolqwWhUJWTScxksTjfCMkrUWhj6K1jWzWUk44AmBDwztC20mppu5bj40NOTo44Pjnk+PiAohTStHc9vYNms8Vah/WBuq5ZrtZc36zoOkdAo1WCToUwG+J94bzwOZTSMmknCeu1FLaHhwccHh6wf7BgMp2MhGxpjwiUuuvN4pwnaE2ISa/OyX67rgdshLCJmUJL1pstbeNZb2qC1vTWs+1a1tstbe+othvKMmcxm1PkJQdHh0wX++zt7zOfz6lrkeWK02YYXXU3mw2z2QwTxIr++vqaL589o8gyqujC+ejhQy4vrzg5OuTi4oK+7+hqaT8URQFas91WI+KZpQXGyH0xPFvWWZIQaLuOs/MLQkDaXpE4G90nZBUXoow3Lui8C/Q4CfZLxd3S+zDapFf1eiSoZ6lEyruIJIbIw8hy4Wc478bFgChhJEI+oGLb7laRoJQ0RNqm5mA6obl5zUW74u7xHr5XuK6j396QTvYI3Zo0r8iTaUTdDL1XeAUSRhhXnEFx6/f9nzdpfyPaEHf/bZGTbzqKEXl484d/zTu+/barvFJao43G6IQszQXJ62SRmGYim07TBIOXotRLotNXj1X+DPs1GCOkXxBEUsZe/wbaMhyLiWPtwAvKsp6QirGg8qJKTHRClgkqZjRkqYbgJCVW6egWesu5ECWveK1gNGmeUwaNdkAmrdI8M+A6bLuJBNLIGwrRwjzeNyp+Rx3b9EURU5yjaWLWtlRV/dspNpLEYKxMcEOFP8D8QwHSti15ljN4DR8cHIySziFqfZjIBvWF1pKnMCSrXl1dMZvNeP78+Zg3kiQJNzc3bDYb7t+/P07yZ2dnnJyc8M477/Dxxx9zfHxMGfuiv/jFL0iShH+09z1YCST1+eefc3Jywr/4F/+Cn/70pxKitLfH/fv3efz4Mb/61Sf88pe/5Orqislkwocffshf/dVf8fr169Fbo4kSOyEDNmPrI0mS8XfDz/M8ZzKZsFqtx5bL7cCiduD6WyOaAa3YDZj66mt3vTN23w+3hQbcSuyGbUBPhuJmuPF35a8DmuL9LXSoogSPIHCviSSqYD0q9sSt63n14gV/9fO/5PH3PqScHoriQsfCKhY7xpixF9p3HRmKo6MjJmXgtW1pdcPN+RrvNMFLO8Erh4sr0sGsp7fy3cpJyTZaTQ+bpB1KxgF4ptMJ82lB7zyFSvG9i0qYBKOcoDAmkao9/pHib0edk6Ts7e8zS+fQW5xTtI2l6+XePTg45N79e8znBWlm8L6n60QC6ryRtFrnafuem+slq3VFCIo0zeitJ8vyWMDJeR9QhjTLSdMEbQybaovreg4P9jk6OqYsC5q6kbEmSHKl90FWSXEQGpAzKS6SaFmcYq0Ynrm2G++7rrMslyuur65YbSqqbc/FxQ1eBeZ7B5ClsTVqOD46oihKpuWMSTllOp+TT6YU5WRcOIQQuLm5GZ/xAfWbTCYksVgfgtnOXr+myHPef/99qpjkXFfbUc11fX1OkshCxEZCep4XrDZrFB3Sl9dRMthhnfBINlXNelOJ8sg5UOp29RYY2x+Dv4OCmDnhMGiatsOMrcseFeHv8dkz4t9TxTantG78yKXqu250MVYmGR1/ldKSzruDXCrEVE6FwHQy5eHh97h6+TnKe44P9lhtaq43Naqv8cFAtsKYqbQDdIJFE4JGmyFXJMphQyyufksgh/qOyMY3lg+7bY4B2fg7OmYfbjlueZZRFiXGJKQmujZH3sxkJq38PEvRymHSjBBNEHe/wTAZDwUHRL8iG/BBMqjaLKXvLXmWvXHqB+nrQD0oioJJCFhtSJOMVEtr02WeosjJUk2aCg8kTYQjkiRCth9bKTvnbuCoKK1GVUoXfau6ztO3Fa7dMi0SZmVJpgfSeET4Irlf6zhXxeOeTErQop4KWo+t3m+zfadigwhnhcjkT9OUvb09zs7PcE6MlySDoCY4R5aJmU5ZliPasBsIJgPerdvlYL9dFAVFUfD69Wvmc5HiDf4X0+mEshTvjtlsxg9+8AMuLi749NNPefTo0Sj9vLy8ZG9vjw8//JB3eAu+bMjyjPfee48sy/jJT34yFjN7e3t0Xce/+Tf/hqbp+PGPf8zJyQk/+9nP+NM//dMxtG0+n3NxccHr16+5e/cu0+mUsix5/vw5XdeNRdGjR49GJY0xhuvra6qqJk2zMZNl+M6DycwtkTMbV+vOvYl4DA/KMKkOba3dgW9Mdo2D8W6hsYto7JJLh4dk2O8uZ8PFStdo4V84KwOyMQk+riKdtdSbDTo1ODo+/ugX/M7v/pjf/b1/hPM9SWZGvgaItrzvO+x2Ta4CR8dH5KWhqq7wARKTcnCwDz6hqloyZ9GppKVmubTu0kQyXfrgWMzm3KxOKfKS4Fd4BUoHCLJ6r+uG1WqN7Wp661BpSd070iwnUQEbJxCyjKpqxuszFIRFUTCbzbhz5y7z+ZzVcsXF63PqzQbvevb25zx69JBHjx5wcLggSRUhWDH3aoVcaG2Cc1I4Xd/csN3WpFlGmmRYD8vVRox+kpSuj8oFYygnE7I0oe872rqhLCbMDoUAure/j7M9WRZJxgg8PJA+A4q6kqh6yWIJaJQMVFnBZlPRdh1JmkFQ9DH0brPZUMVztrqp2GwqposFi/09iumUtCgwMW2y7y2TcsosrniGVU4blRyD0d1kMhnl3vv7+6K6imZfV5eXkvRrLeuu49NPP+Xm5oa92YyPf/UrhsAzeab3Bf1ykuS7fyD3b9O0oCVNtd5U1E1DZ3u2VUNvrfTjI2n5duiUYkwQvDAsziHeqyqIbLjrexIjcQayYnVkeXrLleot67UsJiaTSSz8fRzYO7zztzD5yFORYjAd0KtYRIu5Wk8+m9DUFSov+cEH3+fm4pW0hQtxuV1uK0gULl3hVCn+NTqDJIsT+RB6+NvRoPwGwvFdkY1Y2I0qiDeo43GH4yT23aqN3/i24XaVniQJ5WTCfLGHCwqTpORJTm8tOtmQFyWL/T2ctyxmU5zryRIwWS6Q6XBEY7Egc3zY8fCwzsaE8Y4yS6NpW7hFmsbj8mgFeZoym5aYLCUkqZCgrSNPU6x1FHlOmhjyLCEEh7MNZZ6LampQManxq45k9oC0f+qqYtN0rBopwH3f0rdbIYge7kmicpKSRA7Rmzbo4o/kg8js1+sN18sV1gZsEBK9/ur3+obtOxUbSoGPq8ntZi2chGpDmYvevO/EeyLLUqbTSXTck4l/WG03TSNyxs1mbKWEEJhMJngviYo3NzcAo3X50O8sioIvvnhKmib8w3/4Dzk9PeXXv/41d+/exRjD4eEhP//5z3nw4AHf+973ODs74y/+4i84Si74H/k+aXzYB7Ln0Fb55S9/yXQ65d69+3z44Q/42c9+xk9+8pOxzywk1gO++OILrq6uODw8ZLFY8PzFc07u3KFpW4G50gTrLDfLGzrbC9yeGEmEnJaAQulAUQh5b+C0DGzfW9+SflzVDhkowOhQucuTgds2ynCOBwQEGAuXoc21G9IGt66iw8S623IBuYezJCV4H4tMIV92TnI+kiSh6zs0Et9O37O5vuDJL3/OD959j7wU+DeoBB/AocB5fNeSKUdRJHjnWa9ari+uaKuG1CjKNGe73uKDjX4GLV3TkqUZGrEKr9uORIuX//HBIdfXr0gMdA6SVDIVXNdje8+qqumtFvVJYkgThVIdzqtIUBSprkn0SP4S8pgnWBf9KsS+XemEoKBqa9JUU5QJ+wdTjo7mdH1N1zmKsqTtYL1xtI2TILhNHa+7x5icIi8AjbUdk7KIK/4p5WSG0oblzQ1VvWWz2uBcT15kHBzsM5uW4nuCp5hI+0Ch6K2nbToZFLWoUtpWWgZSZIrRl8nSSLrtWa1XBBTTyQxlEqwLpHlBVnT4sEKlhnsP7/Pg0SP29g+ouw6MQacJfS/eFSY1OC0y06OjO1R1PaoJrLXMZgsmkzKqu+T+kVbQNbZr8bYnNZoQkcHVaiVtMmvJ8gKjNTfXS1moJCmNERto5zzL1SqqiEBFZj9asalrWmtpuj7OaWFIEImchjiZDU3vOPENQaTDPOdVBM+9o+t7snRwU1Vjym9VV+guco4IWO/eQG1DgCwvySfTyOERdZMUzQnepdG/QMzFizKlayqc8awua+5M7jCfL1htbuisY+/ggGLiefHqDGtfkCiNTxO2/ZTal5BCpjwaG5UWCq/MWHb85wIFX9tKGaGKrylsvub1gsSF8eVRnyZEWxti28qLXBMX96HGz1c7qomvO75I+5BXCBUGpYLcI1nJdL5HSArSvKDIp/TWosqlOApPJmRZwnxaEpwF1+J1QvcVyoaKK38TOT9NU3NzI74yA6I4yRv5LgF65yh3zknwnsQEZrnBkDD1BpUlQoBvPbk3WAtJAkWRkqaGvvN0k5QyVYjmSO4b72PInBJSvwqgnMc2Lc16xWa9ZrXd0nUtXVfTVhsSA6V5RH+wD+UEQojoRixWlJaiwoNXBu8V223Dei08MJMYguvpnOPbbN+p2MizFNsL6SVNRCK2XK4inJlTbTdjHPvQNhk4GOv1mvv37+/AtdKGuXfvHkeH+8xmM16/fs12u+Xo6IjNZkMIYeRlpGnKp59+ynQ6Ic8zXr16Na4EBgfTjz76iHv37nF1dTVOuHt7e7x75zH8JWy2Gz766CPyPOfevXs8ffqU58+fs7+/zw9/+ENCgL/8y7/kyZMnFEXBw4cPWS6XfP755/zqV7/i4OCAe/fucXp6ymazoa4bnjx5Iimys/no++GcG+OuTWJGhc1gAS5FgWJT1XRtR5JEg6bOjpD3UGgMZNtdxcjQItnl0Az//VW1yoB2DG2u3R4+vJkYO+xjt5gZHBAVCk/Yae2IM6uLA6t8N0dS5HRtzeunn3H+4gmP3/shnTWERGGSXFYZQVEWOZlOaNYbdL+myAy2hyydcLA/5+zFC4o8pe8bVqutwN4B8dgIopdPBt5BgPl0ymI2IcsUdRVZ3llCluQkWYFKEkhAK09VywRrkhSCx/oMrEEbJZV/cLG6D0KutJ7VakPX2dEJttps6Z3l/oP7/OCH3+fuvSOcbwHPer3iZrWhbTyeBG2mbJbXbKtWHrohz6azY1vh4GA/ogKKum4ipyDgbM/B4R6J0ezti+w7zzPm85nAwtLVGu+fJvJYQlVzdn6J0ppyMiVNC3G6LCc0ndhfr9drzs/P6a3n6PiExd5BtKd3bLcNKDg4PuTw+IT7b90DndDeWNCag4MDrq6uWa7WeCoODo+YJYab5ZLJZDoSYU9OTvDes1wu6XvLYrGgqmpOT8/wrsM7y2w6ITWGarslz0748tmXZBE1vXv3LqvlktPTM6bllLKc0PU9TdPTxfgECe/S+D6M8tzeBzoXRt5K2HledmaL3b/GTaSDsf6Ic5zyxGj6ZHxOnHNCHHQ2JuXqaMZ02/oUEmKKTqQNZqLyRkfi4O6iQSsl92DXkOSGhIDvWrbrFXfvHmJyTWsdIRi6tuJ4f4+6tzhV0ylLYzTKyBTkXY8JVmTgJiFoI9C4+/Yox1+nBvlNZCN8Y7vja38eIpqk9LAcR6oCM66sfYQkxHY++cpn/qZR1psfentddRD/CQUMzrrFdIZPC/J8hslyjHWUQZNnBWmeUuQpOk0wOJxVOGMIyrz5AcP+tWhZvB+8j/TYVuk7CVgUDtbtuRcaiscQSDV4HfDaE0JHojwmcehSEYKM/UU+KJcsmXIkuBhQF0WvIcqFI3IcPBg02gfq1YrTF8/54sWX1HVN39X0fUOeJsyzhPcePkQFGeOVkoDIMOx5BJoUvbX0naNtWuqmRhuia2r3zddhZ/tOxcaABIDA7oOiZJCpDm6hfd8zm81IkuQN1UkIYZStZVnGbDYb3//s2TOKoiCEwPX1Ne+99x5XV1fs7e3xi1/8gpOTEx48eMDV1eW4kr9z5w5VVbFarbhz585IPtvf36frOqbTqeSvbJ8AH5JnGffv38c5x6tXr3DO8aMf/QitNb/+9a95/fo1eV4ym82YTqd8/vnnPH36lD/8wz/kd37nd/jFL37BJ598QgiBy8tLIfYYQQxevHjBdDolTVMmkwl5no9GPsMKb0BTxCWzQ6GiwY+QY53r+epDtJtzMqBAw2S1a0++22oZWyC7ElZ+E8XYZc8PeukR0Rh7keLHMHzeLll1V347fD8DuGB5/upLPvvsEx688y4hy/HeopCiBBeYZTmhkQdwOp2wXV2TJIZ3Hj7k+vKco6NDnLesNiu00UynMzoHvZMHoqoqlNLkWU4IGxQwm81iRkYjttGbiiS0LBYTjJ5R5iVZltK2slLKMtG3J1mJDwHrLIO6ZDhfzonJzuB5IiF6OQQf7eQDWVZCMHSNpW5q6qojKENVW7b1hs1mS91JWyHPxVgMxPFztpiNlvdZlgkXydvIZeg4PNrnzh0puEEcBCeTAqWh3mwpywl916OV8GLEJtyRJCmT6YxiUgoihsFECfZw3QbVjQ/RVyKt8J6YeGo5ODxktthnOp+JOVGakyQpGEPbO7Is5/AwJStK5vM9ppMZzqmRJDmopDabzYhk1nXN5eUlVVUxmxZcLa9JTcLx0RHXStHUzXhu2rbl6kLM8/b3D6jXFZPplG1Vk2YpoWmkPaSkmOj6XpJzd+TeX+0ni8z0b1jbq1tkY/ybSB5FVn8mSYAgRL0wKEmi7bRSGH0rw83LfHzehvMyPNe7qKSoMIRQeLA4YOJqwrbl+uKcIofGdnTec3BwQmYyXq5foVxP6BtCV5EXHd542uAIXoh/0idSBKX564Svf1uZ6c4OhlP37V6OcAnUV98bwY5BVjq0X/8uaBuDOq8oCjGwSxxZXoJJSJLAtLfkpfCj0jShzFN0cNjWSbaSuW0X7BI+1Q7qMnJ2ekvwjjYD5yR24I3vryQubXecVQyOowZjFEkyOD/vKqFi6Gli8G6X+B+PyXtC5NUNZP+2bbm4uODq4lLaqq6DYAlFTte0wrsL0dLeS6vVx32JVT7gLV3T0HU1dbUVn5ngcb6P89bfvH1nU6/NZjPC+sMkOBhWTadTQELLBgLobDZjs9ngnOP09HS0Qt5ut5SlQKvOCndjs9nw9ttvj4Pvdrvl9PSUt99+W3q7V1fRMvyK6XTKer3m7bffHq3F3377bS4vLzk4OODjjz9mMplw9+5dTiYnsIa+t1xeXo7Jk/fu3aPrutEQbHjghjyHtm35oz/6I5RSfP7553zyySdst1vee+89PvzwQ169fs1Pf/ZTAPb397l79y7L5XI0ORsIoYME9+TkhPV6PQ7mRT4hTQXVGOBWYBykvmohPvQcd3+/SyQd+B3DADZAubtBOcN7Bm7L8Ppdf4Lhd8ODI1D/rWpl2OfwmVVVje/r+pqQJqzW1zz54jN+f3nF3t05BIGXnRMnvqAEIpxlGWdnz8kMzCYFNzfisJppuLi8oO8lDK6qK4JKqGrH0fGx2NRfLzm5cz+eG0eaJBRlTrJpsL0lTxXKJLigaDvHcrVlGTrpMhhF7kEnOUXQmDRlOpXiN8saQkCMdYKPLQEZIKx1eN+ilWI6nfHgrUfsHxwRgqLrHEZnKNVxfbPk+csz+t5jg+fg8JDFYk5ZlnGwEEnu4IALQzss0PUNXd8wX8xRKnB2dspsNiHLM/b29phOJ5ETYei6htWyQitD23as1muSJGERzb4ICucCWSGraecciUnolKii5vM5RTmlKKeS5BgZ+YvFgv3Dg5hCKtbcxWSK94HrmyUuroImkwmLvX2KYiKrUh9YLpdMp1NpMVTVuPiw1oqJVi0mWldXV6yXG9566y2m5YxtWnF9tSS4QNu3EILEWXvP9fUNk0xi7YcCSZ4bgw2SSdJbS2t7irgg+qrZ0G8gG3/TFnb+CsQME2QV6QauhRVNixf7c6PUmEkSIk8mhNsMo1112NcVRLbv6L3l6uqcR+++jU8DxlXiIGkUm6qirbc8evAOmTI8e/GCtWuh3aC7DamZSPS8zgCBwr3SONGbf1eS3nfavlNBEAmlAxFRESLBdFilh1tex7ckIP5NmzGGPBcnzMmkhc6KOi0iy+LyHG3185TZJEcFS0OPUeprj2O3WBiK/c12i/dA8JS5GqXnX92EfGkih83S2U44ZTvjsoxtgsgMBOu6rtFG09t+XEAOSBxB3GP7yBka1T3WRX6wJtW3cRKuszjrpNhACo6hQzXwfowCHaT1vb654urijNVqScBH0u1vwdRrMPZYr9dvqBmGxMgQAlVVjYS6gT+wXq8l5TGaee16dIh8tuPg4GC0Na6qiufPn3N8fMzl5SWr1Yp33nmHly9f8uMf/5jXr1+Nnuy/+tWv+OEPf8j5+TnPnz9nOp3y7NkzyrJksA2uqIDDkcTz7rsSQ//kyRPqumaxWDCZSPbB8+cvaduWx48fS/S8Mfzyl78c3eY++OCDaP71nC++ENOv/X2Ry7ZtGz0f8vHmHrY8z7lz5w6r1Yo8z+X4rMg1B3c/4upp19Rmt60xtEsG58LdYmN4/e2NfOvBsWsYtmtrfqtSuDUT25WHjW0fnXztMQ3HMpB9A4Gu71AJuOB4dfacz59+yu+fPCDJND2BxGgyneFdg8JQb7eUiaYsUmzfoIymyFNWN1dMJiVHx8dRIrpEmcByteH45CQWAy1t26GVoust2hj2FjPOrpZ4H+gtNJ2jc6BMSlpkKFISHYTZnaYEZCDWcXXvnHCEkiRFq4a27UcUZWhzhOAE5r9zxN7eIdW2YbPqxCOkqbi6vubs4pJXpxcUkzlFWaK1kvsvkseClR6v0hofxLRrtVpFrwvL0ZG0VXpr2d9fYIyOUvGtEM/Kkul0wsXFpSA9dUNdV2RZxsHhIQcHhzIhh9tUV5Ok2KYbHT6HwMNyMgNlWK5kUZBnOUprikzu2d46emfp6mZs27348jn37r/FYjYnS1ORpnYNIZjxvlivxWVzIIcOMu5h4ZEqzcnJEUdHR5yfntE2DTr2soMXcuXF+YWQqNsOl3q0SVhtt4ASQ7JUGPG9d9SdoDouIKTQv6NJaiQ3hwhZj9ByjAGIxNRBuTUU5UNRv4sWDijj8AyPk0GcJIo8p9CK1y+e88P7xxzNpygHKlgW+3PuvXWfq6slX3z+Gd4qFtMJ2mmgI7Q3eJORJQswCU4Z6bUrQ8D8tUTRb1uE/U3n9Kv7+Wtfr3YLFDUiSrsi0RD+5s/8tptcjzTOT1NM70jTgiSVRF7b90LazhKyLCHRCo2hUxCcjcq24cDe3PfArev7XkzxggSvtW0jBNEQ3nhTCEHabrEVXFU1m+2Gum2FLxFuYyVsLCqGubPve8mLunuCtXuy8FS3pNWBLzVsguhkBAe+9xAcWgWct/RtR3AeHYsNFVESE9tXIYgUW4YMR9829HVFW1cimlX+WxeD37nYGAaN6XQ6+kk458ZQsWEFM6Q+Nk0zFgYhhNFVdFjht23L/XsyCS8WC169eiXky+fPqeuahw8f8vLlSxaLBScnJ3z++WcsFgu6ruP+/ftcXV1hrX0jIK6ua0II/PEf/zE//elP2Ww2AGRZzv7+Pp9++ilN03D//v0RNRkUJYeHhxweHnJwcMBnn33GZ599NrZV1us1FxcX/E//0/8kUFwMWhtQl81mw8HBwXhehkp0MAL75JNPWK/XtwFsdcd8vmC3dTIM5kOlvKtcGezKB3hsmPR3Eabh/bu8jYGvMexrUKsINM/Yhhkq4V2+BzAGecFtFP1QsAxeCoOpGwZc32LShPX6hufPv+AHP95SFFOCA6Pl5u8rMQU7PDggb2s0Hq8cmdHYznPnzh3SNBU2dduTZo3IF2OROzjJVtstaZqxXm1QWloRnZXPCamitYH1VkinzmUoerIUFvOpKD+6Dusg7YVsJRBqhtGBumrG1lTfW9I0nuugsL2LrcA5HkW1bbm5uWS73XC9vGG12mBMxsmdO6LSKhM8XtJhZ5OxbWWU4vrmipcvX+KcY39/n6KYoRX4YNnbmzGdTlAK5vPZmDRsjObmZhUHk4QQGvK84PjkhHIypbNWBlKjSbOMJMmiWZEaWwmS+irFZ912o3JsOpuTpuL0a4yRvBEfqKqa9XLJ1c2SLKKWzjlev3qN1oYsm+CCTP4D/2ogee9yjzabDUYbFvM5eZZzc3XNq1evODo8JEtSJjHjpa5ruohsdG1HU3WkeU7Xie+KdU6Qjq6j6Tvarqe3XmSx7tvbXO9u38RxfOMFgXEyGMiiOnoehBDw1uKUGsnVHjU+s2O7JG7Dc22tFMvBCw8nSxI+/fhXvPvf/BOW5zeYNNC3LfsHhzx68ICnT56Lc2yWkhJI+4auW5ElE5K0oPEdThuC1iidkGhp+/A1ceDfBe0Zxodv+t13ef3XbhHNEFTjTW+KryJT37jf3eN44zW3HLeiKNEZZFmBd57WOTQeFRwqiPS474U/4W2Ptz34r0covtoik7G2x9qeMhcux1dvqkGeCkKYbpqW9boW6/wgi9C+7yOhsyOE2ygK5xxd31I/enhrBcBtsSHFh0bryH3x4idjVDRkdD6iuxL4RuS9yR8fg9cU3sdIBwJGBYwa/GhFUG2Dxzsbv9/fvH2nYmO9FiObAZUYJqxhwpvP51xdXXH37t2RlzCsqo+Pj1mv10wmE1nV7LRYplNJfxQlRjvaiQ8T9b1799hut9y/f5/Ly0uKouDg4IDVajWSTwf5atu24+v+9E//dERL2EiI1enpKR9++OFILH3rrbf4V//qX5EkYkH83nsf4Jzj3//7f4/3fixGrq+v2Ww2aK3Z39/n3r17PHn6FGstz58/5+DggPV6zc3NzRteFWmacnx8zPn5+ThxrVar6FWQRiJtH4+9eyOQbbh5h8LDe//Guf+6VsrwMA7nfZczArdx89bepooON+yuWdtQzAi3RJPkyRsP1fC7oQgZjyU4ggvoBLarFc+ePeHq6oz780M0krbqbY9rG4wPeNuzXt0wj2qkqq1ZzKZoLW6rSmuqpiEvC+rWQlwdt23H/sEBN8stWZ5xcHDIx59+IWoEpUF52k4ejKsbYV7nuWFSptRtRZr2KCNSRlQY0wz72KZqmjZO7ClNI+fAOwk5SqIKZ763EAhdaVprub5ZcXMT00i15t69+9y7d4+8yJnOJ7FoUGORdnNzQwiey8tr8ry8Jfr6QFZmTCZlbEm6aEeejLLx1WrNarWmbTuc09R1y3wu7qHWerK8YFvXJElKOZlFKSyk0UNkDHNLFQbIs5wut3gPi/mCRXyeqqpCG1ExLZdrtpstiTHsl1LoWbem63qSNOP09JK296RpxtXVFZeXlxweHvLOO++wWCzk+lYVh4eH3L1zl76p2W7WLG+WGGXomk6+U9OxulmxWi6lX+0cIUDTtlxcXpGmGdu6hvictF1H04krq3A3XITnv/02tN3fXH/Kz8SDIw68EZ3w1qF8zJbwAW8dTjmxGzeG2XSKCgFnLeh0VJINBnXDmDkUIVrrqHSR5+rtRw95+vP/xE9+8ud88M5d2raj6htW24rjk3scHx2R6oyu7zBNTY6n65b0XpFkOYaUXmUQZetBIWFi39AO+LtAD/4uEQjbW1CFtKI0b0zku3//dccxhLQORzUQNLMsZzbTbFuxF3C2o28bwNO2Fd73BJeC7zHa07U1bVOhwu2kKueRN66j915C3pY3WCvnuqo9bVcTEH7D7vvF60XTtZbVcs3V1RVtZ6mjV5NzEjHf2w4hyYboLQRNW7NaLcd5YORshIBS4kyqlI+toxyjDYnJMCYjMYbUBPJ8UEFFPh/yt4leNiYxQpaPxcTAW2qjb4wjJsCm366M+I7SVzX2HJVSLBaLkU0/9O3n8/kbsPzBwQEXMVhpuVyORmDe+zHlNcvE5Ob8/HxEPuq65vvf/z6vX78e/7bW8vbbj/j1rz9lLwY33bt3bwxt+/73v09VVbx48YKTkxOSJOHg4IDXz16Dfps8z3nv8XujP8i/+3f/jl/96ldj5LX3np/97GfUdc2dO3coS0nnHDJJPvjgA4qi4NmzZ3z++ees1isePHw4qlQ+++yz0WzMWsve3h6r1YqXL1+ilGK9XkvPPE5o09mM1XItDOk0jYhDGMmWcEtSvJXR3RYgu6qUXefPXU+OoXAY0I5hn8Pvh1VnFu3ih98N11kepNs2ylffM9zgAzLilShVvLVorbg6P+P50yfcuf82Jp2igiLRkGQJuvcsby6Z4WmqDVlqSBLNzfJK+vJe2Ooqeq/c3GzG4qnrOvroHqvbjsLkOO8l1VV4dlgFnYWq6VlvWwgWo0Q33zYthx4OD49R2sRrfGuuZK2NqxNHYtKRJGuthGahwHtL0zU0jePq+obr6xustewfHHB4cszdt95isb8nBj/WSjtiWJ1Yx7aquTi/AMRu2weYz+YcHe8xnRQiqzNS5BVFOQ6ibdPTdxZjMoKXfJP9g0NOTk6YzubSigNM16O0iaZhPW3XC7chxpzneUYI4tq6qWo2m4rJZDYW100jqpjNtqKq6qjsUFEpY7i4uGTv8JDUpGy3Eum+2bYyIMVxYSgwsixjMpmM2UjXV1fkJqFvWuazOd46Xr9+TdM03FzdCF+mdyORejKZ0XRRfSKDkdixVxVNb+MxDeOUqAP4tgXHINvcnZzGVokoUzSMZmiaW9J0/KRxEk9ikNbQPsmyDEz6xgQ5/Ht4Ngd0A6Vo2oZMWTbbitlij9Ozc/amCUWZcHTvhNWm4pe/+hXvPf5A+vh9j7OOvtpiVM/EFGyW5+iDKUpZvHZAL+RVwhuEzP8zNxVPelBRb6ziiWagaXxz4fJtCo6BaLr7W5MY0vQ2HqJrW6z14C22b7FdKzlCtsf3CQRLojxdU9G3Df4biJByLLdtlL7rsc6hFTinIoHyN/lDIQRxqu0tTdOxXm9ZrTYEpbBWFp9NU9HbFms7lBL1h9Jq7B7cqgh3SKvqtj81ImpJgklT0jRHK4/WMkf7yPcYIuZ33+uCFBfaGEyaiw+QSQAl6KG1Ir39xiv15vadio1B+bFYLEanzLZtWSwWzGazEckYnDaHG2KIVg8hjNbik8lktBf/5JOPuXv3Llprrq+v2d/fH2Hm1WrFs2fPxtXggDYMq/HPPvuM999/nyRJxok+SRIePHgwcjaUmr7xPa6urvjFL34xhkO9evWKJ0+eEELg8PCY999/HxD1x7NnzzDG8PjxY0IIo9X53t4exaTkn/yTf8Lz58/HgLfdQmC7lUjsNE1HHsdgV75YLEiTjNVyPU7qaZqNQXfDRP7V7au9XmBsawzFxFdXAHDLdt/10RhQEbhFPHalseN+lXlDqTLePIMtdERVxE3RkOoc5zqyNGF9fcOzJ5/xox//I6Z7E3AtCkdmEJmp7cgKA85y984RXz77gjQxHB4e8OLlK6qmpelc1L+XlIUZSVNX19fM5we0XU9WxmwdF8gzRduBddCGQBE0QYn8z9qeLDWU5ZQsy6MnhLSpjo9P0FqIh3Kvbwi+wUdvET9aXINJMvIywySGZiuqjgDkecHhyTH337rPdDEj4Gi7jqqSNodzjrqqWa6WXFycY63j8OCQsizQRlMUU5RKdtplNiJTsdjpZfK+uVmz3QqXZH//kHI6xQcJTRO/F8dmW8m9treHjT3jyXRKqKTgB0HVNtsa76SCatuW07NTvB9anoZ6W7GtKsrJLFqww7qqZLWkDRcXF9ysViiV0jYdXX/bahtk10VRjNHqm82Gm5slSQDbWZpKQh2XNysuzs+lUFVCmA4elFYk0Sektz0uiOdJ23ZUbY8IAG9XsLeD7tePY980kb2BaoxSA8aJy3tJYtbBEZyVojqqUIYokuADGJGxOi/P4HQ6G1HDYaIbzs9XFWWr1RrXLpnePea9d7/Hq1//krZz2GBRV0vuPnyATgp+9emvWUz3sN7RtOJmnDjPTXXNwd1jlkFCxHSwOK8lTdbcqiZ+G9t327OUArfj2PBvWSn4cNvG/S7hcX/tJ/rboMmu6+n6juDBdQ1tU9NGpUffatJE4uUTHbBNRd+2ePebLajhW8u9fuutokPAmIET95utBq01QSdonTDITb0T+XpQYlK3XF6z2azlXCmHidL8AcVo2+52PI/EWqX17T0c5yFBRHOyvBCyeKox2mEM5MVElEpKyLpebJ/wDIFugE7QJkFpg/WB3nusD2KiF6XE32b7zpyNgbfR9/0YOTvIW7fbLYMDaNM0vPPOO5yfn5NlGavVCu/9WJQ8fvyYjz/+mDzG6z5//pwHDx7IQcVK/9NPP+X+/fucnZ0RQogKlQ3z+ZS9vT3yPB9TZ4eH9969ewzE0WHA9r4EIxfwk08+4fDwkLfffpsvvviCy8tL2rbl3r17sUgQt9A/+ZM/YfDpODw8ZL1e88UXXzCfz3n8+LEoT1ZLfvKTn/Dy5Utms9koX7y4uBBFwGLB3t5eTAYV5GcYcN566y2effEl0kccEIpbI65dG/JdG+7dgXK34Bgg2uH9IIXJbiLs7nsGtGTIrRn4G8NnfLWFs9ueGa7RAOENrxVCaoL2Bu80xiu6ruHll19y/voVs/kBiVGorif6XTKZTem3V3zv8TtcXpwJYlVtWa1WUnReX1NMhTF+c73hYCFk3IODA169PqOua6qm5Xq1xWiNcgFtlLDvlQKt8RhsUFgnfUedpHTWslytAUmnzYuMsszjJCxpp8OkJS2pgFK3bassSyknOcYQ1SMtSZZy//5dTk6OUQrOL05pugbrPFrlNHU/ogYXF5es1ysmkymEJXkuROXFXFbNLthRpVSWE7RK2Gy2rFbrCJEmZGnBW289IC8LOmuxvcMmnuA8XWdF6USgsxbjo3GcyfC+Yr1es15vaNuO3nq6MVjMcXZ2AUrx4MEDvBcVmrOW1XLJer0Bpbm4uubw+JibGFIYgoTjbaqGNMuZTqdMJhPu3bvHW2+9BTAGlz1//pyLi3P2pvNbtDNNUSHQRUv6xBi6to0cmRBTMJ0EY/U926qOmS5vbrsFw9dNUX9dobH79+6bQ7hFNhRSdCjFmGgbQiAzCSpyLoRULf3wRItix2Tpb7Qvh2d0V/nlQmC12XKmFb/79gOOTu5yfnnGZJaTzSZ8/vQZYLh77y3aqqMoJpgs4fr8lL5zTI4f0NdLlDnApJ5Eg1IBoxyJkufg76bZ8eb2XcuBkRgr/yGL6ghFiIRzaNf+3RZHPiquNps1N6stCoVttnRtQ1MLPwIlnC8VLEYHXFfRtQ1hR1UysEmUGhZ3Er9go+OsjN+avlc4Zwnhq7wGacNorWJAaU6aZqxWG9quo+1qtlsx80vTJI67kqkjBWtPb2+DUQlisa9vD5CBn5dlGUU54f/H3H89S5LdeZ7Y5whXIa/OvClLQTTQjW5sz+yYsUmure37vtNo/P+4trR9INc4D72zs81B96DZM0ALoAolUMgSKa4M6eHqCD6c434jswqiuoFZOuyiroj0iPA4fs7vfH9fcXh0Ql7UJBqEMEhhyUZFyEbB4SLy5XqirlA4AcYE/xqhU9JixGh6wDwCh0IGVPZ3Ob5RsdFbi/e+GkIE/4zb29uYejemaRqm0ynL5ZK6rofWwdnZ2SABraqK6+vroY+72WwYj8ccHx8PiECPTPRJkD0J8Ve/+pS6rvg3/+bf8PLlyyGMaz6fU5Yl77///kCK7EOg5tsZbIOv+7/503/DF198wUcffYS1luPjY05PT0nTlCRJ+A//4a9ZLpeRv/EuL1++5IMPPsCYYEj05MkTHj9+zM9+9jNevnpF0zYD/0MIwYsXLwYvjX4iWi6XZFk2cC76ALcykhv9Hns4z/NhQvpthKv99sk+YrFPNt03A+t/t38uuFOU7HMyXjMlIuRt7KMh+4/tzxUmUIlrLQJoo/JheXvLJx/9grP7D7l3cgq2RRgDLpgO3T+/x3K1CGgWQfJ1eHhI1YQ2iUWxKSt0olkuF9zeLjg8PBrssIWQgcyVJLgmRM9bB1ILECGKfL3eYltPkcC4SNlud+jIM1JJz9NoI4pgWa3WVLuKHp2/642GiSWY2TQY2+FxTKZjjo8OOT4+Is1SttWW28UNnW3xSFarm5jzEsLnjDEUozGT6SxcZ8cQOV9VDd41uGhXr1WKkgbvBUomoR1iYTo9YDSeBP2/UEwnGTLR7KoaIYLHi8PTtR1OBVOq7sZQ7kqSJGE6nVLX1ywWixg+B11n6Uzw0Li5uQnmQCpME7tdRdcZZEypbNuWbbmLRb3i9naF0Bnzg0POz8+Zz+ccHx9zeHjIbrcbEpDDbn88ZCWlSZDi7Xa7cO9UFSIq3NTAy4jwNCEMraoq2jfIjqHQ+OctTl/hauz/gbgoJOF99+z8nkfT56CoCNHvnyxJ0gB87PX1+/uoR2H73wcioEAqze1yxcX1DU/u3+fCbNlsN8jliqPTM6yTlFXN44dPqU3HenHNW0+eYrqWzy/X3JYenZxBFu4vhEcDCo/tdY1/gOObnFUAceIb2ih3GaZ3Gx7/myCqb3iEuSsUvYvFgourEI+gnAFrMNbGTCSLxyCdQ0kPpqJt66gcjMfAJO6lr3sFlL9Dga01sdh4vanjrMPLOzXnZDLl4OCQyeSa5naBtX5AU4210Tgrwfke6VSY7k5lCG96yvhoYhY2qzoJxnIIiXEG5wz4lqZrsVE6br0DZzHeBX6SlCAFHgtSU4wnzA6OOD7ZkhU5iFC4/WZG9d3xjYqNHhYtyzKy5vOhqLDWDruZ8XjMq1ev+Pzzz5nP54PZ1m4X1ARHR0cRSl1yenpKCIgS/PjHP+aP//iPh2j20WgUdPyzGe+//z4nJyc8ePCApqn5X//X/zVEas9mPH78hF/84gNCgmVYoB48eMDNzQ2ffPIJPzz+ARDaIh9++BG3tzc8evRoKFIePnzI//K//LtB3jqbzbi8vOSnP/3p8HNPaL28vOSjjz5itVrx6PFjbm5vkFIO6bQnJycDJ6SPpk/TdIjZ3m5Lqqrmk08+wRpPluXRjVNjrSFJVGyp+tiieDMV8i7XZL9w6FsxfeGwv+sahp/vfTPuwtdMDK3aP89X+SBieEwgsIpY5O076hF12YERrUSCtSFToit3fPrhL/jOd77H+fEhQoQk1NY06ExTNxu0UpyeHiPxUb1TopM0OFR6jzeGzXqDbT3GdLFwy/FSoYVG5zll07GpW/IsY7U1EZ0wdEbSCE+WJKhRRtM5ishR6Vtvo9GItmvJiwwhA8FKJzkCMfil7F9LrTRahl236Tqk9xR5QImqqmK3q6kbQ2tD+FVnQoZG3bRUu5CfIIVguSo5OJgHrpMTrNYlxuxQwlLkOWmWsil3LBYb0iQbinEpFA8fHqGURuqQAJkVQSrbdYGrITUk0bEyTVI8gWAW+AHg217NpMG4WADvkCpByoRXry7BeUajAqk0ddtirCe4PELbdjSd4XaxAinxKO6dBe7I2b17oeWC53Zxy67ccXN9Tdu0dHVDvd2xvLlhlOdoqbi6vsaZLiziWg/oqHOOpm3YNS21CyTRXVXRGosZxh1DK+UOjv+15cPXHoFK/Bt4ApEE2tGhBQh95/DrnMXZwN6QQiK1pGmb4T7rOoPO7tpK/b1qo+lfyMDo6OoG2zWMihFJIvnsy+fM84RifMj88JDb5TWXry555933mIymVPWGk+MTxgncXl9ineXBw3PmcsLLZoMyG5wraGWBEwq8irkwd335ryA6/wLcQ+z9/28+fCw04veib5T4115XuN/69Nr919V/voKvf739SfpX5INhlrP4ztBVO3brFdvFDcZaUuGR0QLNeQb/FIFFCY+3DXUdiKN378ANUMz+/3pTLB+fFxd4GTgxEFYhviUJKlHko4LJbMK8qhhNCtbbDdok6CSlbT1aB9l6mqqAkAhPkWUhfRWJ84K+2SQInhgiOtlK0SuhoorPdQiCXFUKifMSa8G58N5FRJWc92jtUVJg4uuczGYcnZzQWMe8aUJkQxWyn36X4xsVG3Ud3P16BCLPcz766COklJyeng68ii+//HLoz67Xa+7duzd4bVxeXpJlGQ8ePBh0w9vtBq0V9+7d4/nz5zFwbTwYIP385z/nnXfeYbvdcnl5FVGQU05OwnOuVmvquiVNU54+fRvnHD//+QfMZjPeffdbPJ0/hY9C9G5V1Tx8+HjIZ7m9XfKf/tNPyLKMx4+fsNlsuLm5YbPZDDLY73znOxhj+Pf//t/jnBtSZp+/eD6gFn1g3NnZGVJKXr58yW63w3s/oBXr1faOdCkUlo6iyAc1Tl33DqEJeZ6x25VYG5It71oaoYJNkgQlg3TTx+yLHtXoyab7hck+iXM/cG2/6Ogh3f02DoB1Bqki2UjHRVd4hPR4a5EqKDS8D5C9R6F88LLwzmGqisvnz/ny01/yrbeeUGiBi/HdxlrGswkHswmL6ytSrVkvV3jnKHcVB+MJ67LCtx3jIqOSDUk+R+iEbVnz4NEjXl1dIhKNSqEYp9y7f48XV79ECLDOY6zHaYVxgm1lEFJQ1w2J9EyKjDTRWNvhxQiHxEuBRw9mZ9aBkGFRT/NAdBwVI2wHu22FaTqm4wmjPKe1lqrt6KygdQmXNxuaxoCFtm2oqnq41hCN1zY1k+kRUmW0nQcSdJqxqzt2TcXIwMFsFjJClks603J4cBDAT9eRJiNaa7hdLBAqRtQ7H9Ij05DDkSQagcLsSto6tCDaxsT7tKKpW7bbHUqmjIoJ201NXbfkWTAOaztDZxwOQVW1tJ0LNvtCIFCMijEHp6c8evst5oeHJHnKarPC2BAoVWQ5bVNxc3WNcJ5ysUC4EFPf1jWb9RrTBYlfmobPQyeKsmqw0tMJaPCUxlBGHwMZe/x36FpYBn7Tgvm1hEIPQzpqvyKIuCD6ff5omHwTLUnixG86ExZwY0LhiWM2PgRnyccjvAgUOo/EOdA6xVuLaUIEg+s60tGIrt5RlRtstyORjvnBHOE7ltuK09mE1eqa+eSINBFsb645mY1QmWJ9/cUgZVTjCUYomu2Sg9QB1zRWsRWn1GqGERnJa9XFnh31cIFed+385u2R3+1x3vVtYwkDgE+MTu+9IkJs+1eDvvYLjV9HzAnkg749IzwkQqGtQ7Yt2jTIdodrdjgpaJoQ2BcCzIjohsO5FqUcm+0C1P64CkoMfCjfJJJEapRQjPMc5y1aSbLEY2uHdIo9NkUge/qQZu2VpXUVZbslG+fk4wwrPCgN25JiNEZpiRQCnQictygR3JRlkkZFXO9CGlpAzjvwIdenj6EXOJyxhET2MCq72tI2Du8VUuhgNCYEWnjkENtgQTiyLGU0nXJPZ7TG01kodxXr7e53+sy/UbFxcHDAaD0iSZLBbCs4ei4QQrBerzk+Pub58+eD3LWPWH/x4gVKKebz+aAr70lRh4eHLJdLjo6OBofR8XjM+++/z7vvvsvJyQkvX758rRVR1/Ugrbu6uhrODXB1dcXx8TGPHj3io48+4rq7BqZIIYeckizL+NnPfkaSJDx58gTnHL/61a8GI6wHDx7w3e9+l67r+NGPfjTsbHtjs+fPn1PudkynU05OTjg+PubFixe8ePGCsizpU1SVUoM8OMuyQd7YL2Q9EbQvTPrclH2Z4z6S0ZtLee8HjkZALO74HvsT6r60dd+wq1dFAEMRso+M7Ie69VBc/3P/WvY9N5RSIRpd+CGzQwA+kunq3Y6PfvEB/+pf/VckswJsS1FkTMWU2VzQthXOcRdNbmMrpmvYrtd4Z5nN5wilUCKjaYJ7ZBcTN8fzCVpLvAu5NGpgWPt4rSxV43BWYruaPJWMMk1rglIki0VY3bQYY8PO2YbFBIgyZcA5lAywadt22M6gdYJK9GC4s9luuVluuLxdcrPaYjqHiemfbdtiXQjgyrIMLyS5D0VR24X2mbEVaRN8MEZFQZIEYtdqFSzdHzx4SFFkCBkUMav1CqUDeiZUsEFGSLoY9GddaE1J4YJs9eCQqqrY+JKiGGOsoG4MUqV0bVDbDNHS3tE2QVbadpZd1dBZj5Th3hVaMx5POX/wkHsPHzI5OmA6n7PebNhsA/nZ5wXOhGtZlTt2my2261iuFkgl0ULRRMK5kjKYesVxaZ2Lu01P3bS05o79Hna/7usLiG98vLl4+df+EoZTmIj7Sd374CQq9lqLQki00sgojxYihmL1Zx3aAx5nDVkapM1KSpq6YrW45t7JnKauOTw5onNgvCBNCy4vXnH/3jFpItluNrzzzlvcmpbNukQqxWQyozIOc7uibQ2SBKGmKN2ilQSZIDvDHuPgtffpY4tFxCJEvH4ZfvsV/CafwwCuhKUaQhrvazH1vTrF/+5FzOuHB793Thf4TKYzNNWO7WZFVe/AhIwe70HKJOYNuWDEh41cmw7zFT8Jf1ec4kgTzWRSoKRDKkmaaoosFOID8hEPpTRGuthCdaw3W65ubqjaBickOs3IhKYznqwYxza/IklVULd4g9RJLNLuruSAEPl44Xww9QtohQvzcZ9LszcW96/169fP3419KRkVBQaN7DzSQmsFSfMH8NnoyYH9C9ztdoNp13Q65dWrV8OiNp8HaHixWPDll18ynU6Hx5yeng4Qadu25FnCe++9x4sXL3jrrbe4vr6mrmu+/e1v8+LFiyG2uixL7t27N2QtVFVFVVV85zvf4erqimfPnnF+fs4f/dEfUVUVFxcXQ4YLhJthNBqxWq348MMPOT09pSgKXr58yXa7pes6Hj16xHQ65cmTJ/z4xz8e7Nnfffddbm5u+PLLL/nggw84PDzkz//8z6mbms8++4wXL17w5ZdfDov9aDSirkMKbpZloV1kArrQNM2AQAQH1TKShHJ2u92QlrsfcNYPAiEY3FGtqb9CJu3f5z6fIgxuNfxt36cD7ooNuFOl7BM/e5Rkf3D2E8u+CoaoeAiTrgcRqEfetXjb8OLFF3zw83/kz//sj0lcQ12VtLrhxYtbZuOCJ0+f8OLLL8jzHGcMLho6JUmCTrIQYCUF89mcy4sF5XZLlmXoyIFJ0xQhd0gHoyILCaXxdRvrMcaj8BRZUJE4GHbs1gmqug6M6zYgYF3b4j3kMfhsFAmhwShLA5HrIqHpWlbrml1ds1yXXC/XLDc72i4kxq5WK/AMiq08D74XNhac27IcXqtzDdZEc7ZYxG22G/Is5/DokNl0GqBhIcizFJmkNF2YLNMsAwRdF4qubVnGVGIJXmKsoW0DxyL43AQ78bwoyPIxbWPY7erB3dDZiq5tUUqjnUDJjiTLmU7nCN0Tz045Pj5hdnjA4enZYEs/HoXC3jvH9dUVr16+ZLVcslmsKDcbfNxyNruGardDAIlOogtoQMnqtmVXN5S7irI2Q1H9ZlvrD3n0JYiSKuy8eZ1E3attnPch8GvgaOyjLuF+sdbAXqtSqXDO7XbLzfU1m9Uts1FK2vvMTEZMEsnj83s4E7xZmjYhL1JePH9OkSToJAEvSbTCK8XRwZSLRYlpKkS7A93g2UGaxo6EGBZJwR5htOdzCP/6wvV7P/aUJ68hE+Irvwnr5W9Kdfm6Y68I2Hv5UoW0YimDbLpuGqq6Qbie2xILXRdRLMJnaW1QP/WKsPC67kpeIRxJIjk8mvLY3KfrGrIioHkSmM2mcZN391qcc+FjiKhDXdfc3i4pG4tIMuazMdY4ZLKmKMYxzyUlyxLarsGYJqQHf9279z065WNrm1jc3V134eMcTbTT930R7+MQ6IPdwtjVKsiG0ywltyG9PBUKEVvJv8vxjdsoVVVxdXWFEILz83OqqhqImb2BVq//vbi4eC33YTqdUpYl8/mcTz75hNlsxng8Zr1aDNK4Xp/fG4j1yMXJycmwq+6JZE+fPuXi4oK//du/5ezsjO9973ucnJzw4sULnj17NkwIs9kcbsKNfnt7y7e+9S3quub58+f88pe/ROugQOnbOx999BGffvopl5eXnJ+fo7XmxYsXQ+FweHjId7/7XXbVjpubG8qyjK2RQHxbr9dDAXB6ckJZBhWBd3dwVx9op7VmPB4PvgZw52XRT2TO3ZFBTfRqIA6gHomQ6nX+hhgWrrvWyL4qpf/b/qS9bxLWoyE9OrNf0PQFS1+E9AS3cD6JkiK48RGscZEC5zrqasPP/+nveXL/kPuHBabacN1ccn/isS6EkKVJQloUXF1cDONoNpthnadqW/I0o20b0iTh7PSUtjMUecbN6pZsokkTxWq7YzwaUzVtvJnCpCGFRKoAZjatocPgEkWW5zgvkColSVKgRdYtQim0lOR5xsHBlJOTQ5QSlOUaawxd12KdRcqwO2k6w3qzY1sG7kNV1dSdo2lamrp57br1yq59cmBvkhY+LzFILdM0ZTKbMS5G5FkeQHkhh+d10ZfFGMt2uyVLc8bjSWCSr9cDOoWXtF2Lc5Y0yWnbwLuZz+covaNuDM56kjS4nSZW4lSCVCL4daSCbDSmGE3IignWQTEKxO7JbEaWZUgEN9fXVLsdeSSD31xfs1muAl+jDfbvbdOgEsVmu2G33ZLoFC11MPXqWhywq2vqJpBDm85iui70lfcIyv/Fjlh0h8J6T4HVs/0j2thYQ79chs9IDhM2BO4R3KkQlAy9/dvbWxa3N3jXUZYx0bWuMXnK7WqJoGM8KphOc5wLsQhKKSolMcah8gLR1BgkearJJKzrLTLdorIWpQLpWMoUF58T3mhEDO2KOw7F7wU0+soRd96vFRxhzugLkQFzia2sb97Q8XeIhugZFAIpgq28BYwLREglVeTsBIl7307rrEcpT6Q0DWTxcPQbOxDSo7RgNh+TpKdYZxiNsqD0ayzj0QilBULuzdHe4WO+T13XlGXFtqxofEgJnx4cYk1olaRphk5D4GGaJ6AVopUI9TpnbnjnEanYL2jvrA1cbF+5gcjqIwISfr+PLIWvEMYm0Ukwq3M0KONAaDySuql/p0/km0XMZxmyutOE962As7Mzrq+vaZpmmERnsxmvXr1isVgMSIdSirIsefXqFWdnZxhjKMtyUIN477m6uuLx48c8ePCAv/u7v2M6nQIBXl8ul1xfX/Otb32LzWbDs2fPGI/HCBEMxoqi4D//5/88yGwfPHhAlmU8//Q55E/Jsozvfe97HB0d8T//z/8zQoghHfbg4IDxeMzPf/5zFosFJycnPHz4kJubm8Gg6/j4mL/4i7/gL//yL/n444+5ub2hjihFloWdd0+kVEpRFAWPHj/ms88+C4x9oV+TmtZ1PUwaPeS6z5no3d+sdRHdCBNcWZZxshU4Gzkg6q6ACDfB3bn6AbivShkGJXeTN7weXrXPoN8vKu6UJ7z2b8LzqdC+MBa8AUJqqu0athvLzeVLPvzgn5j88XvME0FiJFkWZIFXl1ekWmJjno5UMSXVMFwvYw1NXZKoEef3z/jFxx8jkiAJq6qKVCc01YokUXfphYGnFec3hTXgsGGiL1KUzrBItmWF91VoZbRmgBA9nqJImU5GSOmRvsVaw6hIyTKNdcFVrzGWsm4o64aqDtbZ+IAIVnGcpElCXhQUoxFJliGFCP/VOrxWa7Ftg/WS0XSCdZ71es1mIzi/f48kTZAmOLomaShWemfLJElQWsXMF89yucJEX5ee6DsZj9GJQsmE7bYky1KcD3ZP1pVUoibLUoQUFEVOmoQdelU31HWHznLyYkwxnqKTnLwoyIspSqd4YLG4ZbVYIpSkqSqWt7dcvLrA1A3ldktZlqGF5zxVuaOO7UNrLfWuZrvZ4gAnJFXTUtUddWdeU578lysyQrtsgJJlMJjzzoXiQ8ogh41FZJKmdD62yrxDZ+nAb5LeIVy8fyCQkH1Ijd3tSjarJU3ToIRjvVpRHsw5PphhAZ3lbHcVbeO4dzznwfkjfvnLD1FCcPDoYdhxaw2xZamFoEgEy80Wn6woDhoQHca3CKEHXkL/Hu++Fa/99k2mxO/72u4/U09x7Anm/fGbGTi/6bhrFPWllfM+EIl7dqZUCKURMs5/ccGV0dfFeYfWILDgVeSB7J/+js0jBIwnOZNpiqcjL1ISram3HYlM0Foi5R4yEluQfQvcewJyS4JMghGcdxYvFegEodPwGSsNLkEos1ccvvHO9+Z1FROKg3JKhrRiHxSGwrs9hVTgeAw2dX3rz/eoniRRikQH40XjCD4bCqT4AwSxee8Hu3Ctg/GQMYbnz59zdHTEZDIB4CLuSnvEoG+5fPjhhxwfH7Pb7dhutxwfH5PnOXmeDRHt3//+9/n444/x3g/tll4C+/DhQ7z3Qwuk5wporfnwww95+fIlxhjeeustttstL168AOC7+dtAWBT/8R//kaurK46Ojnj48CGvXr0C4NmzZ0gph6Ll888/B4Is6e233+bBgwfcu3ePf/zHf+Ty8jJ4hkzD++1bH70KpJf0WmsHDsd0OsV0d8iAlHf8kb61cnh4yGg0GgzQkiQZdqXe9/wIPSAbwX427JJ7K9w3YVut9eBCuo9g7Htn7Ptp7KfL9r/rUZW+mNm3Y9/345BShhsIsF2NjW6eUoYvIRyma/j04w+YqpqnZxO+dRYQDT0p0EpRltthAcqyoAypm5LdbhcC0bQgSwtEdFFy0bMgSRJqY5BS07UNzsQbyd71Ha0N3I1QrTtEEnIjLJK6NTQ9SVYosiRBS8l0MuKtp4946+lD0kTiXEeiLHVVkaWh6N5ud6zLHeWuorOOqjHs6jbuylu22xJrAhnXJ2LYSVljkWkaWOEuQLVShp3MdFagVTDnytIktE6EZFuWiMkEnWikVGRZzq6pBmv10XiM6SzL5QohA9JWNw2bzYauNWR5Tpal5FlQhbVtB6JBKkW52zEa5SRpBijyPMOYBuc9adUwtp7xZEqajUjzMZPJjLQoqBvLZrNlt9mwq2t21Q7rHMZZbm5uqKsK07TcXF/TVTXOBgQmkI4F1sKuLKnrUKh31mHxNJ1l1zRUbUtrXFyE9kl2vx904/U29R4jdG/fL4SMoXbuNe5Gfz8FBVCPUjVoPE3TkI9GFFIBPvJgBM5apFBAONd2s2a1XFLkGW1dsV1vuLy4YJQljDLF/OCARDpsW7IpSw67Gf/VD/8rvvjsGZvNlqLIg611UwfzpjThcFawWu+o2y2i3ZImY5zN8DrFo/f4FWJYlnu4/a5p8dX2xR+m0Bt0bOHSRzXE3Y776zdGv44jst/+2Wt2gBBIFRABlaZkRYGPbaw05iR10pClKYlSgfiuoGsrpNB49/rz3fF0QGuJkIo0S1AqCSnLQuA7wN7Nr/uvUkoVTBCTjOlkxvHJGevOk6QFKk1xGLJR4GukWYYIwVIkqgCCgeLdFWQIAhza3HvoWxI5gFmaYK0AbwN5VAXCaSAGO4RQAw+qx5ckYiCZGtPRNQ2dsSidxXXpD8DZAJjNZkOwWJ9Ncnh4CDAQI6fTEKW9WCyGzJDZbMZisWC5XDKdToc+1WKx4MH5PU5OTlgul3z55Zecn58PEr+rqyvu37/PfD7n8vKS0Wg07OLquh7sz/sF/+TkhF/+8pdDu+DRo0c8nj6CL6BpWpbNknv37jGbzTg/P+fZs2eUZclsNuPw8JBnz57Rq2rOzs74wQ9+wA9+8AP+6q/+ig8//JDr62tOYmvERFvyHul59913kVKyWq24vLxECDGYn2mtKSNhrm8J9dA5wGQy4ejoaFjAi6IYpJlZFiDvIbApDiqlA1PbWot1dxLZ/Zuw3zUOduJ7XI3X4TU/FBr7HI2+dfJmW2XfyXRfltsb8jjn8MaSZCkCMN6FfnxT4U3G4vqS+xPBrmw5OpmQ5znb1YptWZJERKZt2xDEVjUBXRjlZHlG23qaqqMsK/IsJSkyyqbi9PSYm2WNjxN+T+KTIlTmoS1hSZN0aFV01rOrW6zzZHlClqZhwk4SFKGN9+jhAx4+PMd2FUp6trnk4uKCrq2p6prlektroHNQNYbVumRXhQTSXVmxK6vQL5YSJTUQiiCDQ0qHMYGE6V3g46RZMPixNoQ4ZXkWCos8RytFXozQ0dOkrhuur6/Ji4IkSeP4UEGtEnvTTWzPqDyJk4gc3Ht7kq91JmTMHB0NboOz6ZTFchH0/giMDYF0FslkOqGqa8qmpus8m22wNN9VFZ0xLFZLOtOxWq4YF6Nhd2QQmLaLLceCcueoqzqc11qUSrDG0DpP2wVpbWscNgzmrywwvx9yKLy2h/YMPX/vg1GSVjEFGU8WycJ9//vu/jEBoRUBBe7vjT4KQMm4dPtAJkwSzXa7oW1a1us4L3pHuzM0TcvNYsF0ktN0hsOzQ3YrQyo06/WW44M5D84f8Pzzz0KBmo+xXYdpa7wJZl/H84IvbjY062smo0MMLY3tIPrPEF/LHn2Vfwme8eZn8dsKk9d0L94PtFXnLNaYSBSWX0Fj35zjvvpC9omSfVB6/JOUSKVI84LJ/ADdNEgpGOWBy+eoKSZTJFGCnSnqSqFUipT69efYex1SSeq2RciYABz5EFJFTw1vMXt251IqbFjGSXTKdDrj6KjGljVearI8B9GRjRxKBnmsEB6VaLI8odHElm80cew3hHvI9r5nklQKEUnfXWfxziCkxzmDtSFvJczp4fonKhlaKE7IwGnxHmfD+zDGYL3HmBbr7qwTftPxjQmi/SLZGy/1H75zjvPzc66ursIuqus4Ojoa5K9aa87PzxmPx8NCDPDWW2/RtfWQkzKdTjk4OOBHP/oRx8fHjMdjrq+vh902hIInxH4Lnj9/zmg04t133+X6+noIPPv2t789EPE++fgTyM7QWjFJJiil2Gw2/Mf/+B+p65of/OAHWGv5+c9/PhQPf/Inf8J7773H559/zv/4P/6PvHz5kjRNB9+Qm5sbilGBVIrvfOc7rFYrzs/P+elPfzpYjk+nU7wPwUqbzRbTWeq6HkiqzrnBdbTPjukHT1VVQO8CmqBUG4uGO7fOfgHdJ4cO90IcbE3TDJ/dfjGx7zLaf+1Hz+8TRvfVKfD6JPJaqwYCuc86hA9urDJsldDRz19gaaqSulR4e0KeT5lOJzgTDJ60UoyKgkaE2PjdrqIsK4TSjMbBq+Tm6hJrFNbKGKl+yOXNJef37rHdvWA8Lri62aKURJpYNBF6KULAZtuSZxKERhqHMg6dihDJjgzqB2tRSqKVxJiOelcyKhR4Q5Frjo7mVHVLtSpp2obWCHa1YV1WNMbSdsGWvCyDjwdChDCs/gtAxj6uFMHFz4dsF2uT4FiqBWmWk6U5luA0e3h4RNe1GO/oql1MEU4H1VNnTeA/JAk+kl77FOJRMaafhoOyK6BHOsk4OjmJk72k3O3COJOefFQAIQa7bjqSNCPNR+x2Lav1GiEV1gl29Y7OGHbbkqqp6dqO1XoV7oPZlPXCxtZbaB2kScJoNMaYlnLoK9uoxrFUTcuubulcsE7+wxAVf/sRijMfuUjhS8bPTSmFEhKt+jTX4BbqhUCnCVmRh92td6RxQyJx6DRFSsF2vebzzz5jPB4NIZanh0fMioKmDsXbYrnCPH6A8Y6j01Pa7YJXX35Bu9vy6DxEPKzWK+6NxkwmBbvdltOjQ1arNeNEcDzJWbdbmvUV+nBEQ5B0DrJhiAQ/CfzzC7ffX9H3ezh8IKfvv5++lAmfTcpoPGZ+cMTIGpTSJDrFodDJjulkRppoijwnTxW73ZjJdB6UKnvHHcISFUhCBeWWaaiqoOBodxZcKO7T14qmfh6VAcmczDg6ssiJwSJIkgy9ayLfTIY4AylIU43SIfAyy+4QKhELjjcuxF1BFAuFrmto2wbvDFZ4lCKKNe7C1u5aUH3K6x3q1LUNbV1R1S0oHbJ5oqfMbzu+UbGhlR48/nu+wWg0GoifL1++pGkaHjx4QHBkrLm4uGAymaC1ZrFYMJvNAAaFyfX1NUeH82FR+/LLL9lsNjx69IjlcsnZ2Rnb7ZZnz57x9ttvDw6kvenX48ePWSwWfPbZZ6Rpyv379+l9I66vrynLkscy2KA752lMw+3tbczCOGE8HvPRRx+x2wVW/unpKU+ePOH6+pqf//znfPbZZ4zHY548eTIoToQQHB8fc+/+fdabNQ8ePOCTTz7h2bNnWGsHXkbTNKxXK9JIKj06POHVq1dst9vBBK3nqmw2m9eUJRDQDuccu135GvLQL+6h19cXe3YgA/WIxD6pcx+lCIN9T/bEPiR41zrZ533sE0d7Kew+ugGEqtcE17tESJRQyBj/pKQOUeWdoa1rJqP7ZFqT6IRqV1HtNsEMbRJ2aGma0nYGnWim0yltZ6iqHdYaqrpiXByGXZl3JOrOQVYpRZ4GhUpn7lxRnbuz4s1SidQqxqY34fVFI7Yiz8BHyaVwKK3J0hRrOpbLFWkiwHVY04b2kAoZHq0xtDYUGd4H6akxNnBqpELGQLQkCbHuIvJbkjSLmQpq+FIqGHFpreIOORhDLVYrdKKDb0WRs1gE1KFvabVth1ASoy2iaVlt1kP6aS+57vlUbdtR18FkbzwZ40UoTJyzA4xaVTsg7oi0IhNqCMZbrJbBQG8+QxpB27TsdtXAwxJCgPOkWpPpFO88woUAOh+5CiqOtcHPxFqqqqPuLFXVUHcdJk53/O9UcPTM/n4aZkDyQrEREjTDvOh8CF6TOuRF5KMgRQ7oWihQsizDWctqueCLzz7n+fMvOD09ZT6dcnlxQVXtyKdz0jSjrhteXV5R1m9xuxRMH9xjOptTTpdU1Y7b21syHdDPzWrF0ekxk1GBEo48kdwuFkyyI9rOsl5cMZmfBx6VT/C+l+sCezv/+FbDIb56zf//qqjg69ETIe4s3l4roCKqoZNgu11MWhLn0DJwnYzz6CQjzwqyJGFcZBRZSOLVOuHrrNN7npoQCmehrCqMqYEg3dciIdUpzrt9KkqYk6OPSMjOyhmPR9jMhfRiJ+h0MOMShPEW+KUuENNth9ZZLBrj5pI7rt6AGfWIM8Evqe1a6qYCFwzLwFJVu2geeZcy1N9xCDEQnAXgTEfbBqGI8YQE6T8EQVRIEYPNBHmeD7upzz//fMgBqaoq3ARZxqNHj1gsFrx69YqexNlDim3bDkmrQghOTk6o65onT54MO/Lvf//7/MM//MPgyJmmKV9++SVpmvLuu+/SdR2fffbZUID0rYjLy0uePXs2kFW7roOMwdfiyZMnXF1d8erVK6oqZFL0niBnZ2e8fPlyyEzpi6IXL15Q1zVJknB8fMz5+TlZnvHss2f8+3//7wdb9eUyTMJVVaG1Zn5wMLSeen5J27YDg71pmphw6jg4OAg2zLEddO/ePT7//HOur2/I82Igi77Jr5BSYjr/FWlV7xb6OoHz9eTXfqDuZzXs9xb71smb53nTIr1/vtDyDn1Q0We9xJtqPBrT1TtSnTDKC/CwXW+YpgXj0RgRmdJN07C8vUXIEN9tjEVpTTHK2ZabQHJUmqau0Dq8jvl8xovLV3gxQkauQtWEseptKDICyQ/qJrQutIaiSEnTgiwr2EWnUKJtb5KnJIkmLzKcN6xXS7JU4EzDcr1G6pzOeKzzkYAqMTHC3TqPc6ETrrUmyQuKYkRRjEIhodRQZLC3oCqdgBB0JhRcSbS3l1KQF0VAHbIs3iMtBwdzkmi3nqYKnYZzescgx2zaNowxG4qupmlYrwNZczweI7UKNulRMeO9R0Y5cQhkinwFH95fZwKJLh/F2HRrQIRgvd5fpnev7VHAcrsNbcOmQTiPiPd40zRY29GnHTddy64KfhphDz5Me/wXLzb2uio9f4ChOA/3QKITkkjA66Kxl4rFR3/IgEGjpGDbNFxfXnJ5ecHNdcj2WS6XHL/1FvPplHK7RTrP8dFBhLk7Xl1e0VYjpkXKLNNMxlOMlDjrcCq0aZqm5fb2lvl0hJY5J4cz6qrl+c2SytSoXFNtVvjjQyJNEiF6O3AYrvHveIl/XdHxX1Qh9PWv4I3/Qq92EZGz0XugJGmG9MGvR6uE0RgEmlQnpGkSCdeaNMkg3tv7R99KC0FqHmNCkSBFgtIZWgkSGYrREFNhvvJvA/+n32hIpLRgQ76Os8Ht01pH19ahWBEasGgtydJ04Gn0rZS+4PC9kkT0KpgwjzZNHeIAcAjvsLaNLsrmjSsWr5cPyKKg5/0bmrpiu1lTtwbjHG33B3AQFYQI+a7rwm7E2iGDpOu6QdaapinL5ZIPP/wQpRRHR0chOnq5ZLvdcv/+feq65tWrV7z33nvsyiBz3W63FEXBfD4fFvfe/nu1WnFxccHZ2Rlaaz7++OMguZtMhiKgqir+5m/+5rXslvV6jU2OwptNNE+fPB3ku5PJhJOTE46OjphOp/zsZz/js88+o2kaDg4OYgtDs9ls0Frz9ttv88477/Dq1Su01vzd3/0dMhZcaZqyWCwGrkjvJtpLgS8uLrDmAucco9FoSMztkY19eWl/TcuypCxLsiyPAzQMGiFknMwtLrZWejvafSLovjPoPiLS//xmUdEfcm8A76MdffumR2B6JnP/HEEPH3bmUoJ3Bo8PvU4PSki80hwfnQRS5SohfXAP53wwnqoryvWKtqkR8dqnaQJCh7hjoEgzsoOCqjLRwCu/e9/OY324/uOi4FZu7ubQqEZxHoo8CdcOi3GOXVXjhef09AidpkFf7y3T2YST0zA+Em0YF5KuKSlLR5ZmNMbRtl1glscCwTlP4KQKhJRoHSatYjyimIzJI1dCRDhXJjqmPoFKNMWoCOFuTcN4NBpIZEWRgYCb21uyJCXPMybjcZDx9RkqWqNkQHSaOijDhJQxVr7D2WBJvtmUA5cgz3M2my3L1QohZSB9ZinT2YzZbE5ZNbSdDRHy2zL0e6Vivdmh05zlck3T2dgH9sznc2beB6OxiLLd3FyH9squoqkbtJQID6vVis16TdO0WBOsyOu2oe4M5rUiI7Sahhn0D368sZvnrlDvuTcyFuha30XEJ2loX6VZSpZnNF1HohVKROWKCg6wv3r2jO16FfrmQLnZUNc1s9kspIsaS7nbMR7nTGJ7ZVIkbMsd2qfM85xEeExTc3J6xnK1YFdVmE0HpqFIJOlsxunJITujuHlV0rk1ot4inEF4ixAKUBG9EP/F67jXjzsi7v5vfpeX9PXIRu9HGs67r7wRIhBEdZKQphkOkDpFIrEGbCbI05RxkZMnilQrvOvQSgwoAvHV7hNVQ4EZTRh9h1ICJUXkahiM6QaPGAg2DE6piJRFlZMHZyzOmOCmax0qvkdvDM47bLRJT7Iwrwx3yB4hVEqJM7GgjI6g3jm6rqGuK3bVLsiMncV0wVDPWhsvukOg4vn693n36TRNQ1luWS0WbHYVrTVY9wdQo5TbLeVmjVKaIkvROmFbhsyT6XwGwrPerkM8dIyo7omk/c49z3NevXrFw4cPg9viZsPlxSseP37Ee++9x6effspiseDRo0fRTvyW7XbLZDLh3r17XFxcDITMqqrI83xoWVxdXXFwcDAUO32sey+fNV3H3//937PdbpnNZpydnXF6esrFxQUff/wx27Lk8PCAYlTQNA3bckuW5RyfHPPWW29R7nZIpfgkElDbtmUa+SNZlg0oyePHjwflznK5jB9SS54VQ8ha13U0cYLpeR09v6JfBFbLJbvdjoP5QSCndS3FqMCaIJWSIhD7pNb0Nub9zbf/3zcLia9rn/TFw35R8qYcdp9Qul+wvIaS4NAy7AD7RTdIBsG5DqUdQjkWmxWPHhyikhF1XVKudwjfxf5kwagIEehV3aISyXK1QXuJtwZvoWtrVAKdaUhUQds5pM4QVpEmCucaEJ7WuhCf7AVaKlpnMVWLVpBn0cuiMaRJymq9w3sYj3Imecp4GoirSarQSuA6TdlaTGdJdEbnLDgb0EfrMXWDtw5NWBt1ogPvI0ko8owsonrWBodBEX0YEqUY5QG2HelIVM1y5gcz+kj6YI/t2JQlTAWpLlCjgl3XgTEUeR6zFCy7XcluVzGejJlMpohC0MoGQSDECiEoihE60TgPUmgm0zkQQsBAUVUtTdNRtR2tsTRNR2uC4VfvJOp9SV03waNEKqQXJGmCtaEI25Ul2802sNeb0Cs2zoRYb+No64ZmZzGtCAZenaexjpZgYB26xXHZcXDn1vjbj2++w/4aRn3sIoRdKOgkcHiILSFJqH+sd2gpSfIstK1UCLCyxMVCKlAKhGRXVrRVGCc4j4wT/OL2hgcPHrC4vgbh2ZUlEkeiYJxOMHVLudlCp6mVJNeSxc0NxydHjIoxl5dXnBwfcXZ6xnq9Cu1BqelMy73jMV9c3JB1t/h2DSpByBG1FRgnkSpBBMExCDsUIP0l/DoM41+OYPSQfSCBBnt48CJ87i5ynJwAv+dP0c9Jv/75I1oj9n9z910vLsiygsIGd1ql04CixleV5zmjcUGuFakSmHaDEo5U3520F4mGBd6T6KA+McYEDx4cSgUVodaK1lrq9vVsFedNNIILZnAOgUVhvMUiML6X6gb+msDftcsRQbVnTRhjLviDyIhqhDZtTIIVnkQB3iCFRyuQPqCpSghwNiTa+nCfCSGCDwgClAp8DhFypqxpKNcrys2C7TZwu4x7PRDx1x3fqNgI7o0z1qsVq2oXopOl4PT0hKZrWayWFKMRk9GYxc2CzWbDaDRiPp9zdXXFxcUFjx49YjabcXt7O7hnHh8f0XUdn3zyCfP5HGst6/Wam5ubwYm096boI+r7/I8+1r5XqbRtgIV64uXR0RF//M6fwPuBs9HbqO92O7788ksuLy9Zr9ecn59zcnLC9e0N19fXOOe4d+8e3/72twc30A8++ICf//znQ/Gjk2R4fiHEIMddrVZIKQdpcEAzCro2vIe+DXV0fDxchyzLhvdW1zVffvklzgZDmFAV271KNiQT4m3IJ/E9z+PuRtxvh+yTR/e5GvtmXPvkUHgdJv26iPv+Wu+jJUqpIBnzodp1eLwIWSNSK6qm5HA2oqy2PLh3jMhyvnx5yVEOqRaM84T5dMa4SKmrLZeXF3SdQyc5R0eHuK5ju1oE/TkdiYbNasdofsBoMsOQULWO+XzKdrcjWUpsGZAg4xVSJqEvi6PIJJNpgTeh2Cg3dQj2EiHdM88THLAuN1xeXTPKJd7UWOexVuCIYW3akqaepg1oTJ+RIQnFhpCSNEsZjQrSLEUqjVREGDdFKUGWaGaTMYfzKQrLeFJEMqwkLXKEmmG9o9w1ZHmGSsL7WKyCGmyaZSgd0mAXtwu22+3Q/kp0aCNWVYV1wSlVKI2xQfGktQ5KE+Nom5ZiPEEoweXLC6q6IckKVpvAMZpO5hwcjNhud9S7FhAkSlHtGuq2Cjkp0beg2oWApq5pqMoSJWXYzbkwVtumpd11mAaa1rFrDbu2C3bbhEUG+vriLkb761a+r4P0/9mL4dec33uCPLC/d3Dgg3RZSInwEocLC6MIVMQm7vi8ECgdzI96qp2Wmto4sBadhP76arXkwYNzxpMR1bYMAVhdi20TmrKC4wN22x3V1jIuMs7vnaDygv/vf/4p7zx5RKJT6l2Fd4Kzs3PWZYlxMJ2m+G3F6UxydfsF44NHOJXjkjFCTBAqjbyejmB15eLPvSvwv4w0+ps+BxEzUSL4T9ycDwRqi49Fxzdo2YjeGXP/efqhEzY+iU7IsoTMZnhA63D/EB+XZRlpngQ0wwe/IOcDIrT/3OHp43wo4/cRfXPW453DCR+SU8XrqhohPHgbFnQZCOzGWtoolzedoW1qmqYNyBrB9t4SYyecD0Z59THOTbA2eY2o3/NxJB4lHFqGGjj4YghCVRF8gLq2xVmLCAMd4X0Yz17ctculw3lHvStZ3Fxxc3XJerMBxGubzd90fDOfDeB2tSRNEg6mE25ub8mzDJqGJEsphGCzXtNWDZPxhDRNcc5xe3vLwcEBp6enPPvVrziMKpXT01NWq9WQcTKfzzk5OeH9998nTVMePXoU8hIin+DTTz/lnXfe4eHDh0NqbJIknJ+fDxyLvk0xn8/5sz/7M37yk5/wi1/8AvgztNZMJhMWiwVJkgwmZO+++y6Xl5fcLhasN2um0yn379/n8PCQtm359NNPefXq1UCw7N0C+w/38ePH/PCHP+Tjjz/m4uKC58+fD5bifZ5IXVWkacHR0RFFUXBwcMDV1dVgXd6/xyEQba+C763M+0TR/py9SiT8m3BL7ctY4fVWSF+E9K99nwzat3P6v72pbulfyz5PwxgzcHD6VpBWGhsJf957VNy9h5yXhmJU4LxjMp2xWq05lAUU0brbhn53lmVY0zAeT0BIlssteZRtjUYjrPVYJJ2BTRWuQ5HlWCvY1SuyLGEyGZOlt/QkbUkfYheXrijxMl3I7DDW0tIhhCdNJMJ1JNIxGSUczid4KxG+iy6kOvQv6wZEIHlatwtx7FKiFaRphvRB3phlIe9HyeBgqmM0uVKKPE+Yzmacnh5zdDDDmZZilJHlAZLVSmGcY71a0pqOLEvp2hatFFXT0CqFdOMBYdpWO4RWTCfBQbSsq+hQWMZxItFJRjGCug45NA4xGIFRVazWW66urzk8PETrhMloTFO31Lt6QC2yJEUIie0sbXRAtB56pHizXGGsoS531LsgUbZtF3b0PpCbjXN01tK0LXXb0Fp7V2jEFWIwgfwmExV3C91v3wn/thOF1+Gcw1iL4k5y/poHDWEXmcU2o+nM0IbVwRkq3MuxRQoxQ4jgPNwjs6cnpzxbb0h1Qmc6pApS+q47ZVd5EuU5Oznm8OiYo4NDVuMR2+2a2WwC3sb06aPg6igU26qB6Op7cjSn6mqkCxJZkRVIGSzzX28QwK+t7P7Ah2cvFsEFZPTXfXJfzxuJrRN/V2LsP16qaE6VaNJUDwuqjhsljQyLbuRyuDjPOm8we9wEwetXx3sfLNBjREVVBbK0F47RpODw8JDCv/54CAu/EmGSMiZ8Ll1d44zBNg0mxnqI2Ad2sU2eKIFqEzabU46ODkm0/dqx/po9gbhzJcYF+StS0jTN0P6/23zecZW874mnYZ4Q4i5vSUiFc7/bvfXNIuYTzen9eyyXSzbVjtN7Z0O/x8V0RzGZhBcTjbj6cLUXL16QZRnjqEzZbDas12veffddvDM0TbDgvb29HchVZVkymUz46KOPODk54dGjR2w2G5omeAs8fBhUJtfX10Neyvn5OX/6p3/Kp59+yj/+4z8GY6+zUyCQW7bbLWmaMpvN+P73v89iseCf/umf4uILh4eHnJycDD4hX3zxxeDl0aeztm07JNM+evRoiJ5fLZdcXFwMVuR92JkQgpPTU44OT/j+97/Pf/yP/5Hb21suLy+HXntd18PiP5/PydKUzWYzOJH2cuKBbRwLin1i5z5q8esm132lST8Z7muy95GN/vueiLr/c//cfQGmtUYggpbcO3yEEUMrIbRfRuMpUihGRc5yuULZlvvFKcZkaCUjx0EP7+nBg4dxQXSslgsOpoEPVFVNuGFk4C5Ya/AySFWt6RDek2pFmiZoVWFM6Nz2JD+lCRBnfJ9JEkiZ3vfx0o6us9R1w2K55naxQh/N0MKjEkWaj+h2FVXTEO7RIBvs+/ZeeRAd0ouBsxEsvwM6qJLAw5BKkWQpo+mEJM+wEbPXOuQqWB9ahevNhrYOxlvT0ZjWdCgladsGZwzJ/CByWn0ksxFyeKyhMnUMt+uCURKhIpBSUtU16/UmJMO2bUAHlaYpq7gbF2y3W5QMBNT1ehMJyhJrgmdJWe7ouqC6cc5Tl7tQ2DSBJL1ZrRFA4zxd0+K60ELyLthFN87QWkPnYjaquHN73V/3+tH8TZa/N2Xc/9zDwyAx90IgxN2Y7g3uBu+bvtVousFsrifLdrEA6f+NiAoFpRRaaG5ubrh3dsbgwmuhlzBcXV0zKlJmo5yqamhay+nhAdMs4eUXz5hMJzRV8H0xxrCrKkDw+OnbXF6HgK/lakHHLaPJMYmwGNPgffBrCW0MgRcBju/RhD9cuSG4S3sTw5eILc9wq8YP3n914/Mbzwt8bbEkQBG4FCqqO7zzkVsm8K7Duw5nPKZTiEQF/yIR0lJ/GzehaVouLq+4vrpiuVqFYgPH0ekR9+/d58hP715KT+CM5EtrLU21Y7dasC1LTLSYqOtggtffFDZaGEgBtkzYbB6HjWdqBo4UfLUQE4CJ3Lj+ugqpkFpF+bobmlre35VS+5+BEAprffSXsnTWIX2gTPwuxzcqNjprqduGxnTYGGTTtO0ALzrrSJTCeRhPJpRlyfX1NfP5nPl8HmWcO6rdjnffe4/NZsPPf/5zHj64T9M0jEajgSA5Go24uLhgt9txdHSE9yE/oKoqHj9+zB/90R9RluVgYz6ZTPjTP/3TwdTrZz/7GcfHxxweHoZ8lk2A0ZIk4Qc/+AGHh4e8fPmSv/u7vxtaMgezA6omVKYvX74c3DsnkwmbzWaQVn73u9+lKAoePHjA3//937NcLvnoww8ZjcfDQtwH1PWowb/+1/8aZ+Ef/uEfBofQnljbK1d6I6AkSWgj4fb4+JizszOEELx69WpYiKW8s43vpa/7XIr94uDNAqRHNeAuoG0/bn7/7/uP3x/I/eP6AqUvPJy1oZ8tJUmaxgjzgMRMpjlt26LnE169vOBoNmK9LSmnOVk+QiUZlmCzPMoLdrsdt7eL4dxt24LthnFXjHJGo4Jt1eFoGY/nHMym1G3Qzr+8XqDVBmsDiO2cARydIS70GV45bBMIjlppvIPOWKzTOB9UGq2xpFmBwNCahs16zW7X0BmHsWGRl0mKThyda5HeIZVDWnvHOlcSpROECmmsKrIRdnXHarulbWsSCUoI7nWHmK6JWQyeRGmsThBSMJ9MkYnm4tVFkBCPJ7RNg7NBhpvnRchpqUNktnOWRCfkeRF3WgrrRYgX6Dq6zrBcr0mj30a33gxtwF21Y7vd0baBE5XojCzLw++aDoQkTVKmY4WSmrpu6NqO7XIFBHdXYUNBa5qOrrlLGu46y6Ys2eyq4BDqPTaur1+NPSdMjl83p/Ub2K/5NXuFc38f/MuOvhgPDP80TUl0cnevDKigQimPTvQQpuedH1xwvfckfTR4tLfIsoyyLNmsNxwcHrDdrAGB6SxCaparDW2T0lYVpm1DSwCBr7csloFoe3AwJc8S1us148mYqm5YrxaMRwWr1Zo8gdubF/hkyrQ4wkiL9ZZEhcVmIATGS/oNKDL/nEsZD7H3FX/2sbjzvbri15/mq+iGf73e2H+sj/Ze3uGNwTQ1rbEkSiO0w3Ut1rQIAo+okR7X1UG27YNPxa9/O4K267hdLHj+8iW3i0VYhJUArWhbi0j3l1t59zK9p21qyvWK1c0Fi8UiOFIbS9s2oV0HyIgIhs2fx9VpVJLYAV24G+NvoBtSkhcF08k0qKdUyH1KtAzZYXE+CjLenjQcjSD31o00TRlNJhwcHaGSPLSov5KG+/XHN1OjCEFZVzg82ajASSjGI6pyR9cZlAwwetN1LJfLYLgU5aC9BPX+/fsAfPDBBzx8+JAsy9jtKuo6mFh961vf4pe//CXX19fMZjPyPOf29na4kIeHh7x69Yo8z7m5ucFay3vvvcc777zDT37yEz7++ONBxTIajWjbYBYFMJvP+PM/+nPKsuRv/uZv2Gw2pGnKycnJoFxZbdZxgVSMRqNBQVMUBaPRiAcPHvDDH/6Qf/tv/y23t7d8/vnnjEYjxpPJYCPeG3olScLZ2RnOOf7pn36GNW4YSFmW0dR10H33VrJZNriq9m2Jsix59uzZ0LLoW0W9A2RVVQNasa8u2UdA3iSE9juyXq3St2r2g9X6o4eJ+/j0/Z1ZHxLW//2u6GiRUpGmIb+DuNBbYxHCDXb1B5MCYx1N17HabJHCMhknCN9S7dbcXt8AAikTzk5O6DrDxfPLQDx14frQWepdiZct09kRs8mEpGlJ04xRkSH7qHtiwBI+QoRBeuk6h3AiTvyxcu8s1gmQCpXkKJWyqzu8a1ESWkuIWdcZ2JbO2mC8pg2yi2ZgPkiRdZKEIlJJhBTUVcNyU9IZS5KENNntdkuRaaajEUWekCZhAZuMJ1jbUVVNNMeahMK003hrmU+mATmSGqkiHJwkgTcSjaeCO+EUYwzL5ZKyrIIjp40KFe+QKkHrlG0ZjPJ0koadpRN0bSR0do6uqehaS1XVjEcTgoNpS7WraZsWnKepq1DoNC1KKlKdBBgWSQieCmOqaTq2Vc22bTAubnLjV9jR7088/WD8mp22//rFyH/1kd/8eKOQEVHCjQ/9eBVdGa0NYYPhMVFplOhhHukJd3VdU8XFIUk0rekCebBrkDrck6v1mkcPHrJaLhF4ms6EVNJMBzWD0NStYblc8+zZFzy+d8T984d88cUz5GbDZHKPYjIhTROs81xfXvHoyVNm0zH1ukGbkvL2JbP7b5GkU2rT4qUO7yn2reKm+yutgt//8TWFxv6F71/IbzrDr61E3uRtxJN5D87iTEvX1rRthxWSNOlo65q23uF1gvQW6bsYPx+I4M5+PRHSR3QmRE9KvFAIlSCUQCgPyGAY6PYLAAbOh3cO0wbjwNXyltvra+q6irJ/M2zg1B45Hzya4i6Uk7ti4+uuiZSSw8ODyFsM4ZWp1kg84zx4+eAFQmp8P2nG8w6fkBBIpciygsn0AJWMQpFl/gAOolop8iRFK4X1ntuba7Ks4N7JKW3doOKCnRd3qos+Pr2HE1+8eMHTp08HkmhYOHOePg3eF++//z55nnNwcICUkqurK+bzOffu3eP999/n4cOHOOf4+7//e9566y3+6//6v+YXv/gFNzc3Q2HRL6Lr9TrYmM/PQEMTSZ6vXr1iOp0ym80YjUZcXV0NRkTT6ZSjo6OQwrhYYK3l/v37jMdjHjx4QF3X/Lt/9++ihHAzcDN6LgXAw4cPGY1GAHzx+efkRcHNzS1KBu7FvkNokWWMRiPefvttLi4uWC6XA3HTOzf02oGBt9HbvfdOpaFdc8fNeNOEa5+LMUC4e3/bL0D2eRz9+fbls33bRQgxIDH7XhsIQtCXVigtozY7PM92u+VwNmG3q8mznCTJAmFR6hj1boMRl7NsVhu8C+gPQpJmCbe3gZeDCtcxSTS2rJjOpnihaZodWkvGKicxNizgkwzvWpou7Aq0lijpSdOgEPHG4W1Uq6QJSarIizxImjvDZrvj5eUN4BnlCVJCZyUiCQmn1aZks6lIkiKEa0mNFrFV4JPIGfFUke+wWK25WaxouyA/PD075a23nqCSnOUmJD/igt+GscFYq+vaUMCkKV2EUYHIg/HUTZCnBhO4LvrDBJfaNE2C9BjHeDyls1A3JdtdMPKZTKahyG1bcqVJ0yCzTrIk2ixD14bPv2k6QITkVmpGo4D4XV5eE4hioa/dRAh/s97QtoYk6VtfwfSt6zq25Y6qbYMGZA8ll5Gn4aCfjYd1o4ecXzvenFh9b74VioP98fxbj68pcIS42+F7H6SEgUMViv26qinGo9fQPxGRijRNI+PRDyhk3wfvPX+qOmyE+rbkdrtl1zSMxmO2mw3Oe2xnmIwKNtttiC0vCjrjubi4xjU7Hp+fcHR0TFuXlGWFFJLxvROklNze3vLJJx9zfHLK6cGU9e6Wl8tXNOtr0vwQhcY589qVFey959+22v+W4+uve18Kir1uR2irRH4l1jEUqdb6WIy+0Rr42kLjzcKl/ykoOYR3CILNdrXdsqsrtFBUUmGDTIrOdNhWYurQDjPtLiCqcc7u38PdRi5sTIKqRoFMMDF11Vsf8n2aFpnp115R4Gm6aHAHXVOzWay4uboauBnBmTS2r53DmmDlrrTCdGZIxt73XJJSRZ7FHedvOptx3DrGkzlKCUZFEUIWXVCZZEWBSpIYShek6UoQjNAkGBc2VHlRMD84xKuEZNfghaT+QziIYh22anACFssFh6cn4D0vLy+YjSeoJGFUFHTWDu6XfTjZ7e0tjx49IkkSnj17hlJqQD4uXr3AGDMoSrIsY71eD62VXiL78OFDPvjggxDBG/Xnf/VXfzVYjPeLX29Hfn5+zn/33/13PP2sg+ehp3Zzc8NkMgma9q7jiy++YL1ec+/evUC2dJZf/epXg4X4kydPeO+99xiNRvz0pz/l+vp6cPvsof2u64YixTnH9773PX7yk5/QtS3bsqSqa5SSZGnGdrvFWcvp2RlJkvD222+zWCz48MMPWS6XFJF8arqwaEynU05OTlgsFsP1yLIsEPsikvEmsXOfDLpPFN0vNPblrPu/358c+sf06AfcISP7/huvk04D41knkfBqew+O8Ji6bsi05O2nj/jj736bqeqQssN2ljQPORDb5S0Sw8OHD2nqmrKs+fKLL8FDmodJd7tdcuTg5PiEprV4qbm4uibNRxT5mOlsysP797i42bArb2jb0OcUOIyDumlxztDWHd4IQIECZw1aerIs4fBgSr2bs92u6bqGhw/uMZ9OkEnGerGg7oKltnECLRQqVciIBIh4TbrOYL2jaSwWyWZbcbvY0NmgsvE3azr3BbPxmCxRFHlG11l2Vc10MkEKEZjzuaRpLDrJYkBdKMCkVKTFiMViye3iNljCC8HUzcjy4E5qnaUd+EMyWL+PxhhrkUrRdB0+yldNlJEnJkGgoklRGLveiSHkrSgMpnNs1huausED1a6KWv4aJVVsGYR90Xa3w7Q2kOjalu2uxjgX6AKvTcFxIibKHt8oOPoxuP/9a+O2n5j9Hbbxu7dPxN6L6XeK4ZS9MZfpDEaGwkonvVlTRCezLPrQ3HE4IOTTjEbZYOA1G43YLG8ZFeGzNNYM9661js1mw/zwgHK7oe0M88k0GqmltNHTxFjIk5zVZst0nDEZ5WTFKBotdlxdXlKMCo6ODrAO2qZmWy2ZJpKLbsvy4gsOxqek4xGdALN/jfxvQgx+X0e/X459JH/3Ox9/fj3x/Ktkz1937H/ad22hgCDY6P5rmoZ6t6XalYj4fp0LVIEgF5UoJXCmg7ZBChetCfTek/jXxp2QwWG3czZmI3WD55OxIbJ+eI3Og5TxCojhXIETpOJmxSGUxnZB2aQjnwUZSMjO+7u5+WsKsb7YECJI0u/dv4+xLlqxZyRa0rUt5WZNkgT5b8+bESJe//71CgFCko/GTA8OEdmIojUonVA1fwBk4/zkjOQlzOZTpIDVZsN0GrIt5pMZr168QDkYz2YoKZlOp4Py4+HDhywWCyaTCZNJUKpcXl5ijOHRo8dcXl6w3W6HkLeiKAaZ6FtvvcUvf/nLAV0wxnB1dTUoMXquB8B2uyXLMu7fv8/R0REffvghPHeQ3xv4F7vdjtVqNTgonp+fI0ToY5fVDmMM5+fnTCYTnj59yocffkhZlrx69YokSQbnz54A+vTp06F4KsuSn/zkJ6xWq2EgJlEi21RtCIB78GCQun788cdDWyHRGp0k7HY7lFKcn59zcHAwSHmBwbW156sEhMINTnL73hhvOn7uy1SBwaDrTbOvN8/xJn+jL0722zc921lridYerRUIP6AyIX22w3t4/OQp/6f/41/w6Pwey1e/Yrd8FSBIB+v1hnK75fzeMVmeBdjZGPCglKbcLSnyMdbeuaR2pkUIh/Serq7ZrDec3T/n4YNzXlyvubhcsats8H/xjqyQ6CRESHcmtFH66yPRCOHoOsNmUwaiaZayq1vKXbjegW3eRAa6p+0MztdAJLnGQrRpOjrT0rSGpnZ0DsptQ1V1eKkRSrDdNJTlBaMiZzYeMx4XrFPJer1hPt0FB9M8ZToeBadTKzAuKPJDYqSibppBOocQJGmwR1ZC0dnoyhk9YowN7ZvxJMNG97+66aKpnKMzbSgQfWgndZ1FywQE2Eg2beoGZwT1rmW92lBXNcZYttsNxgYOUpqmeDzWe2zbUlY1bdPF52tDwu4egi4BEckaCokV0XdAuNAzjjB/vwN/U6ItRB9PHgeqD94Fvw+SqJR9Ua4HJUrbdaFFVuSRg5GQx2JDCPHaijfsTK2lqWuygwOcj1LjUfYawtjL/o+ODihGY5q6IjvOKdcbiiwNEuXOUtUtqU7BS8q6Jk0V4zxFKknb1qRJQdc2CKWQMqiiJj5hU+4opKXdrXBthRxZrG1BJrzW0vAChPsX4hrxVF937SMppOcfhsfFMtMT223xdfxLlDGCoPIkdLrCOHNY09I1Nc2uxDZhnbEeWhvHW+QsONuivEPLEBwKk+G0PSDT/+R8L9KO8fWa2CbPEPL1pdb7/jWFfor0IIRCqBSVFT20F1AeK0gSFUn4hPgD4ZHKvLbR+zphwD7anaUFGZAmCXmWhnMIQdekIFVA0bwbCNo+YDXD3N63EbVO0KlHI0Fq6P4APhv/5//DX/D/LH/Gl1evUEge3j9nXW6p64Yt2wDv29ALX643vD2Z8OTJEz7//HPKshwko70h1sOHD6mqig8//AX37t2j6zqyLBtSYv/oj/6Ijz76iC+++ILj42Ostdze3lLXNaenp9ze3g7Om33Q2IMHD3jw4MFg1NW2LY/UY8jDDr3neZyenvLo0aPBAGyxWFDudkyikdMPfvADfvGLX/BP//RPXF1dkWXZAIVut9vgbzCd8s4773B8fIyUkr/8y78cnEyTJPTejdY0dc10OuXpk7dxzvH06VN+/OMfD6mvvaKj7TrY7RiPxxwfHQ2F12KxGD6D3sCsruthkKVpgjH+ayfgYfLjdQSkLzTeRCf2J+f9x/fn2yePvpmhEvI8JFoHJYp1Hu+D/c2dw2io43e7ilevLmjXW6QDqTRlXePbXfAgOTpmvd6GFkHbMp1Ouby8isx+x2w6oxiPub65QSpN14ViQiWaxXLJ9eUls3vnnJ+f8eyzF2y2ITl2gBcJAVmx8wPeU24a0lRQ5AlKBhMm68EjcUi2VRNIlW0bbkVvQ6T6riZRhizNyfNeidQiRK/cMUiVU+8qdrsOQYKSGd5prAjW7mXZsdnckGrJfDbi9HhO24GPbPjjwwPqznI43zIZj5hMxqRZ8Hegs+AlRT4Oi6IO3CkhRZRggpIJWmla5cEYpFKoJMUhyNBIJTE2MO7T2CLYbJaYxpAoT9t2XF/fIIQkTTK6LiST9jye3pTOS0fV1EilSfKMtqzZVRVV27CrauqmDfLYMIshhA87Sx+skftxpoTEIegQGG9766dhJ9jbKffjehjzoX8Cwkeb5ru2xT/3cI54jwbUNUs0OIeNrWIZNxpJ5NqEcWXxXg334HazjYRzFQoVndC1DQUZQooogw1vsG4aVqsNB0eHXF001HUb4+tBJAnOCsptBQ4mhWe9WqMFHMxmTCc5baOQgGk70jwkABtrub54QSo6xqmjajY0uw3F3CLoF/2e1SSGQuC3kiZ+h+PXtVJeqzKQwwrsIyfrruCQDF4rv/PRF013v5GDAsXiTENVlWw3a9pqFzhFCIwLFvnD52g6UiXQUsSE7q8vfDzBhEwqTT6acHTkUElClmqODmbBrfSNtxDQ8VBAa63JixGj6QHTNhIyhaBrW3a7MrSdo+Iv0RprDcJuY5fOv+ZuOlyB/UI82usjFTJR+MgjCg7QNhpNGoTXWG3D/Dech4jcBOmrSlOU9SgrcLF1/Lsc36jY+PZ3v8e/vv5znv/b/xfCw3a1pukaxqMxVVWjRXA2y/Och48es1qvefnyJQcHB6xWq0FL3uefvHz5crAL71stfbhaWZZ88cUX3L9/H+ccq9WK9XrNwcEB8/mc9XrNkydPqOuaL74IYUYPHz5ks9nwySefDD3QoijIRDZctF7d0S+in3/+Oc45ZrMZQoZAr+VyyY9//GMWi8XQ2qmqit0uLITz+ZxvfetbLBYLHj9+zH/6T/8pmCbFXIg+k2W5WjGZTDg+Pgbg/PycDz/8kL/5678Ovfe46+8Nu7IY2NYbPt1cX3N7e0tRFIPstbeK37clD0S11xUk+2TPNwmiPTIBdxNx3/N7c2Lo20VvIh59e6Z/jt5PQCkR4EfnCJbdIsgcjUEnkizLuL1d8OGHH/Gtd56irSFXYSJtW0MmFVma8OLFS2R0ZtRJyAbRWjGZTLm+vqXpDMV4HAigoVrAWsN4MuHs5BgvFYlWHBzMODiY8+pyhe0sUhJfr8Ij0InDGUKLJpVAkHRaEWLFESEFdrcLfckkUQgX3P+6rgmOkI3BJZCmebAdjm0jF2dL4SHRKdBgjMcagdAK0EiVkKQZ1a6k3AYkJc8LNmXDerPDWYMQnrY1VE1DZ87wQmCso4wBfdP5ZOjN9ovqdDZFEHZjwcFVBCQjSmCt82RJyPaAYMDm4hjrofimbTC1pXEhZG29WlHkI4SQtHWNMQ7bWZxxONMXk2EMWW/Ddasb1tsN5a4KLQDvCL4POmThcLdL7NMlFfG6CxFlp1/dYb+puHrtdzIQfvedJ/el4d/06Cd04s67V4ypKGkdpN97RXp/D/aW8ZvtJnhg4GnqOuTZmBZjzDCxO+eG67der5lOHpDnI6q6ZpRltF3LdDwJbZHOIXY1kyIPqFO0ohe+Ax9cZds2yGCTNOX45IR6VGDqNakQmKaiXC/IT1t0OqIdKkDuCo3fgxzl115v3xc2wfivR676hTxcR8c/4+P6jUffWui6QMgst1tMHfl2QmKdwEfeg8AHXxilYsik+dray0dELU0zDg4PkTrl6PSMPC+YjAq0EsEsr7sjJ8k4tr0P32dJymg0Jh9NGbWh6NIyhOy1xpOOxuRJihRhfe3aGteGTV18Z/H9ve4vc3efhNaxUApjBI33gMN2DVVdoVXk8Ck1nIu9QDsh+vUkhkVKTZIqZJJG1+HffnyjYsO1Hf+X/+v/jf/Pf/grLB6jBbb0A0kxH4+Dx7zzfPn8OY8ePcR7P8hzzs7OmE6noW85m3J8fMxmsyGLcq2HDx9ye3s7wJJ9nP12ux18LdbrNT/84Q95+fIll5eXjMdj/pv/5r9huVyyXq+H1kyfTiuEoHENTCDLcv7se3/G6ekp/9P/9D8FiWnMNdFac3h4yPX1NW3X0jbt4BzaNi1N23B4eMhZ5Fq89fQtmqbhf/nLv4RYBMxi8mjf3njy5Ann5+dcXFzQNi0/+tF/oGmCEqXrOoo8p9ztUFJyeHhInufBpny14vLiAinFa9ehLxyAQbsPDKZCw9AX+9yNu0lWRnLbm4XG/uDsF6sBxZB3OSlaKSTBOXGQyikZslCUiqmKAbcM55EoIbG4kBEhJUJ4bNcFSfR0zOnBCOElXd2RTjSFTqnriq7Z8vD8Hl0TTImW63XgdLQdR8fHLNcblqs1aZqy2e5QKsP5LvAFlObs/jkNinFWMx+PSLWkboMUNU1SRsU4OJE2js4FVMxbh1YxMlyGpNqmbnnx4oJys2E+nzI/mJLqEIbknAnmVMbQdQ7vFVmah5vYGqzpIoPdBQmbC9etMwblw3hUSkOMtZdKU4xGKJ1wfbtms14RrJAVm23F4bYKRNgu2AsXecbBwZzWOpJUc3R4hJTBHEjphN2uYhcXttDGstRNQ1ZMUCpYogshcb6lqaqQGisE5XrLdrejKitc5zGNYber8DZIm6uqZLMu8R5MFzxJgueHJbg0hnyWumljvk9FHT9HKSQD1VMIwk/9Ih4IogNkK0TY4b7G5Hh9xzbwlOih3mi/H/VHAYmXuNjj/vVuh71jZg+vQK9+0UqQxTnCE+6ZJEuHoLs7RCOyW7krwNMkQQmBN4bb62tc3GAkScJu56jqmiRL8d4NygIpdZA91jVFnrPbbkCGILCQdePCe0Kw2pRIkZC3LTeLW3alZJQnHB1MOX9wn+fPn/PixfOY3ZFRVQ1a5hSJwLc72mqNkCMQ+bBoxn363UL/O3QwvmkRt8eoiYGNYgANPJIQwydee+Trz9cXDl/zR3HH1Lj7CtdVqqi6Q+F8j2SEQyIQqs/AkaHQiK0DZ91XJJ498CMAXPhMT05OOTo5BakpioJxkVNXJbPplHT7xmsUgv7ZVaIpijGz+SFOpJH7plDpFmMF48mYPC9IlGYyHtE2NbuVRaokElPvEL5wf4R1YJjbvaBpqsC98ISYBeHx1lB3DblNwzUQMRgOwMthExDu0yB1z9KU1nqc8agsDeqV3+H4RsXGlx9+yOwH/4qz+ZzFekVdt0jvmc8O6NrQ4z6cH5LnGQWWX/3qU+YHc9JMM50d8+riRYhaPz7gxYsX0SHSUeQ5NrZW3nvvPT788MMh0K0vPOq65vHjx2w2G37yk58MxcRsNmM8HvPFF19gjGE+nw+S1qZpooS1iIPD8w//8A9DxHuPQnjvWa1WVFWFEIrT47PA6djshij7bJJz7/Q+777zLmVZ8j/83/8HAEajgqZugi/BtsQ7x2wyDd4YUnA4P+CDn78f1CdSoLSg6xqUVpTVlrzIB5tzKSXPX3xJ2zYhnjtNkZK4CAQppRli0+/4FM4JirygbdrgBigjwS4uDqHPFnp+Wmm8ECGVlECI6kmFPemo3yV7IeLfgp2clgrlwHdNyIUgRC8LpXFKgNJx4TakWmOspTM1iVIo6clVCtYgtGK1XPDZ55Kmucd8lDHJxiAUUsLq5obHj+5R1x1JkjKbFeQzy/X1LZODGeV2x9HJKYvFAp3m6DSYLbnOo9KE7bZkvVkjVMrRKOXRvQN++WnCrjV4EWSch9MTqs2abbUkdZam8xFidVTbhjxTNM5TbksmkxHTyZymddzcrpnPp+SJpq0dTW2xJqABtjU0VU2W6VC0SI8SFi89ta0RyiKVQSWhB+uco2krwNM0FWkqyXPNtqxYrUq8D3kodedRqSLtJJ+9WPDqast8OuH0JKesN6TJhtOTQ7bby2jTr5FqR6JDv9jasMvtui4sWJ1FJ471pgymYetNyFIZB/n27c2CJE0RPqgtQGId1K2hqtYsbhd0XYeSGu88VVVjnSNJU5q2AxRdY1gvN2w3JbYzKIJjpkRGczMQTuEJEmYp+oktBPb1E7JSAoWn9g4f8yv6ELRE6ZBJEYsN9lp/sZzG9mPUeeq2Qe2N8bv1LpDfwvdxNxf/rAC8p8gyEiXBu7DrlR6dSLroedA0TSAWJppUaZTQCML7ou14+ewZ0hls17DZGM7OTqnbwA9jgKll8M6wDtO01LuKg8M5tjPUdROurzUUaQZKUZsOMGS1wLsSQUGRj9lVO2bTEV54Hj15hLWw2ZYolWD1FNd5bLVG5tdMZMXWbPFZjhFhOdDeon2HRbyRuvv7OTyR/AtRYtr3/CXGhaKgcQIndJjPInl0aBnIO2vzr+kevIE+RPaBgM6aIEHXGUZonMxwMsenAutMyIxBYk0IJdNKY31QySU6Eqn3roa3DikkWig0glQqzk6PkUkKWpNmOZlW1GWKlgJd720JBWGeViHOoc/U0WlBmt2hzFImJFmOTLKQ4aI1jfM4oVDFmE4kdD5wJ/ohrWSQ2SqlQh6LjHO+CWM09iKD2sxahJJYZ/HeobQOShihSFSQwDvnwXpSpcl0wjgvwrVqO9AJXit+l+Mb+2yoNOXo5AT72bO42MmweDvH2dk9ljdLNps142lQBABDlsm3vvUtfvGLXwxIAnjyPGe5XPKd73yH5XLJp59+Okg8ezLkQYxp//DDD5lOp4N8dDwes1qt+NGPfgTAfD4HGJCWx48f8+jRI55upnDJ4MrW74x6iWwg/hDdHtMhFjtJksEUTAjBvXv3+Nu//dtI2BzhvR12I23bUhQFx8fHOOd46623+Pjjj/mbv/mbgeC5G+C6kOr54OHDIXzt4uJi6H1PJpOQ5mq/Pu69b6H00G1fdCitUKiBx2J7lrsSKBWUIiHjQUaXzC7u3MLCh3Mxkliiep5GuKCh/28trTE0rkMrSZKltN6i4sAUUuBai+k6vLWYuLMXSUKeaPI0DROxFFgbWivGekSSoVJJ3dYkONJ8hDWO8WhEmmmyvMBVDUdHxyHLJDOcnByDEKxWG3ZVxfzgEESw3p3NZnjnWC6vEEnGO2894if/+D7Xqx2dh1QnQU44nsDxEZtlWDy1CpI7JYPplHM2qg1CuFjdtCgjSNMa5XOCk2SCtSHRUQkfkbJgh2ySBGMSJFB2Hd5bpBShGNDBnbAfizpRTMajqEbY0kQpsFJhp3K72rAqS44O5hwdHAAVyBWjIqPIJObihjxPyfMdSarRaUpd1eGzl1CWAV2cHxyT5KPAs9qW7HYhTE0pHVuFFc75qPEPO871akPXhfuk3O6iOZikMR3bzRZnHGmW0bRtCG5rDW3bUe0auqYDIUh0go3Ev6BtdSipUOqrRnJK3u2oIBYfQtD6uwhtLYPFdECh9nJ9+oIj3i/Ou6G4cM7S7rUf7ya2r/vh7jFJfD3OOYQOhXvfXuzvl761qNJ0eE9KaZTSbNdL6qrEmS44P0bTvzzPo3zdIWTYgZrOkAhNlqZsyy3FKKcoCpoa8I62awPimaVY42naDusS6rajrOGQEToJHji9f0/TGGbTGXXTcnx6xvrLlyQKTFfRVhuy4oxO2MjF3LcH/3Wr+b/86FGLcAQ5qo9ol/NiiGm7+79v4iL6az5SGIo6pTVJlpMVY3AhpVpJTdcahLSkSYrwDp2khDwRC/LXL6pKStIkgTQhLQpEmpJmGZnSCNdhuja4K792DeKLExFRUcHNM8ho41jXGpkkqCRBpkkgZyYapyXOJgHh8j4YAIo3z+4Qvid2yiEozliDl8S1w+Lali5RsQ36eg0euochEFGIwHvRiSaTEqsVMstI/xAOoqdvP+XFzSWXtzd4JcJkmGic9zx+8JAXXz5HqwStgnNmVVWDpffFxQWffvopZ2dnXF5eDi2Mk5MTDmZzPvnkE6bTKfP5fCBA9kVGbxkOd3bAvZFUT0w7Pz9nvV5TliUHBweMRqNB0fL+++/DySOkDDKk9Xo9uIZOJhOUUlRVxWq1ZrVaIWJfrFfNTKdTvvzyS376058O5NA8z9ntgrzJez/4gkwmE5qm4a//+q8H860+yExKibOWp2+9NaAufTZM/1gZ+SE29nJ7Iue+tXh/rn6C7gmcPYG1j6rft0vetzU3xmA6i3cuQNmij0++I3sKIiwXd4lKhPS/2ncY7bCJwCiDQJIIh3IOYfv0QIbXcNdHj7wOFciLMvbTLY60yJgdjnHlLU23YaI1QiissdQm5GkoqUml4rZcYo1luViyXq1iXLpnNCqwG0dZ77h//zxEp5dlMMRJ4U9/8Md8+PmPcN5zMJvinSMfjZicn6NxeL9gZy1CQp5nmM4NbrZt23J7e8t4kjObjTHG0HQdWd+3b0JwkkDQtC0jl5GqwNvpjEZ4ERU6oXgRURrZdjaoYQQURY51sFkt2VY1zgfymBcSZw1NG3hFDtjVNXXTsI0x5GdHc5Saoowl9QKlgv/GarEKviOTIqhnXFCsrK5vqGLbpK7DGC6KUUh53dXDBqKqOkxrePXqYijMd7sdo/EY54J/SlntwqykJHXTYYxnV4YYa+scRV6E3ZInckWIU6wIFu7qrhXC/tiObRV8DLRrFd0u+Byo2NIL41qjpQwFhxRDgeK9C2GAfs9VF/BNjTfR4i1ULgxQ+7CwRdid4DWQpWkg3IqAsqZZFnePLhDm5F2g4T5/SetgAHYT5fJ9K9Raw3az4fDoMFrJtwFBiVC4j1yJruvYbrccHx6F1msbDP3qKvjU0N+jMsg00yzj8PCI6Thjt15yc33NaDymbS1pmlOWW9I8p8gz2sUSKypcW6OdQfpguEdspfyeqRLf+OgLXj/0KX4PR0SQevfl0WgcXIDbOmwAhKLc7OiEIS8KsBalIEkk1nUgfvNy2W/YQjvNY42lajvqqsbaDmO+voUnpQyunklGmqVkXXZna4DAWEOSZmR5HjfEGu80wmRotU/k3CdN73UEo4Kw5w9lMgvjVikkHtM2pEoObrg9Udv2bchIfg1fYXwKFaj+UorYBvvtxzcqNv76R/+B/8f/+yd89NmvcDokUt4sF+RZsMPNsgzhJW1Xs6u2PHnyhPV6zaeffsrjx4+5vb0dFtleXfLixQtOjsL3vYHV0dHRgHj0F+nm5oYsy1hFz/mu6zg/P+fRo0d8/PHHQ0Ls6ekpo9GI6XTKBx98wHa75b+ffDtcPGu5ubkZOBA9wlKWJVdXV3G3MQoWw/EDWiwWLJfLYaLoWzrB0TMhTRMePXrEYrHg6OiIzz77bLA5l1Ky2WyGIuDJkyfDoGzqmsVyiXNukNL27qCTyYTHjx5jjeHly5cDIa1pmmEyGwY3DK2g/vf94/I8HwbhPhE0ZDT4PSWPjXk0d7u6QY6HCIRHYeisAWFJUgkKhHShJ+091jQogjmN8TE+m4C2JFLBnoxWRzmeVjpGLAtmh4ek85zt1XO6aslqsyHXgnGRBalWqtiWdWgNKE253bLb7ZhOJuTFiPF4FKSERUbbBFfVUZ4jdMpivePe2THfffc+73/8kvl8yqgoSLRilOXoBw/IRzm32zWbuHN37q6wbdqaqjII4Qa/BNO2dGlGr88XQsV+eiBf4gUytpi8tSSRCyKFx9gWazx1E3qu/Q54uVqw3WyROqFz4XMRFtJEczA/YjYZU9cNN9e31E2ICcgzxbffecrTp4+QK5gfdMyNZbVe07UVWkkO5rOgjkGQbnbs6obVek0IZTJxR13SNB29EVZZ7oLapO6od7tAPrV3aENQUgVEx3mPr2vKbYUz4TF5lgd1kkrxEFQ9PhggDZOi9LGlIhHqbucqxJ35hvceaUxweN1VQV4tFFretVFCtsjr6Ij3HhM5Ms7fKVOEEMgYudAjHHcbs7sevxheS4jhlngSqUiTYPPcb/ilukNVghRZhwUhTZHRa+T66iq0WG1owTgfrp93Dq0UHSF0rJcY+phO3avRRnlBkWc4JZEymKqVZcmoyHHOU5Y1apKSpjlZlnN4eMB8UnD56lW4d53E2xCDvlmvsV3HuMi4bUq2y2vOzr9N4y2dt3g0+Ig1fAPOxu/18BAi2Hs5yjdDNX7d0ZN7Q1qzpihynBM4OwpOx17gnEI1HcVohPCQpopUC5q2QkfDu689d5xj27YJ2blNE9pi1tHVFUqJ1zJE+hI3oAURaUkSdJKSZnfqQETgP6VpSpYXg/jA2Q5pR3GcvR622Rc7faGm4poxnUzCviAWwt4H75FWa7Bd+DfOg+7JqwEu8YKoGw6xC1orvBQ4nyCzFPkbbNz3j29UbPz05//Ij29/AnnCdruljKmpeZ6zXq0p0jTIcpzieHbM8+fPOTg4QCk15JporYfE0+l0GkLMri5JdMhD0VoPiovDw0M+//xzjo+Ph9357e0th4eHfPvb3+by8pJPPvlkQBTG4zGHh4e8ePGCjz76CGDI5oDAMRAiyNfOz8/Z7XZcXAR/Dyklx8cnNE077P73c0h6yLNXpCRJwng8xpiOo6Mjrq6u+PTTT+m18j2M2ZM6Q1ppgM1fvnxJ0zThPcUdY+8737++ruvYlaGn3tse74c+9QOsNxQK7o4MCpz+b31WS7/zCkUEoZccCwJEiC/upW/OBac6CAmXQgtwBu0MB6Oc6aQAHEhJayxV22K8QKUZeIHZGaQQJLHQCIiOi4mf4TPor01nOtblBqE0988fceMarj5fsakqstmYRKcBJRCSURbSYVebLfODWbR7Tki0Dkx8BKNiFAuoHUKE9MLJuODl1YIf/uC7XF6vMW3Nwf0zynLLZlMxn89JshSZp3huWSxWaJUM7bzAWwkLRHCNDVa/puui5r33HQlXsLMWE1GRohhBU5NmksyEsdTUFa3taAxMZwVZnrPebllvt9F4yGK8QySSIsvI0yC7Xm+2rJYr6qbDBlCKzgheXV1hXMhPuH/vjO12h/OGRElGRY73oQhMs5Sy3LFYbdhst6RJNrTfqqpht6uQUofztiHuuip3aJngTCS2KkVd1twulsFp0digHDGOLM1Is4QsqnJ0kuC8pIu8BOcYchYQMrDdpQ8tvj1kA3+Xi+GdoxFtzF3Sw9hJY3pqqnVAAKWMhRIDQqFd8BXxeExst6Q67uiamjbatftBCXF3DPwR7gqOIkvJ07R3Jg+LRLy/VdyI9PNUHya5Wq9YLpaDJw/xfETk9+4+NcMz7ytsnAsuwkWeRsJfkOC2bUuRZ2idUtcNk1GGVglVHZxa7x0HV+ftZo3wwSRwdniI0oqbxZJJNqKyUG+XSNMEq30fI9HDu/vfCd24KxbD1+/xzKKXTIfdfoiaB6lGKBU4D23rEaJBJ1lMh1VoJcL9+BuQjX5uNk2NcWDjmqMBb0wsMvfezPAZi4F8rxONThOy+DDnHLLVGGfJ8pwizwfUzFmF9qNQ1Efb/P1xE24BPxRYSimkczHGvqVpetlrR1tXJELQFWNskmKFDHEHOvoviTvFTWg/6Zh8LdB5Hjahv8PxzVJf85R1U9HVDqEU09mU6XTK8y+eh0CoqkarBGstk+kEBANZU2vN0dHRsAj/yZ/8CT/96U/D35Tm/v37g+fEeDzm888/HxZaIcRgCPad73yH1WrFr371K+7du4f3IS8lTVNevXo1LOTz+XywTK+qCsbB3vkHP/gBV1dXrFYrLi4uBpfOnh/Sw8W9b0dfeKzXAbmZz+dkWZDS1nVNUeT87d/+7SBPzbJsKBy6ruP4+Jg8z9mWW5bLJcvFgulsdoc0RGRDaz0UJGVZcn11jSBYlCulaJqGyWTymtlZ7yZaliVdF5CIfqLbl7O+adc8KE98sMrtW1L9TeD2+B5CKDpbM0k096cH/OCtt3jv/AG5UnTO8vnlJR+9esGz21uW1RopNEqICHWHCjpI+16XHcoIaxvTsV6vWa7XfOfthzTzAy6kCgY0+SjA9Z2hE3B4cMDussY7x72zM6pdza6uI3lW4GxAbHrVgHeOtqlIkhytINOCd5/c58uXF7z77ltY23F5dUlWFGgth+AypWSMAYeqqumMJ8sCx2K3C5boWZqGBTEmMHoPTjjSLA26dWvJ0ow8D2Rc7yxd68nSJED8xoGPRYr3XN8uQ+tMSZrGkBYJ8/mcSVFgmo6bm1twIexQKQHC0xqoO8+Xr655dXlLlmrKquHwYMZkVJAoiT0InEetJIWFurWs11us84GjYjuaTRWLUocxu0AI81DtarbrHVmShsBFERjpu6rE1G2QIs8OSJIshL1lOanMwnVvO6TWKJ0GdMF5jL1r8VkgGGyEIBQRs1xAhGLLucEHAELRkaUBJdFKkWhNqhPyNEWJO96HvJtpQ6EoJA5I8IGrE1sdAML5gfRnhw66H4oMLSBLFKmSFFnKdDwmyxKcs0NwYT+p91C4UndGed6HpNyqqoYiu39sIAU3jIoRSqrgp9KfK3I+XEzn7RVxSRLC7hKdhILMOYTWtG2UFVvPZl1y4S2H0xGz6ZRdTMNOkixwyk6OuL6+4eJmw8H4mNIbms0t+mCKwuJ8cMH0vbfFG6jGv8Qcbf+I9JD4We0/yZ0ENsxJvr8sUcBxV4zsL65vHgMos0cNGZoCsZUilUKpkA0kRCQfqxShHKCCYZWQMftEsd8FeY0i4e/O2W/ujAzKK+sd3nQIkeDcXjEw9DnuTLeUDgoWVPDTcN6hVINzIUunX0elDAo/lSYk6V0Q4P616a/y4J3iPdvNhqoORbZxJowha7Ftw3Q8ChxBY7F0CC0QPmhQBnN5IYYMJi/Cb51p9wrl33x8o2Jjs9vhlcDHMVDXNc45zs/PKddbRqMRUigenT7i1eVL+jCzXs5ZFAVPnz7l888/5/PPPx+knutlcNt8/Pgxv/rVr/j8888ZxwTVruu4uLjg6dOng734dDplt9txc3PDf/vf/re8ePFiSG/VWg+8j948TM90vPTBd+Dly5d3xlvRjKfvj2ZZ8ZqstA8661GXHnmRUrJeL2manMPDQ4QQLJfLYYHvER/vPWVZcnNzSzEqSGMSbN/6kFH2enR0xIsXL/ai5INEs/fXmM/nQzJsn6uSZVk0u7okTfOhMOpfe98K2VebmGFBDUS3gSTkI1nRRxKp8CgtEcKRaDg7nPLDt9/hL95+j7dmB0yEojUdF7MZ50dz/Ifvs37xguBUlyJ81JJHqE5JiY0ZK946JKGdYl3wi/joo49599E9BBLjBdPReCA/hZh6SZYHh9ZHD86RwlM3O7wLbqW+tdR1hU4SRnlOWe44PDygNYbVpmQ2KVhtrnj86JjNdoMkLHytMSxWy1iwZgPXpdfiBz+O8NjEh8yBfsGUUbZqXYArtQ55IsYEW25HGiTBIkxPznbkWRKlco4stuxeXl5HF0/AekaTgvF8gjeWq6trUqlQQoZCxIFp23jzh/ZE3YKWDuc7Xl1e07Qds8mYIkujaZlgPCqoqjY4irYtzvuocgpk4aZp6FoT75nwX0FwSyUPRdfBwQHLxZLNeoOwjqOjEw7nhxR5uDfwHukiijXykeQXhHPOe0zcWYXWBngsxpqAysiohiIaEvpgOa6kQiZhopuMW+qqjiZgwYcgS9LA2YiKFoi9fhfIcRIRJNk6LCbd0P5MWQuJ325ojIUYsy4A4T0aQSIJrROtyNI0eKz0nZZYxJuuQ6r9uPm7Vk5dNywXi0A01mGOEZ6oiLF4Y5EEwjIucpwimhpCDhOM7ULRstnw6OED6noX+uTIMBYdFOMpdd3RdZbRaMLz558zHaVMxwVnp2eU2xK8Z7lYYJwhz1JwBtfVVPUt3W5NMmuR0oK3IMMC0xMDv8nxZgHwa4uTuNnouTRxORvcO6UMdgKvkVX56rl/fcEx0C/vNlcReVQq+MtopRDC4qUKYYReoNMOZYIhV0jtVSjVo+LytfMHD6E7VKxfS4JKJTxPqlJEjCHI2jtuQ+/B0xOeAylfoJUA22Fjcra3HbiQmCyFx7uAmHlryCOaBkFZIrM7awRBULv03CVrLLuyZLFaUTc12zLocK0xmLbh0b17mPvnGGPI04iiDVc8fKeEHBxYu7bFCUHXhtj63+X4RsVGf7P2i6X1UJU7fOeZz2Y0dY2SmhcvX3J8fMhqvRosyN955x1evXrFp59+ysnJySA/9d7z7nvvsrhd8OzZs8FOvCdxnp2dAVCWJScnJ7x69Yrtdst4PMY5x//2v/1vLJfLUOhISdu2Q7tGSslf/MVf8F51ANehcPjJJz8J8GvcudZ1vefGGRbfnqDa98CKouDw8JCyLENyY1VRFAVJkg6OocDwwY9GI5qmGRxPu64bCo/RaDTYOfe+Hev1mqurq+BuGk14AqwXBk5PVt1ut6xWq8Gw6/r6egiQ64uSvvpt23awCu9vtiHhNe4MrTVRuy+CrI8YVY8fyEPCOWaZ5NsPzvhX773Nt+cHzOuWwnpa0yGVwJ4c0chvY5XjVy+vg123jdHzsV3jiXC1sUFa5ULBYYzBGsfVxQUfffQJ9w4nCKlprGVb1zgtmPoch2e5XAQ+hrVs1mtm4wll1ZBqzeJ2QZoosjxjPC6oqoqubcmLHJ2kXN0sSSTIPOXB+RGJlpTbLWmacrtYcnB4iHOOLMtCImq/4ApBlgXdu07CAu+cw1gXlR4K4UNmQWsMUoK2CucCETRJg0lX12zRWpFqzSjPAukxHQcfil0ZuTiSPM+QqaYsd2xXO7T3JOOCST4Odt7W42Rss0RCn3GBeNk5j7E7msawXm05mE7wxqNVQtcG3ogXDFkpAfEKyFHbhpC1qqrZ7SqSJGR8NG0HPshmN8s1i+tbvLV8/7vf5/jwmMloTBKzGqyxUdEUioawGLqgfLImkPG6DmNDJLaXCcbH1p4IjzXGoHVKIizGhZwKKxUSSZFm2CaM8zzLyZOgbkojx6o3xHJYvBdIBS7uYPtiQymFsneLjRSS5XpJG8nSfvCZ8SQ6IU10TMcMjpydC6/LA0mWhUKnb2cmCS4uEs5arq+vWSwWkTxMcIAUYQEgFqim7UizFKcUbURLrInKFhVdH52PPLOQjaTD6ocHmrYj1cHr4PL6hqNZzoOHj/jiiy+4d3qMN5bvf+/7/P3f/wOHh0chTdQb5tMRV6s1y/WKg8dLdLNDyimg8CShzeV7i/j/cke/4RkOz4AA/D7OrQayZEAKOifwUgdEA4FuDYkLBWCWJ2RJgk5A1RKV7vPa7s452OzHFnYuFS5yy/JEY5oqFhJ7GSLev1Y/DYu6M+Bs8OgRAmcavDWhFdh4vO2GuVnq6IsR31OPlryGcPi7luB2s+Xi1Suurq9ZLhdxI9qBsyTAt999FzWZ3SF/PjK0fM9jciRK4bqWcr2m6hp2TUPnLPz5b7/+36jYCH34sJC1dUOe5zx6+pRXry4h7gS9Djf8ar3GGMPbb7/Ny5cv+dWvfjXEx3/55ZeMx2OePHnC7f+PuD97tuy68/ywzxr2eIY75giAAEGymmQN7OpWdUu21VKEw68ORfjRf5Ij9G8o/OQOhf2gCNsvsipCqurqqu4qDkWCBAkgE5l5805n2NMa/PBba59zQYAEJJa0GZeJvHnvGfbZe63f7/v7DtfXfPrJpzx//pyXL19yf39P0zQSXuMcr169mkcsv/jFL+YRRo7MLoqC5VL86rN6IMbI8+fP+fa3vy3+F2/3cjFYM6tFvPczEnFxcTGHv/V9zziOeO9nI7E8xri/v5/lZDJqkTTOPBrKY5C80WcS6jLFzyuY1TJ//ud/zuvXr3nx4sXs8dE0DWMqHKqyYrlYzGMUGZVM80w4XxD5tVorUuBMKsuZMdvtdh7ZAEkRIi6XOSCNFLF+fA4z36Mg8LSt+dG77/Dt0zVr7VlVEb/ZCIN9dDCMPCoMP7i8xO0n7gZNNwgBDpPTZIEUmTxNEz5UKKDUhqBg7Ht+/fGvKXmHEBX7fkCVUFrLfb+jmkQhs1wuiUT6rmOaRtpG/EXubm+5uHycmNeadtFwdX2F7Qradol3A+dnK/aDZxo6hm5H29bs9oKGXF1fE4NsuLnIy38KYmaIiHw1O7hqbcSPgtTNB8mtKJMZkBAFC0o3QQyoICFIp6cn9JPmvnPstnussSxXS/q+I8TI5n7LMHmaUtPYAnzABHEZ9GbCa5FFE0aCiuR8J+2RQmka6Dsx2RJOiebOGKJ3FLVlsVykbJ9sSjbhvfhRDCky3pWCwGz3O3rVs9/u6buBRVXxx//sB/z5n/wZ56tT6qLCJARBdPrioxEiIpcdBknzTV4Ru76j63rG7HkSgoRfEWb0Y3QToxbEw0cpVnSEtqoZOlGlVUUhfA0jcLXRZpbMRmPx00RGd7W1KGOICgpVMLoJn8YyReJ/vL65YkgydqugtIImFUleqxVSJCdoXyf5a9688n2ZvzbbLZ9++qkQfjk48QIz8hmjuH5mFDSkwmwm+iEFTwwRN41sNlvOzk4wieDovWffdfi6oKwK+n3P1dU15+uWd999l83tDQYFxvDHf/pnfP7iM3yItFVFaD2bXUdlImHYEcc9qhKHXR8lKh0VfouaOZuXfcnxu8Ya3+iQeYncg18Yv/4vfVyVJMlFWVI3NVEVOKWS5bamGmVjz59JVQopWOn4wML7If3iYOJWhIKoDU7Lax/HibHr0RoW42EOk0c6aUaTiqyAGzvGfpsa4EPQZ4zgVCZoFpSFIWg7N5DZbE5zKDIy6pLJo92+4/rqLS8++4yb2xspZKMEvO22W/zkyJZ7JPRwLoaiGO71ux2vXrzks89fcn1/x83mXjgb/+f/6+89/d8M2QgBozTrdklZ1lxeSoxx24jMtF0s2Pc969M1+/2GabJ88sknXF5ecnd3x09+8hPatuXk5IS+73nx4gXf+c532G22vHz5ck5PzSZb3//+9wkh8NOf/nTedAFub2959uwZWmtub28ZhoGyLAkh8PTpU374wx9yd3fH1dUVP/7xj7k4+yG0cvLzeCWPQvLoZZom9vs9zoXEVG7mIiN7YeQbbZqmBy6c+c9MwsxIR0YzMpJRFAXf/e538d7P/JLrt28x1rJYLI5ULiVlUfDee+8xjiO//vWv5cNKC1r2LVmv1zO/5OTkdFazzFUussjl/IpDBfxw3ALMv5dHRXn80paWP3nyDt+/uGSpI1pN2KVh2/d0/cB2HOm2eyyGZ6bk7vSCTzuP7XoGMQeQBTgZjfnkv+EzQmaszEptwd3NLderltJ4bAxMPjIFzeTh7GSFBqbbO4iBaRoZx4EY4e31Dd57yqLg9m6D0XKO1sslU/Dc39/hpoH1co3WjneePeHN7ZanTx7z8tWbOcjuZNWiV2KI0zPOvBfiIepeKYmpV0qkqcBsxoQShMgYiauepgmlJZAtd1LVBFUpkrj9fo+2hiJWjJOj6wfhTRpFUYBRikXTctossEE4MMEHfAAXRxSOmCy/s1xRxTwGN2gr0e6vRkGblm1LoxQ+bAApBsZxStduZOgPHhl9Ly644zAwKc1utye4yHe//0P+8//s/8DziyectksqbdFRnGKJnmjEJChGkcb2aTwzOvnvfhjox0GcR72nH8X1tRsHukTa1FEWPKc0LgacMDyEFJqaCZM2jaooxRMhwfGEiMcLFykRSrUVpZCLItmLMaKVxyqLWUquSdCRu/s7+q7DJiIh0c+OsjqRRLEGZYz4bZQlNqkDjouNcRx4/fo1V1dXglAkrkHmT2Xr/RB8kiCPrOoFZVmy33czcknMc3KNd4rdbsd6vSTg5+LEmIIQBOGwhTzHdrvl8uSxyCmt5bNf/orvfOc7lO+9yz/+8hcM3jH1PYWCVVOi/AhhwqqIUQqXrqevmqD8wYqK3/HYx3yIPxhHNK13xgi/piwrAg6rDcpYIbdPjoAod7TVqCzPNnrmkvz2i84Pn3hC3jMEIeLjPMN+S1kYJqePXorYChw/nCIKB2IaGPrdHCfvQ/LCTdeDLwpwli7KZ933vawL6qCOCpn0nBuRxCnSyZk3q1qIkvyUr80s31XRHN5a5nRHKRiG/Z676xveXL3h6vZa0pu/xvHN7MqdzB7L1OmdrNb85je/4b333uXt22sikbPzc9w44H3F+fn5PJJ47733eP36NdZaXr16xfPnz3n06BE//elPefr4CWVZcnp6ysuXL3n33Xc5Ozvjo48+oq7F1GaxWHB1dcV6vZ5j2Z8/f07btvzsZz/j/Pycb33rW7Rty2effcZf/uVfslqtxLtCH1JNu66beRWnp7JBv3z5EhD76LouZ7LkMAzzSCYfDw21mB87qxYywpELmrIsefLkCWdnZ1w+fsRvfvMbbm5upLCZJqqkeMgS2cViIehNjLx48WJGWnKh4JwTqK6uGceRPoW8ZVv4Y6JSZu7nQmjmbHiPThd7Jl2ZBDeHIK6j0zCgleLJySn/6rv/jKdlzao0VJVl43bcqJ6N2/Dq7oa31ztCLKl1zZkyvIiyGCoi0zRKEZPcF2MIEpmceA+FLfAeyqpm6Lbsdnvq05YYFKN3BFWgrCzut9c3AvsB19fXPH36DB8i1ze3XFycc3JywjYhQLvdjg8ev892v+fu7p7VYoELAWtEsXG77VBAVddsdj3DJEXb2ekZxhS8fvUGN+mZuV6WBTEqUGK0FUnKiihdtU6maVrJJrvZbDEKlqtGODJK0TYl/ShW5qQNsylrJr9nu9vOxaw1WuaiQ6DbdjxendFaCWKyuiREQ2DH6Bwxenwi8mUzK6XFYtmHQN8P7N2EUTJmMIWmQIzSpskzDCMRGQftdnuGfsA5z37fUdclp6dnKC8Jj+8+ecZ/+W/+Dd95/wNaXbGuGwo0yom7bIyOMfaQ0BYVIGqFKYT30BQW39S4EIgotCnwQdGPA9v9jrc3N9xt7rnbbjBOguGmKGQ7pRSlLWjqGuc9VstIqq6EXJ2JodloKyqNEu/zeYRCIp1aazAxFR9KoU3Lk8ePaduW25sb+v2WwkiKal1VlIX4wohsWwtKcuRdIKGL0iC44Hl7fcPLFy/ou04C2+JBfuiT4ygwj6MzUlaWJUM/EiPkVGXnPdYYiaKfxFMoeM+iFb8XU1i6fmC1KPAhstt3nF98h64fWCyW3Fy/pTw95Sc/+Qk//JM/5vLigs8++xTvHdM0EqYA0aMJkDxPVASP+p2C06/NzfjKI37J3+LRsx7YAn8oZONAymSWKYeomWQhl3/XMvINKUzPJcO1EHLJm4YSUVCJ/D+QPaDr9uz6gU3fiTHgNBLGgdWq5TKsjl7L4V3OXkSACl74NOOImybh0yWCf0yjt+hGojG4IXDb1uwz6q3EcyY/gQAcwqx9+HnJe8hrvUFGqT6Z4MQovCUVD8WGQpCNGAL9bsf97Q1312+5ub7i6wlfv2mxEQPD2HN2dsJms2V0PT44Xr78TGCcKF7r4zjy5MljXrx4wenpGetHa7x3LBcLkWUCb16/4ezsjKZuaNuWu7s76rrm/fff5/r6mrIsk/VyOX+Q2birKAq+9a1v8fOf/5yiKHj69OlskPWTn/wE7/08UogRttsd1LnyDCJHBN6+vZ5RgjyaWK1W3N/fs93tAGY5agT2u93cxUjolWdyE867eVPXxuDcxOTEGGa5XPDd732PTz/9hF9+9JE89naLMYbVaiW+I9qkkUkjzpNOuv/bze0MueZY+cvLSy4uLmbuiHAMfPLN0DMa471ntVrSNKdzUq5SyFzdCz8FvLCKtYLCMqHFZGoaKWNgaTXff3rJk/M1VWVp6xZrA/vdhmmMbDc9N1c33F1viBgWqzMUFf3QUyyWVCdrhn5PcF6SFoNPAURibDQ5h9YVzitMAWrcEnFUVcG4VxA1RIPWBTd397y9fsv7731A1w04Hzm7eMSrV69pmpZHjx9jjBAhlVJsohR73a6nMAVGafZdhzYlwU2crld89uqKZdMQlWG73bLdeB6dnbNetOybChUmvIe61FSlxgXN5DwhJZRmwhkJhlVaJdQmoE2kGgNVkJRUP+zTPR5o25phGjhdL7ndDRSlofClIALCbkGjMWVgdI5+nDhbndLWC5Ta040jPtZ0Q58yGzhIRYEYJJjr/n5HoTVWKWKYcO6GbuhpFw2rlSw42kgmRoiRYQp0yT9jdI6TesWybWFwPD054//0n/+X/Mvv/YCFqSiiooxKilaj0IhlfKmrOf9FeYheYdBoq8EqGdsElybAEsW9rAvOVi2PTlfcbrb86pPfcLfdsBuEDKq1IigoRpGuKuR7xorkD0Xq2ICQ7J91OMDIiHzPKGHYa5Q4KAZPUBqjIrrS1KakRHGrhBjZ1CXGGkgFhtKIvayRsKq8DhRpNKmB/f2Gl7/5NZu315iY7KBBpIRKiI8hZB+bQ1Ex9CNFWWFtgUvjHJU4JD4ifAGlmLwggv00ylozTol8HYTzUTR89uqKdx6fEUaHLgv2w562bfjxP/6Y88tH1E3DTdcl7k4eo4mlvBiUBzR+brrjlzTzv7X9q4ejhd/3fR0jpOeK2Uws0VI1YKKMTzxRPs/fuTN9vWMuxlNzBaJ8mqJHaUNII0jvR2JwGFVgdME4jATvxD8ob5lBCQKgBdFTcSK6nn57z/XNLW9v79hudwz7LTp4Hj+65IPLDw/vH0HaRcoGShnc5Bj6kd39jv12xzRO4sYcw3xjZy8WrRTGem4LRb97lzD1YBsUYjcOibyq5HpTWlAalHyekwsMTooNqxW7fkjx8g60E7fUXLjoFEinRAlXVSWLtmXRLinvNozun0CNUlUl6/WKqq64vrnmJz/9MaenpyiluH57gy0LVsuWwjb88qNfSmIqcHN9jfeed999l5cvX9LUDSffOhFZV9fNEtFXr16xXq9ZrVbc3NxINZ9Ievv9Hq013/72t+dU16xmUUqIhp988skDvoFAlBv69gwgqWMWbDabefyQo+NF6hrmud48Y1WK/ZHXRZH4Gip5RKCS9rgs6fueKZkFXT66nMmuV2+vuLu/5/b6JrHqhTcyDiNt087jlixz2263Mz+jaRru7u4kdv7igvV6zXa7ndGOQ3iTdNbjKFIpiHTdnrquUnXsZ7Z8SN62Ep7m8TrSh4CL4oVgfaQtDI9ry/cen2FsxNQVqiiJfsQEix4Nw/2A246EcSIoT2QkKotCCp+6KsAXDGESRCIGgfe1RKNPzjE4QBVE5SgKjbGBEEeRZMVImIBoGIa98CN0wdub17zz3vviuLndYZOq6Pb2lmkS7xc3DYmcG6nLWtjY2y3d4Lh48pzHpmCzG9gPtwQ/EYNj6CP73Z6TkxVnZ2uCHxgmCTqPcaIqCwmaUzp1YIoxRbgXBRRFhbEVxhTYQmPKFnSFLhRV2xL2HU1dceItN7c7lqs1951cQ4vlksVqxdvba9q6YnN7J8+hYPQBW9UsVisiik23IxAorcEFRxa4SfmQURdZXN00pqwOJe9lPzFOgb4PaFsciJzes933aXwSWZ20PHv+hPNmTdyP/Ok/+wH/4o9+wEXVUgZFiRAzlJIE24gQT3HSgRkXKYOSRTwEgk+ZO1pRFyUhgiNiyyIpY0ZsYaGueO/xY5ZtIyZrXcduGiTMzxgqKzJRMYZTkDKDtEL4CSmxNCpFNIjsOC3WBj0rXoiglSFqGU4HHYlFSaU0i7IiEtA6stttxVzKKDEysskTQdvZEbcsCjSR7d0td2/fcnt1heslEyiqiE7+GLlznJUSSoyzlNLJGn7CGIuCNKqV0dls1JTg8bIsGd1EVZRUZcHUD4DBB8Xt/Z7FskFf3bCoDZqRwkT2w45mseT11ZUULW5CW4OxpA7eYYNH64jVSAqwvMpvskX81pFHfA+/mbUuyaNSyXOpXGxEEVzGGGVP1//LXkM+hMwZ5+Yx2yIMUc67c4Fx6HHjlDp5QUKnsQc8UzRAO7+xmPg1KI81YA10m3s+/+wTfv3pC25ubqRxswrGDrd8Pr8WjTQImYCplZYmcxzpdjv6/R43Odw0EkMUsn5GoqMSNV7suTWObndPcCOaEqIjRo0yRXr8FMaW0X0iKENUhohBWbENGEMUfhQTQTmULolKcokAfPLEsYVhvV6xXp9wt91jixrvj4ivv+P4ZgRRbYloXrx8zenpBeM4sNvLRrzrBs7qllev39A2Mn+8vLzks88+Y7Va4b3no48+om3bOb11miY++OADNpsNSimeP3/Or3/9axYL+f2nT5/yySefUJYl//yf/3P+4R/+gY8//li0yIi6ZLPZzJwN6eZXs2Q2JhZtJpB677m7u5s36NVqJV1FQgIisN/vZ45GCIG+71M+hiEkGFSuj0hRllhrZkfSbDneti2PHz/m85cv6RI3paqquajIqbBt2/Ls2TNWqxW//vWvuU5FWSah7vd7ttvtXIBlCfF+v5/fQz6yV0ce5QBzAm0eoSil8NETtcwho5IuenKOMThiUChlxQBKK54/OufJxbnAyMaQ7B3ILfQ4jnT7ThauogQkOKuwiugnvOyjKd3UiFul1hLchsFHhZ9Glm2NViNFbWlrCWuTxFSP0kt8CCLXDDGl+npOTk7p+57Hjx8nro2bP/cMP1+9ueL84tFM3lotl0xhy831W+rVGZcXp7y8ektVFoxjwdiPvL29Y7FesViv2PcdYRfo9h2BOx49ekRZ1kyTZIMYYyjLAmMKtJIZpzEWayWPxnsZY6hoqJQRV1Jrca7HuQk9jVxcnOKv74ha0J6nT5/y6aefiiJJKUzKiVDWYqqS0leUbc0UvRAf3ShS9AeHlB3WmLnoyHB0CIFxCgyTSxbi8pp8DOz3O6yC05M1T59e8vTxE2pveHR5wn/2L/+C8+WaRhfoGCiVSIJj5iIAKPEUwQdUKkSyj8uQRn5lWdK0LWhFqRVFWQq51jmmEKis5Wx9QtXUNIuWN3d3qM0dEajKCefEa8PYQwCbRglJNPM2bPaWkcj2EANz6kPyU5Bzks3+AlFLWFexMKyWLWVVgIq8fPmCqMTnQKk0dkkEzWzYJ6Z6Mo7d7/ezU25M953mQALMs/F8ZH5GNgMkPd7x6GDmcMA8Rs0N2LpZiuQ6RKqq4ubujtWyRMeaqljR1hVlobEWTtanDKNjv91SlCW7YWAYHU2U5kAKLPExmTyoGL5BqXHwdPjta/G3v5WFtQHESRZRdUiWBwfoJHMP/gCHSj4sSunkBSNj8sH1KK3E1bfr8ZOkF5Nkp94NKBw2FsBZelkxkVdnLqs0vd6x33V0+064YCHgvRChH/AzHvx3DpZzDMM9u/019/c3sv4lFMxNU0KD4jzmiMpjbKDr+qTCIvGRspw4pnN9ILHmQgutMVryybSSwmdyaQ/QOsFRIZV/h5lPVVfUTUtZ11RNw2KxxNiHe9FXHd+o2NjtO7Y78ae4vduwXq+whaeqW84vLjm/uMBNjt3mflZ9rNdrqkoMZfq+Z71ec3d3xzAMPHr0iM1mw3K55M2bN5yens5jizwu+eEPf8gvf/lLfvzjHwt8mLw9tNY0TcMujTZk4S9nqW1ZlrRti0kmY3BgNi8Wi3mzzpuxtZIweJxhAHKjLxbC3s8dhmycEzEEnJOurK5rTk5OODk5YRxHXrx4wdurK5q2nWW5Q9cLoTYVIzmTJWe/ZHTDez/bur/zzjuzl8br169nM6GyLKUbtHaWz3ZdJyFuIXB3dzcTfvKIaNZgW4ncFshfpIhRKZQuqYymVoZaw9OzM9Z1RV0UVEVSsfgU5a3lwh6miRCFqa2MMPgtQap9XWJKyQ/phl7MYpQCY/FRSWImgdJGnBupa01TCyw9GYEn0YJajZNDxcAYpIq+vb0FRGacZb/5hrq/vxcUa7Hg8eMnbDYb9vu9jPEWSz5/c4PRKtmW1wyTcCiUtgwu8Pb2nrPTE9ZnF/TDgAt7fDcmlVAJRjN6D4hdfWErubVjfg0GRUyfY0RjsEVIhaYgVpeXl1zddSxXLX/+L/8V/+Pf/Dt8hLvNhstHjxiGnqkfMEozBMfnb99IJ6p14rBYdGGJw5dAzOkbZSGhUH4SQuA8g1VpnOEDJD5NnKTIPV0tefzogovTM0pjWeiCP//jP+XRyRmVLdAeKSS0IBgqPagSaANZx+Te0Wgs4qiqE3/IJHVHWVVEFRmdYxpGVIgUyqCMLMyjUzRlxcXJiSyGQYi2rshFqHRdhiiyQq3EsjxxkKJW+KjQIRC8muftstgm6y45GeRIc4iExMUoixKlYdG2DNMgRmpy6h5IDTOx/O7ujtevX8+FwbH6RH5PPbhGgfl+P/hAhOSDk0irQXhghygBaVRyMGSMkX4cWTUt09gxJb8Q78FNHpTB+ch60dC2pRRaURRCMfFbrC2oqlpQ5ERwDCqQNAkzv+T3HbLpfv2iICe5Cg82cxbSJpkll/xhORvEowh2pWQEOY0M/U7QQBeYRidKLyA4TZh6nB9RBIwqjh7qyN00JnZ2VNJspPgBa8uEtPnEn3hwBuYiQzBSISQPw5b97ob7+6tU9KRPPkRBhrPSBHkvu32dIgeyg66Zz2W+L2XSmII6rU2k5koymoymMAptbPLLSO4qidOXc3rktcorjQq0NiwWK9anHf5287VO/zfjbITI5ALLVctut+Pk9Izbuw2lD5ydX9L3A5eXl0mWJ4qLZ8+esdls5k0yO4SC8CFy1kkuAOq65smTJ3zwwQe8evWKv/3bv52LiLYVCGscR+7v77m4uGC5XIoEbL8ne2I8fvyYuq75xS9+QYyKTdHAhVS0uVDIyo9jm/BMIM1z1BxxD8xR87mT2e12+OBYLFpOT09n34+3b99Kd+M9iyTfjSHglWK5XFJVFe+99x7GGH7605/O3XhW02Ti5DvvvMPZ2Rn7/X7eLGeL72maz1kOksv/tl6v5/PTNM28oGX1jFKKKUbGxDeJyRZPaSiNptKKOkJrDc8vzqg1VFpRaGExhwyBKtK4SrJNMJqgFEpFdJwIzhCNJqJRukSbAm0F7I9onI/oyTH1G6g9pZm4WLcUWn7f6Ii2Fu8c/SCEQ4MEnbnJcXd3h0025dM0zWhUVg9dXF6ibYk2GmMNzjuatiEaw4cffsDHn75gcXLBB++/x+t/9zfCAagqHJpXV9coW9A2JcqWFFWNGzu2my1NUVBYI06LaVQ16ImqrKmqhpzcq5SMPYWU5rEhIK6MirZpsPWam80nTOPAP//Rn/Jn//yf83/7r/9rYoSmbUUxNE3iOWEMb+9vKeua1XJJ50Y6NwoI/RXkeIVI1dumgcLTq+wMmxw0E/FVJWKwCYG2XvP08SWnqyWLoqRWhm8/fY8ffvAdCqWpMBSijRM3MX9gvEcOsubs4yIplkpcC0dNU8um1iTn2+1uS7eVsDytjVg7A3VRCHHVWOp1Lec7eCYnzrbepSRZbSiMplCKQmkKLaoYFQTBccGjEx9FZ3RHpWHT7AwpC35QmognoGXTdAFHwNpS+CcojJVsEhCE4TjPKMvX89p2XFzMjeEXCo1jZ9+DEZ8jprRhWS/93OToRBDPv6e1put62qqWZGTfE73i7dsb1svnXL+94/x0yWbbcf32mvOLc1A5eyXiJodWxdy86bQGOj+hdCFJtF93nz9GI37r3377Ip2tvFJxGOZiQyNkn0RuzCOkP8AhzeahsBvTPrDbbQlOioxwMC2FGBlSsaCQ5unBY80sqXSzK2k4QoRxcmy2O3AjCs/9rhPPmuNzovKdmv6KOHI6NzCNA34SKb7OZmJx/r9UCFqcT+GGysyE1VzI6JhLh7QeGCGGr9enKFtLLpM1VFazrAu0NrORIiFgklomX8JSFIsKTGmDLSqqZkHR/xMgG1nGKSFM4u/w9OlT7u7uAOa49rv7O1bJOfTq6orVasXV1RXL5ZKXL1/ywQcfEGPk888/nwmZeeP/wQ9+wP39PZ988klKVpVNNgeRZT+K9XrNMAwSSJSKkGfPnvEXf/EX/OVf/iW/+tWvkgRVoy8PDN2MGmRmeDYCO85Cadt2Rg2yg2hWxNzd3jKNEoKV/UByfkHXdQx9T1lJql5WhETg6ZMnnJ+ds16v+eUvf8l+v2e32x089Y98Od57771ZKfPq1asHipdxHMk+Iufn51xfX/P69et0wapZ2pu5LPk15E4shMAwjbjoxEAG2Tt0jCg3oQhYAq0peHJ6Qmt1mhcG8EIoyguepF1GQtLmTz6Agba0dH5i6gNBGWwlWRkq2SAHxKXUu8C095gVXJwteP/5I/p+wzQM+HHAFJV0YUFhbIH3I9vNlkeXl3Rdx6NHj+brJiNe+Xo4Wa+53/Xc3N1CEB+S9XpFN04UlSR1bjd3PH/yiHefPeHnH3+K0pp+HPHO8fb2nmFqwZRUzRKI7LZ7Vm3DerlApzm/wJoy8zZu4ji/wloZs4EQtqzVXFyc0PUT0166pdVywf/9v/lviMZydnqK85Grm2umkEzaqpLVYsl+u2PwE2rouL67FSSr73HOf+karxAFhEFTNzWrdkG/33O/v0//ZkDLYuS9h1SYtGWD9pECzeXqhB/90fexLrJsKrQPWCU0QpHMITB4kPOgo0gnbbqmI8JyJ0asFhlr7uR3ux33d7fCmyrlWh26jugDUYnXRTQyclPtknge2HUD0zAwdj0oRW1LClOgo8hSC20wUVA3n0ieKoqNvIDBspDGBOPnnhKA4FN4rYbEWYgpO8hPYQ6sS44G9H03GxPCYdSRVWn5ftT6iNuiDuOU4z/zZi+PYyHK+LYo7BwKCeK54ZJZXh4btm3L3eaeRxdnFLrCR4fzE/t9j10U7PZ7xgGCn6jqBpsMA3PjkL0+lsNAsRYTPnn1c4X09UYpx/OEL16LX/r9Q7GRR3HzVqkOO9wfCNM4fqGz82vfdey2W3abe7yf8C4mgy6VOD2CJsToIToK08yPEqLwKPKPi3W9Ypw8o/NSzDlx7lTRidrtgUL0UGQ8OMFKCPFFUWO0GI2J1b+bz0tW7BiriWl0KenG8mWtnt2bM6qhFFhjKauKdrHAK5H7KhQ2xRIJp0ihVB6/MifA5hc7OZ/I8IbRBWxRc3H5+Gud+W9UbAx9z9u3b1Gpyt7ciS59n9CAsixZr1asV2u293ezkiTPMM/PJSr5448/5lvf+ha73W7WCT979oyu6/i7v/s72rYlW4RL2JmbRxtN0zyQmebMkB/84Afc3d3xP/wP/wMvXryYK/+iKH/rfVTJMhwOCakxRoF2089kZCOrWu7u7uYiq6wqlqsVxsiimQsYrTVNMvbKEtlHjx5RVRXvvvsu/b7jZz/72YzmLJfL2cG0rmuePn06e5Dc3d3x+eefzyZl4zjO5/jk5IQ/+7M/wxjDb37zm5ngOgzDLPXN7z8XTnnskjkNROketIZSIZlY3lEoqIziyemKdV1QGQVuYuo6wtDjBnHmDCGIpFBZfJgwRUFQGkWkrS1hcOzHCU+g7zq8MjMDXDYgj8fjVUQ5zTuPn3O+rnkz3mIKxVRoQnA4B0ZbgmgXWK1WZKfUTJa9ubmZk3OrquL09JQu5dYMk2eaRlCRsrS8vrqiqEfee+cZP//Vb9ht7/nw/W/x5u0tr+4GohLJ7f12iwuBvttzulpQE7nd9dzcbGiqkrKuGSOEIHkm1mb7d/ExARJULQvWNImDZFXVaFsTzch6vULFQFEYusFxslwxOeFO3O8nTk5OOD05oW0atNF0uz2nlxe4zwO32614W2iVkpJy9gb4KMJFMfRSlNZKiJgtiAS2/Q5HwBSloEdpzOGGkTCOeKdYX17yJ9/5I56cnFMHTRHAKrHrDkEyFeaxnJJGRAUB343W8zXiQhDFlnNEEIa9czK6i5GqErvxYRjwbiIi8LaOMiLxzqGCp7IlJ4ulOJCOI8M0UZcpnVlpQTaUWD6LH4AWV85pwiuPDhCjjFZy5yYUDiGaOo/Ae2nl10gibV3W3McNV1c3gNhYOzfgwzSvQ5kTlJsGOSeHQkLFL/w9ba7Zbvu4+NCJOyCNkGIOkUyNQuamAWJHnTwS9vsdTSUKucWyZXKOXec5P1vhho6Tk1O6bqC7uaOtS8qixugd1hQHsrxOhbJJCKYSbsDXOeZG/Wsfh2KDzCNI6EgODzs89sP/zoXZV7+WXDCEfHGmZ1Sp6VE47+n6jv1uT7fvGIdOxqAooo/pdchm7f1IjI6yPJCjxH9DjOLmjVmbxAdRxGiIURMxGCMuv8cnSArMRDj3UgxbU1BVKxbtGX0vFuTWGLquh8lTlpWMO9L9qpTcU6MLCd3Izp/Mo6D898IYkYFri7EFRRFQpgCEV6J0GmunMb4pSqSV0IdzGuU9uxCISqNtiS0jwf0WaexLj29UbNR1xclKOvnzs3O2uy19t2fYd2ij2W/v+Xdvrzg9PU2+82ruxler1TxOubi44Obmhr7vWSwWfPjhh/OYJEtYQwj85je/mUcjuZvON3c2zsrGV3//938/IwXATJLs+wHXCMwT0xw9FwLHvAxA4pgTJyO/ljzm6PaihlikdNkhOSNmu/A8Bjrmkzx79oz1es3r16/5h7//e/pE5MmISvbWOD8/50//9E/5/PPPGceRzz//fL4gMwLjnOP8/Jznz5/z9OlTfvzjH/PixQuapklBS8JbqapqHskcK1ZywSbqHmEGWg0mgvVQaqjKkgbDaaF5erJmYTRqHMR8KTnNBSdKEYVUyrY0DE6UDTHdyJVRDAaMCkxewtBMWRO8QO2aSF0YlnXJe5c1P/jOuzy7WKL8nkWp6EOgsColE4qrpFaBpihYNiXeeS4vLwHYbrfzgp3P+e3tbSquhmTlLTdU13eUVSFmYGiePrnk5n7HhOf5s0fcj6+4vd+jjGY/DNxutux3E5PzPDpd0y6X9N2Ou/sdq0TYNMk9dBh6iIq6bjCmSOtKxLswu3gqrZlGRzSWi4tzfFRcXd8T9iOLpsJHgWMfXVxSVDLCu7m+4VbfArBOKckqfc7eJVOueVURF0+hTwSCc2gURTK/asua0hrqruI6cXx0UVCXNS4ZkG2u71icrPmz736f7737Pq2y1EqisrUWWd3xQjab2aUMhsk7xmmcSdW5qCgSJ2pKqpOqLPFBTMmcGxkGIc2K/Shpg4gQxALdKjhdrSFKobPf76kKybKxxtBUNZUtsFpTaIuPnm4YxFtDaSJWguBSF0gix2aljFagfEyohmyCVmtUWXGyXDOMI1dvr0QargP9MMzZQsfFQl6fjqH/jA3kcUheY/LvHB8H3s/BG0ilzxUlm0UuNmQcFkF5himwXtdEWwKRqq44OxXl3clqMRPgldKMw0RIXjHjMBGmEedk7VIarJXxJyHzEr5uwfENqo0ECYT8e0qn4K8jlCM/3peNYX7Pc6n0e8fFklynSX0zTfRdLwjb/T1j3x+KBZcSfRQYowjBAY5JuS88AQ/uPW0saENAS5idMuiiwFoNSVwxv/30IJk8rJXCmpKyWlI3ZyyWkllkjMXFLUFNaFtibIkuoCwtRo0QO1CGEISHFFKGnFx/mYIrahRjxbZBG4syTmTjUSTdSmt8GjV6oogBHnzu8jdjC4wtKauGpgWnC+L4TzBGOV2veB4eESO89+67vLl6I5Hs3mOLgrquePHZS6bJ8eb6ms1mM3fXl5eXlGXJ1dXVzIXIG+7lpchEP/3003lDzFX/6ekpIMoKnTsg71kul3RdN48Q8sw+czLyDVnX1QHdiMxFS2Z8Z/fQoiiYEtM7v76cswJIwFca1+SRiS3MjLSAXMx1XbNarXjy5AmPHz/mF7/4BS9evJDFPN1AmV9R1zU/+tGPZnLn1dUVwzDM0GnOYrHW8uTJkxn9+au/+iuurq7mBNg8Isk+JTc3N3z22WecnJyw3+9nfsq8SCVPABuRHABgaS21KVjYgkeLmovVkkoDTmbSXmlRr3hHSFp/mQEWDCPiPaANWkNhFaWXWHNCwE8yXnBOGNVVoSlV4Hyx4AfffY8//t57FCXcbbc0hWbYTxiVZ9iBOAUKNE4H3r69pipLzs/P2e/3eO85Ozt7YKLW9z3Pnj/n+u4egphwhajYbjZUVZVIfRvQBZv7G8pmwePLc17d7tjuOoLL8klN1HC77SQDpGzZ7fZ0g6N2HqwTB8co/jJaTWhdUOf5Z/QoJQtDUWiqSjgk+2Fgt92w2dzT73e4MVBULePk2G8HqrZhvVgyTiP7rmMYRkxhee9b30IhCOF2s+H+dsCoHF718FAxFYOJtJuLDtO2FJUQ2G7u7+nHSWbDPlBpSxkV33n3ff7ku3/Eab2gnjQ2go5qtrh3wQuqooS4ljdwpTU66jnN1AXPOAworYWA6B2b7VYUKkCMQUL/YsR7l9AyGVXM0e9HTEGrxFHVrx2LpqVuasZxojCGVbugLkqsNiKtVZG7/YbtZoPzUhB1fU8/DPgMbMSQNiOVEmcF0tcoiVrXCq3h5OSEaDTjNHG/2QjcnHkUqbDI6wowr135v6N6WGzkteLLjgeqgXgoNmZuQHoclxKCx6nHGDmXXb+nrQwXl2e0TcHlowvqwnD1+gVts6LvB4iI34yK5Pwl4WokHxyrCDoTDJWMT/liQfSHGG7I5jh7nuTiIiTOQVSH8/WHIogqUhS7hIy5FErYdT1umjAmYpS49OqkWCmsDAtVGlfMxxEPJyudIgpjCuq6YbU+ISqRFlujWLSVWA3Mv54/y/zeJfW1blcs1wNBicJIKYNXJex7iqKmrGq0MdRViQo7xu6a7GYcA0STzh+HK0a8U8BaI9HwWTCQFWVRQg9Duo9j/Apfk3QZGGsp6prSQa0sFP8EPhtlaalSJoDVEKYRqyJPnj9l8p4P3n+fxxfn3G92fPbic66vb+YNe7vdcnJywjvvvDNnnnz/+9/n9vZ23hgPdr/SGeVxx3a7nTfhXCQcEwRzp5ARj0z6lG7fPrAWzz+bi5IcB71cisQyK16UUvPryJyHjNJ0+z02Of9Ze5Cznp6eUtc1H374IR9//DEff/wxd3d3s8ugd36GT58+fcq77747h7BlH5FcaGUlybvvvjureH7961/Po5yMZGQPjmfPnlEUBT/96U+5v79Ha812u51loXnREsjXoHxET55aw7qyLMoGExXnbcuz81NO2gbtPYWR+TlR5o9+GqSYmxxaG+qmoYvMFs7KKAplKEwU627lcX7CjTlESGF9ZN0u+O67l/yzb79LWyp87KlMYOg7dPTJuAaB4SeZlFslo4hjvk42RwshcHV1hXOO9XrN6ckJ3TQx3u+wtkgOgZJquVwucPdbiroQn4Kxp9vtOF01jI/OeH11Sz85lLZMocd3I1e3G86WDVEXdFNg4cRTYhwdSlmMFhJq6DpAJc5MCv4yEg3unaesKsqiol0u2Pcjd3dbmqYiKoNVwjGwSki0ZdmwaBd040BUzFLpX/z859RlBYsF3TCI8c/cK8lEtywKFk1DXVYy4knZIXhFpS2X6zPqqub2fsNmu5WiYRz58Hsf8n/83/8bHi1PMVOgUoX4DuVFP8g95GKKWNeyKWpy8qosdMd5Pm3bYrQmRjNLzSc3MYaJaCB6z+hGfHComImbUTbAzJOIAe8mCqVYNg0n6xWnZ6cMw4hWikXVUFqLVWLLjNG0fcu2acWJdHJsd3v2KWJ7HEfGyT+QJIboxVMDnYorgd3LwtJUnvfefZ9PP/uM129eoK2sKfmezYU8/Dbsz1cUGV85DvgttENUP8dOlUDyzJEUWwXEOKG0xpaGs7M1Wiv++E9+wMcfWcZhSGm/JCWdw1atqBPKMuV+iOdCiOGgMPt6jI3/mQWIIjNQ87Oo/K2jp/1DEURzQZPJsEppSRs2ct1YUyTOhqDTwUsCrtYGrYNEzufXpJhFKFKISAFRlhWL5Zpzh3C9sgeHVg+KDeCIYCqfpWziJVXb0BClIFaG3TShncfWDdVigbWFONm6gJ+kKPHJwCuPUh6c05jPqZrfj1ImeeBkhC9zPg6gYn6Vxx9G1BpblFRNSx0tXo9o/+WF8xePb1RsqBgIbhSL59tr/NSjUBgV6VK4lYmBk9WS6tsfYu0nc7EwjiO3t7fc3d3xve99j/fee29Od/XeCzs9pXB++OGHswIj/1v2kMiEzRAOIUYgChVgLhzy6GC73dGpfXoDh7lp9rPIMtksOc2Pv1qtMEaC23LB1O331E1D3UgM/TD2ony4uJh/tus6fvrTn3J1dQUcpJnDMLBoRbL23e9+d2aw/+IXv5ih2MxsB+EmrFYrFosFNzc3TNPE7e3tXFTlscjp6Snf/e53GYaBzz//fC5a+r5/kOmSuyWtRY5YaENVwrKwnNQ1lS6oTMnFyZrzkzWLqkRHh0HIo9F73DQyDcPBVyQKW19bcZxT2oCSWW9pZZEuXMDFQIwOFT1xHDGV5f2nl/zZD77D+bpm6t4S1YjGEdwgXZeSPBXnwTlPwFPoSFXIDZuNz1ar1Twzzxbup6enbLZbyrJC6Y7Vask09FhjGKeRy/NTXr95g7aW89M1b2/vefzoghdXH6HChLUaYxTTFPEexhC5udslZ0NF7D19P2KsJUZBc4gG7xKZDCkoy1LGKeMIq6rGTyN9P9CWhSB9dcvbmzuWq3PeXN1R2IKqFNRAWcvoHCqKrXmdrqP/4t/8F3z081/wd3f37JzDJv7K6Fwifioqa2mbVoLgrGXRtDRlKZ9d12NLUdScrk5YtCvhCN3ccFJW/Ot/8S/5wXe/RzGM1Npi48GzIsSYXAbzZiQbgQ9+7oQlrdSmJNmRwhbUlbiKuhRGOAwDPniCCVBo/OTox4HgJMBO2xSbHWUE5hHeiwZxWQ2GxXLJk0eP5TqcHEZrSlNQKD2PdZqqxJrTpDxw1HVD1/cM6X7s+lHUTc7hg5PkXOdEZggEFTHIgmyNZbFc4VygH7bsu3tC9PM9ldHFL/Iwjjvz3ETk48uKjdyRPvieOmySx9EDxljqxqKNRwVYnSypCsPd/Q2Pzpfcb2751ce/5MMPP+Af/v7viTFQFiWxael20ohQrI9GylJsoCLBh2Rx/9vHl23+6iu+/1WHTLKkq4762NTroYLnGA36X3ocj7GkIRUUomnFh8maAj95plEaKWuEA6RVkvJH++Cx4FBYiqeMoSirZBRZYkbPFAJoTYge5+MXXs+hkNRaYQrxP8JEMInIbJT4xhgkgNGAN0AUTxpjCll7lU5eP1+Y72RaTEJdRHGSUEXvZeyaUA0fUhrzF863UofJpjGSYr1YLJkY8Mpi/df7fL5hEJtnGnrauqLb7ygSOtDttlitGPY7iQBXFqKhLgvqpqEsM6lFs93t+MlPfsKzZ88oy5I6ZYN471mv1/R9P49JMvmyrmucc+z3+xnJyGhDloEdS82UUjPCEaN6gMLlm/bi4kIcTpWkrL59+1bQk4SIrNdrbm9vRTWy3WKSm2dV12w2G2IILNqWqq74V//qX/Hq1St++ctfzoqZY97ENE08f/aMD7/94WzF/umnn85mZrnQypr61WrF06dPZ6Qik2HzYpMvhouLCx49krwVkPGOtZbJOfqhTzM5uZBjCJLOGSPKBQqtOFu2LEtLpTQFmvP1gtNlQ1ta6lJcJ0V6Jy6VbpqYJpciwoVPoYxwEaIiWTIf3TxGsiSKEHHOY1WgLDSXp0u+9fyC02WBH3do7fFRQofEdlrktUYZlIop9TLgrMFbxd1mOxPnQhAL/Rgj4zQwDCNVVbHZbLh49Ij9bsf5yQlXbyesNez2I+Mg5NG+79G2pLCa0U9cnK24ur4RYlmCFpu2oR9G+snx9nbLojKcr1qGyWP6QNMsZodIo41o98eBSSuMlq3DTSMFkbauMIUgd6/fvOHm7p5xGDh7/1T4KdHgpsA4jVRlhS41jsgwjdRVxePLR/zVX/3V7EdTFGU6r7IpEyLaaMqipKor8qzWFgVKa+7uNry5ekXZ1tRtw8npGcu2obaGVmn++MPv8K9+9M/FhjxErLG4cSK6IEUGKTI+RazrKN1f9qwpQrZyDvTTiA8yXlVK4/zEMI6JhiHFgEBmsi6G1BmiRE2SNy/ZrKW5UMnXQytoqpKzkzVumthtd+ADdVFQGIsbRyYf0bqkLkXy26leRnrjiK0qllXN2Dr6rmcYBylCvBM1RggEpdJ4QmIaCm3Aey7OTpjcO3zyqeSUKESe6n32zEiKm/TGolIp8v6wCB2Kkt9eY8NRwZLXq/xnRkUfhiYarNX4USy1y7bkZNHip5F2UfH5yxecn6y4vDyX3JtelGrj0DF0PaY26XlDIoWKO67cg18+wfjyvV+64q97SPOsiPikZsqdvhL3VyUmYzOE8GWP8RVFyGxcxcMBkDZij58zbeo6pYsHKXWMtgz9RNQymq5Ki1aIFX90mK/gQc6fUQrYKwr5XLRW6ChIQvThAfol/hWByKFB0wmV0oVGyVQaY6BuC1xoUMZQlCohlYqKSOzLGb3P18cxFnHglEBpS+FSRhlPy30sTQMpdTnMGOlM4RWybFTJ0FHUKkYbjEpI5tfUR39DgmhLUzdyg/lkhZpgl/22Y7V0DMOEVoHKljQK4tBRKSjahnGaePqdbzNNA6/efE7wgeVqRVOJlDV7XHzyyScz2TErQXa7HRJ/XjKO4uUvccxCegKdIKDAzc1dKiI8ZWlTtykn7uRkxQcffCAGTVXFT3/609nRs65L6lbUHNc3b5kmIViWdZGQFU8/7Dm/OOXp06dcnl+wWCz4D3/7d2w2G+7v71FKsVws6LpuDln6l3/+L9jv93Pn/R//43+c+R19389up5eXlxhjWK/X/OIXv0h+DWoeF1VVhVLitLper7m5ueHFixdC/vJyIfTDxBQmopFFzijQKmCJ2AA1imVhOWtL2qoUdEIrTpcLTtctrYmcL0oaqwXe9g6UkKr8NOJGsR6fguR2hAhFUxEKi1ORaCQLo1CaplYEDOgRr8FPA6erkj/5/rv82R+/y6IZwe0JcZQRVtAYXVMWYjPdDwOLukQBk/N0vacoa6qywAdHXWoCnt32Fms0Y7+jXazY7TsePXpMVWguz5bc314x7DcUqxOGfqDb7WnqGqUmbu82nK0W/OazF6zaGkKkKQu6SbOfHGgtrqtEOu+JIxTDhClKjIKqkKLKjR1VrUQdQsSPkT44qrqhqkt2+w1dv6UoC5brFVfXV3z22Uvu7/f8/d//R05PH/Gt974tPCcVEykt4tzEatHy/NkzvA/85tefUFU1jx8/Q2F4c3VFqWGaBkyhMVHyWSIgA+MCh2IaRl68eUOsS/YadLenXC44tQuaMfKt97/Fv/nzP+d5u0D3g5AsR4cfRyFpIuFVqBRmVliqWlxus6XxvttRlBVaa+4294K2GMPddkOIke1+J11laTFYTGGZ/CQcCK/SWNNCcpv16fqPIRDchEURvac2hoLI/k6IwJVR+MlTqEhBmLkyPnlUhBgx00g5jSwIwvMoLBdNxWQN/ViyXywZvJPCYxzEbCx5e/SJ1GyUjAu/9fg5xit+/quPmAaPshVSigkROLWs6ChrjkfPS7g1B3Z/Hk9pfTABkwU+j2geGoFpo/FeENu2bSmLgkJrcCMX61NWbcGH7zzn7KTl2eML3NAxjj27zYa6rjk9PeHzzz5HRU/ZFMQtbLs9iwtJ6c1eDQSwiAoufMn0Pibk4dhjRQi3X58gGjikiqqYTRfBaymQA4rBRZxTWH5bUfi7juNiLR9KCR0zJPSmSMnadd2yiCVRyWihaCPj7Q2mLLClpa4KSquJfqDoPLzl8LoPzyhfKgBO4hbCAAgyPO56Sqvo9vuj33CENPJwUWT0piwoCmkilotlQrAEJVRR5OplaamqQhRwDsrlUq4x7+fiNagkbVfCVQsppbooK9q2pa62rBetoIlp/S+N8DfQSswCMxcsknw+JA7DKouK4PqBaejw48Du6H39ruMb+2yAmj028hjC+8B2u+XurqEsRMpmtfi3D2NKNk3ZHM+fP+PV61esTk749a9/zb7vpINKY4GsKjg/P+fVq1dzgmcmShqjv9AlyIV0bI6TYbI8bshHHrEsFgv+9m//9sFmDlL55hGBUmLClTkc3ntOTtYsFgvef/99nj9/zn/8u//ARx99xOvXr8lx9SGEWVnz7W9/e0ZtnHP89//9fz8/X4xxHhOdn5+jteb09JS7uzs+/vjjmeyYfTXquqYsS4mKLkvu7+/nUZO4venEJA4EgnQMUbrAQilKBbXRnNYN69rSmLTYaUtdVyzahqrQrNua01WLUYLKSFJDUoWk6tx5jwsy744qRycdmOXZJrsIlsJGKm9x0WNsybtPL3nvncfUpQI/oJSXTjbk21fg3JAUKbYs0zgj4mMUOW0MLOqCcZowBJrKJoKXmjuKpm1YNhV312+IzjHs95ycnKKV4uTkhM9fv+b0ZM1+37G5u+XJ40f8+uUV33rnCT/71Qs0Bct2wfbtvSgAlCciXiLbbqA0ER0tKu5pm5LKaqahoyhKbFESExIkxC9DZS3OC+dg33WEGHnvW9/iw6LhxcvPmaaRly8/w/uJui7pk5eEnyaa5owmZfN88MH73N3di2Gc94zTxOBGxrFHK0VtCqLzdH3ParEEDVNIqFFZYNsWFyeim7DawDhxuVzzL37wA77z/DllEGhbhQwTQ3bedZOf1VnGtATniN4Tok/jFEcYxKmQtEEO40gch3le7UNIzH9NqRRu8rjxwCkSbpQgGTFE2cSjBEHFGMFq3OiYhoFF03ByesKbV68Z3ET0BdoYeU1BGpEYxB9Gh0hTFFgfKBJqUxlLiSy0bVnhooxRukGIpIOfGKaJXbenH4d5k9XK8OzRU6bJ85sXnzCGSWSQJCVLjIfyIuZN6YiylzeFkBEPISFmV0ohFz9EQkj3Vh7XAHjnmGLkdNXSliVPH13y5NElY79BeU/bNJSFoevEGHAcRpq24f72LX3fUdYFEyblPqUMFpdSUTSp0/2ycuPhekt6n+JK8vsLjoxqJMkIOsi5EQ5EWkcixJkYkbpqfvuc/O5nYT5vGTshHhdvwqeq6pKoClCiyCiTYqqsLFVZUBhF8IbSf7XqItEhhAOiYkJlQlr/RRGVi/b8+pTKwyPm6kUQlWL2MFJK4V2DiXJu6qqiaWpBFoJlVE4QmC+M5ETso+b/Tr6gGMRpt7QWYpyRa6KQ/71zkpOjdbIqSJ9VepFGS7ExTSP9fsd+L9Lhr3N8QwdRwcmOi42sLc9FwfLxEjdObHshh93f37NSYh/svOfu5pbVakU/yGz97v6eXdyx38mmuV6vCSFwe3s7y0ozT0F4GWMajfw2LHn44I/nm/KVj9vbW968eTOPXzJfw1orrpuLlvPzc7z3c5FhraWqKn74wx/ygx/8gL/5m7/hv/vv/jt2m+1cTABzgfP973+f9XpN0zS8ffuWjz/+ePaAyGMVpSTN9fLykpOTE66vr/nFL34xXzRVVT2wZv+jP/ojzs/PefnypfBH0leGVaNPi4KSSOS8bRsPBZFVUbCuak7rlrrQ6OhQaIqqZLFoaZuKqrCcrFes1yvC9o5pnETSGgPBh/m9eu9x0UvwlhJvBS8fBCSGuUGKnEpbgo0UeNqq5Fvvvss7z54KGTJxAbL1rrWWSim0VWz39xijqeqCcZLiZhrlM9GqxHtFDJ5oJcBo6HuqqmS5aHFeouxvrm8gQts0jKu1jJKSu6X3nu1uy3q9Iip4e3PD5cU528FjNCwXNfdvtpyerLm53ZDHkj5CP3j2dqQ0cb5hi/USQsR1PaUHW1ZoU+C8Z7vZoBYNZV2wWCzEwt0Y6qZlt+uTokle/+nJCbfXt7KRayGwFcZilMyYQxBiZt1UbO4V3/7gA168ekFZWtww0G33wjwvbOrwZANwSW6tURKQFjWLoqJWhg/fe58/+vZ3aMsaP05oJODNaE0en+e8mezJkC3hp2nC89BoSumDh4T8nqNIn6+2BzlsCGEu7rOxmNaaIckwM7QvyJ0HIwqBIXGo+qFnMbUyew4hyXK9+ApYS1SiPjNKE5IXjS0KCYpLPAulxBCsC0IYtIWmNJa2boShryK7/Z773VYMDaeJkcC6bnj3yVP6bsfrmyuRDSZmXSD/mTahA1XvQIj8wp588N04Jpge+Bnpr/NalT+PymrOL84oTR61wHvvvEu/u6csNUVh6XuFS+f44uICP/UMQ09RlIRBlHnGWpnXe09QBp2alvAlEPkXC425GMIcgfBffcjZifPfZNk4KE/kNIakSAop0figTvniWv91D1EGxSOivJim7SeX1qA4v7oDudugdMAieUdffTyU68Zk0+BdgLTXPCARy1tNe4bwOnUiI7dtI+NYJ03eNE5MdmSahGMhI2qDUV4IvtbO6FhhzdG1dRioaMRrQwPRORk1DgPOjfgwoaJn2HcENx2MQx6+PfHRUQCiMOy6Hf2+Y0zcwN93fONiI6MF2fMif/B5ZOB84lbsdgzjIJ23UqxOTzg9PeXVq1csT9a8efOWJ4+fCFlzCjNykcmkwAPSVX5+qfa+iG48JOt88Xgw3x+GORAtIxHZ7+ODDz5g18m4Ipt4ZR+Qv/iLv+Df//t/z7/9t/92DpErkyIkS22XyyXvvPMOy+USrTV/93d/NxttZcJq5pmsVqvZtOznP/85wCzbtNYyjiNPnjxht9vx4Ycfslgs+Pzzz7m6upqRkvyYkCrXtFBpEIIlARMDC215tFpz3rYUIRJDIkAVBW3bSAdkNG1Vsl611KVl6z0qFZey8MfUvQZ8jLgongqCvupEOhJjJwXoIMTSUgFWgy64PF3y7PEFi7pC+R3WGiQMNlt5kz7HlG4sI3xsYbDeoN2AH0aoC/b7PaumwljLMDmiMjRNy/n5GQHY77e8fvmCbz1/Rj+O1HXB/d0NTV3z5s0bqrJimCb6YUDFyHq9whvL6XrJxdkZn766Z9XW7F3A6shIYO6PInSDpypk0RzHARUDTVNT2oJ+HNHOU7crikrIjt0wEDVcXd+yPlmxWovvzJs317x4+YqqbLGmxJiKsizmAm6hG3bbDW+v3vD+hx+yXCz413/xF3zr+Tv8T//j/0QInrIu6Lo9rz9/Rb/rQMWZlByCp6xKjNE4d0G2wFbOsS4bHi+XfPfdb7Esa+LosMaiEWOzEMVUKxOysz+NMQafcjtC8n+Yu23vCC4mrkbmG+h5oS3rak5IPlZdIR/3g+cR98SDLw4pmVIn9GyfuBreuaR2iUyTwxqDi4Hdfo+KsFgshDS97wiTmxfmGCMxBJQ2rNuGManNFFHi65WMxZaV8CD2+z27/Z4hBMYQKI3GfvBtNJHXN1cpMD13koZDamHuzHlAItCpKNOpqNM6JzIfjmOiqXMOk3gumbRbVSVtW/Ho7ITL0xXj0BN8S1UVsg5oM69HXSep1G3bsttvGbtJyLBpVJPlxrnI+api4/h4iGx8vdl9RnfijPocCo6MSOm03oikU9aH42LjG3l6zC82PbWS5N6yLCirksppQnLUDFFCLYuyoKpK6joR5XVBEc3veOxDYJxcqokMHAMZZYlHpBbBszJ1M3l6aEE1lm2Dc56u65O1hNgNTMNAcBNGIXSGdH0pnc9nEDQoocOHZ5Ivg0KFKKZ4+x1d38v96kdUcExdDz5IoOEXz288PJZObJvgHN6PsxP17zu+2RiFOI8c8sadN1tjDMMwzMml2SMArUS6qU6pqpph3FAWBculJL82Vc3ANKMI2+2WqhJGb1aCZF4DMHdLXzyO0YzjilsUAam6M3oOiCvLkt1ux3q95oc//CEAXd/z9uZ6HuW0yQ30448/ZhzH2YgsP3+376jrmsViwdnZ2ewp8urVK16+fDlLdW9vb1mvhfX96NEj1us1Z2dn/OxnP+OXv/wlMcaZ1FjXNSEEnj59yo9+9CP+9m//FoBPPvmEV69ezec+fx3Isek8kOO2IzZGlqXhYrXkYrlkaQ16EtdObQ1FWVLZglIrKqs5WS1YNjUxeiY3omLEBeGDBB9nRGMK6U/vD6Y8csKTOinBbyqCRmbdVvHo/ITz9RLlvcgYtfj+R61RQYyLhBUtpmz7vsNNI2L9LR1AcBND11EVmhArnA9Yo1mullR1A0kf3+93LNqapmm4327Y7/bc3d7SLlesT87oug7nA8tFyzhNrMuaz16/5cnjR/zqN68oC8U4OAot8thh6Dm2HBgd7IdAUQpZ637X4XzkdC33x+QCcejR1tK0bQoTiwxjRyRKLk2UDaeta549f4fr63uc2zONHj8FTGkprEEXJYpIaQ3/l//qv2LsR/5f/+3/E50216ooWbYt0XnGfY+fphmJ2ncdy8WStmp4+qyRsLTJo6aJVVHx5PySR6fniDBEJ15ElLTZyeGddFO5wM0Nh9JCSnTO4UnXhg9ip61FxjdNk9y3SrT5Gf2ICDqqjqTemZNwHGA2E96iLOPBeyk2EsEPZCxjjCHonMYsC67UuNKsjMPA0A8MfT8rTbTMXqUICgH6juADKvgEIUuuiwueoixprKU1hmVVMYbAfhzYDwVNWTAOHd6N3HdbJoRcGvTR5htmVwWOxyhfHAUcNtP8/g/EULnfPZGD8kXrlKqrAqenaz78zvu8ffUpb6/ecHl2Qoxy3tuiEtQneN6+fUtdmDQ2mSirUjbBo3Uze0pE/eXFw3EBlD+jA5v064xR4vw783+T0ItUeMQQjz773+60f1+D+eXPK/+nlMhQrZHQx7LSRG3RRhPQ1EOVrOINZVGg0ZRWYf3veK5UxGRlkjEpNDH7taiHqbiSX6jRCD8lr5ultfiyYFTQ7TxDv6fv9ox9zzSM9EHWzrjytJWF4BO3J0nFA2hz2A+OPw8VJV3ZDQND19Pv92Ks5x3Rj4x9T3RORATAl336ClmzhJrmU6bMP0U2Sr5Rj4xssmSzKAr6vpcE1KomxMCu22NMMevaP3/5krKuUcB3P/wO/+//z/+X5XLxIBo9kyB3u92Dzie7kWb/9i+VjX0pg1tTp0j6GOIc9rZcLvmLv/iL2YHys88+E9vrRBDNi2C+qD/99FNsWjABMdTSA0+ePMEm74dPPvmETz75ZFaOAPP4BOBHP/oRy+WSf/iHf+DHP/7xTIiVjmyanUudc5RlyV//9V+z3++5vb2dCa1d1z1wKs0eIpkcCxHlxayoBNZtzeOTE07KEjO55IpYE1JAmdVgVaApNCeLiro0xGlkmgZhGo8BFQzBywY5OcfoHWN0ImlVJN6GLAAaWeSVrBjCAI9grOLydM26bSAI6TAGkWoqZQlBVAgYUB7sMBGiZ5yG5JwnMjRiYLfdUJ6e4Lxn3w+slwuqukFpw+3tLff3t0zDQF0UXL+9IjhJjD0/O0WbIpGBa0LXsVosGKaJTdfx/NkT/vGj3/DOs8fc3O1ABfYjTKWhN4oh7x3pehsdoIWw1W037PuBECKr5YK6avAhsNv1hKhYLCQUr10sCcFxd3efiuqGx48fEUPg7vaaumrxk8PqAmsMg3PURQEh8vb1a/7m3/01//izn3NzdcXQjzJzLgu+/e1vc7o+4fr1FbddR1WIP8xmuxW04kxJQRwi2nhsUdIUFc8eP+ZktUJHyUEYx5HoI0VRzo66GQLOYxKtNSrxm3yQqb4UCBFrpVssypKQcpRiFO8QrTVucgzTOGf2HHOq7Jd44sz3c/7vKFwFN02oGLHGSO5KP0rUfFQEd8g5iTEyjSPjMIhaKEmTjTHz2AWlKCqDQeET2hCDR0VBUAql51GfMYa2LDlbLenHid3Qs2pqVk3DT371C67ubxljQImQO5Fe3LxXzplaMXecpCL7t8fBx+uaFHwOlD4aLYtaq6lKvBvRKnJ+esZ9dNzd39DWFVVxOqcxF7Zgt93j1MGXqDTlrC4jjwFyAZE25q+qHw6jH5WQjf8ZaMOXHLnAOBRfx0XJb//s8es5fB/m7T0e+DMxowFKpQRUS6M0ypQoIxv/OI2YwtCUJcumQiHW+KWtjt89DzZyxGreGoktyAVH9CGl2MqY78ELTC9do9ExHP2uQjshiU/jwNDtGYeBcRS13TgMYpjoawod5/GwcCgzqnEYxWWE2CghWI9dx/b+ns12g5tGwKOip9vvkjw9f5IH5OXwt5hM+SL45Ls09F/rc/1GxUbf96LNhrnQAOEXZH6FUop9t5f/1prROXzwh04SuL56i31S8PzZU168fEmI6oHXRYZYs7rjWPaVnfUevIk0w8w/lx1ABaGoDx+q1pyfn/Pd7353Hn1st9u5MFgsFkQlEtJsDpUdRGOMs2/FYrHgnXfemeVMV1dXfPTRR9Qp1TLzGrTWkoIbAs+fP+ejjz7i+vp69gtZrVZzdP1iscAYww9+8AM+/vhjrq6u5lFVRjD2X2D9HncYWom9rdZC7tNAUxrWVc1JU1P4QF0V6BDwKCgKrFGUVuazloAKk6gqUspm7xxTYqaHEJn8xOhGxugZSQgHER+VzKzz7CMKCqET9I0KLJqKy7M1VkdCmJKrJpjCEpGAH5zHEAnTNGeNhODFVj2NiRaLhs1GjKhyd+sSebWpC+5uryEEMXjSGqL0DX3Xszo5oahqUUkolWSTW1yQeWVjK77/R9/jJ7/4Ne89f8rw8UsmHygNVKWd1TckR+1ujGx2vcSR2wLvRhmhdAa0pa5aULDfd2ijqEqRqhqjaJo2Zfv0OBfQygm5VQHeMY1CxFSFxU8jTdvSdz3/7f/j3/L69WuJtsmFAJG3V1ds7zf0XQcRdluRpvvEZyiLAlNYFmXNwhY0Vmzy3333PaIPktobZEShtZJsk3QPZcJmvr9Exp44XPEwcvAp4ThzG7RJDruJTOy9n4sTY4x4WqT3IMFjxVzkZ25IiIcRi0LGtREJJYsxMnQdI7KIKltIEKItqMqK/v7u8DghbdYxzrL0aRyJKQVXBY9PxZOxhtIUgmw4LyqAukIFj4kkMqhi0S44aRtOlgvO1iecrFf81X/8Oz598+rQrc/FS+IKzKZLceaMyD2cN6LjDfshgnDMhcnjsNOTc548uWTotng3YnQUNKyuUUlSubm/xwcptpXS7Ld3qRtO/kQpx6YwhikEcQr+mqOK45/54tr8u9GHr+qdRRqt58cThU7+0ePH/KqRyrEEVDb1VLwg1+gs1S4sZVHiFdhKItd9hKouU0MipGyip2kaLpYnKHUnzZPRmITEzUViBJXWwNwoe+/AO1CymR/eZEIPgmznRGjrFs01fSdJ1lpF8RzSkcJqgtcQZa8bB1G4FHWZmsCJyY0YXYgxW4hSjGolXAudC0dRuI1DL4GXwWGtSmNW8U4ivXYDUh3ngjPd75pIt98xdDv67T3b4/f1O45vzNnIMtG8IGSSaN/3mLS4hPQBy9wqV81SwWdJ6JvXbyiMRSt9NCt8eLHk43cRgo5DkDIHwx5BuPnCAlmoLi4uePPmDa9evWK1WgHMqo9xHLm9v+Ps7OxBuFq2Ss/z6qw4caMQYHe7HVVVzT+bXS3ruuY//U//U/7xH/+Rn/3sZ7NpV3b/7LpuHhd9+OGHvHnzhl/+8pe8evVqRjyOHUWP/Tbywp/PTwxOkAQUlTG0VrGqK9q6oLKaUkOhlTDzlQZjMAoMAR0Cyk8UGiqrpQKOQQiYAdwUiF5cI6fo8FqY40GB84EpRgJiLENMNsQp+jtGkQ2erlra2kKcUCoK2UqFpFIQ2LawBlsZdOExxch2PzD67EfgKQpDYcUjYJocYyLa+igddYyBuqqYlMhXp14UGuM4MQw99VRTNQ39vqNsGuZZphamtnMTk9+xXrRslwOnq5bR73GFScWLYvSRIMgoERhcZHQeopIYj+gY9IgxPUpbylIWrGGUrtQUhtJWKM1sFtfULYUtOF2vmAbPZhiwuqQokxV6kFHRerXk17/5RBxDvTi6Amx2e3wIdPu9kIaDkG5dMvoap4n73RZtDaF2UNS0Jyc0ywUhfY7amJSXI5VUjIIexHgY1x3ff5mDEZFZtJ8VIHIP2KJgsRSzJOccU3axNaICyKqWvKZUVYXSonTLiMqxmViMkbos8SFQ1g0K2G93c6NQaoPygdII+jglkml+kbOaJUaGvie49HpRKAN9t8d5yRfXFDIe1MJ/0gSim2iKgkIpSSL2Spj9hVg3L+qK9fIHtHXNX/77v+FXLz6hsIYYxewpqsP5k7HIYW07bqiELzGvfNKhZ6Q2dc/5/A9Dz3LZcna+Yuo0d7dvOV21rFYtfrTSfQaRRO53O7SxlFWJ1Wuur9+SSdnHf87rqsp97P92R/q4eOgccTi+WOg8/DdyU5+/I9dBjOIxkTJ+Mh8txHBIfIWZixUcLNuK9XrFAgPczY94XIDLaEbP/Ju8Xns3oYLDISOHB68R+Uyz3TkIoubGUYrovkMFkaYGDU5D1AqfUBuChEzu9ztBJRY13kh+Dkdk5FypGaNn9MQWRjw9PGkcFx4giPJbx+jIgftBDAQ/0fc7tpt7trvN1/o8v7H0NRcVx0Ffbds+GHnEmMyeErqhYr5cFLe3txRFwdXVW6Zxot93kjD3hWvpIST28EY93mhzsZG/Mrk0b8plKQZdIHKd3/zmN3NxstvtuLu7m7u11XrNycnJnJzadd0M9SqlkjNcQdd1YshFIvWkvI1sKx5j5Ec/+hE3Nzf81V/9Fbe3t2y32zlHZRiGudA5Pz/nyZMnfPbZZ1xdXR2NRQ4E3NzJHHdC+bxI5yr5BnVRUheGxmhao6hLy7JpKKyhiCRJVoJQjUUcAAL4iTBFVJBxQ57J+ZSg6b0nuICLXm4aEB8PBc57vFJig4t83mgxskGDdxFjFMtVw6KtKEpDYSvKShFCLgaTplsdXE7LssQWmqhTT6KgrCylke5147ezRNn5SFAa5yNFYTGUtHXJ9W6LtpayLFgtl0IMDp7lsqWsW25ubvFuwqTxXVmVvL25p9Ca1aLh8uyEbTcxTZ7CpATODIVqec39FNj1YtoVnAS+hdCnzkqg7rKyaG1Sd5/Z9gfCdVmWBO9pmppFbRj3PdELYjjFiIpC1CRE3n3nOW9evaYsSvphP5P7FInYZi3dvmM/7gjIrLjre6ZkiX++PsVcPmIz7Pns6jUfbJ6xLgvGVD2ZmBIr0n01jkfjxCOYPxcXQhqW6zBE+ayPC5K8LuTr1aTP+LgRyFHpKCXmVOGwloQMp4codv9aUVjLfrfHecdisaAqSmIhI5qmrNBKMU1O3o82BCUycFGspG4zxBSOR+KbjMQYUpFvIAZiENt3qzXj0FPYglIpQmo8VPAop2YkpK5L/sX3/5j16oS//Hd/xU9/9ZEYhOnUoedNSefsk+xAKkZJcq8f7u38O4c1UMjx8xrhPX2/w2i4fPaE7e010U94PHVVCCfFOc5OT4U/VlRc397RuZGqrqjGQO8spigw1iZWdtoEs1Hf/8rlhkpFzjGScTRx+Bq/O/8tncucE/Kg8kjXrYwGx8mLz4Yp5Br0TgoGExOqJ8nW4egBYohzsaEzopueK4RDrtbY7VFhwqjAUI7Hr07+F9Pfok77uGMcejabDV23T8/vcW6QYiWN+KYRBh2ZHNzeGjbbDY8vzo7QnlwcqPyE4kaqJYsmEhLZ32OC/H10I+M0iD+TPi40D0WLQtaj4MVOYHN/w/39P0GxQdqU8xvK0jXJCJGHylApREZ32Ei6vmPRLtBKFovoA7ujzuSLBcX8Nr+AamQexhe7+yxRbduWsixn+HQYOvb7HazkBspGWlnNcTx6eef5c27v72aORI5+zzHtOQ4ehLNRleKHkEcty+WSJ0+eoJTiH/7hHxiGgZubG6qqommaGSpeLpc8f/4cpRSvX7/m+vqa3W5HWYp5TTjqFLOc9svQnmPJbVOWLOuG2mpqrah0pNBQ10UKmZI46qDCDKnpgFSpzhFsxI8DwY2gZcGWXIojBnUIBB1Fl6FI8LgHK4uVSbk5QYvnh1Ly2VujKUs7w7pFaVFanAPLssTaMq0vGq80DBOj6xCoWYvsNEQKIwhDU9f0vYyfJufpBwnIOmlrfHSSOjv0bLcbUdqUNev1CluU3G+3KZkRvJ/mkcE0OWzlWS0WoEtMsWAY4W4/SjFhTYJNfYopl+vO+cCuG6gNmBjE1ydG1DChzUBRlChtKOsGIYYmGLcwc6GsUHjnaeuSplkQXWC/2YMpJCJAwzQMvHzxGf/iP/lP+MmPf8LQif16CLKBT0GM4ayxyTdBkDMVEc7COAp3apro3chVUdLEyOPTFeuyoFydSJGRSGsqpDGJOhpZ/+/dAAEAAElEQVTXpevumKAspOFcGIBS4vhLKihyoa6TIgzFzP/I13MOHswmXF9UNeTvOecoK7lH3CR+K2UhGUpWCV8jm2rl8ZFKhNNxmgjeM3S9kEetRWy5xe/CWNmctFLyWKQCZ5oE0vc+5Y6U1IWdUSNxmZEiO2ghC3//29+hrhu0tvzsVz+nD5N0zkoM7/IG5fMIRz10YZQG86DGOOanPeikNfjg2O83nK2EhDxOA4bAfhhomwZjpNlbLVe0iyV391v6vk8OtI44xZksq9LjJ9Pw3/oc/tc4HhYbc8Xxe37+t/9MJJK51MjMg5wNZY3kvshIYiAog7FxJi0rrSiCuAD74NhuNtRFMz+vFxgTrTPvJh69zpgSmQf6fo/yE9aAdyMcG5TJIpner7znaRzp9jvu727Y7XaAILPjODKNDpARyRQcMUxExEF4v9sxIw/z18MjKPFN8TEwBVET+uCIRqG93CODn3BBTCC/fIiWiMlKlGJumnDTPwFB1OgDWzwzyL33M5cgFx/aWnHfmyasLWe+gdHSmWfuQ13XjDlE6ujDejAeiEcfZvq3eZH+QlFy7MdxkNYddWNO2NjH3XPXdVxcXKCU4h9//o9MaXEsCvFEyEWLc24mr0r+g+Hi/IK7OylO2ralKIoH1uGLxYKyLOd8l6ZpWCwWXF5eMgwDm81mti/Pi07u9jLB6Iu5C7PUNSEeZVnSVDWLuqatKooYqI1mWWhqHajKUvgT6VQFnyv83K16YnCCXEwis1K6RBsIkxc1gguESargqOKMXkze46MQhoqiQFtL1DqVJxGrFcZq2kXFYtFiClngffB4xCFT5/l86owdim5wgE6wn2V0AaYxzbvjHNI3TAGfbpKb2ztO2pbJec7Xa8nuSefKWo2e1FygBR/pBonVFt7EKGKxENL1MvH08SV39ztKo1i2Dd0Eu8ExuDS+CKRwt0DXO7DQFAK7hyB5LsM4YDsrqI2xVFVJsGp2ZS2skPaMgvOzM05PTvEuorzGKsvN/R0RRVHWQKQqSv7mr/8afGC9WEr+zTixqOs5KNClcMEqBQgG5yTQLqEC+6Fj8/mOs8WCJir++j/8LXaaUN/9Huf1gpNmQVtIiFwMHpWQCNTxHFr8VfL1mN+PUpq+HzBWDK5c4i5F4oyUxBiEZJxQKR/CnF6cSaMPvvJMPkHgk3OYREhvi4IqRdkH5zFzM8S8lmit5w7fJWJpVZZYk+zqQhBuEE42JB1BQ5SqMfGvJk7Wa+qmYRwGYpDn0ogzo01FmjLFTHz+zrvvw/9O0TQVf/eLn8DUP0jnzQhjRqXivEHkbJC0HqbzLlHnh0IK5DY+OVnj3MRut6EoDEO3o1DgxpF+v2e1XGGNOI3e3tzQNA2r5ZJhGiiLgqpUycvEYTiMdEQM8E9cbPzOhz/aA37Pw/x2oZF+P61zM8FRZRfOSJkK8kjEeZGCo0BjEVts4XdooxjHwN2dQ6kdMZYoBO3WMaCUzS9CUo+zN4dSiSXCEVr1u96rqMD6fcd+t+H2+pq7u3tQKnlueIkmMGYeKwppVhRUXbefR56/88RqKfxNUiPqqCmscJZQKQfp95xxMxdsGmtUSsb9/cc3KjZy2FUIIVVdzIVEURSH+aOxqKBRSux7lVFiyNRJkbHfd8QoEKWQwCTtMoaQZFjhUGlzBOLELAs7fKDHDp15scqFkOSuJPIhuWBRPHv2nPvNhtVySVXtef1aTL6KssTagjrln1grccPGGqpKiKbDMEgx0w20dTNDxEMKKMs+GScnJ7OMNxdG5+fnXF9fs9/v2W638+gnu6ceIy0xxjTqUA8KHqLkX2gFVVlRNyWLxYKmKKmtpdSRCs+yKjlrKyoVKFXEqphISRodPDGOqOTOGFwgWiMGd9FI2iVaMkmcw7n02SCZIVKsWUavcBi0LkAhsfBa1JVWG6wBFRR1U7FaNTRtSVMZlHZCxNOGuqqTT78UDtMsnxRosdBGiE8hJP8QT6kUTVUxTntiFMh8F2HbjyjvGb3mbtdj65qqbcAqPI7gJqrKMPnA7k5yfPr9huiCBHnpQFtV3G87fL9hUSou1g2b7Y5FbdjWJZuUCBwT/BmVEPUGB0ZDmQx6ghI3ynEahVC43wuqYw3eRXwWvMVAXRouLy9ZLpe8eXNF2VoWquHt5pqYoH7hznjur++4ODlj1+05Xa8ZxoG7zZZSKYq2YZqKNMrxmKLAK0Vp9Nwh26qgbGqasiJ0HZ9cvSb8/cR+HPjOs2d8+9FzLlfQKFl0xU1SE5XCx4Aj4JR8PlMMjNEL50OJx0SIAT/6GdUKQXwwokJ4JiEpykJAW7m+jdZigx/yJirXqiAGRvxetHi8TMOItZYmEaqzxXcI4jiUiZgqCtHQBUkoduMxfysVTnmepcSuWyUEIfiAwaQRjBRHdd2InLfrKKqStqyl+w+pRDAyJmuMRnlHCJ4/ev6chf3XDMPAT375EUMYUcrisleIkuJUJTt8Hz2gk0xSChAVIyrIedBA9JFAMk4D2qZFa8V+v+OdJ4/Z+5Ew9oKIBcd+u2F7f8fJyRnrkzPqOmLjxM31WzqrWNWWrR/B9VRK0jpiUt+kANyvXXP8DgDit45cFghjS/gFKnFEpLjVCBVRc+zB82Uoz1c+eBS0lHn7lDGUtZbCGCCgokMHD35EaxmNGTdJ0Rk0XkXGITJGjxsj8B7A3HDLnmcgiAIpN+TZrMsUGrw4xObrG8TaPZu+gQcdUHjCODLte8auZ3u/SUohZISSyMs6pjFIqmSGwogJYG6so6zfkqCspQGKyNqfgg5tVVEG4WJorVDRo8oKFzVRCa6hj9GaGOV8KYWyBlPWKFujyyWq+Hof/DdDNlJeSU4szTD/sTw1xsg0TESlMapIrHkSVJwQEeXIyaQZflIgVrkxoBNhJ+YLJ72XA1FNz+jCMfrhvZ+9LYCZkDlNiZijFLYoKauacHfP9Y0ErSltaOpmfo7ddo93gaq0NCn/IfiMKChJOtWal59/LjrtxG7PviOZ75FVJk3TcHd3N49LgDm6PueiHNsQpxeLSkxgdzTfNlqxaGoKa6hK0YMv25qqKLBEVlVBGUZaqzhZlPj9DhuiQPxR/BNiFIhZG7m9RxfwXiHXs2IaIyEF2PkQJFjPpIj25I8YlGY7TDhVoKLBBDEQK2mIRvgWWk346NAqYHTEuxGnNUqJUqdIkPjkpmQQpimKmqKydMOINQVWWbT3tMZCBKs1XnkWVcVmsxPGNRIT/fbmjvWi5X4/0Dkoi4poFIObQIO1EozU3e0xJrBsK/ATTVniA6zrku1+T1torPGcn9Tcbmo+/XzEKE9bW6zRTAH8JBsiMmoVZ9Epoop8V4nD6eid8Dl8tvqWnAMVBOYtCyuEyRjY7La44FidLNBlxLwhLbRR5HMBVu0KPznqooToMSpSW0MMyfQ6BiprgCTtPPKu0MZQ1iW2krHFGAt0Zbmaev76o5+yGToiEkT2dLlmVTWMY5TIjFRARa2YXEAnaWc0WvwsQiA4j7XFYS1wh9RalFivD4NYlxulMFFGKD4RXoMXhEtpLeZbR4iKSq2HT/dOYa04mk4TZSrmM+chIwNGSQhbNgGLIeDTOfLBzxtViBFti2T+pyDI+M4qw+A9ZVnhY6Tbd+iyZLVcof3BuVch83AdZZRmrZiKTTHwwcUl/8Wf/2vGzvHx68/YhhFVGKJK3LYYxK0zBXMBGLR8mCSAI3ndzOhSTCRzpYguoJShH0Ygslwu6LeBfhzYbbe0Vc1isWS/vadtW5p6QXV2hpp6bt6+RU2OwkwYP1KoSJ9I5kYXuDhJQ/I1jjiPPb6atHlY2aSgzCyHA7dCEaMU8AqDeKboVHhEvjg6/8oHR6YSRHW0fSTSuxdzPq0i0Y8EPxKmATcOxEKiN6ZxQBFxQnGgD57gJianycUGQHanlteaLNB1tuV3eO/opxG8yEm7cQRkn/FRsnMMMaFpAW2gNJZSF1S2JrjIOEgDGrwnThNTJ6ZeKOGp6aJgGoa5OBfjrnSOtEZj06cS0NpQFCVV09CuTjB1i7ZSdJkYKZqaKSoiNhWaUZC6eYQvQ/WgNKqowTYU7Slm+idANvIIJMewP0ixS2jCAzlSIvZkwtcxzyBvtsfR8PliUSqZPcU4k0uPnyePEmTeb2d49/jPw+KjZolkJnv+4z/+4yzbq+r6ASqjtaaqqpn0mp9rSvB0fn8xRgm7Qdj2x54XWus5Hj6HyN3f38sJT8TVYzMjpR4alR3GPo4Y/YGgWkphs2gbmqqS3JOioCwKysKggyhI6rqmLQ1+kgtTHaFEgi6KfTxRoqQztD05xzCMCY4W6M57j08VMXnxR8KDbu53OGXx2hJDCQGMjZS1xVhRorRtw9npCWVZ0Hc7hj5QlYbVaplm9bC0BYuVIaIZJuiHiV3Xi9VyJ0hCWZR459FGfPesMbRNzeSBGBm6Htd3GKLE25cNKkonqXTAFAXLRcvd3S3OSRBXWVZUtkYrg4uR5aLl+vaGxeoUU1gK63n+9Amfv73jrruiqS2rRcN4uyPlnuZKmphqj0G4hxidNr7JY0ZHUdZEFCFKVkl0cYZ1r29u2e52lMnRdbFsmJwYLhEtRIvCEIJOsjYgitNiUVgWyXwuXT1AmEecSj3M09CFxEwXdSo4BjGpu9rc0/3kH9i8vebPvv09+OC7hDOojQUXDwWxUihG/CRjh4zaDalgrJSd74+MOObiP+f8mCMehU7FBYD4HwlaSZTRi0JBIAWdyei1qZv5eYu0jiilcJNju90SnX+4DvHbo9n5fKQuVGTCMhPH6OTlIYhMU9VzEbRcryVzZpgYe3GFVSR1TiZ0RvEVUUo63T/64ENCUfD/+/f/I3/zj/9AYSw+JLLdEX4rTJG81h424vm9zAsx6fxG9v2AtQVN27Dd9axqC1EdeF9EbGnpOyk+yqqiroo0Zkt+IukliEGbJ+gsof+qneAPexwXBIdi5cjgKz4sYr7OA+ZG9UsNUNPDxRhwbpJ1acz5IEeuzMFhyGaDnkU42i7jgcwLieR7pDCKuVlGUC+rZeQ2/4ZWiUuXfkoJelW3C1YnZyy2e5pmQcAktUzPGEdpOpKfBxqU0YL4TVOauhnU8VUVj16jMVR1zdnpGbpqcCGgrRR1uAmrJOjUGHMk0T56y+rwWdiioG4blqv1HKr3+45vrEaJEabJobWl7yYopQMOPqZI7dQpcNg0v4h8HGRyqW4+4oCQK9dcKauHl5k8xmF8coysADPikTf/YRjkg0GIYPv9HmPMXKjUdT0bZZ2dnXFycsLV1dWc2TBNE0VRzLLa/JU5FXmue1xstW1LCCLzvb6+pk4z9ezBMQzD/DrzOfkiJ8U5j0sVsVJSWC0XLW1To5U4nCrE0dU7T+9GGiv6f6LB6gIdZfRAGqHMhKm88Ib82mWhGcaRfT9gtGyKIYL0XSAQGgJVK4WPml3nue97ukmxbmvWbYmxE6XuKJXBaMdy1XCyXqJ1xHkJDaqbevZUkAAqCEqhTYlSBUVZslqtMErzeniNSgWaRzpfj3TpVVUQRy/eFsYwTo67uzuausQqxWq1wBYFeI2xAR8EmTLGAhqb/BhiEGJWThaWEVVJ7SKOwDvPnvL6ZkfsPKu25vZuI+f0yIM6qoiXRkDyPxPSoLRHDQNlVVFkIrUSqNyHyDiNhJQxU5YlEdjtOvb7ntPTM9wUubvdJYg0qxrkeY0xGFtQWGbpd9d1s53+vCGnazfGSFGVKG2FLBYi4ygKpMpatruen3/yCTiBm3v/Pu+dX9AYI9Htk5Ai66qSpMc8JsmNRzwQx/N9n4ugrK7K9900TbMVuuRPJOIkmpDyKzIiopXImzNHqa7rtFhr2roWldHo6MJeyL7DkDaD7Cos130ei6hcHaZlWSsltufDSNQaF+WzzIszGmxZsjo9oWpqXDcSx2ke/aIUZUZaktHdMZm90ppvPX3K9z/8Dh+//A2bYU9ymE5FRS6G4tzdS2N6cFM9Xh/mNVVFttsdwYO1FV23pTYtMcL93YZF29D3A5vNlrpuQIlX0OZ2R9fvqOsK7TyjG5mcw3rhHkWEpxLzPf+/xREPhcY3Lja+4jgm2UuDJ4ZvXbdnt+uST4xPahQl7pyKWYqtODL1yp0b+fOID0b5dS2k9LZtMFphjab17eHX9cP3o5S4vdbNAl0UmKpmcXKGN1t2+x1jVGBKmkVJVVqqpB6KWnhvIUhTHlLzkytI4QTFdD2JOGO5WmKaFh/jnFIdxgE/dswE3a843cYYkXsXsnbWdc3kvl5V+o2KjWEY8U5mUzbNgYOPqZLO5aJIspR62EEcIwdwQAO+yMnInIA8u1Mc32jMN/AXpaG5wDiW35o0R52tzlGHOa8SG3WVNu6yLJmmic1mIyOi1MnkgiCjC7loKMsS7yRuPS+wmXTqnOP6WmzPsytqzqrIi29GZLKK5riQOUY9pNKUtL+2bXhyeUkIXmLs9yJ97HZb3DSgTENpSyEuEWmqCucmdDzqHY46vGw6E5E59b4buN9uMUrhQtL4a03wUbxdxEYDj8KjCFhut3u2wy37tmY6WVI1DaZQUJQUleZk1VJYnTZJKfimyTEVDmtkrum9Zwoi11IWAilvJt34hTGCZljLvu+Rzl1RFpJl0PfirTLGyHa7Zb9eoUKgbiqGKSb4sMK7gaKsqesJl3wWpmkUMph3yS+llM7BKqrCsO1GLs9OuDhbM/hbVk1BU2im4HCpgMsLT5ivdSnUiBAGT2REq40Ei4Ug105pU/dVUNiCdrFkfbKCCJPzeB9ZLVu6OBKJlJUQWTNqgRLJZVFYdGmOOhhmLlBG2jJ5FKCqa4LS3G82DMNI1w+i19eKQsOkDL98/YoxBGzT0hYFT5YrsRuH2SsgoxPBiblbiAGV5MDHiAIwF9j5tWU0zxozNxcxSLCYD35WkORwtlzMeyJ2com4J74gwQemcUL55NCYQtaCF5nrzOFIr1mlzJZ540noqYoyBim0dHWRSNXUIps3hvXpCeeXlwzjwO5+iw0BHcFNssEUNvGWUiy8NFHCw4jRUwCPz884W624292hrRbI+2j0kFNl832a18o5G4bDhpmRjfv7LXebnYxaxp4w9FgCtqp59PgJb9+8Fo4cKSgvBOrCUDUVtiwwhSJGTT/0GDehS5WMyNR8Df8B9vmvfTzcD8J8z8xzpT/gEWNkHCd22w3391vZk5A1SmuVMkCYM02q4wY+HhWIaSPPKFlZlpyenGJsiQ9ptG8061tP9umYidfp0PnzNoZ+dIw+UjYLajR7F4iDQylLtVxSVyVluvfB03d7KRxyI5m+tDpcUyo1F8YYlosljbFzjo9SMHZ7trdZqu4FUf19h0on4sH4/6uPb1Rs7Ha7mYsgiwYPSJn58D6AOqAXcNjkju25v1hskF57SEmgzL979M8xk0QPN2GWzuWNOj/PDCF/geGUYd1sI543+fv7+3kzyMTN/O82cTPy36dpSlavh1FINui6u7t74D2y2WwenJ+82OVzcVxoHMO7VVXRNsKatsZQpPNVlSXL5ZJutxEo22iiiwQ3UmiRAYZpxNYlQanZj0UhAW0+ncNjRCgQxemSSGEswXtcmp9GXNLckxOfhZNTlEwRxjEQ44hRPetVR1tHTKtYLVY8ujihri0iiSwpCkPTiNOqLSyKSFEGyqiYpsBm37Pdd4wuMKRMnKZa4J2jqivud1uMKbBWUwbZrIbBEqLHuYkQZAHWWmNuNpyfn1KVFuUVVSU5KNpaKluw3+25ubkRUnDTSEEVFTE4ySMYHUYFTtct7zw5Z9d1WFvQ7VeE6y13+yk1yGnWnxQMIQeMR5FWMnmsGbGDSIQ9EigmvyqZIPu+x1jJY6iKguAjZVlRlo10LUExTWPahEy6VjzegzKkDBMxdysLc5CTzsoF6VgKaxmchDplx89xGonGilmQ0XgFH1+9If6Hv8VtNrjn73J5eUm9aNHjyH6/R5N4EDHiXHLI5NCJ5+s8b5jHm2Qu3GO6/nSSSscQZPZsEsEzrR8qLQLBeaZxxE2TGMYh64ifJKly6HtUiFglqoDpCGnJhf8xMjDL+JObo0RvFwgfUbFcLrl49AhlNKsT8c+Z3CQpvJPDOUE3rNJShCmFTrJKr8B5IafGCKPr2dzcMHUdpTYJ4o+HBjltFDGhwsdr5sO17zAiDjGw2/ds7vfgHGfrJT5MLBcLgpsYx4mmXWLsOJsNKq0odI0ymqJuWGmLY42vW9CiIpLnCILc8L/NIa/jGNn4Az4ucj/k/aLvh4PhYrqmvZefVOpQbBzXOw9fUbZjEDfdtm15/OQJlxFRoZUlRkP967ccio2jzzZVdZHIMInibTdMDCFS1AtWJ0La9M7RnJyybBsWTUVdWrwbuH37FkxJTCjejGikpl0DnlTQGFGhFEWJCyKDVQpI60WM8VCwfMmRUbjMTzFGEoO/zvGNxyjZ9U+UE4npGw+JhbnKO/bjOEY3jr/mzTVBvVprhklMfYw1hFxZHl1sX7zuDh26f4CezCOKIB2OnKlDN5WLpKwgyYtklqpm5CXGONuQ73a7g3NijGh1yIkB5ujtbHS23Yqm/Vi+OsdDZ/+Bow0hxjhzWaqqxGjNYrGgripZUIlstxtWqyXTOCT5IExjLwCfm9AxUGiLionoFA4dUd5wFPkzeJhCODon6MZmJyMKDM47ctBPRg3z2Exbi/DWNL3zjD4yjD37/chyoVi2lxSFJp1ylIpUdUnd1Mm6W9Qa1hhciPTDiFKGtl0Q9x2xLKkqUT8Vhbg6+hgwWpw6rVUM40TbFOz3snn6ENnuJLn31dU1dbuUrjwIA3zf9QQvuQNaa7bbDcvFEmpxsMQHhqFns90RgsKUC4iey9MVb9ct4XbH4/M13eSZPOx7cdnEFMISJdkVE2TMohG4E5F5+pDGRiBjFDeJLXaS8NZ1SWVL2rpBKU3TSKbKZrNltV7gpkDX7dFaCdLoNVhZSIw2YC0OJWhQ9pxwjn7fJYlpn1xGHdPQYzRiTmWs2If7gGladm7ioxefYnY7Qrfnh4Xm+ZNn1LYhENG9ZnSTjEyDBKTlsUrwDzkTxwVILuAz6Q2YRzG5M/TeHzEZ5L4liIJDoUTplEYxVVkSnGcc+oRoOKZpTDbTRzyHhHRaa+WcJHVTfr1Tup9D4k6UVUlZVSzXguqgoNvvmfoBNUlCpp8mKVKMhG6JGvogFRb0xzM5x+3NWz795Dfs91s559YQxvHQCCm5j1AHv8x8/o75Z188+m7k/n5HacTr1PmINgXj6Hj95orCSkEv0uOC/W6H1SIhDjEStWF9csG0PGXSVgrllNUyd8pf+/j6P/tVPxljlHI9/UBeu2M8eI78ToJofnyVR8aCvJP4L3I76jkpFQXWFpIFFKGuK2JM11NCuEwM2KKg1BV0h9efuYVwKB4UirKsOC8rlC3ASoqz1Yp4c3AQDalIzWMOEpI8Oc/oHJMTVljdtKiiZPTJfbtuWZ6cJt6epd/dY7dbIqIC9JGDNDbGdD2lBjZxiBSy9hxG/3ksnawdnCMWRWowD+9PI1w9kQ+X1JWMUdw/xRhFkYmD7ksJjYf54sHOeP7do44ib7Jf7IIOXw8NRR7O2g4Fx/FjZu+N/HryYx8jJwrmNMpcoOTHyAsdHFCR/HVckGQYWIobCS867tgyjyRvEjPZ8wuy3AxtZ4QHmL09mqahqSumaeDs9JS2qem7jslNuORH0O13ovmPkUIlN0MCbujQ1ZLCGNw4YpK6RxCvDE/Mn9y8MKr0Pibv2XU9KPG58GisYh7NZJpCRG5MjMj/XIz048R2e8/FuuX0pOXkpEXhGIcBZSJF2cyZJ7YoJDnUO7TRUqV72N3vGSePj+INARFjBFXqh0FGBGlm6KaJGEYqWzIZhdXyO6P3MHn2+47y8zeEJ484O10yTIIETD7gky12XYsVMUozjAPTlEK+jKWqGpRyjP2OpoCnF6dy/RIY3Zqun+i7SVQawYMWIR9HM+YZxSpKTFGgjRXL4RAYvUN5kSKjIE6jLH665OTkjKZpOT09SbyiPSFo7m5v6IeRk/UJm81AXTf4cUJZi4tOjKJSkR2J+EnMhYL3Yl7UB7b7jSgsJglKM9rQ1CWjUrhhZLvbEkPEtC13ruNnn/2aUUUG73l2+UgCrMqDosMqjcv3f9QzJ+t4fThuGA5kbglSi2nROCAYGfkQIyJiJmTLfeMmhzJaAiBtkQyGgriTaoND/AjyOCSPS4zShMSVWi2Xc/Lz3c01NpGV0YqqqSVFuG3Y9500AIAfRsLoYJog3cca2XCky9NJaXIwxPLesd3d85vPfs2LV5+JcZmJQOJ2zNdIGp8nJ9djy/bjtS6fz7wW7nYdm11HYcTYzzKyubnmfN3Sdx3ee/r9jn6Ua6a0hheffU7dtnhTsR0GVpcNwTZMyjJLTfOL+7rH/ONf75diPF6Zj74/fzet7VlbTPyt6+irCrDj1zAXHEgxF0Mgj+OtsZLou1wRlIgImrrGu5GAok7+R0ZJE7qIxVxsyOORbvcj1FqrtMYV4oxd1GhTUGjwxYHz4b+whyUYR5AIo7GlBa8wZUFhLLaqUeMExoItCFryl5QpsWVNQIjjKqOER+dIHvvgYJtjRCKkYulh7tj8fuIXCt70njPnsaprqmr4p+FsZN38Mdyf39DxyOT43/MLnd/4lxx5/juTRDno5r/4u1+FqOWO6VidYtJCNn+ePJx/ftVx3E3km134E8WMSsic1sxKlmxK9P/n7c9+ZcmydU/oNztrvFvN7qLJzDgnT191qyiuqoQACRUg8YR4QeIPRQIJIVBdVA8IURQcQZ17T5NdREbE7lbjjXWz42FMM/e1YmdkBtwqU8Tea6/Gl7u52ZxjfONrQFj3KaXFuEgVJMVa+8S46PI1W2vFermu2W434k56grauqJwjBk+KgSl4xr7DFtLR6XQCo6lUwlpNGAeSrzCmIYWAmccyqGcFXMaUziWp89dCTPTjiNaGpqlRRvzzVYHbhBcpHI66rrDG4GPEKU2KnmmMtPWGX/zsc26uNiQCMXkgUbmzu6VS4CqH0WsOhz0xT8Qk575dtZz6sZwfeV7ee4ZxwFYWbTV1UzGOA2R53c7JOdRRLIbH7Ol6z/fv7jDO4Zxlt2uwVU3wE9ZVHB4fqJwgSKP36KoipUDfd2y3O6rK0A8jw+BJ2vHqxRZtlbihmoqHfcdh38soKaXF7rmc4eW6lY1f5G7TrBAw+uwqaQWOlOAkS9O01HWLNY66bqgqx+3tNT5IxssqtjTNio8fPxaSJUBanHGNMYsJ3ex665zjcOiwzpCjZ+gnDCKTXbUryfGYPErLgrvbXfH65QuunaN7eODffftbklEoo/ni5WvqupYCuzgG22QYffxBk7Dcyxf/nrlKItsxgsoshGtIepa0y7Vm5g3dWdq2XQqHxlViWmasQMQolLWoJM6iC2FPa8QKIZUFXSSQRmmaqmaoG1xlyTnSrtd88eUX3Ly4JeXM/f09KUQ0It0Nwwg+YgpS4i5MnFJ5jQlBTsZROFBff/cN//jrf+L9wweiyQQCJIXVStQFl8VGuRfDxWj1ckO9XE9TlgDCrhu5vb6iHybicGDbVjzuD7S15fHxEWstL168RAHb9YbROh72B4bs6dWaJirQFRmLzJCkiEqfKAb+2z7ml3p5Hf37dDI98ywUrnKsVms2VwlbC8LYFKNHn4QIfY6ar6jPbuPMSplzISSfF+NKkSgJmllwzhBJ4bIBf1YkKeGsOWdYr1uudjtGn9BVjUmw2mzE2dNVoARFS4jhX92sSohcRmshoF8+0/m3zWPEFCPDFGSUq6QgTn5i6ntaZ5+Yz/3g/OliCOYcVeUKHzH+we+/PH6aXXlWUNzy5ktgJnXmLJ0IQP7TCp3leJKcp88b8Txp5hNIyPNj5kBcqkasteJQei7zPtkpAE+Ko1npMj+3ywJoRlFWq5WE7KizzGw+LnMj5p+/NIGZn8P8fJumoSoKjHkx0UqCc6RoGcVrYxqZ5Vpj35XiJTBMgc2qFgdRItMwEIymllO3dF+kuaNAorjn31WgNbIixECaAsZ4jKsKT0Q04ao07DIdSDirqYzGq4BYFCTa1vH65TWvXlxhnRiqaavAGBmhNGLfPVfVc6HV1g1KOULaM/nSMVtLMLqYmQkXKIkLkhhnxcCqqWlWLTnD6BMha7rBM46BmEQ18/B4IufE9fVfAIaqaqic4rh/JMXAMHTEJK6CWs824lp8MsaOMAWSDrR1zfW6RStF1WzIyjGOE9++P4rDI4jz4pzSVjqGmBLDOOKDp+t7rDU0lRSR0zRJN+QEatVWuBPjMEmoYRIZ4tX1tpi/jXz8cMfHjx9YrVfcXN3w8PF+ua5SUYX4aVqKjhQjpq6lENFgVKI/dTRWoPXXL1/StitZNHJmt71is91KBsnxkcHAdDzx3/z6nxdfiS9fvqaqa3wIxJwlZj4m8R8p1/ZzWfpzEvd8Xao5l6V0ZbaMJFJOYkZU7tW5o4ozimHVYktOOfdGi739XLzMyOFceMzNxjAMS7ZT0zZoo/BRsdpteP2Ln7Pebtl//FjUXkE4MT6ivWQRKa0xzpYisUQuFGJ3VopI4nA88vbdW/7tr/6Jbz++ZcyB5DSTD2LvL3MbWXfm1U4pni1NP1jnzo1QJoREP3jqul2g9M12h8me7vTIdndFTpFxmri9viGFzNXuhg/3e/rJo9YN2jRkXZGVIxVfizMm/N+R/vX8Ci+6w0vp67+HR76AxY0uBURTs9ooTC3eKpV1YA4Mk6ctI+y6dtKU9BdBanORwfwcy3tTxhLTGMg+MRGIKAwZO4w/fK3P/uWsZrVq2U2BfgpkUzO7G+WcaVYtxjmscxjrUEZTNS1oS0iFeDBDLs+OmcRqjMGQiOFiH9I1JoelGfxDx+U+acpaqZ40WX/4+GnFBmUxvYBdBJZJCx9A5kRLmfDkCf5Jjz934mXBuUQBfuyYF6R5o5/VH1yMYDLnkctlMXHZLVxCwPNGOHdic1rrbODlp7GMdfIiZb18nvPiep6NnefYc45LU6R7SqmSVyDppaZkXKQkccJzgmBTwuCOh33xXEhYBTlGtMpU1sncepxYtw06J4wymFJtpyTfq55AuOpizCIQf4gSGmbLRqBy6cJyZl6K2qbietswThOUJNfPP3/Nn//ZL7AGpuHEFAdBA2wt0ddayHtCqBImvNaavusZ/ZGuG5h8knCvEJjGqaTPilFRtNA0VxijqWvLur2iqhqaukHpmqxO+NQJu95WKGXpupG+O/LVz75gGEY2qwqrZrKybIRNU3PoTuSUcE5stVMMNJXM4yOOFMSD5Ga7xtWKpt3yeDjwcPgVUx9RqtzsGVCpkFvktIqUWRYrrWB0YhddWYt1jrqpsVZGa33fc7AH3rx5jXOWcZKU26470DQVNzfXeB9p2w1jPzIOAzFEjBH0LcaCbvhJTK20LpHVinHscDaz266oXYWfPF/97HMqWzEOHucqGc3kzP5w4OP+gTF7lFO83z+Q/vnfkUMk/dXf8urmBjejdUA0gRTO3h4zyfrynp7vJ621mBppLaGNaVallKIEyAi5e+60Vk2LsxY9k5qTFD5ai9NsSiLNne/P+Xtmrtn879n4byl6rJBiTWXFcl9JCuyHu4/EyYMP6JhwyuBsVbgOxRtorivJaGuIZEY/8Xg68vvvv+Off/Uv/Pr3v2NIHhpLUFnUHuV16Txv62qBrXP8NCp8uVaduW/I+xXA1o43P/8F/f6OttYY48gI6juFQHfquVrv6E8j280NOmj2qsG6Fm8c4udpIM826vG/c2xjec3LyPeMGvz/e+Qyprjk9RnjcJU4hRprpAj0HusatKvRrpHxp3PoC/OqpTnOTx9XmlVpLmL2TLoiZI3VmdVF6mtGLS/xfAhXpaksbVvLWNbUZGMXN+m2bWjqmrapaJy4BU99j7VVGXXkJ9OpsivLo6eIsZbVeoXD4GMoRUxCxcBARJcGJaYkCdCfOIeXj3/ZPP+x4ydHzF+SMeeu/ZLfIGxqVRzx5lHUxUzrsmwvxXOGpSJMSXTrqphOcfHYf2weeIkuKCVSr8tiYz4uLW8/dbIuTZDmIuOSODp3SUbLkijEJVOKGEFkZrbup0ZMdV2x2+2oayGeXl3tCickUrmWEGLZBBNDP9J1xfc+eDSZ25trxqFnGntJLTXyWk+njna3KQFdhRujikXtcv4yKT3lE+TlPEuXmZOwlyMskqqS+rG8BzpD4xw32zWn0wmtErtNw89/8QUvXt4SkieksLx/VVVRlRyL+T2ZponKOungGYhZ8eL2lqQMXT/wIX0kn0SKN02Rh/2BqDNXu52Q+JwYnFkrRNKQDFOAfgx03UTOim4YCmt74v3dPaSRq+2GoT/iQ8Iq4VkYa2Gc0AZcKdgwms1mTcaQlOP+8UhOicrVVDqz2zT83V/+kkM38Pf/+A19KOcnP71JU4LJJ2wlWShWS/eaMkvkutJG1AAKQgyc+o6+76hqQ4gTcxJlTomqclztNjjXyCiotkw5sFqLn8vxcKSqBPUySiSw4+Sp1i1DH6gqqKzj9etX5JB58+ol+8c9WmeaupJOeBxIMeCamomEM44cFQ/7jn/41T9RG4f9q7/mZncl/KMQxNStLFbSZZ/N4ubFeC7ItdaCkJlzZyTNokhoZ3kvzIF/0kAkZFOIUdCGylmqggaF2aAqS6GqS6GcYiQWczHhVkkAn3UOpeTnxmmiXa9IZE6F5D10PWny6JiplJFRTE5kLaqTXEYNKs+Ni2EKE/eHB7778J7f/P53/PPvfs1p7FHrqhQZ4jCaUy5mTSyvXdDhvBBnn4yUP3HknFHaMI6CmKXQcbUWQ8LucE/tCvKDkFiPxz3ZB5yt2R861PqGerUFXWxvLxCN/ITt9t/GkZf/zxwDMTojn1f6rMS59k9+zCzQq3q2V8j5Lai2Pifvyq+TjT/lzGy1lrUBJTb9ha32ZDyRn3yUmL3HZZmVDVzcamWTTzmXRr0cl/Hv+bweOyejiZXP4tHjGqI2JIQ72DQNTV1J0VHV5Oip6hpbVYJ0nM/c+RkWkmhWRY3inKDYKZKjRITEIL5SlRbw4FPvvWgE8jLyk9vzqdDgx46fiGyUE6vShUKhSNUUoFKRDwJZ5u1yw6gygyy2y2bW2ptCFlaFaHM2sS2tNsbYYjeusNaJP8IFTHqJfMxBOCnKm6u1XngmyKM+Hdnw6XnyZZT7/Pc8D79EPQBiFLtaYwrrWwlb1zoryZSzna3KuNpgs+azN6959eoV4zgR/CSW6McDMUYe7z6yWq0JJMZB2EhGw+koCoRhhIeHeypnmAS4IaVMFyYqY+h8ot20pOjxSSrVRMJoKzbKZVaeY56vnjK6khwC29TEYWDwEy4FdFYEHWURULbotg02Kqrg+Xy7otUvUJXh+mbHX/3tL3EbR1YRrStIAeMsq9WWulmjtSOmyBSEdLuPUm1PoxgL5Txw6kb60TNME1NKdKMnJs1DH2hqS/CgssWoiuurW8a+J2XYriqOB8X1tuZ0fCSFjGssH+7u2O22fPfhEXJge/0SkhNff6IUxsaw3la0TU136uhPPcMgRWXdblFGYNdu6pjGUey2w8ib25b/5D/4C05dxz99/ZExZlCRGdvTRhXVUoXKihjnXJWMTgmlI/vTCVM5Qk6EXLFxDafhyPu797Qb2fzlmjM0DjyBq3VNP5yI/pFXr24RF/xEmCYUg3Q6BLbFu+N4FBfE2kmWxmq1oq4afvbLn7PZ7nh83OPqit31jtVqza9+82uapmKz2zGOI3cf7witBm157Ef+69/+C6my/O1Xv+SqWmGzoTaOjkDVNEzB00/iK5ONyHurtl3up8U5V0leTGVrQpRN33uPKgUJnIuNkD0VFUZXKK/ZWEdtLKu6xrQrDqcDp67DZ0+lNI45DiDRWE3IEecMXX/COI33QYIKneFqd42xGkMu1vsZhgEVZgM/BU5cHrWRYoOQ8ONYFA5iOX93fOD3d+/4f/7LP/CPv/s19/T0lSaRSElKdsrGUzkL+kxgVaQyRTgHSColIWwzoTKlc3dsjGYcPTFCN4iR2ak/8ue/+IzXr3d8+P5balvx4e1bSIntpsWagX4aCcbh0VTra0ZsWZMzSgUxqFMUt9hP7QKf2IhQpEU/+OQLP9j4gSXfA1Xyd2Q1hij8GJNFHj6RCEaXcZpBKXMeWZQ9oizU8vNlXCwVS0Ge8mx2VXr8Qn61WuOMxqiIKWNrpxW1szT1ORwzo5hCwOnzdqmtuKQYpSAGrBb7fqUiVePQKRBGT4ienDVZRYw9jye0VqQcyzVe8m6MQWsjzVOrCdqjXU1SBrSmHweUUbimEjTQKaYY0bXF2qIyTAlVEmRTeUdCKXwkgE0Ru0A/jHR9z+gn4X1Fz9ifsJRxbJZG01C8Y+TsMueorBpHZRSOhM4X46UfOX5ixPxZRnNmAj+F/OaxWFlvl3wDjbgSquIONfutC0KizrDS/PmlWLrovn/sqZVFbEYe5u7pOQZ3KcOd4bRPfe0S+r38/qdkrcJ4zyKvFehRXqP3gZxAIXBdu6qpGknL+/kvfs7Vbse7t+/oirRUI2mokvcwXvBA0kUOjHRowzBQObsgF9FPS9qqGLUoYhZb7MqY5VbOnEc4isw4FjOm4ksgcm8lia7FrGlla8I0FCtpQ85ys2ckdEqvG1YrQ7tb8/lXX3J9u8WnPdZIvoNWjqZuxT5c2SUsyBQOhy/qJrQS8mKCzbrFuopmtWEMmcd+ZJwC+1OPpmUcI6dTjyaxf9wv3AdnLddXG6qm5uPdPf00EMloKwTQQ9cTw8TDvmO7qlGuxmmFMxBzXBQy0jHKyHAcJ7T1EKDrJIPA1RXGKlwI9CHz4mrFV1++4f3DiUM/EdDkfLHEJtHthzD3cBK8pbVspMpomtWIdpaKevEyOQ0dH+/vaWuHQnISVo1jt11z9+E9bx/vuL3acPviCq0Tx+MRrQLrtRDbjGqorGMcRyqrqKoW50TV8/LFSz7//HNev3rDNHmqtqWua+pVQ8hiC29rx83ulpxgu97y69/8BuMspxg5hIl/+M2vUCnzH/3yr9m6BuM9la7wMaBj4SoJtMDcq8YCOc+z3gT4GEUKXDgVl/4z81gzIaNFYyTAzAIOMCmjQyTrRPBeCqqmYtWuSKMQamOKhJRQRsaAs6y+XcsYc7VaUbdCFPbDxHA4ymY4BQnoM4aqklRjWZ/kd0UvPhvGOWkUjke+fvsd//zt7/in3/+W7w53RKuJVpG0LNQmC/0y63wOXMtzK3/OdlEXyLCsNT9YylBK4QvnJwOnrudhb/h4X/HqZoMyiu+++45N2xDGiTCNtG1L4xoG30C7pV7f4G0tfjqlYUx67uQ/XSh8CvAQX6QflBrliT77Z5Y/9OKnlM+fJ5U0XfneqESR9HTk8OkSSD6dysk6I+Pzh5ePYbQpLpgVba1QppgoWkPwlrpyVFVdCsGELs3ak+dQ3is9F4qIi3ZVVzRksqswZoXWDkNi3V/uNeKTMz9ORlBOW1WS0xMVptgLaONIShK0lSzPaKPIOi/rpnVWRAO6nAPOqpQ8g61JxnaxkEHHrqMfBvw0EkuxUWuKUWU6v8/5fMplz8kl9VgwH/NjJKOL4ydzNi6PS7LI/PfCryhV8Uya0aXSlKCasjHOqpWLwmM+5jHA/Pcy7phHL/ns2nn5fD6lglm+fvGc5+LhcmE7y3+e+oFcFjvzxzHGC3XY+XfpmeAaE1rpxV75+mZHu64IfqQpZmIKSb61ZW6fCtntPHOWbnSGgGPM+HEqfItaZuDGMBVS3llfTdngIrhLuKvkcRiDIi8Q63zWRdZb8l56MdQKwaNDWFIbcqn0cxatdsqeTKB2a26v1+gcqGuHNYpplA7OWFt4GkUGqg3OaByWlTacTh3eiAFS3w8oZajrijAG8eDwnr4X59BxFI7CgcSqqXj77j2fffYZ/TCy3mxpmpakRDPu+kCIivWq5XTqGPqeEDxv37/HvHnJNEVcbTC2ZppOtLUTrkgGYytSSExTJKWMDxOHwx5TtTQqE70XFnfQtJXl5z/7nA+PJ75+e8e+8/go70MIAlXO1bNCyWJRRilzONs4epybmFzFVAKTJu95eHxE31xTO1v4DA5XyTxXa8N2txMCa0iEKeAK1ycWA6zkI1pp1m0rZOS25er6ipcvX3F7e4vSUqA7Z9lut9Ql4K6qKuq6ph96qrphc7Xl5euXfP/d96w2a1I3MqXIx/0j33z/HW+ub9m0a6pyLxmtUdbClIlZXchxWVBHY4X5HkJ4yqmwVkinl4oMLYuaypBjwicPIRLK+DJpxViQFO0spnai+qFB50wchhI6BbfXV1jn2F1f4Zzj+vpaiLPacPfhA4fHPSZDDhFTiVV7U9XokkMRyrkOk19MoPbdiY+HR7559x2//vYb7o6PRKvBGdlYn4yDnx5PPifL4bLO/LiSrzQowUuhNnlG77l/2GOJrFZrXF0TE2hrcbUjZoWrV5ANrm5ZbXecdENQBpQRYyj0k/X7Tz30gkj/8Hk+fcHlU8vY4fzvuVxRSjhi85j63+cxK8Aq52jqmnW06OlMloxVYHROEpqjyKirylHjLh9knvuhlF4aOmNkrNdkSXxNyaGVRZOebMq5IP0pPcvv0fK/0rMBlxPuiNGLCaIxQmB31qKqhPESTKjm0WMZz+m5QS6n2AAqJ/rjkfuPdzw8PnI4HcVCIQWiH3EqESdByWbZ+MwDyWXkIwXHeU9eTM/+yPETi41LL4zLDv/pxzPxD6RaU0WrPDNllTYCzxjpMGbfC2Ahb86FxGVBMStUzh+zcEfOv1s/Mc56fnxKq/2pz1/OSRc47WIBLD8kce+lG56ft1UZrTPWatablu12w2634eWrqxLIlgmTuI/mnIh+KsgPQGYcB6ZhFElwFqTGWSuEvn7EjxNGK2onLGlNRhU0J8SC6uQLJrcq+mlykVeKH0Jd15iS6XCGbcXXP1I8K7zHpEiZusu1rKXCthqGcUDbxG5Tc7WpqQysGidjtChpiFVdiwKkqUWNUhbTKU4cTx3DMC7nX6xyMz7BNExcX++4fzzy+LjHFLO4cRR1ToyRGDybXc/xNGDrFceu49T1aCXGaDmIbNb7ia6TxN23b9+xXbfEcUQlS13VKOMkjlkr6nqNYZ53d2SER+G9Jykrvz8MkqOQLUpV3G5a/vKrL+iGkcPxI37yoG2RpeoFipR7J5Xxr1wzfvIMwyhseFfhlMYh6Njp1GGNlrTbIDyYu/uPDH1H3a7Y749MgxiamdkBMwppTCnFMA60TcNqvaapG1abFdvdjhcvXrHZbBh64bR88dkbXr9+g1KK7/ieMI3FzMry3//X/5r/+3/1X9FuWm5eXDOcTkzegzacwsjXH94ScuIXdYVJerH9TiiiCriZjKeEfAyy+dnC7whxVngUWDrPLpqqyFYldKouG4BB/BKmGAhFFSIW23lZMx77Exlotmtqa8ndiRQCu90Vv/j5zxe/nHEYqa1byNU2K0I/kJCO1ShJtXXGglZSPIaAiglXzMWmGHg47vnt22/5d7/7Nb999x1dDqTWMcUgrP1nDdnl2jN/rAoKrC48EZ6vS88PbYw4FjeO2sm4LkT48PGRTeO4uXnJh7dvaaqKkCnxEpCUxZgGV7cYVROUISlDVsLdKCktfHJ2/wmkWV106H/0yBffP1cbZ5D8XOTMiMRPlTf+kUMaHl34EQ118CQCqaT9BqslYiEFmlqKbq01Lp+RjZzFwVXkpvNLKGZ6iFdMiNANvcQ9pMjm8eH88zGSk2GGDbQ6IyXWWpzStNZRtStsVTF5x2bdQk60rSjZqqoi5MRkNWSJdkhFzjoPu+RhNSrLCC74ifs7MZh7++499w/3BO9FCacSjVWMg6xt81u8XJv5jI4rJcrFYRjo+gvzkR85fnLq6yyLeV5gXN5A+fwqn0hjYgmLmcOLIC+citkM63K08RxZkMLDzGdgyS+Bp+OO58/pop78QUFxWWws33Xx8Vy8CMv4KTGWnIrKUTJGUhQui1bQtC3WWa52W25ubxbliLMOP4k9dE6JoeuoSnc0V4yCKASy1jLTTJngPZvdTjbZYjMdQsQaTds0+NOpdLO+dJZS9F2+prycl+KuqC6XE8mmCEH8QIw2JD1Xtko02TEi635RaKRAzhObtuHzN9e0FTQOiB4fIqCp24a2XRVJp8ST55IX4aMUDNoY/DQtUuIQA7VrUNqibc3N9RWP+0dOxwOgJKERsY5etS13jwe6bgDreNwfGIvniTGabd2wPxxoqpqUxYOjO504nnqshn7ynEZP0zj6cWK9qqmaFVZr6aCDjFJyVqzXK7IST4fGVfR9R5gGsskYHC+u1nz+6oYPd3v60Zc5sZA/jQJyPBOsnyzLgaoXp9m6mnBKY2eOUkzEuEerjMqJw0FJDk6WWX53PFJriYSuq5qcoTsdhccSE3XTsF6vqJ3FWblWtpsNdW1JKRRo1hWX3Kq43nbEGGjahpsXL/j2+28ZpgEUhBxp1ivC5Om6saRQZ5SzNO2KK9fitKifcpb8kMrYMqKSYmO+x+cFTJUZvC1crhkZNXYpOUBnWlfjnMEqI+ZYsThBlPWhchWurmQRJLG62vLq5UuqYgB33B95cXPLzcuXYgo3jDhjGbuesT/RVg2+G1CxmI1l6UbnAijFRAqBOAUMkjPjU+ThcODbuw/85vtv+f7xji57vFUkAx7pKJ+vKTNq+wN0mKeuxH/sMNZy9/hA21asGsvx1LJZ1cSs+P7dR17dXIkhlNFMKWKSRiVNvdqiVmuydqBsKTTOnLmlMfyE9PUScVk+V/785IDjB69l7rXLn0+QDZjhDlW+kP89IxvzoUsMhFahvGJRVRZwAZRiu1mjtfgZJQ3zlpmTuN6mlEqkA4LgKyXX2uOe4zBx6jzT6El+5PbjcD4nRWGXU0YZZJStKAROC1ahjKxhWquCZMgI2+gMOZLDRPYjfhwYjGIaB2JTEZXYU5j5LCq5Bq2zYlSWM8kH4jQRSmghWkuRm3MhsMs1/6QZL+/FUmz4QNedE83/2PGTio05LOZHRxXz/HH+fKnW59mZQP3F3TDFZYY/j0ueLER8mivxg9938fFlQbD8nPrh9y/jnovjUwXUJaoyq1ByLvPWLNKhGearKoGic87c3Nygteb6+orb22uGoS/VtGUcRkwrHvpDJ5uCtRajNB5FjgmtpgU+Bgl8qpxjvVozjgM5SNGhlaV2jqDmMKtQfq6QPnOG2RelnCptNORzzP1cTaMSwzDK55WWWO2saZ2w50MSHadWBqUzmoizmevrFa9e7DCMGO3IOUpujKkxthIrb12RlKMPwklRlGyPzDJCMlqx2+0KV0UzhczbDw+QAq9fvuDwuKfrBnyUYqsfIu1qw+Oxo+96sjb0paOPKWK0YbtdyQxSKZHADiP7w5H98cRuXXwsTj3KbBj6Hq0tdWXFbwBFyoph9FhXs1lvZCRgBRp93D/QnTqqJoGJtMbxZ1+84e5+zzh5jmOWcQq5EInTJ7u0GBLDMAEKox1mDgVzlQSOhUTtNGQEurcSAtifOpq6xWYYvdiwT9NEdxqw1tBWYj98PBxIbcNXX/2Cv/nbv0UZw8PjA/v9nrZdyczXGqap53DYk3Pi9vaKL778GfvTib//f/+/uL695dgFtrsNh8dHMRmyDj96vnu4o/MT63aNW8N2tRbZXM7oLFkuzjpSFnfT2d+FLERBjdxnztgnoXGXCi6QwsXk4tBoDNlmkpLrx3tPVVXsrnaEnOhz4Prz17x+/RqrBFl4vLsnh8jdx4+smhaNWEbfn04cPt4x1TXDqeS+KEUov09lFtL5zCtxzqGN4dgf+ebdd/zzN7/lN9//nsexJ1jNkD3RJ0FdxDTkyRp0CZ0/LTjOLInnCMIl0jE3Ckpl+q7neDoxdNA4y83VFUPw+Cnym69/z8vbGzSJ3W5DUomkDKvtFWq9I6NLoaEpux6gWVyc1VPWxvOx8vLcfnBV/9jxacRkfqBLZIPMj5pMPR9vf3JM9WNPRWVSDqQoa+HMMdJKRtyrpmbynnHo8VYBbfm9ZcSXpWFWF8Vz9IHT/sDD44nHQ8fp1BHGnni8cNVNeYZt5GUW2wFZpAviHQI+ZbT3xOjxQ0/OgSF7DBCtIwwDw+mIy4HJj6QcEaFFvnyJMr4McdEEGCXRHZWVmBCrIUVflCnhyWjkh+M8+Vhk+gOn4/HHzvBy/DRkQ+snCMK8GT8ffWijCUmcEikd/ZwLMSda5jKcNMZgtHlipPU8RGp2AzXGFCTkqRPoZWT95VjljMIs0UbLrEk+/0fmp8wQvH/yuZyFKa1ypnLiE3B9vePNmzf8Z//Zf8Y//MM/cHV1Rc6Z77//nse7j9hK9NxXV1vejz21M0xZwsmGvscoVZJnE9aIO+g4TKCSLKwp03WdJLmOI0lJ8i6IHK+qKuySrJqo6gbvJ5LWRETVY+ZxT4iLHfL8mpXSNFbyAY7HI750jdMQaDZrHCKJzSTQchNkNXF1veFf/au/YbdrCHnEWCArmqZFVyuq1Yaq3WKaFViDQjIpYhwgS8FmlJik5SQ3g3MVw+RJYULnwKqWWemXX3zB+/cfmHxcbvSPjweRKQ49IStSisWvP4jDqdY0tSvkV02Iic3uio/3jyXRNhCzxtYNMcCxm6jrFSmDn0aqumWdQGmRV/bdgO9HttsNKUv4HirhciJlz7Y2/M0vf0HKmt98fwd2TVaGbv9QPCi0kEKZF0dZX/wUsMYxjh7fJrE61sLCz8A4RXLyrJpKFracWG22gr6MEyHB6fFA33WkFGh1CzHgjEYZy6vP3vD5F5/j/UTjWu4+fmC/P/A3f/03C3p3f//A6fjIyxc3tG3L2+9/z8fHA7vdms1mxeGw53TqqSqHHzxTKsoFq7kbTvzTt1/j3kC7WVM3VeGCOJknG01MCqOieFQoCVZTKVOVIqNy1YIizkRvpYrVu5FwwTiM5BBpViuUUfgk3CnjLHVTc319TdXUeKuprjfFY2JkOHWEcSL5wOPdAxq43V2hUEzDCDHSHY6yfiBeCbb45CjOiakxRLQ1eDLffPs174+P/PO3X/MPv/sX3ncHRpUYSMJ9KCm4M7J1uWhfjnmfNlPn8efzpu4HXLIyVqyc5nTqcEaTMaSsGbqAMw2ukqK9spaoDFVVc+pHfNfz6lXDwzRh1naRxyvOHe2nHMt/bFP/aUfBLZZmlNLInEkc816i1A/REaWeFmPne2lhfTwp6LQW15BZHTl/PoRAGCf602lxeE5JEKyktYwUcpZwRH/hk3GR0xJzQicKUpEwGU73j3x4+57v3n8QR9KxZzpk4Kvy7Bbd5Xl8pGTPGoeRY98zTJHBe1CKoe94eLjHTz3WKirjMMDY9fhx5N7CL7/6knC9E6KosstrzRkJmFSzt4jwv0KIxJiYJo/RIuHuuo5x9AsI8KQwZuYjyr4cYxS7/8fHP+kd/8nIxryBP68o58/NJM50gXAkEiHFJfxlIZ2UJ2yceZJrMlt6f8rJzMyAV4GjY4zy4ssJ2Ww2DCUtVClV4n3Po5e5gPlDSXXP56SXH19KYgGs01SV47PP3nC1u+Krr76iqh03t9cCD2u9aJaPhz11fSMsXqUWV9CqsgxdQhvxRfjs9Wvev3+P9xE/hYUEGpKXjJF0JsY6a4Ey39YalS5uODVHi89eEhfvT86QL2znFxSKxYb6cOo4dR3RBw5Gs2karKvKfD3hKk1V1/ziq59zc7vDaCn2hFSFjBtcja1adL0imQq0kULKGnQ05BTI40DwEyqlYvqliEGQkcN+j7Ni3+tDYLtZk5Liu+/f0g0jQswahVMxeYwNQIJRUhxX7RqxMzesV5aQYLVe0w0jPiZO/SgGW0E+ziGS8kTbTLKpKy2wvXUiv9amBCRFjn3P7uaW9+/ey8+FE6vtDh0Vt+uaz15c8833H/izX37Fn//l3/Bf/pv/grsPH5ims+exdDTycQiZaQpY4zl2QzH4EnOzVTMbojkScj3UzkJK9F0vIW4hgtI0qxWzhXtdV9zeXPHF55/xsy+/YHO1EVnvfU/XHWnbmqoWF1Tfe1IK3NxcUVWO7777PQ+Pe/ppwlYVj/d3nPaPqJzlOlQG4yyJBHXGT54Ph0f+3SQEzc9fvsaojKssRtsiySukbISDklUm69K0lI1dF8RRSMws9/Rus+bD998To8doTfB+KTDmzjfGyOFwoJ4mzKalCpHKWHTtMDFjrm6Y9kemY0d/7Hi8fxAn0hk9Lb/TKi3ydSMsf22kcDgOHSlD1VQ87B/59u493z585B9+9yvuhhPRzU2WIquC6hQpxOVWeYmafnqM+7TAuPy5y79BSN3j2Is6LVu++/4dP/vyC4oZLNGXgs9pDscTN/U1GTieTqyHAVVfL8RydDrD+ZwVMZ9aI58fszPHJ77wo9DCzFO5IBgUTsd8Ls6k9+fn6E9hiDxBjp5+YVkPvR8J04gml2RUTeUM5CQ5KVF4deGi54zFuyUaIdXOKracEjlEwuQZTx3d/pGhEDBJ855zNkZkeWZS6OkMUz9w9/4Dd497Hg8HUk74aeJ0PBCmQfiAWkHMTIOMVHfblu50LJyNJ1cbZ5xDF9WRJmSxbfBRkIyoQeXI5AMh5cKleXYeL/gaqAv+5oVI48eOn4xsLP7qF4TO514VIUZ8SdUUGWVg8p5ln5vhwnlkggTdXI5B7B8oBubfc1n0zKjGzc0Nf/3Xf83XX3/N999/L6z8kt1QflASQH+kKn/ePeQCdYGEjZWVQPIqrjf8xZ//gq+++jMeHx/IZO4+fhS/+GmS2HIlN+LpeKBp7GKa1HUnUozUxZjqdDoRfGDdtqxWLcFHgvdQ3FmVkjS+MQoUnwuZzlpTdPii+NF6Nl/LWGdJ3jNblEMJhCOfuxfOsKW4Pkq1HlKmHwY6P3H3GPEhcbXd4KwlJFGn3L5+yc9/8TPaVcsUT7jKQElUyFrj6hWr3S2r61dgnMDpTpHjyDgeiGNfNhpNmEYm74mTl5nn8Si8ETLTIPyK25trtKl4PJ4YfcTHxOgF3k4xFdWDoBdS7GbG/iR8hmaN1gN1XdOuWoZxYgqRyjkwFVNQjP3EMEw4V+Gsk8cqozOUYt3Kz536A3fHjteffUmzWrO/+4jKiTh2rJsto828vtnw6nrLv/6P/0P+J//z/wW/+sd/Sy6b4fEksOMsmwYx/go+MegJfVQYJRJJsbXWpZOS61PcQMWfoq4bLKJ6SlEUKFbDZrtGq0y9arCNwzUV1y9uubq+4nQ44Kc39MPAx4/v0MqSM0zFcff+7o67+3tSyuwfH6iahr7vOR07XNVwPB5JEcT3QIEVDtBh6JiOJ4yz+BR5tbthWzXYgmaRKXk8LLPf+X40WgqQS3v/lM/NR/Sexjr6INyoEALruuLVy1eLZ0td11hr6Y4ndAzcfvYZxjqYPPWrN4RjRwxREDwrxbsPEVcyTrTWReoq51wpja0cGPE4uH75khADv/n913w4PPCP3/6Of/e7X/P29Mg+TiRtiLp05Vk8NcQh9FzQX46JP0UCnffT52PcT6IcnJuLaQzY1rE/dLx7d09Tacb+QOUU0/TIbtuilKdqHFcvPmfQTXESzqQY0Hb2a83L3v9Tjplf8Ykv/OiD/YDNMaMrl99xUVicz8P84D/tWeYyplBlPDS70OacBAkuMu1pHEXp4yc5v9NE9uffl+OsJklPRALSHFrhLWUxPiQFyJoqXM7zKVLfBd+QZnjynA4H3n//lu/fv+f+/r401YEYJnL0KCIa8XMKUwCVyWnLMHRknioMl9+lZn8rhzaVEOK1JSsrslglWWRxjiRRn7Ys11qhk16Ah1k+/KccP5kgelmNXypCLr8mcr6EMhlLyRophcbMuFVzJ6P1cjLmx5of+9MkqXOd9vz3nk4nvvvuOwkng0Xlcjknf37zPj/+UKGx4N1A0zS8fHHLqxdXfPb6NXVxMfTjwOP9HbvdrnQHGU3Gj4N0YuU1N03DOAxMXU9tHa9fv+bj+w88Pj7y4cMHfvbFl0yDWHV7P6GyOD4qLSMQrRQ5Siy2KdHSc/EmeSoRHzxcpAxygSbNoNPle7qMs0rh1rYt62liHEdO/cgYDmRluN5tcMZSNZavvvpzdjfXKBOpqxpXqcLzgJQVPiumBEyJqpUUVe0UOWpMFi23qAAM3mg6H4gpoFUWnwhjOZ56mZ2u1hx7KVrXqzUxKeFqDGNx6ZNi0AK5BB7lVBA1NLUuvJSssK5Ch1SyUxQowxQTscjex1GY5LVzjP1A1x3Z7a5EEVSLmibEzL4b2O1uGPsORxQ/kqrmerNC24brdc3+/oOoH4HVaoVSir7vhVNiDDmce8K54PBOCqmYMzFlxjlQjERTVdSVYRhGvJf8lKv1SkKkVqviEzCSUsDVDltXvHj5khevX5JU4nF/jz/15bEknyOnxGF/kM3V2mLT7nj/4YNcu8Hz+PBADJnT4cT+0BGC8GVE3CB+GlMYSUrxuw/fi2eAMVTaYK2iNo5Ka5wq5mUhCAIzX7faCHcjyz3qU5SrWmvi5HmcJnF4VUpQwCCcJlNXvHnzGj8MpBi5v7+nHwZsDLz7l98QSzZK5Sq604n+KKoUow1m7iZRSxSBLdyRuWPLSLDi9auX1Lstv/mXf+a7j+/47uEj//T73/Hu+MgxTYykYqCnIIufhk0C36uz3eKTRueTI4l8tmef17XnyrhzYSLorqssseTI1K7mu+/f89nrW+4/PvDm9Q19nGhixe31VhoYMjF49o+PtNUrsg6k7IlG0Ca0EAzzwp37Uzb1T0MYf3jkMnNOzudmHi7MXBFmWgOfsiKQ3/n/6zRn/rEYAkPf0Z0O5JyX0dY0SZFxGTmh4oUahbzYHOgS+Dk3vc5aauuk4ED4PjonctQXv3/2Kj0/F+EKafI0MRwPHB/uOdw/ijFYDIUkHlFZ/F2UNsuocagM0zQKab/4khQzVSmqsiJGcTFB2aXgQFtSKIhWjgxTpBsmccK+UPo+P3m6qHnatmW9Xv9J5/wnFhvP54ssFt7ydVVq4+IJFzNaz/plBWqu6M2iCVYA6Rz3Pt+Aszrl08/jaTcwdwrTNPH1118vFdf53Dx9vvNjPD+e39iX9aFWCldXOFfx4sULfvGLn/P6xY7KZrwf8WGiqiqmaWAYbZEtHhDKUcY6zTRN9F23PJthHIVBby1ffPEFfpp4fHxkGAbkRtKFOCqjlxQDE7FsmnF5bbmMapSWRTvFJKqU2uEui6tykZDTE1bxXGwsXweyEmnser2lnxLdOKAPR4zVvLjZcvvqNS9evSwLrPhhoBMpgTIWFQ3KOLSt0bYCW4OtyDqTkiUpKzbJaiInueWMleh4YuRqV3M8CvqTc+bQPfLh/sgQZWPY7naELGqSGMStNqUkdX2SG5A02x9LwemcI4WINQ7nZDMPKTGGCEXd4JRiGCb6YUKrqriaynkZxhFdCjF9mHh/94h9ecN6syV0j1ij6I976q2jcQ1ffv6at999w9e/+RXGykhG6Zamaej67omU+3z9ZYKPjMPIoz4SYqRtKmprsFqY7tNkGbqOw+FRkKZXL3nz8hW7qx1ddwRjuLqW0cPf/d3f8MXnn/H4eMd42JfNWlHXMhpSSjP6SUiixnE8nuj7jjmqvnaOu/t7Hh8eqFzDfn9EaSvImbVMw8AUE9ZWYMX9sO9GPjzcs6kaqqRQqy26zlTOSVEKjAzE6FEFulbIwiizYglpy0pIpjNZzWhh5o9hdhS2qLalub7m+NvfSlHarjjtD+QpsH/3kWkaRTUyTTIa0RqVlRQaWovZljG4Sky9zCxzRzYUUYXJtfndN9/w69/+hiEG9n7goT8yqkQfPd4oKqMhJVQCk0UBoBMoo39guX25fl2uRzJ1eeof9JxEqpR6ymezwrny3lO7mq7vOR47jt1AvT9ytWuZfKSqa2oHh8OeY/So2JBXR7yvGJQnuTXKNSjniiPyU7D/xw91YSN18TpnduKzYx5sPJe+/gCxeDbSvvz7p/JG1DzeL4VRBkHJvGcah4VHowuKDJCCLyqTOYpCjuXeVfLEM6VIzGCUliyqlIk+MA4DOiX8dLndltdwcW7kHpCGchpGxm5gGnpykqYMlUlxJAVpQGOW1F/rDNMkHCm5V569B+XRI4qsLdpJLH1Vt9TNiLVOrqEcMdaVMeCnz+HlRKOqKlarFZvt9k86/z+p2Mj54iLJJeLYB+miEUh/XjAv54uq5HMsjF30Uq3OKNmnbMPnvy8/p7Q65y9cVLqXBNFpmiBnrHOl8Jk35tkm9ryALQXP8qdcRPN8KiN2ra5ybLdbXrx4we3tLZ9/9oYwHulPA8YY7j984MUrkdkdH/f0gzgXqixR7LFpOR0OVNbRNDVtVXMolenD/QO3t7dlbm14//49RpiWJQ1UfEr6zkMWON1oB1kq4xQiVomRkjby3oSc8FEKE3EUlap4ljWlwv5SWmGswhglyhelSUkTB49RirZpqBpPHxLHYcCe4PUX13z+i9esb9ZYG9G2KkWljGhyBuMqmnbNenfD9tWXRFOTkahv5QdyMsTkUEkT/B7vFVk7lA1MwXN8eGQcJnyInLqR42kgZyUZHVpTYYAN4zhwOHZkZTDaCqpCGc1kSW6NSa5Tp+S8rCop1kYv8ewpRkJIjFMSVnY3Uh8ljyaHLBHmWjP0PZlMWzva2nA4HRj7mturDcdpoK5bfIiMfsKT+cuvPqf7t//CP/9//h9cbRtiXEt+zbqlnwZCnIuNmZEei6IkENMklsJdx3q1kvfBWVI8En1gGgd88LRNzYsXmrd39+y7E1e7HZvdDmPF3+/hcU/OmaHvuLra0dYNxIwxFQ/774tJnKSpAktKatd1Ii0HulOPHz3O1JDF6vzxeFrCDn0U/xZrDW5VE8mc8si3jx9AZWIO+LRhy7oka4qXw5xrpVSWrk2f72FVbJGn8nxsVQlxMyV8DGxur/mbf/2f0L645fT2Ld3xSJ8y06nHeinwnauo6xaVoXVN8Z8BH8u9YC1V02KcRjmRumojhNAUSietFVjFP//mH/nm+6/pfE+oFPbakVrYnw4kKyTxlOMyy5Y8CpmfK2WK9H3e6M4chMsGTpa8VHageZyRy316uQ5n+b4sW3z0iaqyeJ/E90Y37E9HhuD57v17TP053Tiw3q757NW1+NpoRa0mhsNbOt0zmi169QK7UtRG1GbkXOb/6hLY/UO7A+kTDqIzmv3pYx6ZiEizgEJFDVISDKOCVBx5n6FCf/iZzEVLQvye8lwTyFPJWXg6KZGjJ04DYTjhfSiOrLo0u2VfQdAplc4NrCAIkUwAtCj0jJHRlDEkrYhakZ00WikEIuc3MeXZHDEv4ZYpZ5ySMV5V1TSrNesoI2IDxDAyjopsjFxLubiJWo2iQthQEmKosuRrqaUgAqfl3qsbS1Ub6lVDPa7wPmAVKLwY10WPrKIlFeYCCs+UTCdtMFWNrWrq1epHrovz8ZOKjZgyIUoxIQu6I4yeKZSgMTWrI0TuhiqwWCk4hOlcnvJ85S6w2LlwmP99GdMOhW+QMlrbJ1+bf2ax+M7nGemTkVgZlIn9hBgDkbPMzmWQLBd8eX5VZSHDer3m+uaan335Mz7/4nO0UnRdx+PHD7x5cUvXnYqfvyKXqtQZg87Q9R22wGldP2BuBCq2ZS48jSOdMez3e5qmwToroWwI+0ErjY9ekge1RmuI3kPpwqQYklGENbJwW+fQWvz8aze7AhYDmpyw2oFRpfhCvDNMKnChGHxplWWGjqZu12LN3Xu6MNLsKl59eUO1En//GEOxZxe+hoRrOcYpcL8/EpqOZrfGNRtMXePI6PrE2B1I/UdSFht0QofSYHJCjwOV0sQ84CrHGsMYRYUQExyPHW0Fn73Y4XSmL8VRyoqYLGAJuSKEkv4ZJMVw7YzkLkwZX2apRmmChqANISeyT7RDoKkzJitSEH+X1coxTiM5eja14UPoSWPN2BtM3ZCVQdlMHgI5JJwOfPlixfDweyptWbcV+/0jVe3QRlwH82JhPl+qkRhU4ZwktE/oIRDiSExSAATvGadJiMMq8auvv8GPPevVijevXnBztWW3XZNjYLfZslmtWTUrckg8DicqYzgee4YxYE2F9551VdPWDXd392ilWTUtRmm+//4929WGq+0VSltWqxEfI5usCg9LNr0UI3Vd4SqLyo6cEicmvj18xNSGZMBYjSVTtytW1hBMvYz2KOgdWtx3QwzElLFWkUmEMKGNIaoEBgY/oDYrgh/p9o8k79Eh4mLCoVDFXtyWcQlRiJspRqw2VLXIitv1milKEPi8LksD4bh+9YphPPLb737Dtx+/5uD3qAomB7rKhGpC14nRTzjXlpFUyaRQgrJJ5x4xyjLbU6vC1RGu1VxwCKKRc0QvGXS5rI9PgxxzTkIEJEvWFAKFGyNKp27osJVmjJGYJt7dP7Lbbnn32BHJvLy9ZlUpat2zP/yeWPV0qaOyDaZdiwdEMAWVPedb/SlMjuffkf/Qj82fz+fAPXm9kYwvGVuKHCEHGXg9N2/MOV0UHZe/JKMWREUKelWaW1MaSJUTKkXiNDKe9gzHA5OfmCZfkGPZQy5H6Y4zNyGpQFYBhcFqeTyRnEIkERVEY5iwBNOQsydcwBixNEXSBJZgwmLG6JzDNS31dkeDJcdEZSz7+z1ZG1wro0idFU4pwSx0IgbIMaOzIGw5BbLRYBTELKOYHNB4QuhQqqTZKEcMwgPLOeGnDp1l9KPyHIIhPA6tyvVqhfuBlpHMn3L8ZM5GjJFhGFBKLaTOeT+f33ijDVmZZ2jYp6Gwy+PS7Cal9IQkulxgPI2Bv/z6TPrJzz7P2Y/wfHEqka9SZoIKJAxHQVUZFJpXL29p2xWr9Yo3b97wZ1/9Gd57Nps1//xPd/hxZP/4uHgDpJS4uroSi1tr+fDhA957Tiexf1YIDG6NIYZYuC1+kflZa9ntdgWdEb+MWGLCcY7dbsP+MRar7Ag5YXQpQpQkOxojqX0xKSkyyk2jtZbJepYLTAi2spCJZlzSCYVlLZDhXPzVVYU1lvWmoaoiVzdbdtc7tBFDp/k8ai2BQco66u0Wd3WL3V1h65akNT6LmYzKCT9GfMhUboVpNpgk+RchTAQM2jqUMty2Gw6HE4d9z6qumWLgcNqjtGLV1GhlSAm06uiHSfJHlCYnxRRmebREPteVpW0atLEobZjiA+Mk7qxT8mIu5kVu1vcDQ1vTWsG6+mFkt9tQVY40RXbbDU1dcTwcivxVUTcVoNhdtdw/7InBY7VArOtVw93+I64yuEmkhuSIRNFfXLDleowxkcYRX57LnJY6H/M1hlLs7z9ijeLDxz139w+8vNlxs9vyn/7r/x6ff/4FlZWAKaMV++ORaCz704EpTIQg12MmM4aRtq2x1pFz4v7unt12y9XuBh8D0xQwxnLqB4ZJcoErVzFNAZUzm82Gq+srpmHgsN8TYuIwdnz74R3ERGOsZJpozapusJUFo4ryYUYEZNkIMWJDwE9eEMISu75sezGR93vGlHi4u8f3A3XWEsBW/EkWRDXLWDDrTFU1+BjxGgKRpAWNcFb8b7JKtKuWlBSn05F3D+/47bffcD98xG0tq22L1QnlR9pNizsciEsMw6XqZJ6b/3C9uxz/XloGwFmuf45PgNkvZyY3LqhHzhTdSKlLiuePgslP1HVN1wceHg/UTUPXD2xXlhB8caFUrJxl359IpiLFSVRDWpDBpJ6zCv5YwaF+iGLMxIHnR5YQNjlTirkgQMcyIs6gZrLjn+Agqs7P7bmK56KeZbZBuBheMnpPV+61GCLiiJOYf+38rlYXDqKhrC35Yg/J8ykoWVPGWqyrMJUXu/iwPCA/PFEFeTcGW1XUq5a1j6AlbblShjBlsTxY1WAUDlNGd57kT2IyVmCdP1TfKTUrjVimC3JZlfc6Zwl+XJJfnz6SyO4RRUx5jcb8t6BGyVlcG4dxZM420Lp4titVNNECjeULrsBzGekfmr1d8kEuxyLz14Slnp+MXH7wsz/A+/6Aq90sjeECzFPQrBxXuy3GGF69flFcGbNsGjnQdQfq2hDjxGazIoZzcNQ4StDRNE0YYxaC6jRNNE1zUUhMy9eUEg6C9xLxa60VZUESd1JBAxMpBlQlngWkuEDcWkl6oTEiha0MEBNK5QJ5yQWjTbF5jlPpqtxyquZFTHgPmZhCQbC8dFBZY50iJc0Xn93yV3/5lzRtTcwjiuL8aOQ8BrJwpa1FO4d2FVgrORlWzINUVpjKoXRL9gmqFSZFUgpkP5C0xVYrcozEkNCmomlhijISWa03pKS4v3/kcOyoqpabmxt42HM4dAKFKs0wBoyGylmB8kOmUQ3Wal5fvSAbzffvPgCyccpsVK6WcRo5nTp0W9G4ilM/UDWVKEJQrFZrNusNv//2WzbjRuSnPuDqhs22oa4cOUPbNOQp0FiLyoFKKyprcFYzjvMob76/SpBeuTdmaffMibrcpKDwpbyXWatWMoLxp2L/rvjss89JOeO9yFe7U8fd3UdCFK7Gar1iGkeGYWCd1nTdwDANmOiZxommqbm+NuSoeDzsGeNEZR3BJVTuxXxOJDJCYq4bMAbb1NihwqBI/cRxGnn3+IBTlrSTBXFKiVbVVMotqaqqeD1oJbbP1jlsCTnLPhJOvfhWKDHa6u7uZfOISYioWeO0wZUNWKGWBFBxjVdMOZIqjW0bksrEtiJME3maiCFS1xZXr/jw4QNf//Zb3h/u+HD4QKwDtdIoIqGMcm9ubvj48YGkIimr4uWSLxowtXAQLgvFy+Li+Zp4+bnnCdOf4nnMDZZ8XbprCQlWvHnzGfcPdzw8PND3I9e7FRrw48Dd2JFRbF9fc20a2uYGtd3iVjWuqtDKPRubzJv5H+FJfGqX+2R9ImNXCso8f6Oak2CLS2aaN/4/JsNVyx8/8ruffn1uRJWpwEgqs9EZ7RwpBLkXjMYYV7g8tVjCAj4EyEIvXoD0fN6nbOGfNW3LlIUL1kb/qafx5IxkZdDGUTUrGp9JyqKiwinL0IvzdHu1pmpqGbcoRU4Tx4cPaGMvkmXVxf9nMGA25rykJsi4pZR1uTjlLvMv9eRdVxc/Y4ymMme/pz92/KRiQ6DNhLFisGWsIWWLzk/9J0qN+uR4fqM8/9r893wDzRv45XgFkNkZZzjtU+SpzMVFeAGDZbIQI0GkhEoVHwzpElfrNa9eXbPdbnHOSkZITDLWSAFFZLNqGPsTqth7T+MgP7ta4b3n7u5uec7OuaWgAPELmCZBKoQEen7NIQSOxyPr9Zqmacgx0YciDdViYd6lEnDlKpL24qiohWzrjEWXRVCyn2ScNNvBo0pVilluQGN0MVgLoCREaN7kKF1Syolh7FHIHPUv/uLP+PLLzwDJfsnZQBQ9vw+BoDRmVZGMIWqzOJmKZ4RA/waEkJmFD6GqFTZD8J6sO7KeUFahVKTrDmhbsdm1HLqOZlPhQ+bDx4/048Rmu2O12nHqerYxE0PiEI74GCCLz0NlNJDw0TNOA9pYrhvH9c2W+8fH8t4K7Gi1IRtDSIlTP2BI1G5LP/bY44mmqQoXJ9GuVqAU1jnqRrqYyQemYaBypiAlFVOMGBXZrlrGYaSymroyHE9zbay47IqfI3OX99blfXS2+VfE8n4GlWk3G/7z/9l/zna343g8UVtJevTDgHESyGWtxVpLiJ6YIw+P9wzDwGdv3tDUDd988w39WNQ2ncd24jsRs+QBOWNLBlFeWOmurtDOkrWmWW9QOdOHhE+B++5UgrUEPvZkshMkozIKY6wQ1ZQ+L5FJDLamlIkq0jYtIXg6PzF2Pd/85nclt0Km1VopGZssxFLp8heEYPH2UASVmUiCrLQ1V9fX5GHi7uM9X//61+xPJ/o88TAc6ZCNJx1OrM2aerMiZcXV7gqQvJSY5LFmZp0qXb40QCyp0PP7djkSuPx7RnWfv8+X6+Tl9+syukHNBYq81mEYAYWzFWTY74+8erErpEXP1dWW4+Mjwbzn5su/Y2y3+LYlFzQ5psiTQLbLNfrZNVqe0bO/lyuWH7ANlaCNSkkkvSqcOubibC7Qyj3xh/aNp78mXxTtP0Q1zuctl99T/jcaUzXYeoVypbhTisCIqURpYgpKpvJ5u8xJhA7nEZBm5t/MKstZSj1v9Oc96Q+9CIXw2iTpVdQicj3EnKVRM4aqbmnWK1orRo4xGMa6Eqn4E2v3olLMipnzorQua3KhLqSn3MmzMypn+/r8bP0pjbo14jNVuT+tjPjJqa+upJQuL2dmb+eLlMalTnp2Kv8Aqeeyip/frE99fj5ZWpsnN+msZFl+xx9YnAGJu1awWjcLSuBcxWdvPuPLn72hqmYXUllEUopolbnarklhYhpHTqcTTe0YQiQoIdM1TcMwDIvstr8Ip9lsNgKPpkwKYnU8L6Q+ROF7aEN/6lD5/P2yKIGzFq3EYrayYgeevLhIGiOeDM6WZEGtaaqKHAN5Eve7kOKFpa7MAHOJTc4kcizx10bQC60lKExUKgkrQb1stzv+1b/6O5rWUdcCt4WQmbzHT57gI9FYbMpYZUhaMhd8Ki2704jFqIxtYs6kCEZX6Eph15FaZaqqxfcH4jSw2jmiFxvdzVXDFBKPpwdsveKv/uYzcobHxwOuSqw3BuMqqqbh7v6eKQYhxwI6SZbO6Ed0DByOx6K4EYWMMaokf8r3x5AY8exTwrlK5qLdgHFGFDLKs95slmu/aWqccyigOx1Yr9dU1lBbhVNgcuDN7RX7hzuoDW3lhIz6bF38VJH+qfvlsrDOyoC27G62fP76BY3V9GPgn3/1Wz5/8xKjK05HMeRq2pq2lbHP0A+FcBkxzqKdpR8G9ocD7XqFu6q4Xt/y7tv3OOtoV4px8jRojDlhjGGaBqyraFcruV6cJalAs9sQpol4OmFaR/KRfRxRh3tOfuJVvGEKE5vKsVmtye0KahYukpk5XnMoWFZUlUUpcCky+YnDwyNxtWK33UpAWxbpt1GaafJSAKh57ZDHc1oTlcIow2q15voXP4erK47/8O/48PYdv/76t3zc7+mD5xhHTmnglE8EE0hRLJ1VSljruLm5WXgSKWkktumiILgY285GZZdr0nM13aXcf96sLrlrz49zA3ZGKOcuexo97959wBgKiqnojgPduqJ1BhUTbe3ojnva8YRuAyqJsVvGy+/TFpNB5/N4+nmxsaAqSkY6c9G8fP7iz/kjPY8RsrrIYylnTGXZcIGcbXld+ocFyw/uj0/dPc+/N5HSudAQWavFtRvcesSV9yymBOmAMTI+nh2tq2RgPz+WQmuLUhI2aYwgHGK9r55s6D6EhXT6o4dSGGdLkSFy2pjFz0MC3cUhVoy5FMoWHyVkdJNyLqaD53dGqCvnc6fLvTDvkcs1M79TORPL9bZQRC+pCFqs7I2RZO5V25bC9o8fP9nUS35ZsduNcUFqUnmSKedyXTyt2OFsMf68mp9NfC7D2JaT86wDeC5P/RQEeUkY1Vov1Z5CEk2N0Vzttrx++ZK6rths1vzd3/4dIYy8fft7TqcjbSuEL2scgzBnlhA0sYROrNo1RmkeHh6ePLdZ+yzpoGGRluaUGIdBMlKsJYSwVL6b1YppGBiHAWetaLPL7N5ZS11VEgiVxGfDVuIgqVUxgFJqWaRBLg0p+vLCdUk5YZdRl7yPwrhWF++FdMjOSccUc6KpND5r/uyrL/nss5doJc+p7wsnQksRaKxCuQZbS6fgmhWmbqGuSdqSlYzBfPDEcUClhDEW7QzG1aAEjsfWMsaJCipDTiOBKCRZk1nvNGsUdd1wOBxRxtKsNigzUjUrqqohoTgMHeMkipYSLcJM4tof9qAK4TbL8uYK6Wz2d8gYfEh0o6epFFNITD6WBOPMMAw450rGiES4T9MoI5QkypxVW4sjaIigDeu6QvtEWzlqqxl8uliefxz5m++DGfWTUZtIjF999hk/+/Iz+sMj//Kb39GdDqys4X/zv/5f8flnbxiGnmkcCd2IqRzWWEKSxakfJ46nnrp2tM1aeCxO4Zzh48eP+BB4+foVow8cjifevf9ARoKdbHQC3zqBcLVxRUyRUcbiVi1OGVSIaJ84TJ7D/UemFEnrCV9V+MkzDSOrpqVxjsbVZGOw2qBTxmUhp8VQ+BXO0eYz4c+gJFeFmTioyEZTrZtFTdCuVlBVMirTCuuEt/L1f/33DNPE7779mlPXceg6uugZcqCLI10aGHWUUEIysetRxvDi+oaqqmiaFvZH2WDKDSRy3rMHxCwz/5Rk81PxD5dr5PNx8g8vjsvr47LJEhXR1fWOyskoePKR9x/u2dSOh0chpLtdSxgH1NQTVIcyK2JSKB3PfjVPlIQsaMflIfuRPQ9bLoDlHxQby7PVzJkgc4Mq5LESM5FMkaFCCOdC4fI8/qFi43IfIJ/PI4WnsHgLWUPVtDSrXSlMRTgwhsQ0TlRtS1WLjf4qOfiuvG/KEENCOVHSnJ9GXsYVmbSMV2JRT14+vx9SCkS5JKGFpYkva5TG4lwl1uhaUFOUQjuL0hWuaQTFlmf35FqQp3D+t7XnFGLZu2ehhMAbsYyrs5wQGW7NI0JdpgsxUVcVTV3RNhd+Tj9y/DTOBrL5zGOSvFxQBa6nSNbKk3t+c80L5IJSXFSYl1LW+XsvUY7lOeQz4Pz8JvxU4RFjXi4ErTWrdgUqUVnLn//ZVzR1hZBdLd/9/reEaWLqB5yxMstSmto51m1LSpmh6xn6HlJm02yePN95vt73PcaYZTMSS1yPU5oYgjD3K4kJNlqTojhZVs4RguiyocQdByle7NzFJoHNrS7FRfk4+IBxcqNEH4RJfGE6o62QN3MJw5JUWPHc0CUhVlJiDTiD1gV1iAHrYNW2/MVffkXbVmjtCV7MnlIKYjRmDKv1mly1DLYiaYOPWRIP84CuDcYWVYwPaIRg7JqmpNoO+KBI2WGMQteBStekOOFakUAOw0hIkdvPXqLR7A8HghrQ1YoUAk0xMVPGsh4nVFXTTwP96UA/TlRWM4WIjpGUfbmelRjOKYUzCh9CMesxZBQxawYfZEM1in4UK/N57FXXNd77ZSxhrXi85JTYbdc8PnhWtWMCeh+42bZwGLjerXk8HKizYX/olhubeYz1ieNyA5qv56qq+ev/8D8k5szvfvc1d+/fYnXm2+/f8ze//IqkLN+++8DpOFA7yzSNTB/uaZuWYRy43x8ZBk9VO9brHfvDibuPd7Rtw+2N5mq9Y7u9ZrVe88233wkLvqAg1hhqrWXG3DZUpeCKSsZqVdPIIpUSoR+JWZBCP0XeH/e4lEh1wzBNnKoTbd2wrls2dUNlHbWxVMWlNJcmRmmNVXY5V0abZePQuaBlIWDXLbsvPiOOI/54YrZC74ae0/HEFCYOpyMf7u44+ZG7ONCHiW4aGVNgIDBmT58nkc4X2kBOmW4YWPU9mWLyhhLZoypohlbCPeBsDPipAuPpunZe756T33/seFqICrJA4V9FubBJScYqbSPchNPo0UXhkvqO2g+E0yODr8heE1SNNg5jhPBc/ls+nvNiLj5FQhe7d32BJpV1n6dbX1biRaHRxEJMLPi17AdKozNkNEZbjHJPrv/zaP1yvX9abJzHBMXKIOdyfs6N7mzYpbQgorLZy3vjXC2EaFdhS2aPvZC+KmUkXFGdURfZs3NZS4s7cHnhghY8fd+e73VAQbLN4qZblUgKm4WoH3PAGl0sDTLKGIyucFUtCpcsTWa5EgENuSBFSWAvW0ag4hhtISm0ioLsmvnczXvteUoh13KRw5IFTSz7z59y/GSCKEotMMsT1KLIHmfIkqJmuMw5mbNFnke1X1ahP1rFw1IyPx/JzKzu2T8jl8eaCTEgXfxmvSbFSfI4lCJEz4uba/zYEcNEW9fEdoVRsgmREpV17DZb9o97TvuD6JayED2Px+Oy2QzDsCAZzs2x3TVt25JiZOqF3zET/mTmLZyQaZqWn+v7Hms0de2E+Bci0zQucdcpJQKqcGcqjDaiNlDC7Ge+kPP5plNKiLykUHwWdOnGNGBRapYYZzDyXpsSCNdoyxdfvOEvf/kLNIGcPMf+QMqhkKAcKSm8jyQVcW2LsbVIokyFtjUpa7yPZRRU0dhKIt5DoO8HwjhIF2tqyI52VwkRNkV8GFHjiGo9Gy0Vft91BD1Rr69RbjwjQikRs6bdelTV0ubMXdYcHu9BG0IMhGkCJQRnpeUW0CicFcg2ZlkeYxLE6DRMOKvZbhpyFgVGiBOuamjbSEriPtifTqzahr7rWLcNldGk4KmMorFyPfqCdNxebfj2e82qWaON42F/LOZkIu3O+Rw0OG9A5+tYrpPNZsObzz7n8Ljn3ft3HPePGC2z3W7w9D7xv/8//p857vf8B3/7V7x88YIwnuiPd1xvd9ze3mJsTbMSyHZ3/YL7j3dYV3Nz+4rVeoO2Fe12w/sPHxmD54uf/4zH7h/Z3l7TDyNq8lRNy3q3pWoaQiGtohQYTSoWhtnJuc9GkZzmFCc+dAeGoaO2lqaq2a3WbOqWddXQGEdj5X+rJbNEW4Mu9u3KiB/BXOTNyGEIkSl6rDeooWPcH/j49h37hwdiCLiqYhhHphjwMXAaeo5+5GP2HMPIGCeyVUSTGLPH5wimeNsgm2AMUUjfbS2Bg0aXHCThgKk8OwmdF+YfrKOcN5lPcdbO9+0Z7fiTuAvLMqmYJs/p1AuU7yP3D0dsdc3VVlGFiBon9sM7qqtXKLMm5xWH00TSLco6lLZlbF02LlVUDOX+UGpehwuSnMXifd5s5437/LpYRmMGs1gOZJQkzxbMw1pN1EqCGOtKZLipfnIOpCC/dBDNC2/l6T4ia5yggT88T5fWCfMoahnXl/1KKXkt6mJTFSNCI6OgpfPO5RyphT8nrfGnRQqX75XsVRqjFK540dSVI4RMVgmLJtWWTEVbV9RVjbZGcnyIxNDi6gZd7P/nwmp+3+R5SRkym9iJS7MhFekuCMoxhw6mwvW4LNBmEr3VEi+gyMWX448fP81no7DjF5tx+INV+PMubK4in//M5bjjCclU/fFq6RKKWoiN5ZgZwdYYyb9Asihub66xVvPh/VtyCoSUcE5QjLYQM1dNiwICQSSIMeKHibEfGbpe0ArEAKnrusUIaRxHlJJRzXq9ls2lpMbOya3WSLLgGAaSq8SDvyADEphk8cYIdKY1VhuCEsKmVLoGUSbNMiqp3quqxmolUBi5XBRyHn0IhOCpKydM8yReI0pTxilPZXVy/vMC5SmVubresN40DGOHdUIcrZtaYMcMaC2ppSj2+xMuWpx3mLXF5hZxjZmhdjEiG4KnD5OYj82urzEyjVNR2xS76GSZVCIZSbTsOo/Csb56QX86knSHqSSALHqPriaUq9BZeDLXN69wtmJ//4EweXJIYlqExTjpUlSR/lidyUZGOGkGfZPkrqgSKDZLxmanWqXkvZ/Ggd1mi1HidtmfjqzqimmcsErsfyqnqDQ411BZi1Ka25sbhjHQpaFkoJSF7Nn9pLVktWw2Gz7//HMAvv/uWz7cfSxfFzXRmAJWK379u2+I3nN7c8Uvo+brtx9pVOR2d8X17Utev3mD957D455hGLh/PHL/eGR39YK6WfPhwz1/+7d/zce7O97dfeD29iVJA1Zz/fIF5nRCdT3WVti6krFKtoQlj0gRCyHb1pU8Nx9IWuFMRZ8TUxzQk6LNnkEnTsmzCiONttS62D4bg0XLx9ZSWUEBda2k69XyXvkYmPzEMAw8fnxH+Oa3Yq4XYtn6IUwdPif6OLHvOw59RxcnBmuEMGoBB54ks3Yrfbt4PpRI8ZiZqom6yVSV8HSEx6POXe6TDeZpb/98DZv//tSa90ebryey0DP3QaTsiWEYC+fIcOon7KGndorXf/EFbaWoFYRpwPiBqDrGLhMQk7ykWBSGWsuaJMiNeVZoAFlQQKX0cq3Kx09fy/wzErKgZlcqlJbRgY9RcnKMJoURfMWpmdgf1mjacr+pIrc8FxvysJ9AxbOYqS37gXXo0mAoJS60Rpul8Zv3ollNstjYW4vNZ2QjI/vJjJosKD6UgksUgrP7qFJnZ8/n7+aZjygcY2cUVSVhi8EFUlZYNNINVdSVk6iBuhYlYI7kNFA3NbrI4ecCcOE5lBER5dxJgV7UpLaM2znvnzNCInWUoHVzE6uYOUXId/yJSNxPNPWSMUHTNAtCMZ+seRQixYi8sNl/4rJDmxfpy5vryXzt4g345JHPDOVLUuqTyr9cRKvVClN09/Njrtdr6trx8cM72rahbSqGoefUHRGXyBGFSJtkLBIZhp63379lGEam0aPQDNPIXNvM/IwY43Ju5sC60+mEUopV0+L9JNWr1oyjx5qEsw4/SWWYjShFVu2KnKOMKQo5UiYeEecastHkGCUszGiJGZ8mIVvZi1CrMoOT3IpAFT1V1YgJzUVnoJS+IKHlBQaVgkRJnPmqxk8jygQJKnMr6sZJBoqXLJyYxMNDG401FXXVYJsVrm7ItkYpR2UVKkX8OArCYESaarWBmBhHzzh6CUSrLdoYpmjovYKkWbdrqlpshIfuROcTISmqqsYZwzgOMPSYquHVzRWVq3FGcbi/45/+bWD/kBinjlzUMSaBNmCswTrZsHXW5CzszZwVrqpJwDBMGDz3D4/EmOmHIBLmnIQQnBN+GjFGSbVvtcw02wpPwMdIpRXrVYNXhpubaw69jA+ttdze3nJ390CMAa0pnIBmGcUNw8DV1RWbzYa7u7tF+eSMxodY4HqBP2PKHI49WoPPmv/mn36FUoq//Pnn/HxzzRdf/oIYIvcPd6SQqKoWkTg3dN3I6fSW9XrDMHpOfc/gJ45jTz9MmKpCWYOpHDoEIoqQEyhFU9UEH+hH2eRjSkWP7zAukrVCO4epKpIKTJNwobo8choj9dRRK0utDI2xtFVNbR2NMmyNyP1qV1FXYiUfs4xux2GkO51kTNL3hBBIOfOwfwSj8SS6MJEbx6ASH057PnYHkjPoqiIrhaksxil8lgyeoCImn7s+DaA0Hs9j9iKZnNfGmMR9v4DX578FXn/OJ7hc955sVhdr4vz3T0E05s1PxrCW4CNkkTonNKch8t2HB9682PL6ZsXNzTVJQfIjrg5cb1Z4HClpfA7EgrDlOBKLq+o8788Xf2Q0Kc1kT1l3ZiT8yffLM0QrSdQRzbwlG4OoOwq6YRQ6J0arIdyxMq+J04a6rpfAyJzPDqxaiw3/JR9QfExEceGco6pqxM31vGc5V+EqR1VVT5rppmnIOS/hflVV0VwWG7mMWnNxjl3eT72gGrqM+MSV1jBHd1y+vwuqoTVWJUnFNorKCMJhFXiVJNGbjFYJXaib5CzXP3NRWEZwap576QU9UhlS+bQue7PWczSIJNUmAlmLI/iyp6LKG1eYHzNKkucy5un46seOn6ZGyRTL3WJVHqNYORuDVjILn29y6+oFAflUYNunTvrlv3/0aVygGSkJ8lAepMB+IslpmppNu+ZqvVteQAye4zSwXq04Hg+s2hfl8+KzgBK/gtOpX/gl3keOxw6lFM5Jh3Y8nEiJpfodx3GpgodhWEYqwGKE5icpNtqmWaLGq6p6Mk4ZhkGUDJUlpkBKcclsSGUkpUu1XFeVqGayLyxjSqEwk5TkVbtS+AQfmOyENharnndTSSp1PWv3S9FgFXW74cXNDeREVQmnAiSLIWYJLhvHSAgQdMas1zTtms12h1mtiVoL4a+of4ZhYOp7MfcKEeXlgo5TJAVxq1tvd/hYNrowop1j1daoLChCCpGsnfhxYKjbGqPheOpAWX72iz9nu7lmvdoQ/cD3SvHqzecCKYdI9EFsd2OWWSWi7pnhTAmhEtJypSwpISFwrcUHj9YG7ye8Fw5O152onKMfBzSZpq4YhwG7WtNUNf2UIU1Apm1qpj5yvdswhgOmaXB7S1U7CdXyAk3OJnG3t7d0Xcd+v+fx8ZGHh4cFEZR7QGb04gSrCL500ioTM3y4u+fdh48i5R56NpUhJcXQd5Az69WaaTyQoiSgTqNcm1kZfvf7bwlh5OFwJCqRvvoUmfqekBLKyEzYVI6qabDayqjCT4sxnzGGkCI+Cd+jah0pRSYUvjIklQoJ0RKzIDMuB1wI1DlQBUODYdITlbI4Y2hcxWocaceBx+NBuBR9IQT7wDAOxJwYvcfUjp5InyPDOHHIng/Tkd4m7ErUSK3S2MYSiPTDSIgeVCZMExaxY3daYG6MLetfWBI/Uw5iul0mkXphOagLAvCn17Ln/74khT4nEv6Uw1lXPH0EjVVaM3rPqq74/XfvqdQLgg9sXmiU7mm3iRcvr8h2RVaWpMT4LKdMjlnksHk24jpLbSUTpMROpiIUKOiWGAWm5XXNc39ygBxITMQoJFChFBgJKdSy6XogT3vUuOfjdktdV2VfUYjbqpx/KWj1GYHRs9GapmlX3N7cYIwlpVKUI2iNta6s4TNXSywAYhRTxXl9ds5RqXNxOY9o5FzMw7JzOaX0LIEtRQcC4izHpy6HMv6wxYxuZpik4BlDIviJECZiqMUbJoEyTmwC8rwvmGflrgA++fISVOX6TEJcDT5CCCg8KL/shZn5B8urLIVRKiyd+eXqSy/9Hzl+UrFRVULmm6ZJPCZQqGSotaSeupTI41BeqBxzINpl0fFDl7ynxJ/nN9YlypEzhJjOGvpZGqslm0UupExdWaxWVDbx+sUVTKWKTEFMlbZrCbPa11hj8KMvz9dyHI5oqxf4NauMdkUVYxV1VRM+eFxl2e/FQbSqKk7HPcYoQpg47B/JOdHUjmns0U1LKAiFqSSzJSa5If1F+I9CEb3HNBVtVZO8F/JnbcSpEjDakorraNu2KAdGRYwql3zMZDOPpTI5qfI5JaZ9ViAyVYpWjahuYnGTTBkmP5J1xLbQbhqub69QpnQkCg6nAzEljt3AFBRNu6PZ7KjrHcntMNWGpt2BrfAhEkLHKRzLtRMwyCYfU8JoYXfP3YAq7Pf+2OP9xHa9QTuLH0b23YFV06C1YZg8latp2xUpRe7u7vBB8/nP/pztZocxIm/83W9/w2M3oeoVt5//jGgs9+8/kJLM5P0Q2Dorm2YxO/P9JLJoY0T1gyVEmKLCmhqtLdu1Xjb+Dx8+8urVS7RRtFXNMEys6ka6n+C53l0Rs6K/23O93bE/fWS7afju3Qd8l6gryY2pK8tEIiVZ7E6nEzEKR2C/3zOO45MC3RhNzLEgWOLoKinRpWtOmaSlw+z9yLfvPxD/PrD6x19xe3PF3/zVX2IT+CRd1aE7UJUx3rF7oF7XHE8TPhpOnYRSgczyK2tASU5D7SrqRlCNpKFdr5hCIFtd1owR7QyVaWWBS6C0QePQiPJEaUMsZkGxNDZTgXddTpxSojYVNoAeT7RTz2qoigJLEVIkpICPiV5HBpUJJpGVpNEmoxhCoIsBX7o7i8MagyUSxiOTH0nRS2KzQBmoslEGRVGZiILLh4x1TSkuJOFZFZfeZQlb3EXn9evTxobP0Y1zIZmefH4uQpavzzfx0wUTrQWhmdUDqahjYvDs9yOvN2+o3E6s749Hec+nLa15RXvzmqRnJY/wmFQW/gFElIlEYvHw0WRlMbpC5YAubJVLh01pCDOTn1AKuUbiJGq7FJcIjJzPPiMpC/8uFQT21I/04wTl8/KaU+n2hSivS0efcyzhdxL4+PmXP6da7TAWqhDByv2itMW4Wnxyas80Jayty94kTquCMBqcM5iLNL2YMxi55qrKyT1Xuv5sNLpy6NnEUNulMb/cxy6RHshEBdkK0qa06JlDCNIchSiqEaPFun/Q6FrjTCWuzAmsMhhlRaqcy3nICBdGQwoy/nZGMqmyj7icmaYeoyIqj1gdiUMPccKpiDHFfA2zkHiFdJqonCOHSAwTf8rxk4oNnTO32w37w6N4FDQr+iEwWlGouAxNZcTbYN7I9Fm6+oec8H68uMjLKCZnmbvm8qbPnIKqrgGRY27WLTlnmrpGkTEqUTkNkxBEW1dR15IHoZXm/u6eqqokyVMJ/O2Dly6wizIeSXHp0oBiBx6xxdys6zp2u538TCkcchYFyiVE/vC4LxeNtKHGWlAQgqepG7TSi+x1HIYF5qtcJSFcXooRYySOO4aJvu+pnWyQc2Wuc8aW4ssoRLmiSoUb5WZWpSPTswFS8MICL7NPW0H0iZwi17dvqNoyk3dz9W94OBw49RNZ1dhWkbUFU5OM49iP5IcHmg1sbm5RpqYbRk69LkmqCVIUtnUMywhuLLbBSpWY+82aEAJTP4hvwzTx/d09SiHvmTYcHh6YxhK3fn3L9fX1An/+/d//Pd5PHEbP5uYVTW1p1lvQhvsP70kxoK0EtBmM3KhKNhhSLh2WkMNCykwBMSJTBovMe2OEw+HIqzeviTFjShc5DJ7oD+IoW3tWTUVbWVKObFc1/jThrKKpa2zdcuw6qsYJu6Bc94fDgfv7+x+OCsshpmyURfb8+Zw4J27OBX1BJe6OHWPIfPazn3PoJfCNFHhxu0NNRgzMtBDJ+n6k6wW58n7AOiuLjkIItkotc3QfgqTuWln0jAIdAyEF6e21RhlFRHgpBshJODzGCHoHWcIEl/GoOOWGrAloOhKEiIkJ6wN1kijv0qhJ8Z4jvVEMriCd84hWKcYcCEljrHBtHFbKHeUJcUTFCV02OJ21eFiUmXdU4FXJI1GafphwruL6+pp3794L+XrxB0FGCUlez7yWfWo8/Lzw+NQa+aPHJx4z5QyL/5ASVEIBRI6HkbfvH7nZXXG9qVBmQFUGFY5M3T2m2WJaV1A+Q06aFHXxFBF3Yuc0yhrAkXONMRU6TeiyDp25HPL8cpYmdSG+luvy0iNpQcCR0ccyIicxJrGtjz6Ih1DK5GJcSClKUhmD5OyBjI+ZoBQhG0IWwqe1BlNk8MZYrGsWdDqlyNkaXtBqvSAU+qmJqeKc5jubkyn1JN035kQIHj9N+KEn+ItiY0YN5qqjjJ0iWVBgYwW9axpiSAwpCgKYIn4cJEguJglxyxGTxOjO9wN53ZRAuyQ8IpH2oAzopCSwMinwGUJgGg5UJqPwGJsJ00AOXvJRiMiDzR4xl8JlRQyeqRhU/rHjJxUbX75+ifv9yMbCcQzoGKgrJ4trTiStsVVdZkfPJav5Cav6OdP+U8XHXMFf8j6YWbbGiKLCGPE4sAalMlUlhcTN7S2fvXrB491HYgzzO0wubFvvpaDoum7Z2Lq+YxpllLEqSXbiHproum5xCc05L7kwbdvy+PiItZa2bTkcRJkwL8BnSDRRu4o+9EsOioyfirVyWRDruibnVG7Ccg5yJEYx9Zq5MraYTw3DIGE8tSyMWqnFb0AWWikMjJ47slwMhi74MVAgPFmkUj4bqTnn+OzzNxKPTmbyga4fyRSPDJ3wSYy9rPdoPZJVS7upUVrTDT3Dh4+stlco7Z4aGyVNLnClUkUKW6zbZ8Jt13XLaOrx4UHUHSWh9HA6EUKgrmuubm+EG7MRK9+Hx0d+//tvOXWdGLNpw/b6GpUCwzDx4uUbrHV8LAVHRAiAisBs1jOHN6U8k49TiYlXkgniI3XT4PqTkCKjhL3lIqf1Qy8mZ9ayv79ntduyWTUchygOjtMD2/UK3WzYuJasLVn3eB9ZrR3BSxE2L7rLCO2CaL3cF4llg5vfVFU6PVsIcShxlLSu4nA6cep63r99y3bd0FSOECZWlTgXdkNHDCNZHfH+qQogxMhQ1FxN0ywR0+M4FgOg+dedO/HL+90YcSMV3xiJk7e2KNMK9K5MKZawS7GQsiYm4XzpypIyjCkx5SQ5JCgwmUAmKIHkZ0Om2f9m5ozNhPVZgZVmNdvyXOU+MMu9ebk2SbHkvfDXrq+v+e6774Fyrxm33GtPHR3/tONTRcaPfe4PFSXPz39MCawhKc337x9oK4P++WuUbUjHI83piDsdCOoj031P1BW2Xi/FRl05UhpJaqRqStgmDm0anK4wWjZ/Y8wSYbF4HWWKTb7w2XRxitXWLhJ9FlLjvEfAshNbxZzdlGMqbnip8KqEEJ/LuEYrDzozREVQjtuXr9huNjS18Le0BpVAGYW2ehlfLI6bSrr3WdGRC8qWnryXuSgdKaOlMvRI5/0tJwl7I45kPxD9hXR24Tycb125Zym0+HncJGiZ8O+SFFoZchQTr6AyTiti8oz9iRQm8ux/lRMJsxRJC7elmI7N4wdtDOjiDWNyycTJT+6F5Xlf/Ctn4VtdGlj+2PGTio3/6G//mv/l7n/Mv/m//BfUwOM4sFpJdx61IWHxxRlT2KtPb4RLaBCeuo/OX4/Pbvr5a8sCYcSxTZU5HYCzs5GO4vXr1xit+Pyzz7i9ucZpUFEvZ2omc/Z9z9XVFcACU9/fP5CiX9CUywU+hEDXdSJLLYShuWCZyUVzgTH/zFyUeO85HI5Url7QkbaMROqqlgIjFgtYa3HOMvlRpEkauuMJP07oykI2AkdamV3nlIgpAKL31+o8wsopkVSWnJp5ozKFNFQgOq00royBYvRFPSDJm9Zabl/e8vLVC4xzpEJUGscJ6wzX17dsrww+abox8rh/pIsd2xeGF2++5Pr6BlU1ZO0IWQvpLoQyJ/R4PxEmIYqmJImYc6HVNG25HgLTJN+bEXfV3W7H8Xhc+C1XV1ecTqelkPmHf/gHDocDTbuiH4Qn8bNf/BnJTzw+3pGN4/b2ltV6S1aG7nTETwM5eUJM6BxLFz477c2wdiAETQoWs9KgM5VzNM0K5yoeHx559fqVvM4sxWG7WrFZr+iHI313YHP1gpA8KikaZ1m3Dd98eI9ptxhTsbu5pTv1TF233COXSq75c5fkwvPdXy5yELQqF8+bKEWkpATLIqWNIaF4f/fAx7vIbt3y7t1bXr+85fXLF8J9SeDjHXAuhsXvZGAqReJqvcY4TVUX+BYpJFKMKJFESOx2zqUQpoxiKPdvLknOgmbEKBlBqmzogh6KhXMXIxR+TVYKnSjx3BftpDr7ONgiX6TA+jH6gsrpJ+q3nIVHlPKZGCe8pUvC4XxaZTSgNYvLb13XFwo7hdZzGvXypvyk4w8hvZ/mcly8589+5rIwBUHBUuEw9I8H3r5/4Gq7Zr1riaPnsN+zvR0xY8f3795yoiZVW1IS9E523Yn11mGscAi0sjT1FiEjyppR1zVVVS3Sz3lEIuirEPZVLu9vUeehoG3aszu1kt6ZElsf/HQ2iyuIi0KjtKAk2ihMrYtpYQQlXKuoLK6ypOTJ2cAc16DKNq+fnrPL/WhBNC7G/PORovDp5mCyhSExv86CGOvsMWlCxRF1YZ9zlkTPVYfk7mikQMlhIkwDfuhJIZTYeCk2fIjkGFDGkv0gxmLR0+1roh8ltTdByqbEwxd0K59TfEUVaDBVRd20kMX7CBXxUSTkedmHn1+g53Mx74t/yvHTOBsq8j/4j/8DVmng//Bv/m9Y5Xnoj/SjJ9c1xlmylRAxs1Sln55LwtlR9LK4uByZzMfMiRD3T8vkpUOpq0oYyHm2i7bcXF2hFGw3GzHOqmrUoJ78zmmalt97GYjW9z1aCSrRdR3TNFFV1eKdMfthzA6hIYjPxHq9flJ4zEqUGQWZFx5nDVpVjOMobKEMm/WKMI083D8AmRgDlRPH0Lp2EtttDNM4ysWWEnUh3bmZdBlDCQyS2aUkMWUhXJVzKtpoIT8KqY3ihZJIeR51Fd9RJR4etqq4vrkhk5j8gBi5iGHbMAXu9u/wUYF21Osr3rz5DLO6heaKZtUSkpCGjZEuve97hnFiHAa604m+65Zxj/x+VWxwG06n08JPEMSjoq4b2sZxPEnYmLWOyXvef/jAer2mHwZ++7uv2WzWbK+u+Hj3QL1a8dnr18QY8DnTDRNf/PwXjH3HlDt2Ny9p11uOhwdynOiOQvzNZHSShczomek9Z8ZEYhn9zHW/dQ2P+yPXN7c4K6ZxxmgSmRA8V7sNXdejU8SpzJg8ViXa2vL+7UeO/j3rq1teff4lu+trHgv5VGtVkJy8jJpiDM82m08RtBS6FBbeF1KclUUaNCEmvv7m9/TjSG0Nj4cTp8OecZyYvCfHgNGG9HBc8hNijAzjyDCOGCd+Mev1WkZMIdC2K9arTRlHljRTpbDGLOjEXLjPR06JGAIxhkU+LGochSsGabWrUC6i20oI6ZmidMkY9GIgmMvCrfVcdCtilMf2Xv6evX7m7llQI0lRzlwUGs9GE5c/I6/BU69qvA/LyE7Wiafjrk8ZeP3Y8WOFxvz1p5wP+EMFzfz6LjfNlEEsulf048D7+0duXu2oakXfdfj+xGp1w1VbkWh4P0iDMI2Zjx/u0Drw4uWWlAaG/khbtazagaEf6YaOzWZN07QXTZesgzGmcp6Ek2XLeCsXgqlzltVqjbNuaQpnREkBriqkdYQDY4r6QnI/5D0z2uCsxbmMcYpsFIGEj3C1XREbS0wJR3HolB18GT/P/0vBWBCABdXKT05z8BNxGsCIys6UH05kUUBaizUanSImBQyh8F5m1sNZCjuXHuWGIKdA8lJsTGPHNIg9gh8HpnEQ9CLnpdkeK0sOEw5Pf9xDvCXPo8ic0Xl+YcV005TIDy0Yio+CJsqgMnIaRsYi9HiObMzH2SNLLCD+lOOnSV/DhM2e/9G//o+pyPxv/0//V8bsGcaeQMa6Nbpy4APE+IPneFk5zvHqT0YkXF5kavn37GdQVRId7YuNrqsszhrCNNG2DVXlsEYvIwhxK5yeFDtRIhGX3z0rSbquk4yTElK13+/x3tO27aI0mWeO82PNxcpciKzX62WEMkunZp8NrTVmJRbgQy+VoFEaa17SNjUPiJNn8BOjgqurLa6SBUxpxXolxmBpmlhvNhitCJOXblWr4ikiLG0iqJSW7jBnSfKLek6fLBAyM5FonqdKNDXLBanL+yNjl5RT6fgtYZyWx8la4uBnF0xXVTSrlqpZEZWlG0dO3SRFYpKMiLppIGcqJ53wTICcDdKqquL29haA/X5P3w9Yo7n7+IFQRilzHg0Zun4kpcgXX36JtZYPHz7Qtit+9vOv+PjhHVVVMfrAn/3yL+i7E8M4YasGVzVUzvHZF1/w9tuvSUkxDZNs6qF4rHgv8lxjaOqKpm6EI6FEpRBSwrqKEBPjGFi1mqZZQfQ8Pj5wIHG928iobuhRGFZVRW01bW1Zt47744mHuw9kW/H69pZ8tePh/r5cyzO6J5D/bGg03/RpJlE8u4fmQjlG4QnNfgE5J6yzPD480DQ1k/ekMFHXDVfXNygtfizDqWP/8EAKcbkOSnPJOI1ldBTR1iz5QC9fvGa1Wi1w+SxVfB5VkHIilXl2mCQgbylArfA3ZjdWb0WNZJXIngWejwtSN48rcpo1AeJUG+Yi48IqWkyKil9GyctJOWKsEF8/CR2rGfA+o6zjOAmcnWWUeh6hnhGI2XPix44/NB75VLHz/HvP/1Y/+NxloTEXSMYYso9SYJqKoCOPp5G7xyPrtcU2jsf7B7brW7764hdcux3+XUeMhmmC/XHAOcWbL34GeWQcO67WO1bNhvuP99zt79hdXaG14nTsmLwoeoZhFH8bZXDIRg2ZsR/oi2/RerPC7o/SUS9b77nYqKviTJovlB7KFARB0DJnnewBzoibsq0IKbNqG642LderCqri06GlOdPlWkopEJNfUN+YPCFMKJXxQZR61itAxushjPgwkZJFq5KgXZ630aYEAhqc0dRWLAmqePmelvdpubbka1opyIlpGum6E/vHRw7H4zJOJQbIghQmJWqSVGmS97RWFGYpxYtCY/5NxWQsSVOZycIpiZFhmsg5FBfRxBQSoRhXfvKavVh7UH/Ya+v58ZOKDe8DfhzZtY7/6f/wP2XqR/53/+V/RR8ixIAfeqqmKsxnTebswzE/oVBUFHME++UoZf64rmuGYVjcAadpWjqlGWJVCpwx1FUFObJZtWw3G07HA6vVipzE+2AmDYHcgPPCNxcxMzdD/DBYvm8mKnZdR9u2S/5JjHGRqs7+B8AidZ27tnnTnF9b34uyIoaAmWeUKfP4cC8uo3XN8XikrSu0koKkqcWv34cAroSxOSeuplVDbY2MV5xZIF9rhFOQYyDPi6yS6ybGWBjhCW+U+BdZhy1FhfeTEI0zVE4QqsmPhOTRVmGwTGWRjRG0Fktj126o2hXb3Y6r15+j2mvZiIYBZWtJCa1ckbYlmqoWxYYxIufs9+X8yDnTGo7HjsPhtIzPxnHi7nTAasN2tyX4wP3do5BCr66WTmeaJr7/7h1V5Xj9+gWH/cMyU/zszRshbIXIarOlXa25utqRQuT33/yWul3z6rOab7/5juB7tHEyVjICeGolXfk4jTirqOuKaYoi39UWHzOnbsTZnrau0ST6ocdqxcf7e0BhbIVPHtsabrZrTmNgVWmszkwxcvf2OyqdeXG1xRi4u3vAGBn9OWu4Vg3/UfX6Au7XBJ+KXE+6paZtqauKcZqE4FyQuTm/JSZBwnRbiHgxsHu55uWLW7arFSknDoc9p96QTEPKnoiMueZ9LeazW6PrHHV0OKdpTyd2O1sQKkNTa6xbMU2+jB+kOJDQwokYQCmHnzLDkFG02Gxlpj4pbNIYb/iVf2QChsMRa10pYjTZh7JhlDFRkjl+UkLOi7FI+FQp0lQiRVGLGGOkuw1nfPvc6Mybdnry7xkZaZqGvu9p2xbvAy9evFhCGC8LhfPPfrrouIxvmP99+RiXY+fLguNMuD87Xz5HkM8oTnFYjhGDxriK5CMoSzcFvnt/z5f2hqobeP/2HU215ub2c958dss+t9w/SKH/6tVr2k3LV3/+S26uVqQ4YpXBZsf77QeuT6949eY1j48PvH//nqZp2W43fPjwgePxxM9+9iUpJY6HE5v1Cj+OvH37jt12x2qz4uPHj2gvxPthGJbGre87Gi0o78PDYxk1G95+eF9QN0XMmZvrW5q25e2Hjzx2PUOQpvPl9Y7r3Y7XN1ekpiDqZVxMjpAifuyZ+r5Id2WviX4k/3/J+69f27J8vw/7jDTDCjudXNUVOlzewOa9DCJFUpRhCIIBS362HiWHN8MvfvKj/wjBCfarDQtOMATYhi3RpGhJpkTy0rwkb+fuqjp10j47rDTTCH74jTHXOqeru6uu1YBNTWCfs+MKc84xxm98f9/gJ/woBU2cFHAJJIb+QEqBaRqIlTgoS3EpSq66qqmsmz0tTq9xyutDnb8SVO2UzwjjKOT//W7PZrPJd0vKbUkPKWakOzAOoFNku7UzxzCVezlz945/njf3yohpnRGir0Zev86cjWEa578r95d45ti5CDHGyPphv14Z8c3aKIsVm66n8gN6CvzNv/SHvL6+5e//8Oe8HIQ0lsZ+JjKWG78QMk/5GJCzSvIuqBQgwNwDLQVBKTpOuRApRazVxOCFc5DZxOM44qxlGocMM8XjYEXNxUIhIL7v+XE4HKjrerYNTymx24lks6Sx7vf7+e9PQ7HKZFM+L7LfEILYpJ8S/RCkoM8Ohy67nYYQaFsxBpPCCvHCzz+DLJn1Uz7P5ALKiyxVK5xWOagHUpbTqkIYTMyBeaWfrVT+fRzoo/V8DAE/eZpFwzANVM4xec9ut8dYiTT2fkJVkUppDl1P//o1ejGxOLvCNZrxEOjGiX6I+LJDsCLd7Q7dXAjWdc0qp6h679nv9/N1P3JoEtvDlv1hz3K54vxCDK5ijNxvpGCJsbwfy9s3b5j8xGq54upSJonddovJXhIPHjxgtVpyfX3N/tBTNQv8NHF2cUnfD9nnBFzj0CmRmJgmsWtvK4s1lqRK9oLITrt+ZLEQOZ8miCS7cpBKjz+7TXrP0Ekr5cmDcw5T5O7g2Y+Bmzdv+ODxw+xpYri9veXs7Iyu6/iD+jH/l0//nW8ybL/+kYB9/twAF3/Gx9n9Gf5GAe2v+FmE/4H6v/L5fiMTqBPPjkmr+U/DlGXKSdAKYy1RHT0rZFKPxGjyTjbNXJjSPnkXipWvj8VGUXvJ59ZYYm6lOedEgj7vknMBITQ7im33+2TZX92u+ZqnTJ0EgH3lz35Z0aJV5CjSVaSkud91uBuNcRqi5ubNNTcPXvHsyUc8vlihg0G7NUZZXFPx6OFjHlyecThsqHXFul3jbMuq33L14AFaGfa7nsvLSz748ANWyzN2uz0fffwR+92e2+qWZ0+fooDl6pz1ak1VO5SyTOPE4yePmaaJ/X4vm8GUOFvWWKu532xBafwU0K5hGj3GSpu1aVuG0dOz581h4O3tlt32nmcP9/z13cToFSEo4XooIU5GHxi7Pd3mnt1uOxvRlSLgdB0LXgOfANAdDoRpJFVGzmRCEJes0pC/gaQ0Q0h0Q6Abju2GmXAaE0lLOxuErKmNtAanKdCPA/0wzlyVGL2gG2RyaQhi0pgCzeQZJ1FEHXlWUOzyQy40YiaWKG0kzt7afG8HtAoiUgnvkqXLPRWj5O2Utbig0F/n+EbFxvLyAfGwZLe7wQwjq+Wav/WX/hI3u5705oadgkggJEM/jPPEX46ibigVq3OO8/PzvEi8m244p/LlxbwUGyBwcoryvWHoaZxo5f1MQJwY+o6YmejGGPC5z5QEPZHdsJmLn4JIvP95VVXs9/v5Ndd1PduSF+5H2wqxqbRdTk295laEc/jCD0FcM0PuWZZcj6qq5l4zyO5PI8WGVgqyc6iKUSpbbUSqms22VHZvCSEinXk1+/mXXbDLplwpSeKsVkfyqFIS7iMmPSkzkiOb7YbzqxX7w4hKiouLK7p+ZAyJfuzxuz3JOFamoloqqqamamqSFnc9Z53crmkUY7Hsdmm0pq6FIFuKyO12y/39/Tx5l/yZcj6VgrPlkqZt6IeRu/vndNkxUpz/Wtq2YbO5pz8cWCzEJdZPA/vdjspZ9vsDl5eXbDYbnHP87Gc/Z7Vec3l+xnZzz2q1ZrPZsrvfzBHY2ohkTJQTKsPukZDEOdWHyDgGnAukpClySVs7qroBJaiQNgpCwHuxMK+N4tmjK/qosHcH2jHx+vott7e3/PW//i/zgx/8QHrm45hVV19vYP+LdqQoxkPaSrJozCS4uSgeJ4IWwvQ0iQeOMpkMm4uEGNM7fJcYvdhXG2Y/h5NnzHBxIYkfF/aU0mzmFUKYC2VrLV3Xo5RwusTw7NjKfP/4dYXFKUrxZz5n7xUbSoFNiLotj/sYFf0YOAwTPsIUhOh9+/aa6sVzLj76Xaqrc9ziAbtNR+9Hls2KxWKFHyfOlisu1w+4u92z1HBxcUkIkcNBio0nj56QIjTNgiePn3Lrbokx8ejhY0GiAqzP1iil2NzLOP/4W58QYuDVq1dcXFywXq1oWykk+3FEKcvd3T3dENgfOlZnZzx5/AylDS9fXbPYGex0QeheMvWGYJcksyTphoQUVBQDsnGi3284bG7Y3t+fZK7oubUs5xJSPC6X49gDceaeiP+QFHBaiclWijAFRTclDqOnG48bWx+Lp0hCxwgmb1pQoCxo8ZrxkWwDLyaNMUlmibTPDZFA0kD0RGWIaHxEQg5z1EZxvlVaoZPw8VxdUbcN7bhinSQHS+sIacLVbmZEz7QGLR5NKZYmSi66raVpmq91P36jYqO9esiDh9/mzR+/5mG7YthuWTvL97/9KQ+ePeO6P/DPf/EL3u72BCpMdl47XdSBdxbhUynkabujvNFyFEKKziddO5e9J6S6EtXCgEayTspJ6LJdeDk/CiGCPn78eCaHTtM0oxTOHhNoq6piuVzOXI1xHGmaZuZxnBYmzrnZIv3169fvpL0qpdjvdtRW2MFGi8NpyIVAmMRPoHICZ6Uo5DySVNkaiZOvXAXGSw+zrqkr8eQgiiFTioGUrXONEWa2ToY4eYIfmKbIZAyqlgwWZ907PigyoDL6kklF0t9UjENHdxjouxE/QdeNoB3GVVRR49M9o480GKpUUS3OqBcNNiiGSap2Zy2VcZKLkh1VJx+YvJADC7p1tj6fM2e22+2JPLlhsVxkjs3b+fyP44hzjouLdQ7EG9nvO5xKJD+yub2R6zeN1HXN5cUl/WGPSoEf/OCfs1y2fPTxR6yWC9xr4WS8fPGKzd1mJkGljABJe8BhrWEac3EbIiEkhilQjYFpCgzjRG1zeJpSrC8ecP3mGu00aRyZhh7jahqrOV/UXC4bhinQLi0hTnz++Rd8+9uf8Ff+yl/mT/7kT3j9+rXsor8mZPkv2jGO0uKbFRZ5AkylZ2xFXeMzv0SFk/kjibw85upEKcEcJDhNod/LoZmPueBOmRcjSIm1x/yPgla2bctisZhbvnMQWVJILsbx+OU2yy///z4CUr73TY/T3ClNwhDxCZwyKFMxxZHJT2x2Hbf3W5EiJ83tzQ3uxXMePPkWl4tHaGe5aFu64DBJcX+z4dWLV4xnEza0dPueu8M969Wa9WLN00dPZROBoTIVsYo0ruFifYHTjtVihZ88bbNgtVjjnOPRw8dM4yT/TxP9YeDi7JKnz54wTgemaWR1dknVtGhb8fLNDZvDgKsWfPCtj4kJDhOsdjVxe8cu7ZisJ1VLdl1it/ccjMLEgLGGsR8ZOlF8TN2efreZN5BKq6NsOa8btTpGqU/TICiDyi6pSmFMlYuCTH5VGo9iSpoJSzLvZquk/NggFO+Ikgwm6zCuwVQNrm6pGv9OCyalKO10U6GRLJXkR5J2TJFcsBwD5spflrnMWUtd1SwWC4YgbRPrtKwdyWNNEK3MSVun3LExRkJMhNwKLWv51zm+0czlMVw++xbX//Qfc/32lnNj0bbiatmy9RNTU3OxaBhCYu811lUzQawMymN+ip6VIeUoJ+dUB1+OmdwWRXZWZaWJ2MAeF8YYinw2YLVmGHq8OiIVSqmZ8FmKjTH3tutado3OuRlCOw3l8d7PsfHl52WxK79XpHAF/i/tI1W4IukkW+AExZGbVM3661mel5iJTJVzDJkd7q1luWioF0sqa9jvtgQvqIa0VoQ8q4loawlePC18CKgpYUz17s4n302x9IiDTOQpG5i9vbkj+MjYB8YhUFUL6maBT4lhHEnGctW2nJ2f0wPb3Y5dPzKOkSmKhXaKCmcs0Qf2+x2H/V7IfYXEmq/FbrebITuxnpfr4kPg5atX8zmuqoqYEnXb0tS19CC1WDL7IJBgCpHgDU3dUC0XeO+5fvOGru/YbrZ8+7vfwRjLtz74kHEaWa16njx+zAcffMjPf/oztLaZmHnMkikhRl5NlDZU0eSP00jX9RwOFXZlqZ0RPXwCXdWkmEP3EPvztl6gK8vDK8kw2faBh1eXjFPkn/2zP+Xjjz/m+9//Pr/4xS/42c9+Rgp/9p3u/18fCkmpMookxqVoZzFWoyoxYyMEIhLrrY3sAk8X7LLheX+Do1TCnBBA56dURz6EyrwneYwjt6IgmlVVs1wu2e8PQojMsnLJz5Bd6/vE91/3//uKlj9LoVH+JmZStgifg6BzWmD0GByRiX4YeHt7L26quuJ+s2G9vaO7vcbQkAZLZRQ+al6/esXkR758/py31Vu6zcCh2/Py7WsSicePn1DXstu9u7vn7u6ecRx5+/Ymz+OOoRfl193NHWEKXFxesGyWqFYxDeLdMA0T/aEnTBLOeOg6zs4rrHVyAyhJkh4nj60aQgKUJdqGQ2o4xIakFwzB8fpmy6s3t7TJYVPNom2JPjIOA2O3Z+z3TMMBP2b0OZPuU0yzQ+90ElQ2DL1w8DIXRqNJNkm45axi0UwBxqgJSMvieHPpec06up8Kwd9WFVXdUFWNtIam8ry5nRwiylToqkFpS2U1cToQVaKfREUSKQi1tD0SiRASsjctrtsl2Tar7VJAaynAp0x9MJOlkEtDTAQP4+Tp+oH7+3v2+907a/ivO75RsbHpRpqHT/nkL/0Vfvyf/F2msccNA04l6hSpU2JhLbWxjCpreZV4J/hJrI7LoiIeEsevIQ/ud7gaJsv/yGiFRitHjJ66djhrqFxL9CIXVSmw6w/0fcfmHlTmRIymEB/TfCMUXkjx9hCyqvRZ14slOMdhfyCMkxDOiPhxZDOM1E1DipGmbYV0EyRzJTWJsR9YtWL+VTcNk7F0hwP1sqHbbefpTKSTk7Q2iookIwuuEgKUNcKwVll2pbVifbZmHHooWRBDhzOWRVMRdGIaxZkzRpEGKq2pmorKtKQYRB8eJqIPRCPujFopyQLJkfNJQQoycLxPjN2EdTV9t6dplzx9ekWImkMviI9RCpv5HEM34NZrVu0C2y45dBPbXY+uDUZbwugJeKpaIo77fqDLZNxSuI3jKA6tRlJibbR03YFhGFFWc35xgVaKYRyPRUeMWank2e92hOBZLlsePXmIUpqbmxuZdK1lt9uiteGDj76F1poHDx6wyxyb1fk5l1cPePLBB9StkOCSyQZEOY1xuVxinaYfeiFg5ejzoowYx1EC+1Z15u0k7m6vsdYR4iSv2VlevX5DnAaUgVVlWNea3d0dV6srppD44vkLfvTDH/E3/ubf4INnH/DBsw+4+OJw5FX8l+hwzqGdB+fAOZSz2LoRnwAlROdpGAlsSN4T/Ujse4oDqVIKlb1BEoDWM7EwkTD2XV+Nma+BmouOgmxIkXKUyI45SFEIuBXj6IkhEQ0Z1YjvIIjl4zcVEF+FgJz+zS8rZ+RzSXH+ZVPF0hIExNBKyY7aakfwns12pLIdxAql72mXb7h68RlaWXzasbk+8OLmnpfPF1R1Q3c4sPfX+Psd2lru7t/Qbe/wh46rbLI3DCO319cMQ4+aJi4uLsVMsffc3W149eU1t/UGP0pGj9GGuxtppd5c3zMcJpp6yX7YstvvOPSR8x6urzfcvN1xc7slxorr6w3BR169fMubNyOb3QFlKypWBD/y5Rev+LEb0ZsF6uk5l5fnHO7v2dy8zanHAymBto4SoBZCYIrTzLOqlBc3TqWkdRolS0sZkZDGlIrbBiX5tV6sqJcHEorKH5fboCxJuxwbcSw8tBVTOGMrbFVhXU3VHCkGU5C8I1NVuHaJthW104TBoP2Aj4lhzKaReZOttSQSh5QIiFeOj8VTRlSQx7tKyKyjj4w+YXzK92/IHD0RXmx3B27u77nfHTj0v4ViY7E849q2NN/5HpeHO378H/9HnIcEQ8DFgAuBdbvA7kZclqVVWb6ZUsAohaj3AinKjkIrIEJlZWLe7TZoFJV1JAIpTlSVY7loGIaO1XLB7c0NtTN4P9BUNa5xVJVhGgLOKC7OhDS422+ZppH73T1cyoAtJM7dbodzbmY9xxhJIWEUbO7uOTs/p9sfaJsGTUZDtCXEwLA/SNXrEm21oKprNpt7NBrrHP1hj/cTVilMAqcUTkF7dTW3inwYqSrhrShy/1gbnJUdgTVKMlysmYmvPoBShraVc6WyJfoURvb7CWfEoEuZnFCQpEc9BZVNiLJLp6qx2bOjTFhTljopbXC2FottY0ljJHnFME7ESVGvF/SjxyeFbWpIiXEYqZ1ltV7TNgu0qRgPA91h4jAGppCYAgy57eCniaHrGPqObhhnM7T9fj+Tco0x2OWSEPycyHt5dTEjHaWlFkLAF+VPSux3O6wxLNqWxWrF4DW73Y4QNe1iyX63Y4pwdXGGj5FvffxxNrwyHLqejz/+mO1uR7te8+iDZ/z0Rz+gPl/NiERKYoWfyJHi2uCqSkKgjCaGyP6wp60tl2ctftKQAnVlmPw++6csmCbPYr1muz2gkqY1im9drTBjzxd395yvLvmSl7x6+YqhG6hchdGKJ09W8NNvMmr/xThiCKiFy8VGja4aTL3AVQ3WVnJP2J7Ry/gLcQ96ypbzGqdBfPMiYRqJAo2AMYK4xYRR77UtOBItC+8j5QnXaCFYhxDRWowGV8sznL1ltRReUAhSsFSV4VRtd1o4vF9QlNbM+wXJ+4qVY5Eh/iCyi50fCQi57X6U304hMWFQxkCaELlj5qtE6fW/ve0JqcU2iS9fvuTxg0uePnrCdnfHlz/+nOtNj3VLrG1mJHn/8iW2cmzHDh8C98+/5NGjRzRNyzgO3N+JfPP2/JwPPvyA5WrNGDRvb/d8+eULpmnk9s09H3/0Mefn54Tgubve8ObFNXdVxTgEolPs9jtubjsuzg/c3W25vznQbyZ2sePtizuscRxue4bNHuMH6jhQ4alJ3L18xY/3L/DPDfcPV3zw4WOSMfSbO8bRo2yDqWWHr12NNgY/DAxxi6sMFmhdA7vc+taKoBQeiFqTYjb0jnFOwDbG0jQL6naFNpbqcLzWQ1R4DP0o91KKE1EFhqRkgzyNoCRx2kmQEABNhJSEF9euzzCuxqgIlcX4Ee8Dw+RZoojA5MW2IKlEUlr8nbKpl3EGYxRNW+d70RHCRGUswRt8ynb0mNnLZpom7jcbbu43vHj9mvv9geG3IX3VWjP4RNMsefq936d7e8tn/+iPaQIoV2FQ2VTFoP17BBOl5scoLZLCEjcZXrJWZxJmRYge7xNPnjyGvBiLG6eQdsru0E8TlXGkGBmGYfYWaJqGYZSdp3Py+OVklXZH+Xq73dI0DdF7xiAaZWstq2zW5adJSI4pUbmKoGXxH/oB0BJVX9cQIyHzCKIPxIzKyE4jzTwQpRT0gaRS7sFHCaPKEqkQJlQ6kssqV6FUEvMjP6JpqJ2VaGTnUCnh+54UJMK7qqz0ALOJUYqJaRyJWqEqR5WlspxMZgVSPu1eBy9ZJUM/4pWnrhuapmW7P3DoJ7aHNwzTRNKas2GkXayo2kvCOKFNkIRPqwnRz4zoaZoYh55h6LMs8+i3UszSionbbrebr1eBq8sEbIyZtedVVTGOkjK6Wq3mCXuxWDD0Az7EOUcloXjy9CkAjx49wGbVkVKKy8tLVqsVt7e3fPzJJ3z3e9/l5z/7MSHKAtXYeib4WufyIiMttMJNmrzHT4JuyGIlrbx149DWMY0TQ3eHyQukosuJs7Jjeni+5rZPDE3Nhx88Y7lczvLr3W7L9PU2Ef/CHdY5tJV7yrkaWzVUdYOrF7iqxmqLMQ6thWg97C3eWsI0QBiZ/CB8C2PEnyApAuJuGiM54yK9t8gncahU6qQwKByOhDGCNoYgY36xXNE0Dff39+/4WxwJqe+S4H+Vx8ZXHaffP9oFCA8lb7CF0HpKBHjvUBmqj0BRPyhVDPU0Rhm8T+z2Pdv9AZsUz7/4jA8+/JTzi0dcXCyQvbIo0UQAkEhhYupHdAxUwLC553lWfSUSfdcxTR6/39Ft7gDNGBXd4DnsD8K9OmzYXr/g/Ow8S6+33N/do43h9s3nVKuW3WGPMZbV6oxpCmze3jJuNxzGkRc//SFtu2TavMVsD5x1kYVVVMpSxwnTHTgMO35+veH6OWz3n/Lw2VMC4JqWKimidiRjcVWDMpYpbbBZiqtVxOgjZ8NnhMH7yDh5jDIw5UwWn5Nvo1x/m9FNO+XrDuwPHcthSeuKKV3Ax8BhDAyjEOkn7wFJGlfaCHoSpa3dNDXW1dJy0dJeREkB7L1ECpggSiuApMCnQNJH6wdrJPhS3FWzYiVEApEpSAyFjxGT9IyCeD/S9T27/Z7dXmIa7NckrX8zzob31PW5WKeurvj9v/avor3jR3/8j0lxAiuDTwKVftnxbt6xZgfMMgCMkRaCyYWBSCxF/395cUE/9Ox3OyFm9j1nZ2ecn5+RUuLV3UsmbyFJsXG2umKaJtbrFeMkZJ2qqufXorMCouu62ShMKcXFxQU319fzpNB1HWdnZ/OCVkihpVgSHoZIP0WtIkSh1XJBqit89p+XDBI5zX13wGTiqrP2aJilpRWhs8OnNRUpSOvJGE3lWpqqYlJi+kXKWQB54YMsF/ZTJokmjDXUVSP85lAgswydKo143TGfF04+P91hjcPI2+trVhdLztZnTOPI2+u3dOOEMgbnai6urliuz1gul5ydn+HaS5KuGINEdPd9z+7Qsz907A8HpnEgTCPBB4xzMhH5IwmqtFMKwbbIYNu2naXHZXHXWljj5ed9DrB79OgRlXVzQJvKMshnz57RLgSJevDgQS7u5Jyt13ZOcV2tVvzRX/yL/L/+4/8nY7/HBCGVKYq0UnZ10yjvQ9qjQpxaLRcY59hstxgtSEjfjVxeXrDfd9xcv8ZVNeuzc/GF0DkDyIvsedmO/PAnP6JqlmzywmWtY7lcY76eWZ8czsDDNVxvYQrv/uzBEh6s4L6D11v4TZwAq+Fbl9BY+PIeNl8RvqSVPObVUj6XGwp6Dy/v5H+AywU8WsO2h1ebnHPxGw6lhOiZHXDFI0MKDGOsEPjqmso5KmPorMG3LX44MBx2jF2xNRd/gszaoMxT3gcU6WQhL1LEQkotrRSVuWeTLEI5pRgUTdNyfn7GdrvF2oJ6vNvOODVA+iY8jFOEo8xjoCAkkkooVdCOUznsSdEhle/83mY+iMotKh1zQKJsara7HUtb8+L1a/70h/+cP/xLZ/z5P/hdXl1v6CcIIZvJpZK35Gd5pmwcwvz03svPytwaQqAyidYZLpbL/LNIGu64eXVDiaV3BHQyTLsD/b6YT8Hh2pGSEll+TKiu58VPDjRNy6Hr0ZvI07iQLCaVSLGnYuSs0tSmYrmuqJYrBqPZxcgQI6aqWbermQdRlCDKONpGMlUudA235XpA3/UMi5HKDFSuhiRzWCTHaThpA1eVtPitEySKBFPmhqQSHRE8w+g5dOKv4cOJAaIWfkqCOQm3qqR9bOuaxhqYFB4/qzeL6y8nXCCdC01UCaFzWGdxwR2La1WybTSuMlSNCDEqK7xLHwLr9QKfIvu+Y7PfM4y/BQdRazNJBENdnWHWNb/zL/0r9JPin/6j/xy0yEODn+ArGN6FRFkGdCk4iAjpBbKlNuKQ5r04gIZAU9czsbIsOioT8hKBpqqzUqBmv9/PA0drLY6PkZmrUQqGKec8KKVYr9eMXc/m7pZiqbzPQV/lYpWBXjgCJaNQK8VytWLoe0hSmHhr5cIpLbbPMVItpMBwWmOcZRh7wuRzKI4iRUkYrV2FcZZJTdkPX8iJRqtMhqwkKdQaccJTmsNuI20FpACqjKZyNktkISaNBrEzn3dA7x7vE9hE7THRdT2XDy9IKbK539AdOpIRNYaOsN/t0MYSvCAY8n4S0zRyOOzZ7w/iSAdoo/PrrkguzN8vz1f4M8XzRCklHIls7nZKxgXm61PkVzFGlsslAIfDYQ7GW6+Xs9PjMPQ8evSItm357LPPAHj06BEgbqXr9ZoQAs+ePePy6pKXX2ykLaikvRfzQHbWiARWHb1KYkyyK/CBpAwhKTabLcumZr85MGRFUwhw+/YGa1xGtKQFY5TmyaMHfDLCLz77Els3/OiHP2B9fslqteZxWH/NwarhX/8D+Isfwb/7H7xbbHz/A/g3/whaJzPq//2fwX/6a3oz5bH+le9JYXDfwf/yP5L/T4/Kwr/0KfzN78rn5W83Pfwv/i48v4Pfewr/jT+CVQ0hwd/5AfzdH/7Gt5OQmHSjZBcu/APZQeoQSFpjyMmermKxOseHkcNWM/pAyvk7RTo+L9758aOa5+X5GbN0RX5PCZNfKSn0A2FW0+nM/4DExeU5t7d3c7u2PMPp2II/u6T1/b97Fzl+XxWg+KWCI3+ntIiguNAWZZ2Mw8N+z8v+DsMVL1695OLzn/P733/ABx88xkdDxBCi5O6ELLFUUciLRRwZ8oZJTKvS/DNRA4VsFFc2pDFLk49eTMWpJMbA5CdCamd/CrE4kHyUGEUKbcyAbRJN1Kgg90sgkmrD2eKMq3MLaU+7qnjw5BFpsWTRex7h6KeJMSSUqTHWkZQhaoOtF5ytlzSV5UI38CM5hzElbu82nK3PaJsGGxNBRXTmdBhrMvJss2pyPLk62SspBGKUJF1xmvb44BmHARA0z0Ulqcba5nMCJFnv6rbBVTWVNSSTMHGU56wqqlo+TEZdUYqkxX278jELLCqcdXgX53NOijme4ejUaoxBWwNBeGuL5QKsY3vocK+vOeTX+5uOb1RsyL2pSKrGG4OfDO7C8Uf/1f8aqar403/yD2DsWa1W7PYjaDMXFEVhUhaJ0x6mThrPlNtJmjkq3Wj6vqNpGh4/fsjNzQ3eH/NKqqqCdJTSlpj33W7HbrvLsJKWhShnxZRI+MViQdd1bDZiFBRjpKolX2Uap7kYadt2lmEWr4+S+Nr3A0onrNU8uLzi7dtrpklMxYyWil/iswWeXLQLqeqtMNTDnFOiqUy+wAivxRqN0RXWaCprCDFgEA6H0VryT0JGQqyhbZoctWyIOeRs60dWiwY35whIQSdV77tM/bLYn+4+CtPa39+jPn4mki6tqZzjME6cnZ+zXJ+RlGLsB54/f85mP/How++wOr9iDImu7xiGnqQMCbEF9t7jR5FNxXSEoU8/uq7j8vKStm2FkJSLhpQSZ2dncyusaRrOz8+Zponr6+vZC2UcR/bbHcMwsFgsePjwEavVku12S11XPH78mLu7O96+fcuzZ89mzkhBu6qqorKGD559wJsXzzF557eom+xWqqibmrquMLrPk4MlIe+l6wexZ8+Cw6EfGbuRyXuaVgimQz/lPBuR0yoEnjUKPvngKcEHMJKEm0j87Be/YLxTcP7t3zxY/+t/QQqEKbyLHHx8Bf/Nvwb//h/Dj1/Bh1dSAPyxPSIP7wx64G/9DvyVT6XA2PbyuP/tvwX/078D3UlfZ5ikePj7uXDRCv6tfxlihOsdPDuHf+uvwn/4p/BPv4CnF/CHH0nR0/363ZGra1wlfB1XVWibEQ0l7HmTjaoSCuMsUSkmHxiiIuoKXbeETPhETaiQzZEygoE2JH2a0lzaKMxtE6XyvHWyYy+qg9KSPT8/5/zijGEccvFcpKe/2bocfn0R8j4CWS6QUhIuJmhl4peLDAWKeWesivqhPE6ei2VMlYTYxGGa2B167m7v+MVnv+Dq8TO+8zu/x/rsCu0aUI5pSrmNo5iGnlPlzmmOj/cB76dsCoXMBfgsSS7E2+wNkWTxi0FaBiIaAJI8VwgxzxORo7xYZQl6xHgNo6hAxugx9pzHj894+mjN9dsvGOPEk2fPcBcPGG1LevkavduTug6fNBiLMhZbNaAdVbukqWsadWwX7A89Xzz/kgeXV6yXa7zJQZJyIVB5Xq4qS1NZfH8E+0DWUqXVrAixriJi0GMpYgUBj4jNuzZWzlPw+Ek6A9aIsaBBhrjOD6y1llR0rTHWYsrGLJVUb2nPn9qNl/MfosTWex/E6j8GfNSogKDmJNAKbbS8IfX183++YRtlwlo5KaMP1O05Q7dHV57v/sW/jG0r/vjv/z3M/QFXiQvZUVkiT1VgxKOzH1m1Qo7uFjczaRGI4VVdOc7PzjOkbHJOifAoRH4qE9XZ2Zm8KWsZhgHrDFq52cmzyM9KkVE01VWVw9EQSe00imIAYJmdP4dhmPNOyiInyoNBoHCEiNZNE/3M+U4EhIzjrKhL6pxiGWLEKHEcJEbqKnte5ElO5xuyypbs865Mi16efONNKRKDRycx+mpqh20baVOEaW7PGI3wQOTsA0dJXfko5NXCn/DeE/HYykCMmdjZo7WmzZC1VoopRow2VMbS9x2fffYZT55F2vU5i7bGuoopwiETn6JXBJ1VSl6CwgpvA6Q4e/bs2YwuFaVKKTRKns2p58nhcGC9XnNxcUGMUdQnIfLg6opHjx5xfr6eq/R2IejX8+fPubi4YLVa4X1gt9vz9OnT+foGP3F1dSUE1jjm4ijmyUSmc2vs7Mha1TUpgdaGEOHmbsNqveLp46dsr99AjBij8T7IDmGxFGZ4kKj6qq4ZdjsqY6kNPHl0xc+/fMXD5gMWqzW7bmJ4c//1BusPX8JdB//mXzh+TwHffgSHEW4O8O3H8PO38CfPvxLpksFkpCD448/gFzdyf/7f/hn8D/8N+NYF/Oj18XcT8tiHXIA8O4fffQL/7n8Ig4ePHgia8WoD33ksj/e/+fu/+rlPDm0tzmmMrdHWYW2FNhKohcpuiEpLEY1A2WiDrVqUKu3ZitDviVNPnHpSys6PSmLpTxfoUozrpOfCI6Wi6shcBWQxVJQ0a1BKLPBvbm4yAbs4zH51wNvpUX7ntKg43QR89c9BHDFPX+PpJS9sqYISRMRSW+aCmIqh2Sn51GO1pW0WbPcD8fUbTLvkyy+/4MOPv8WFvcDVmrpp8dEIcV1rxslhrSNmqWixzy9cktM5P+b4dMrmJrcHBPpn/v1y7kO2u085QVYKmTJnSUtpKq1ZqUgYA0worLM8eXzBw4slU9pwt9tS1TVNs0QjgWS2rlgYw+ghaeFXJcRpuG6W1G2D8Qrw8np8ZLc/4GOSTJa6oXK1WAooQ9uPLJYL3P0GWZcT6UQ6q7XKKESDcZJMq4aJavKCaGS7BefBZzQn5esbY8JnYrzORWzMqEjKnA5RIxqi5AHIfaPNnAljjJ29lpzzc0tfKRHcgKzfISZxTU6JFEJu9fQchpG+l7DI8bfRRlE5G0JpjdaWbvL4EKldzWgdH3z7u9y8veamD9y/eEm32cwVs80chUJOKQNHkiFlMkkk6kULKWGMplY1zlrGYTgJaCr+C8xE0O1OuBSLtiV4QSNKGJt1FpsJojIwBZkoxUbxcuj7HpfZ5cUPpGRJtG07p70W6LTY6EYvYWjjOOZBkhizZ4fWihgCzhoWbYOfJpJSxCCGW65yqCTGXIkoNgLZIdFqMVlRCJfF6kxiS2m2xBX+gCdMgcpYQTuMlj6zs1SVgSCtDXPq0Z8HYxn476fvlkIjhEAkYKIkKjZVzf39Vga+Ngxdz2a7Q7uK1fpMIuM9TCPEVy84nyaa1TlgGMee/X7Hfr/DT6N4fnhPgX5LUVpeU9/3c0ul+LIURGm3282fHw6H2XdjvV7Tdd1MFH549YDz8/PZer68z67ruL5+w3q9nnN4mqalqqrZqj7l63h2fiaE5X7EaC0Tc56gY3ZC1XkrV1UVCZGNoRSjD3T9SETz8OFj+q5HGy0Oi10nE67WQpr1k0CVCkDisRe143y5EGJwTLTtkq/tBf6DV7B+z/9bKVg38GgF/86/UuQZ8D/52/Bq+9WPY5S0PG52x1XsMMB+gPPFr35+reBf+z34+TX8+LW8r7NaOB3/9t+UPBKt4X/2/4Av7n7j24mQpfN5jVKyey8vSUy6kO8BShsh4TaBMcPpVqVc3HviKBsaTZG3Ss1zTEgVeXo5SqEhm6Vi1CXBeMWO3Bhp3a1WKy4uzrm+vsY6Kx4zuZg/vcffb6v8uq/h3R3kseAo6OSRJ3fy7RnpSCnltpPMKVhmJFVl/oeg0EIilbk+tz72A3d393z+xWc8+fwpTz54hnWAScQUGXxg9J6gPVZJy8M5R1QSTwAyr6WYszqUwqSMviRpuNv8fmLMxfy8XQNiRMWUz/YRaZJ6Jb0zd8WYIPXENNJPCeUqUoKmsZjWcv74CruoaNuWpqpZtwuqyjKGiUheEK2lqhf4eMCEKFk8VYtJATJFdvIRPYntvdLC3dHGYKwhoMAIMi9Z7wGQTWGhF3g/yT2rxD+oriu0TTRNQ1M3s03EjDSngpjk6xojfvIYnfO38jqmsyCgcHRQmZ2XEtGLVb2f/Lye+RNH3WMLC7p+ZLvb0zQNmoTN89QwDNxvdxyGgd3uwP4wsN39FiLmQ4a25KSXnXXAVoZOG6ytuHr2Ed8LsItwlwNkCuGwDKBi8qXmES7+B0oZ1usVd3d3tG1LSuLHsd/vePX6hTj0TSO663j06AFjhsg32zuBg1JiuVxye3srRju1y1JLP9/I2/12VjakdAxcSynR1g3HsKg4u4KmlGbYXu7FHMRmLev1Sgy/xhFilIChaRRuREq5ypf0PZNEIRK1QpuaRSaKDn2XDa4ilZXizGhNnIToQ1aVOOeyxbiiKOalgBJ+S+LYDiFGqaZz77PsqkzRVMd3J7LS1hrH8Z0cm0ikroTncsjSVJRU/LtDh6kcafIY43j69AOefOtT9sGw7Qa8H7m/v2P0kSmztmeYNb/2lI7GaWVglWKnqDxOeT5j9tYoRmuFrAvM/y8WC5qmoaqrucDwXlpLwpAPXOaslJQSi8WC7XbLxcXVfJ8eDgfubm958OABdV1z6HaY/DqstYQ4YoxmGqeMct0KUcpYfIqoqFBBs90fuLm948FqJX1XrRn7npAU3TixXq85dB1vb2+p2wYfA/0wYVsNYUQjRY8dJ5Zn56TFrygKvs6hgIsWrlbwP/o/wusN/O4z+O//61JwPL/7ir9RwrvwJwtZSFKoVL/CeRPgoyv4o4/hf/535HcVcN4KMfV//Lfh87fw3cfw3/vXpB3zi7e/9qVrYxGrIpVZ+eUeNxg0Pkq/WSuF1kLIE8KnSLmN0uhK0LhYO6aqwneGOPXSfkxSNBxjEsR3JoSya5NF+9SHY0YqNCdQvrTGnj17xv39fSaYJ4J/N2fjq7gXX/V1Gc+lhVsg7/I4IXOeUn79Ssn4iuGIcqQUjgsXudgo8LcyM3kTMtqZz+8UJV6iHwKbzY7bm7f85Mc/5Dvf/Q5Pm4YxwP1u5NAn9l3PkDpiRnmKEd9isZgTmpVSYgdgJGFXK3MsFktLl3f5LTKXJUw6tiEKbyPFIwpS0JOE8C6SnsQjwlbsNhvuhh2uWbG+PGO1XrFYLUEplk1LXVk2B1l4talA61yUJmlVWCcIQNCA8JR8SDS5vUGOa5d7Qcm9UCLqs9rUajFSO17gYyip1ZaQpAUmqPJECH7enPsgFuWl5VHOS/SeiYEpRnQaqbLt/m63w1UaHz3WWeGSpUScIj4mbu43vH37lpu3N9xttoyTn40wU5LC7nX0tJWhO/RYrQTV6Ht2hwN39xsO/cjdZs/L67d0/W+Bs1EsS2yMxBTwKWArhVeRg/dUGMzynGff0tzst/z8Fz+fF8li41sWiOODRqypcCZbjFcVfhppmwpj3AxXRx9om5pxLHLTNrda1Fw09F2HUfDq1SuMMazWj9ntOna73XyB+r6XVNi8uJ6680moTI1CSIl1Xc+LbimSyvsRPoOnsi6TBsU3RPr9lmkYRLPsxLwqpkjT1BmyREiBSQqFunI4vRL2sc3qmRAYkXROq00mBuWudB54xmS9tNaoKDepMWKJHlOOFS/hUSkT2/LgVek4SRWOxukEVwqPiGe5XEgMfHZcTZmYq3IV7Zylrir85Nlst8RqgTGaYfB04x6fVJaJiZ16ys/nvc/QoJ6LiVNb+3KflDYKyGQ4TROLxYIYxbStruv5by8uLo4tmSRtsa7r2O02NE2DMYambTHGMo49T548YbPZ0DTtTPbb7XZSxHhP24hktrhRlknFWktVV8R0gzVGTHPyzlUWFin2dl3P7f0GfKC2Dls5puBR1jB1EvfdDT2HvsPUDlM5mA7cvnlNtA0xTHS7LdXZQyo01dfMIfjqQ4HR8E++gJcbaW388xfy/7cuv7rYCAn2I1wsjszCthK04+5X7Gi0EqLoyw18fnN8bqvhn72A57fCD/nBS+GAfHL1G4sNtJn73OVIKeX7OaKUJSrZ8U1+kns1ReFEOYdXihhGsYHOhbpGbKZjEHn77J5LGRcyVguacdz9M6MfRQ7LyX08jiPL5Yqrq0tev34ji+SJ+u50x3rKl3q/zfK+bUAZl0X2XdrA8nrl49g2OZ6jFEuvPhBzEUbhn5hjsufpAi/j0KK1xfuO/b5nvz9wd/uWn/zkxyzPLnDtOW+ub7i9F1XCGHsSUXx+Mmry5OkTzs8vcPYYW6FQM5GSfC3m11y6We8VYyh1bHSpTNTVMbdq5l8BVE501Vit6UfP7f0GFQaWtcXURrhWTU1QFldbVouG+51iGKTASEyEBIu2RqEle0urd+i3WhvqdkFVNcI7iQkfA3GaCBHGUdDKlDd9xpYiS46uO7A/HHDOoojZnXrgfrPj9vaWzWbDYb/n0EuWVMhgRfDTnJlVVeCnQAoTVgeUVew2O24WN4Q40iwaoRBoJVLYqJl84M2tpPLe3Nxwvz9IMRNFTRljQCcYuoOk8r68RqdIyJu1vh/Y7Dv60TP4wKEfZQx+jeObFRtKTrhNIv1STGijGEJgJFHXLfX6CuckGbCErBXo8HQhKYu82EpryQtxbg6OSTFgK8c49rhMgKxyhVl22lVV46eJ5XKJQixWN5sNm82GBw9lR3p/t2O73cIJ4lsgJGMMTdPMnxd/h+bEYn2aptmHoVTrpXgauh7digOnDyJJNVrlFogMgspJDknRNWNMHmORcRzwk2LR1CyWi3mQO+fQ1ohJl3MYbRgHSSE1SlowCoXOqHuKUfw28oCL2SlRXo+edwvS3hYwMsVj//C0H1wW0oL2uMrx4MGDucCyxtCPPrcQoK1brh5c8fDRE87OL2gWC9qrx7hmye1mx/NXb+i3B0I6yglLwJvWSja9BXU5sagvxenpTq6ojYwxcyT92dnZXDwWv437+3suLy/nrIq+71kul5yfn4ss0VhSinz88cdcX1/PuTgSInX0+2jalj54qko8NaZpwugmo2YmJ/VqJi/nP8UD2lgxCQqRqA3jONENIxbFaC1ucpnDI4qjbbeXIqWqUNmnQymIfsRUDavlkrGXMTNMI4uqLkjuNz9ihM9u4Ok5LCpBHB6uhKD5VVJWkN/5xVt4diFFxpgLk26CN1vhdDRWiKhDfmHrBv76d+B/9w+O30sJPruF7z6RQmX0gnIsm19WtXzFIYx4ScWUGz9je0kIb2Vf7ENWsKWIszq3UHUuUiNxSqAtyjqUqUh6nPvapCMcXxQSuQuQ5y01v5aCfpxyOaT9K/fJOPY8evSQYRjYbg54H99pHX8Vd+N9wvb77ZbTn5/yrY6E0MKPOH4tKGLebZ/yMvKcl8gZLrlISSlbtAMhpEzUlDTju/t7LrZnvH71kru7O85My+3dLT/8yRe8fvOWzeYtiYB1jhgiy+UC9Yd/SK0rllWDqw02aZzOIoHo502PPlkXTp1chcORUKm8ehD3iIgiiqEV86WRM+EV2mvQhq6b6DcdTaMlm6kRq/LF2YpARbtf0NzVVNZiSEx+JCmxNWjXKxRaCthxON7LlI23ZhwnNjtBpZ13JBRTSGy3GzbbDd1hP1ub+xAAadG+uX6DWVRAoqnEJ6rveu43O96+fcvd7R3brqcbPD4mIdgnmbe992LaGCUcMk4jlUlEHXj16iUpjNze1hgnBo9kRNgPnuAj9/sDb2+33G0PdOOUPVPijGxoOeXcvHmL1ZropaApleAYkqTCaivhb7+VYoNcIXtPnAYmf2B3GAlW03UHjAOdxITk0eNHfPzJx/z85z8nJTHTmSBXnfI4KQm8GEIgaIVS2f+iOiIFx4wS6XOdrdc07ZLNZkMMgZubW9arVUYXIofDnrquuTi/YOgHQggc+sM7xUZRoJSFPIZIKMmadcVqseTFiy9ZLJazsqFpGuYE13T0C9Fa4cPA2A9C/LSa1WJF21TEzMYW9EZIqkbrLD8VPoci5t/Tgu4YjT6JxrZaY6wmRYOLGqulQrbWYHMhkXKRkzJ0l5RBRYdWidoZjMrx2JTqX4KrCgnr2KdW86ANmcx4eXnBk6dPUDoyZlv1GEPWeFdcXl1lLsc9PkTOtINmhatblouWs/Wafgz040TILRO0ASeF4ziJXz+8O5mWtgow8zVKuF3ZPV5dXXFxcUHXdXPy7i77saxWqzn/RIij5+xzqyqlxPpszeHQMQwjVSWIWVU5NpsNVSXtl9JyWi5XHNoWf9igjaHrDqTkIMPbaRhlp1R2wknY/BEJB4tJsTt07GIElWhbIYOGEEgKjHMsVgtiity8vUFHWK+X3PcjZ+sHbKcD9/d3LLUoMb52sdHngqCoURLwn/9cio3/7n9FiJqfPhDp6w9efvVjhAh/50/h3/5b8N/5V+F2B3/hW/C//vvwZgd/7VP4N/4Q/tEv4N//J/L7v/9Mipp/8vzdx/rHn0uh8t/6W/DlHXz7Ify9HwpB9TccCY02Ii8+vVdTgdZDECg6yX3r8vgUtII83iWJOBmkjx0m/DSQgkdpyS06cocgRkNM/qTloY7PTUETin25EC9jHHIY4MB6veajj77FT378c8BzVICJIZc5QRXk/xOexnttFK2LRHLEaDO/ztM2ypGzkIR3MfNXkngspEgKov5QoaSMBiTxU58UWpkzoTQhkpOGFXe399xfnXN3e8vzL56DXZIC7LZ73rx+w82bV/hJzNPGYeDp0yf8wXd/Fz1FkXBGjQ0Kmw2o4ix9lSucAF0s4jkpNtJ7QEcs5FLZ8CgVj2mkCWxUGK/FkGoUI1l0IkWNtRXG1YzBc5gC3Sio4jAMdN2BfgKUo6oTsZ0ggR8nRqVoBigcs+7Qc3d3z4sXLwnTxMXFOZVzkv48Bd7e3PLy5Qvevr1ju9sxTQPrTlGKjS+fv6ALE/e3dzmWY2LsB7qu58sXb3h7t2GK4KOShFiOCqlpHKVIi72sX9NIZSH4jrvbyOuXL8QHKAVCbhWPw4BkdErLcfDi6hwRu4QUc8ufhE7CCdQxt+uzh5RBk7JNQ0xKLP9VyuZjv/n4xgTRoODAxOgP7Lsd/dQx+In97T2TrWhtRaUjurGcX12wvlnR7w+MKaJjAK/mweJHCY1RRuNTYApT7jM5hnGgzTd6DAE/RaYhsF6sqOqaaRqzQmKgWYtz3zgOhBBZrdaM48SbN9ekBL3v5xtXUmO1kDV9wFgrxRNSaU9TFMvjscdVFav1CmM0iTT7b8iRqGqHcwowqHwqxWkOFk2dK2IhFtaVVPsqk6a0UsTMntc6SV/PlZ19lIGkZKIwKqGcnk28UpRsE9M0s905IdAsckHkJ7wRm2yVWd8p5P5mlr0lQq60pb8YE5JfY4w4ZhKwjeH8wTnGKaboGfzAFHM+AHID1rXj4vwCZaygGosWQySOA0oZGmuonRHFSQr4MRt4IQoWSUeU81lcTbXVuY8smRfWFmfVyDCKCuXp06fiZ5JRiPV6zWazwRjD1dUVMUbaxYLdbk/Tthz6nu1+z/nZOdpW3N/vqOqKs7NL+qHnwYMz+u4gxmtGi7pBG0JKtKsVtqpIo0ED3o+kZOmy1K+Q75KSn2kjO+8QNTFaus5zvmixleL+/hZj5edFkdJ1HUTQaJyu0EphtKNtDN24Y9Fo7ocdoVtwsfxglnH/xuNnb+Df+8/e2ZGx7eH/8A/hr34Kj8/g3//H8I8+O8Gxv+J4s4P/1X8Kf/ljQTf+vf8M/t9f5Oe4hv/9P4DbvSwCIEjIT14LifT0OIzwf/rH8Jc/gg8v4f/8T+Af/kJaNb/hiMoSVUSwVT1zlRIRnSakO5gRMqvElViJ8ZOPcm8ZY/ExyEKsDUk7lKvRmemPyuZTgIwLDT6T/ECSkOXWnzkPIr1NORcDyDEASqoVzs7WPH32mBcvXzKO8vghTFQ59DFEaYuWRT6liDIKgrSIBMFUufiQ1xSKMqFwtMrFy/yRmFtAqaA+ScisSSliXiwlLVf+VjZzORcpK3RSiqDFcA6rJVcjwOa24/Z6x9vXt6xW99Ta4hLUxuGWZ6Sxx0wePwUWzYJV29I4K5ukvM9IWe6gi3dJeS+lEINcXeSCAzWTI1MCZQwqSzSL+iidIEVR4Hdx5vUBoxLDMHJ3f0CZij56kjpwv++53ezYHQL9CMMI0+iJyTP2A1ZBXTdMY8lsAngo180n7m+3fP75S4bec3cv6eLjNDBNOffl9RtubncM40QKnsNBA2ekBM+/eMnr29vcYpdidRzFrXkcPaOPOc9E6FKpFJAZGdMo8Pk9EvFEYproifT9wDT0co+aQrpVkIo/jSBYET0/t1Jq5sQohHviY8zZOQal8x2XC1qjDRpJvP56wtdvWGwYJbtnrxNdGLnb3tHttnTdnvvNBnS2Zk0ixWzOVjz54Clf/uJzxnHAKIUzov0t8Lk2smPp+46kErWr0EaLnNEYjDakGOkOPSlCXVeiZBhHGeAZKdF5YgkhMgwju91+RkX8yVbQ5NyM3TTlvq2QX3yIjFrRq9zXVOCDxAg3bSOGTpUEFslAIcO6wvWoKykgnNGEsWdEWg5Og7UKp8lWsp6UPFobrDPEqBD3PeGniEulyT1CcZATtNaQkthaBy9af3E3TKQgEfPWGFHrJItOUeoVpbPbqECqWil0CvgksjSlxddfntzgo4QPBTzf+ugj/vwf/j4RSW8NBPEVqS0xQtO2xBjo+z2ubomxhuCZuo797kA3BvaDZ5hiXkgNXmU1h1R3wlDPtzj5OiqlMHXzDupSruXFxcUcvlZSg1NK3N7eklKaCxCtNXd3d1S13E/7fUfbLlgsl5kEG3CVxtiKRolB2ZhJnylFxjEwAFFpHj/9gH53y5t+m4nIUmj5rOsPIWQjuyiWwEpMnrxPjCoQw8DZYs1yuWS339MPnhAjy9VCDOEWCw77g6RZRtmBN01LCp6u23N5cUF3faDf36KqJ19/wO5H+Xj/6Cf4ez/KPbevB4Hy5R28vJe/OemT82YnH6fHi/tf/TjDBP/JT0Xl8k0SbLVFG0DrrJ4AiGLQVb4qrQetGULMiZ0x1wpq5lkpkbZgbIWrFxhlOIRSCEgL7HRxkw1lTtJUQprWykprQklRLztDPyMRxhjGcUAbzaeffkxSkS+//FJcmBuZR7SWqAJ5Lo2KUrCmzEeQiHORLKZSBGmd7780k6wLOTVpsgwffBQ+1AxxqwApu45mL1VBWGRXm6eDjCjI34TkBXFGkbyM2bc3d5y9uuHR4zvOz29YnT9g1Viq2kDnJKXaBurgWa9XkkztzFxoKEsmUZ5c2/KUmXPxboPphKOTiw5ZePPiefzD+dejgaiCoCfKM4WB2/sN+37kxfUdrq5BGfadoBpv3t6w3WzZ7fdMQz+3bvv9bm4fTz5QjYpSbAyHju2047Dv+ewzKby9n2YvEWm/95Ac5CLubLTAYxKJm+sbpptjkZhQ2ZNEvEMKIleuefFziflnIYIuRI5SUKqYkXZpfdXOyfqWMpfPVHmzKWNIZ3TMZRdtrbLvh9azKdmikRb19Ztrbm9u8eNImiaEdCxjRetfQxQ/Ob5RsSEnQAblNE3c3d5ydyOJfrv9jtFPTF52y8u2Zr1c8OSDD+l2Hfc390zjIBIhrWRSTiEbiPhZwuiyUc/RMOe4SJdFpMTais3uUT1QIPACtz98+JDb21tsKtJXJb33OM0s6SL/KvyRkKbZ/jrmwqWtJeXVKAU5yMnmloJKEZ0kS6Wyhsoapn4gxZCtySuBpBTUVcUI+OCxWrT/0hsVoy+TPTTKRVcxQYhZXiXQltFiWiSbGJVzWCbJ3YgjyZhs4uUIWkuhkgmZKeXKNO/GdfEoyGPVGsPkR3ldyfHBBx/w0Ucf8eXLX9BPao65d1qcZHU2dzk7P+f84hJlLAGFyZyUGIqBl2dMGQ7Mu76k1DvrXIGqS4FR2PflwzmHO+HNDMMwE1sLqXO9XpNSysZdwuup65rb21ucczx8+PAds7bCJTLGsNluqJyiWTQobZjGgXGcqK3m4vKC/YOHvP7i5zOnZJqk1xmiGJ/FlGazpNEXeBfGNJFsYAqefhpxdU1VW2Kc0MZQNQ3b7ZbRe5Iy7PYdnRqw1jH6gbpuOL+64sXbA8+fv+CL/RqaP/dNhu1XH3mS+kZHTPx6COQbHN+k0CC3AfW7XIUjOTK9c6+kJEq5VFbjJNyKoiDTSYOWuHWVxDvFWktAetay+EqLi5PnUjHmtoVC6yOXqCxOZX4qJNKSj3N2seaTTz5GKcXz588JIWKdJfjjOSg8jKOPSxmXx3bCaZuRDI+rpN55jLLzheOVSu8syeX33+VFvK+QKaRyUbCJZdo4Dez2gRcvn/PwyWOW52u0syyWDq0ixevDaE1dOxZtw6IWxZ21JpN71YxaFv7Ye9UGvFdu/Lp77qu4LwppD5DnuBQjd3c37F98STeOMj6VILjDNNH34zyX+Gmax8V+sxVENcmC2objojoOPYex53DY5Y2cjP93eTVGYjyyu2wKRwxANit+5gTJJUvZJiLLo5XOclrhjBlrMydsYrfb44eJMIkwQKSvcr0mP/Do4QOePXnC+fmaqnJUtcO66h1zzVOO3KkIQl7D0dxwt93xpz/8IcF77u/vGf2EDxGdRBGkvuY88o2KDZLoqo0WNEIsYjVV5VjElngQdUBCs++gqho+evqMOCZevXxNuA0zZG7yxxQ8fT/NA7aQ9UoPMfgg5Me84FhrePPmfoYwlVLZ6lWKhLZtJcL4cJjtruu8QJVF7PZw4OHV1fy3McZZZVLIMToXPIfdluViIeRYJdwIyb1R1NaglMeQsAqxIUdhM/rSVJZFjqNXCWrnsApCsu/U7864uXBJIZFUNurNyg157TIZaWtF161OfDaCBOykKGE+KlkBI5NIA1OuWgvbOGYDF9DyN5mNjFaE6LMHiGWxaCWLhUTwI8F7kZ1WFaOPGCPowu3tLZMPkt1RtxAVddXg6pZ6Cbves+1GunECVaSoWfZlqgyNp3cKjtOslNOFpO/7d1REpc8sIX3T/H1RFlXc3d0xjiMff/wxxpjZnl6k1WkuWnwMtPn9+DhRQtbKY19cXGCMzX4BWb1jzGyqI86qVUZhvLTKTOnvKzb391hN5pO0IqU14j0j96lkvpTAtW23ZXl+xt6L3dSH3/qYq8ff5RN/BSc+Wv9lOYyWe1VAuJMFNR2zfN6ZOLMTjaShym5xzo0oH0VCmSRmQSsxxguxIAJpbjOU0SqTcpznq1N1yeliXXwL1DSx2Ww4v7jg259+gh8nXrx4IbtUsjKEzNMit2LyvV7yWGYeRX6fUjhl9OH09aUS1BUzCbvIXY8LeiGDvk8+Pc1sKd8vDp5B6Rx5kBimiX134O7+hre3r2nXC6xVGBsyUhnm+UZrnfOhBKEuu5qYTguL38JxUoA457DOzQvl7f2GQ99J20ZrfIiAmR1Vy3mY2xW5dS6L8HJ+3LqytCanT2sjTrNRnDfHaSSESCLOhYtOxZtFDo3k8xitpLUXPYu25dmzZ0J6Xy7RxmKyKEJbJ865xnJ3e8svfvEZr15ds/f7vIZ5WSOUoqkrPvnoI773ve9wdXnBcrXMa2j2kcmuxdpo8UFRzJwXY4T47qzwGZOCt29vuH5zzeb2nqHvGcaRkAJRaYIqa8lvPr5h6qsEhlltqF1FXTl8VeGcETZ+itLbCkl2uK7m4sEj2nrBT370UzSGsT8wdLscMe9JsSfG44RdVBBlZ+v9hG3b+QYoO4eyw/Xes91uj4TKbB4WoyQHVlVF2y7y3+u5iCk30TROM+xZVxV1u8L7if7QYbTIH01GAIzWrFpJPjUq0TQWFYVE5LIHvlFQ2Qo/TrSVo9JCVHLO0FYWMioBipBNVWYiV4pZmWOwGpQ6To6m7HYg9/SzuiMluSampAIGxnEQYk/ug0rhkt38pEmaF8VsS+tzfzfIjm6723F5ecbZ+TJnf0S6w4G+P3B+fkW7WLLdd/TDiI2KQXcoFMFHbDOiXU3kwISm86JyDMjCPBd1RY00xnniBN6ZsE8XkHwBf6kaL0F55drHGOf/3759SwiBTz/9lIuLi9mNVCBu2c0c5YORkGDoRkIaaBaS+Fu5hvX6DDU+pGlbUDJBaaOxHCfUQmKVNuKQ+TayqxJH0zvapqFpa/pe3Pe00bx4+ZK6arLFec/TJx9QNzVv3r5hcXXB9ZtbBtPw+Fu/x5VZs3j9W5yk/3/4KOmUKh3lx/Du/VK+TrNUVVpeMhfmlpxC4OZ8v2hqMIoYBkiGYIxIwwuKU3bfuZ8S41eT4coccgxyS+8gHof9jtVqzaeffkJKiZcvX+YxkPsXeSeuYG4FlXEhPXc9G2RJirQ85zhOMq8pNROTxdE200vSCS6QmOee/EDytGSzL1VMvgRVMdqQbYJQSPtbZ+fU7e6e3e6O+/s3nF+cs146qlvFNKQci5AgCno9v4L5NeVQvP8CbuVfhWyUT7TW2LJbN4Zl20g0QN64gaJxLX0/stvv6fr+HTdjuWc0Z8sVH148hp/KQ/+F7/95ulaMu6ps53A4dLx69Yabm7eCPEwTRF/KPOnvlEuRIuAhaeI0UDvLsycP+f7v/Q6PHj5ifX6RCxyHrSq0NWgtsQVfPH9Ot9sy9AOSJ+PxXpBprRJn6xWffvoJ3/vedzhbr1mvVjhnEM9AOe+yWZUiUlqBpS2XOZVo8bCxjlW75PrNNW+v37LZ72TTaDxoQ5gm/G/HQVRklT7JDjk3M1EkYTQblUk/AWecOKEZy+XDR/zOH/x5Dps7rl+94MXnv6DvdhLcVd54UnMvruxi67rGT7LDHYaB/V4czYqh0zAMsjvOi0tVVbMssqAVdV2zWq3mC9wPQhYtvUyd5aUlU+PB1QO67gAxiaOo91RWpKcEcEaKhhg8LsOCKUasgkprjFKs2gXeDjSVtFCU0iyqisaJAsQYgcdI1UwsKwYuCWYp8NEDpFgZpVnBomKGCRUoI6RQnYsRYeRnWeY0ceSX5f1edgqM0c8tFaWEIKqNgjFyeXnB5eVFbqkk+r5jHHqs1ZJiuE/0/QE9TSy0pq4aMUAaFbWxGCdx30lroopMKYdVZfWRcFeOU8P7u8IiAZ5bXaUYnbMWji6nIM6NT58+nR9b2OUdq9WKxWLBfr9nt9vRdR1XV1eCwJ3sisvzKq1JIRIiDKNnuRCUx7oKYefLAiRx9UVqKO9C6SxvPlkIvfeiEjKa65u3oCPPnj3Beic+KNZy6Hucrbi4uOL67Q1Pnz7m8y+/4O3NLWjD2eUVN7d3rM5aXPU1g9j+BTs0al6IC68HjgtpKcIBYdcnUYcYI5knwct9YbQSslsM4D1hmsBP77RL5nuxFPEZHZEi5ljovO+JUf5/t8UT6buOtm0YhgFXWT788ANijLx+/Ro9JxSctIQ4tlGOsPwR4ZOvM6oSpVjAlD5/Rj1ym/L40GrmBsxNixPqRHlerY/vw+ZYhRiybkQma7qh5+b2mgf35yzWFcuVZdk6Fo0jjAEdPSnK3DTnMMUIyRyfmF8uFL/O8av+5v2iQ2stHJtiO68NDx9cSSR7XeXEU4fVBq0s16/f8uXLl7y+vmEaJ4Yhu0sDV5eXfPrRh/zBR99F/VSe54/+6PvEc1HplHbs69evGfuB/XZDpyTSnVC8hCD4XGwkIZKPUdyd/dSzas959uQh3/v2p1xeXdEuVyiFGIpVTX6P2SEsBt6+fsPoI8pIfpb3Ey4XGw8uL/jwww/44NkzmqpiuVzIfU/I95E81ik/R4jG+fwmcNoJJyYpGudYLRaioqtqXFWTjCVpxZQS6bejRpEd/NQPDH1Hyo59xjr2hz3jMJKSl8yPEEho6mbB+dk5f+1v/E10ivy9v/O3MVbz/LOfsbnvUEaCuLQWUujF2bkMSuc4HA6z30IIIcfCW1arJcMwzLbUpQ9fVdVMFHS59VI8I3BiKrW5vxc4PRckFxcXQrDMBUzXdXT7A0YJkfSQ7bUb5+i7DlfXqCCtE6eYo4+sAkuiqStqo1hVS+kPK+acl8ZJdV129uSe/ziOBJhlSkqdONApWfxiChilSTrv5vM1STEIEuKkYEMbVNLzRGWNkEplexeFZIciJZk0nbUopXMrSjTmdVPx7W9/zPn5GSl51ssFDx88wBqLswI5SmtKZFiXFxcY47jf3OOqmsOhI9kK26xo11c8efwIryy7fmJ/GLDjyOHQ0R06pmFEoWZLe2DunxbL8pJt44sfAoJolbZJVVVzUmspMCTm23J+fs7hcJjzU0q7bbfbcXV1RUpiEdx1Bw5dT4yJ5dk5/TDQ53ts7PwMiycccQa/S3FdesNSdXjvZQddiJRJ0zQVwY/5np64vLxiu9tQuYb97hajLavVmv2+Q2nD6vyKQz/Rnp9jTIVzFW/eXHMVAM6+ybD9F+LwQSSfwBF1gNzSlbFEiCitqa1DaUNMAlH7yUuiZlFBkdB4kh8JY0+aRmLoSfGIqqbcYix+G8VHA44ch9LjLgtgKXxPURfvPajE0HUQAtoY2qbi048/IsXI/d0d4yiGYjpJw0N8XGoxWJqREuYASu/HOTRNJpi8eYmamDyo7GgZIyHJBsZoCe6SeFt+6X0Ukt9cnEQp1lxuEaAENUlKuL1TjFzf3bBct/QXay7Or6hf7BmdRidD10uLyKgiFhWkL753fn5d4XZ6fFWRUQq79x9LZ5O9lEnl1lmWy5bLqw9ZZ1+eqqpo2kZ29wl++pOfy9wwBeFyjF54OcFzeX7OH33/+3xy9RiUKLc++vAZPFgcHWtRtE3D3c0t+/2OaRwZh54Qpowii9lcfjeMU8CrCHGS+HY/8eThAz768Bmr9RqTTdCKszZaoZT4A42X5zx78ojtYWAI0vdXSfhIKgUuz9Y4azhbrXDGUOUE8lJMnhatX3lekWDD4MW6XMQRFW3TsFqt6L3H+igycqWZwm+hjRK8EGhEE9wzZbi+7Lj9NDL2AxGNtgpSwGhNu1iwWq4Y+o6PPv02T548wFWWf/4ne3b7vUymVtoip+6iBUYvfbRTl8lpkgtXVAolK6NAYG3bzpPB8eaVnWtT1XOuyqJdsNtss2252KGnEGSRzq0TlUAlMV+prZF+mzIk79G5P+qA9XIh+n4lig98af1I1smikoJGYLdsbEOE1BJiPNmtR3zMFrWcWPOmHBA26RlZUkgLy1ozc1zKJCkuoybPHnkLlUQGFWIk+DgXODEG2rbGp4nHTx7wwYfPCHGgqiyXl+eE4KlchXFVlktNNFWFMmK3XlWJZdtiXCWJkUNP109MEVy7ojlbgK1FbqW0pBQag3eTpJvmoxQahciklJpj5YVRfbSSb9t2VqZst0Lmurq6yjtGPSMa5R4Zx5FTnk5ZHErIGyAZJcNI1w+iajp0pKln6UAbxzAId0XVlsKMLx+z1bXOJknpGJwl8jKL0iLJ3OdCehyG7GhasdkKI36376mqJYtlg1uuQMnCaasKXy/5D/zI/d0NxsBq2ZCC3LMFBi3kvrJTKbyW4z7m3eN0wobjJF7ajYqjL05B2lI63lv+BHKOOVmYU0j+5HWdTnRlt/3+MUugZ+a8YnBkBcdRjTIv5p4joTiVrJrje0cdi9ngJ4gT0UeiD3gfIJvVRYrEVYZKTCJLLedEG0Ox1y+o42lo4akHzykap1Kc58q2acU7p6n53ne+w+eff86bN2IsFzORXOV7chwnQSitfScHpLRQIOX5UeVzKQt6aVegFTbfbzEExmnCGffOTfDu9TheltJyKQncaE1xHh2nnjdvbmjaiqHv2Ww2PGwvWC9adps9RkPtLMIZ+6WHzcWOmltT76NC5fP378mve8RYUCg5jNYsl0s+ePaUB1cPaBctlauoGodCk0JiGkZ2hwOD9/gESRm5J6LnwaMHPH78iMeXD4DPALi8WKMuFgjfRozRYvA8evSQN69ec/f2RswdtUbcDNTRbx2FrRqimkg+SUimFsS7rmvqqprJoGK8VuAITYyCrjtnOb84w2vDarXEKEVTibqp0oqmqbPpoMkttlK4Hq/5KbH6dB6LOZANJXJ8CfIUvmOb10wTAkmZ7Az99RCqb2bqlcmFfhw5HPZ03YHKGSRFME8OOu+2k887iIS1DmMcIcGHn34bwsChP/Di1XMOQ4dTVti2xswDwXtBSBS8w+MANe9OSy5GIY+WPnxKidVqNS8AZcec6yKqqqLPk0OIYUY0pmmirh3amAxvTRAjddOwaGoJbYoRYsQ6jdOKxXKJSglrDOfLhSw02RDKGjHekmh2aKtK0l+dPU6I6Lm37xVMJMY8QUYlsFhUipSTcSsr2RspGbJLy+xQmmLpK0fx11BKqmIls48uMKrWBTw7WSglvdUazQcfPuPBg0u0jjRtReVElqVyhd4NU379QhZOSczLQkykQRj4SUlRsN/uiPoVK59IrmEap5lXobUmGuG3nPZJU5KwtLJAOOck76Rt5qKsXPPC81mv1xhj2G63LBaL2RSsoB+lFdc0zRwlf5oBU5RBPqS5PReTGNaMhwPaFZvocR74KaWcsBhzbLOkKUqLLKuJ8vsR9A6GceLQdez2mxzWJ0FMSgdikMJydxhw9ZKqbkBXpGQwrqExDdPViv9t2/ML/4Jp2vHxo0do3xP9MVTwdKI+tqyOk/o76Zvx6Jj5vn32NE0zqlT4B+WjoIfl91JKOWTOz0VGWZSPHzlzRKlMTDu2nE6Pwn0oxVspMHTmMHnvs9T0yNU55UwU3sbsZRZjtspPMmZiyomsObLAWYwKkIoapciZQ27NZCdepU7eh5nfu3gwjO8UGOX8Swuyx3tRz8l6Le+5rmo+/eQT1qs1z58/5/5uM7//cj8dr9GRFFs2XHK9hOAXU8oFmhS6YloW5gjzEGVnXdQrv1z4vX9k34uUSEoKmJhdPLWtGMYD223Hdnvg/KwjTBOr5QKjouSYOEv0ktT6SyVu0r/8vf8Cj3Jt5TzJ8yzbBZfnF1xenNO0x2wl+X148PCKJ3ePud0d6ENCVRUasQdvFy11XVHXx4j5yhmwxSeErHQyLNuWpq6pnKWpG0wmE3sCJlXl1FIvVyhGpj5hdcK6I0L2SyhPWfnz14Wz6OqKdplyequlrR2ahO+73Jr3OJN5Spyom1RxiZV7W82PfzSd8yHmlHHJbYl5o56SILrmGGGI0V+vjPhGxcZut+Pt9Z7d/Q0vvvyS+9trnj5+PBusCF9AejhGa5ySAJqqqkBZKhSPnjwjxoFPu9/lxZuX9OOAP/QMneibQ+ZopIJe5MmlSHJSikxTmDkaZdCd2kyXXSzIwPXGyztVJf+k4my1mgPblsvlvDOpqmU2iwn5fUg7Zdk2mBTELCUGVouGyhouz1YYoxj6HoOitha0pqkcbd1grcn9Xs+yqUXNktGbOHM0EkkjJKAMPRoPQSlUAh8m6YGipD+WEtYoVLLyuifJUJHgKYVRWb9PlmRlWZXAwXITTlM62YmJydHYDVw+uuJb33pG3VTUtaGuHEP02Sa+EmmztlxeKupmyWa7E8nsKFp2rRSuqqgWwpUw7RK3ED+OaRCWtvcTXT8wTQGrdN5h+nnhDyFQ1/WcMnhKHFa5+i8FxTRN8wAE5nZcKVwKkfhwOMy2813X8fjxY/q+n4Pnzs/P2XV7Dl2P7gfQltEHqkkilbc3WybvsTGiTA7lS7IgxSQOtPNOQWYFyoQac1HifSSEic2moR+67OmRsiHdxOZ+x2KxYr2+xLVr+jARo8GPkd2wY7ffMk6Ktmo4P1/x+vVbrMmX+mQxhCOsPLd4ToqN0+NUSnq6w3y/cDkl6r6/KzrNvJgTJMQwYv5Q5B13FG5LaR4nivw678xVysW5fvf15p12DEcVSHWSt+GnCZPNuqZpYph6SX51NgfomVxAJCDMz4+SWtxP/tgWdg6XeVnCGSuk7BLlruaip7TzCkfsfXJojIG2rrPDugS1iflgou9HVqsVT548pqoqnj9/zuvrt/SjFLTGWEFYMlfkSFpUeB/m73svbssYWQBAeC1TikQfc8KqbJ99HvPlOs6I4UnhceSLBIKPkuuSjCg3kgYN1jbc3+158eUbLs8v6PYDTd1KRtIwoLWax8Rvs7D4quN0HMztNmNomlo+qkocmK0s8MPocc6wWLWcnZ/TB6iWa0EEpoHlakHVyD0Bsiw7p8EK0kBSYnkfxbqhzpEXy3bB5BSj9/hxojaZe4GSbBlGOhWpVBRzSK2ISs2LOMimLUNWMk5RKG2xVUXTtgQjysfKWpraYZVid5fnnSiOujF7WkWO4/AU+RMSbx5rSl6fymuS0gk0uMqyWi+5nDx1u0QZi60aJh+z3cVvPr5RsXF/f88Xz3fs7264e/uW6Kfcc7fHCQtmWWsKk8SJJwkYC2NCGUcicPHwMZ98+7vsdzuGzYaXXzyfE1ittXO4S6k+j6FcXiakk51PYXwXJYoxht1uNwd0ee/nSOWqcu9MkCVVD5hNopwRx8+kNWkit1RS5hYYDIbGOUF1SDht0VUFSYouZy21czS1hLTJbslQOSFtGiMx8iGW8Js4w9RGIZJKa8R3PkTUGBlLSE6+LU5JcsA7E79KQaKhM09DqUIcixn2TnPBdmzgClm2bRuaphGTtWTwOXnUWik8lNJYKze/No6uH8R5VBkuzs9ZLBZC3g2RoCWoresOEBRUYtOcELjXOXECRKc53bX4ZsyE2RN0AuBsdc56LQZZpTg59TUoE38pLApqdXd3h1Jqlr7GGGfH0cL5GYaBcRiJ2mOt2NQPWjGOE/vNBtCkTAgTf40Cncu1PKIcURbYk35ozPdXiJFD31PXFT5EJi/w7Xp1RrNoObu4YPKJNMGuG/Aagg3susAUHV98/jkPrq5YLx3D0LHfb1g4+871h2M76n1ewen9Asfd92kGTTnXp/LyUnzM7+cEHTktDN6/J09bDu+0aUDuhSwln1sOCinO52LmWBeEE9VRGfszlybfJwV1qZ0DY7NT5ml8dt5p50XcTx78SAyD8DlyFIDOPjoCkZNbljJQyvkqhcYpIncqIZX3ILt4nY25BH0VEy3nqhwC2HB1dSVKJmN4ef2W3X4vLZ7MZ9Lq9JwXZCPNLeWUEqZyJ4RvdbKYHBdcFY/n6/T33r8v5A3E0k8So7EyTyALm4qe7f2emzd3XF11LK8uOT9bc/d2yO0ROO7J52fgt35kBDdlDoy8x3IeiipPCjVBrXK7z2qqpqZZtgRjMEoRJoO2QjY9mSpl3kohK51y7kolLfKmqlm0C3FLDhrjR4K2VKGdT8Hy7AwXB8LUUSlPZaVdSErSYka8iARoUOUyyNdaY6wT4z8bBTXTMtfVRnM4KbSC9xAkEiGpI8Iv7ZJEiiq3PDm+OYAkGyMVo1ALgLqpubq8ZLEMGZW09OOY79PffHyjYuP5F5/zD7/8GcN+Sxg7Fk1FCBOr5ZKYIsPQi1Q0F9L9cGCzvWe721LVUSoy5/DTRLs44zvf+wOWyzPePv8crQyvX78SQy0nvbKqqqhcJXCmESMpH3xesI0s/sYyZfvuelEJu1hrDocD6+VKzEuymYpIQWEaBnbThFbgjGbfdzgnaYDBjxhlqVxD0kLkScFjksEpBSY7cvoJVxniOBBVYtE0WC0haU1VUTsrN4DVaGWlIAtjTkTMGSlGQxJVg588XnlCFAmbVRq0mJNZFXE68zui/K40YBDCpj7KeaU/l6HjILsyotw4MRuEJdku5cUwT1gh4lyVHeQMSgns6qoaY2vqbFijx0l26DERG8Xl5QV32x1gaKqKYZzY7HZENNVS0VRt7knKc3UxEseRMAqRzShpvUEO1iISo2KaIiXdsus6WTj10eCroFoFybi/v5+N3soiUFJ7C6pRTL+K9HW323FxcTEXIX0/0vU9ISVcFdjt9xAmCvO/bhvC4HHKEKeOyce5gCstRkKAWFwt1Tx4ZY0Q6P/QHdBmwWa7RRtN3bS0qzXj6GlXa7b7RH8Y2Bx6cJb2bMXjp09A1fzwBz/h0O25vHiEMo5hiiwqDYR83dQ7C4gUG6dGWBzbihyLjdPjq/gVp4VFQUtOEY5ynHKu3ieinfJAZL0XpO3YhpWF3Z44Ekox4WVC0XbehYcQBMEqhnr5fvAx0DQNSWnGzH+STZDCWhlTRllMsqSmwk81aRpIviIl4YHJFiLOfxszX4qTc1WKuXL91Qm3rLz3IpvcH3aCcjpLzMWCMZpxHFgslrk1PXCxXuG++23qtuWzzz/n/n7D5COqbTHOHjcH6miRHiJzkUue54rDqLSrcvsl71hLHkuIIe9gi915Ke60+I0gpFFtUs51UzOXRqSRirpu2B82/Pznn3Nx+ZjFxVPOVku2t28hneTInBqPJZHO/koC0cl1/3Vfv//903tR7rU484dkfpFCQwidxbla5w2ezoZcQq2ICKdNkCKYgkQ7zG2s+V95LHEynUtRtNWSLDs1GG8Ig8YlRTVV8182VYVO0LlK7kdriEmCGIVUnE00E0JANccIB9lsinqw70fGscekxOQMvdHs93uGdcc0DagkBbd1spErVUXMrUZxQPYn80O+r/yE9wMKzTCO7Hcbxr7jsDvI3GyzoidFTob8rz2+UbHxxWef8Sf3f0xdWZq6om8brKtYLM+om5bJB8IUCNHjlaKPHlc7DtsN2+2Bi4sHJJ+wpsHZhssHNU17yeXlQ5YXF/zpP/0ThmnApEDttFTUKYBGJo4k3h3JTzK5K2nXWCW2xLWzNHXN3e0tjTOsmpoUEqrAj0qxrquZ8X22WpCix1hxunj86IL99p7gPc5E2kVDrBV4D1NP1VQ4YyCJQ2rrLLUTfw5rixmKDFajAkY7KquygsMQoz7Zxb07mVdZvju3E5K0QEJMmABTFPiMBCFbaku4krQg8ohCIXIpz7HvLhNjNipK4lJKlJ5cTNCPEz4FTAXaWqYw0i7OcFUQ9UpKch6LPXqa0MpjDVinuby6BFNxv91xtxfFx9D37D77ApTh/Oohq/MH2MUZVEsMDoukcYYwEmPZkcqibJ0BXG6FHVGn3U508C9evKCua5qmYblczkjIarUiRjGWq6qKxWIhAXGZWJiS8DGstbx8+ZJpmtjv9/R9T7tc0vUDh35g8hMrFGHs2Y4Hlk01t6DQUtyGkAhRIfVFwBlDHHfEqZc+bUpoV9P3PUYpxm6UItMqpmHkzo8Ya1kulzTLNco2GJW42w/4VEFlOWsfs764pBsDTbvi5m7Lvt+hreKpfsLlow/ZdjseXbYkP2ZDsA2ucBgKuQ9mO2oxwNTzgn1Kxp0L1nwvlRbU7D6r3g3sKogH8EvFx/vtF6XUjAJUWcmUgsdohzNlEcw7cWXeeR2nk+AwDoTyOo2Zo8uTUri6wVhDSjCMI0kpqkaSpKdhxI+B6ANaJaxSUoR7ubfxHpWy4dxJO09Qi+P7NaX3nYQ8apQG8y5PhhPHX2Kk0jaPtwRa2h6ohFaCqCkbSTqiY+Ji1WI//hZNZXnz5i3XN7f4IMXAFKRA19owhsiUzcfqts7oH7MlgNJQVQ4fPMGnmbOBETmj1AAJZWUu8kHiG6xzOVE0UtcVw0h23AQIpKgIXnPwCbNc0DQLjKs59B3buxtWq5UoUKwTBVBMIkUu2D0pc9SL9PKXj3eLhvedU5k/P+UbvdMaygW2VopJpYxuT4zTyBQCLkVU0hkpEPK2qxqqpkW4MeI5FIPcLyqHq4XCwQJIhhgyGqHEEyUqiOKBgKqE06FMjVGaGkN1stxWKZBI1LZGkagWLd2YRNmhcrEUExYNyRMnQcd0ShB6VPQsm4qojnQFlQLj0JOiBzzb7T3LtkFrxeiHnLxdjN9CNiGTjVkiZZmybIhm48cEwzgwHLaoOLB0YBqHdRbrjsX/1zm+mfQVsShVSV6YDzn0ZRL777oWLTlRZRMSwzR5bm9vwdSslmcoZ9DGooylbgzaGJpGrGwPXcfrVy/Z390AiLIlEw9DVKAEBbAKFtmoy+e2y7IW9u3Qd5ASdV3LAhEClXX5RhQm7+QnnNW0TS3kmSTua7UzHEhYDUZJK8hqmUyMEli8qYXhu6hrKqupnfhOWGNw1mQHNkPlpO1QOWE1K2Rwz1bkeVBA7q3lz03BjPPg0YjLXMo7EussMZp5kk/pmB/zDmSqxatjjDE/pyFEGXQRKeJ8EItslPgQTL0ERC0WLZAYx4Fp6nBmIeFA48D+cOD+9o6b23uGKXH56Anri8ck7eiGEZdJBHW1ZrlYMAyevjvgQ6QePW4FuCVRyQQUs2fL6eQeI+IsmvvWgnYIUhOHNCNXVVXRdR1N03B+Lu2V6+vrOaW38DlAdvPDMORzJlDyO3yPzAuZ/ISfJHjJe4+Knh5pf2hrIFlS9LKjDNmtMZP+dO6vymuNWG1FTaDNLKPzXhRata1ZrJd8/Om3SRi0rdjd3HN7d8ejJ99iuVoSkqB52/2BP/3RT3n55i2r9Zqnz57SLpbs9wf22430YnPxIOjGcYFXeUeLltcpt4eaN5Xvt0B+FZrxPpmwQPqnfJCyALyPjJz20IsJmzHFwfDd5z5tj5ySUVOCmL0wizlc4WMUQiWUaxLEsCnBNI2COGW4HJ3PRylgQrabnyb82EsbLSfHGn3qc0MmS5KdRwPH1syxEDs9dzqPQcO7SJD34i4pRYvFqEgyIMGJgUrDum1wT5/w+NEjNtsd99s9m+2BQz/KPeo945AjG5QkO8foIQpfzIdA3+1ZLJaYumK/2+eFEVKK2MoxTqJoM8bgQ+YWJbnPrZE5+exszWHwDONE1dR0wyQozjTSD4MUbkbT9wPb7YbKVfO8HKs6twHeWUTmVvCf5Tgt6r5qkSvcn2PLRI7Eu0Togn6Ue4t8L4QQmMaRoe9Fap8CycA0DichnOSxlGbUJgFk1YaxBuOyEAAhQqeUcCd250Ylams5Wy2FAN8upFB7j/dzKnoo4+twODAOHf2hp+9kfo1hYup7Doct+InayKby8vxMzCaNeJa+O8+WDJdu/n45h6fIXSlICtFcvu5/Jdr0q45vbFcucLFIqaZRfAN8kCotZYarzrLOkiMQgvS3VPZ3B07yJAymbnj05AOW7YLoI3/6T/4RX/zspxjrSGGAFHHGiJtlxroSzPKmAgtPk0TvivlIhZ9G4ujRwssRKLy2WCsTsxFNK20tOy1CwBmBgiujsVqUHrZyqOBxRlFXjqauqIylsoq6siI9NUbaO85QW4dzwtuw1gpMRyIL1uddWxksAnNDzK2VEEx2AZQBYbQmZOQDJQhNyL1ohXA8Yj4fZQeuMoO+qTO87MVdlLzAl7aATwmCJLk+ffqUP/c73+Xxk4ek2OF9kpA6RjE/ioG2csRFy9B33N+/4cd/+pYHT+44v3qMTpr1qmG3T3g/ye6qNgSgGwe6uzucB7sImGoJxmV1x9GzQJwiE8HL7rWqNN7nQRdiLpSOOx9rLU0jF/j169fs93uWyyUpSV5OUZ0opWYF0zAM84Aq9ud12zCMI9M44aeJIfM4UphIXmGU5CNEpaXwGkaS92L1nmQnK1DoEY6e+S2Ir4muLFVlWSxblqsli9USTM3Qj6gYWJ9fsesCL1+/4pFx3Nxuef7yFdtu4Oz8ij/3u3+OTz/9Nm3bzmod7z2T9zSm2CrbGTXT82JP3snJTiUmNSeTlrbHacHwPqpQjvf7+6eoxenvvL/glsLu9HFttt3npBA5LWre5xsUpQ8I38fkwp4shUapk3tIWnKTF+6S0YaqsmgSQ9/L3JNJpcMw4Mce33UYokTYY2Wc5CJY6/z8MyLk54l3VrScvLd32kfkRNgk5D45/8VsKkq8fTAQPJrI0hgWdUNfWca+53yx4tHVFZOP3G8PXN/csTt0UoDc34ubrQZTWWmvpiDE0pDRm+QxqqJtKqZxIgTPg8dXPHr8mOubG+7vdzSLluVygQ+eqq5Yr1aAIvqItRXVIiPLUWHrfM4AlCw8/TCy3e54+DhirKFtWzb9HT4Tv3MDW84L6Z2E1v9vj19VcBRuSyleodzLaf68FAzlMWIMhGnETwPjKJQAqxHkIhyjI0DQvhgCKopFQcgLTc8EawABAABJREFUt9aatmk4OzvDaOEeBp8YhpYzU/5esV4tUbUjrNfUdYWzYoJ52O9n2wWRP48z+gjM39vvdmxud+y6UTgV3jMNnShEjWJze4eOgWG/p66yijNvjgqx2WdRRXkOIXkzI53ks3UcV8JNKSFuNts4nLZlf93xzX02xmnurpMi4+iYvGcYR7phEM29EmfF4KXAWCzXxKBmiGZOIs2kG61rdGu5cA2/83t/wNAdePP6NdpPDCFgiJmnkSAJWWccR0hp5izM3hJkBCOrYHRdCXyVe12Ns6gqkzbzDr9dLaSqCxMLKyRO4VxoamOorSF5TaWk2KisybbkhtpJYWGNmcllNiMhspFKKE68BxR58irEt6Ohjuzk9Hv9YE2yYmjlJy/IRIoQAzFPeDpPgCVWugwmIdIW+VferZk677AlTKfrexKRDz58yu/9/vd49sETFLDb7/B+B9FjNEzjSIoBZy3rZY01V1ycnXFzv+P5y2v6w4F2eSbE0CikStmNKmLMC5OBYewZk8ZMHkwlHJb3ii8hARb+gaZkCiilGP30TuU9juOcb1JydZRS7Ha7efCX3XRRK5X/30E+nMOniB8HxknMw8I05qyHhDMQvRAK+3FiGid0EKv3EMVO2lhHPwyAFB6yy9JA5mW0C84v1pxdnNMsGoyz7PYHDmPg9v6Op08/5MmHH/Inf/LPmb58wb4T19y/+tf+Bo+ffYCPalZOWWs5OzvjzSvL0I8szuT7lc19aGc5AtW5QJPaGhXfRTF+1c68nKvTAqMUAae//1WIx+nHUaZ5fD5pPYlM+JRECu/6nhyfR8+LlAJSiPiU0MlkY6ujGq68zgLl+GliGgain2bfATIPAS1IY7tYUFxCSwyAwkhClhJUN4ZjWJfPBk2n7/N0UTsSV4VDgS5Jq+R5J83oivfCy/JW4ceeurKcL1uGw57xsMFlv4zL1ZKrswvQmv2h59Xr19xt7jN5UTFm19xEoqkb6rqe1Vxt24rXxtDRtA2/97u/Q1U3vHn7liEEtHX4CFXdcHF1hVKa/nBgv9nKGE5wc7dhzLvi7WbD7v6OvosS8GUtOheATdNwn4QgKtc9n+uZ+1Gu4n9xx1ejc+odv57TazNfiVTIu5FpGOgOew77Hf1hh9gmGHEOyJu/+T4PcVYTCodNfFuUUtRVzWqxQKusgAoRZzX1YaCgLZoS3iaf+2lgt7nn5UtL1x3mtNk+26e/K4MWObUzmnXbEConr6+tGRctfuhRiO3AcDhI2GmMmS/0bjFcslCqjBAWJ+1TEnYJbVNKHeXCXzFn/KbjmxUb0ySyppTts1Ngu428evlKFhcSfZ9j2RctaIf3CWsrPJLDYZy0KebAPy3GJyTNGCfOLh7xO7/7fV6/eMmr559BikxDdtfzAyFq4KhQMdkhU3T70jYxRlNXhrqy1NZiBzUbbNU2p7UqAyRCgNYZgpKiwFUOayy1s+iUqK2hdRZ0otJGOBpW/PabusqtEkE2dI55J4q/iBZ7s9lBTzwG9DHK9z3YWr8nfQr4zASHFLWgEBmyV4nsUJnAGFKQsLdCShOyXCYYZfvzGI6wYcgsY60Tjx895C/84ff5+NMPaZpKILIYSD6gVCROA0QPMYg0OSWcFu34xbJl/b1v8+rNW169eUFUwhdRxqCMIyTN5BMeg48KosaYSvrCmc3tT3awhXilOCooYjwuIuVmL7vl3W43O84ul0uUUmw2m5mn0XUdwDuGXuUoC2AIgb7r8DEKupFjomMQ74VAJChIkydOgRCLwqHIdUV1YIwl+ICxDmUcSkmqa9MsWa8vOTs74+LqgtXZSrgFCtp1z+2Pf8q+H9CuQtma9fkFm+2WP/j9P88/+8GP6LNKS9uazz77jBcvXrBarXj65Aln6zVdf+DB5RqTNNo6gp+w1mVEQ2Bz6cEKwlbmhlMORvn6q1opp4jHaRFQFtj3EY/3H+c0r6h4c5wiFqcoSpGwl58dH7t4ShSZrELFI7oVSPPfhUx8SzArgrTWuLomFPOt4Bn9xDhNkkYdR+FgZL+gkjPhp1HoolGY/dMku0BO3u9py+f0XBwLOZ3p3Ep2wSGISiAFopYFJyhLDAY/9Yz7yHp1xuqjZ9zc3nO32aFNhXVCeNbG8vjinAcXZ3RDRz8OsuGIgcOhQwz6FtR1NUuzm7rBVU5IfocD54ua86sLLs+X9D6yvriiWZ2TtOXs8pLl+hyTItv7e7bbPf00cX1zx939Fu8n7u9uubl+w2G3YbVc8OTxY5bLpThz5kiJosBRHNt50k4uRKKvsej8huO0iDj9ukg6U8ob31BiEsKseJPrI3PPMIyM40D0I04l2sqxWLRUVotBY4pM2U4BBEUPQ8LHwDh5+q6n63u2d/cc9ntRVo5TJnOqnBh+LHL8NGGceEAtmkbMJhspDu9ubvG5c9D3/YzEHjdGlhgS3kOIipRC3vyDRVLBxedJi8+T1iijUdZJplP2GDkt8osfVYnu+Kox+n579esWGeX4ZhHz3hOGgaAkAdWnEjJ1i7bi6BhiYpgCJhcZISKs/ZBbLFpcICHO9s4paayrUIgPe13X/P7NDX3XcT0O2ORJ4yC78ZirMVdhjaKkFislElVbWdqmkr7lNDCFiTD18+9UVmMUuMrlXWAtA1WL3wQhiERVa0iR2ihqp1HGUmlNZURhUjknRNkcCWwzwmK1FAlGRYy2AmUqcgqoyR4C707oKaW54s8y/tmIJYpOSQoqxIkUEioZUt5JKa3w5ghFa6XwAXTSOGXBe1LShJwZ4oMnqoR2hqcPH/Pn/uB3+fQ7H7NcNYzjnhgGnBGeSMm9scaRgsCJRDFwMouKbgjcb3as2goenPP67T37bhI1SrtEuZqqrtFYtLJiUqUUYRqITOBqsf+eJwspyKSrFTIqc7y5i86jkBaLKqFIWYvcuWmaGc0oA2X2g1BqDmAru+i+7wkpikNo5mGU51HBY3VChUk8S1Sxq2POo0hK8D5tHU4ZbNXgXMXZ2QXn51cs15csFiuWZ0uqupLGtVYszi/50c8/R9uadnVO1/V89Mkn/MN/8A+4ubnh0aPHHPZ7Pvvsc7b7jovLSz788EPu7u54+fIl5+sFw2EQ8lhVvEaMoGcq6/9TtqyPkitaELXT47SgeB+tOJ1sTpUoX1WElMd6/3FnguV77prl/i/X8pSMeuQlyWNXrs7qguwiqoTwNk2TSFxzERJizCTEEpSX0TKtqJwjBs84QBpHMSxKoJXFOdm8RC8chehH4ampEmYohZp42rz7HsvrP52IS6GBlmtC3gRM3jONIyp6rFYkPCY6mkrje88wdVyuFjx+8pSL9Zqff/YFm10HQaGTxo8DXRRrdqMTNknKcFs7Fk4f3V7jxKJtZn5Ca6CqLKv6jDh2bN4MtMsVrbHoMLFqa7A1dd3w4OFDVm2DSpH9vmPwsnm5vbun7wcOuy13d295/eIF09BRVRWXl5e0Tcs0TjO0Prcp0nGeyz+Yx/WvOk7vo1Mi6PuL3em9V1oBc8v4BCUuvINynUpbZRwD/WHHNPQ4DetFzbKtswlbJE6Rzeae66j4dn6et2/fMvXiW9IPk5Aox5Hd7sA4jJCE9K8z96dylmVngQ1KKc7WS6hKVoqoP7q9Z38vxW0pnIWjJDlhJS+rchWqNigspJxCrg3GZOFBbqEbLa43Kns7KWtF0VfafupIGD2t/1KMuc2pj2qrMl7zZVPqhPeUvl7V+I2LjWkYsEYTVYZTXeTQDewPnezItZIiIySMddRNIwuIVdm5MsvfjELbsufX+MmjMxbgI3zw0Sd8+fwz3rx+CdrMhEKRGc0IaW7DiMFPZTXOyoLvx4EUA9NU8kBkAW9cJmaGCWMr6trhR4lRd0qqxrpycgGVkK1qZ2XXiFjLVlbT5DZLifWV6lUmJWekUDHZUTXGIBNehtePk3OBfCMl6lcKjjQzqgPClrZaYepqJgwpozF1NV9s1dRSRMTs84D0ckNKjKN4SxirMUGLqscamsrx6Xc+4fd//3cxFXjf431P9AMqTRilcFaUNrHAxykXiZlw19SGdLaAfY/3msuLM3za8fZuyzBF6pXG1Q3aOWrXgqoYQxJmvDIEZbJxjRximpTmaaj4CcgOhdk1shzvL1LFvrwQPIvMFY7OlKfGYX3fZ8hSCLCiFDCzRbr3nuQnxhiwOmEQZU+h76aTAighFuxox3Kx5PzyisvLB6xW57h6ha1qtBGESiPpvj4kvve9P8dPfv63+cnPfsYnn3xK8p6HDx7y6tVrHj/7EKUSZ2dnfPCtj3E5B8YYw+3NDU3TsLvxJGRC6rp9niTl+ngfsgJK4MRCDS2F16lc8/3dS5ncT89b+dtTaPqrjMFOd0WnBUrZVZ7Cwl9FtDx9DJCxk2KaWwa2/E5+P2KSm+a2oqks1tg5LVmQsGEmAYbgxSCuacS4bn/Ax8QUhJuklHgTqCTx34IMBeFchCNX7PScffXuOsn8BUf2f2l/ao0xCpOEq6WBGEaatuVsXbNaCll76A+E6RX9MIqy2id8SlRNg59GCLnYQpxVxdsIQc+ymZgC4igOyClJyKQzGu0HfJg4+Am04fzh0xnBjnXNYtGyWK7pfWSYPMv1GZP3HPZ7nvZPWa+W7LYbwiTI0DAODDnk8LTdRm6pkNGOFJmVee+2fn+5gHi/BfI+OfT0e8KxOXKVUuYnFa7WOI7UtZs3GClFum7k5uaG3WYjpo3BC+FfC5JcrZaMfcfuZLm8u7lhGEQW2vcj/Thkn5+Q7ftVJu4HfJBkcHNSW9XOEAq3iuNa0bRNtkUw80dxUi5fz8W+aKPmtaOsJ/pkbZGxA0mJ0vCXinzSbDL5zpGkVTmj8GWzUR435VGp1DuW9L/u+GYE0RhI04AfZZEtu0+fwG1rphip6pq2EUlsXbdUdSu2y0hcbV51S4EkJ4d4UjFpXN2yurjkk+98l/vbt7z64md0MWBSYNwPpAgmCTHHkMkqRnqiYRqJRFGUaI1zStJZM5HYmQxpKXDZv8JajUOLisSKfFbawPnnKeC0hI9J+8SxaBspAFRJu81AaZKqMsGc+KfE4lFQDUQSF08GGFGa6Sr/TIyjxA1R55ZJyJOp1UaQAKWJWiqumBJEnxUpAvHq3I4YfSCFiKsrtNZ512HAGb77ve/y+3/+96lqwxh6xqljnDoIExpRYgRyqyrDbIpEUIkYPCkbVykSzmYyagqMqzWbzYEvvnxJsx44f2TRlcbWDls5CdRKGh8jfhjx6pQ0m70WjH1nwil8n3gyoZeJqvQai6NoQSuK50ZpocyPEyN1Xcv5yIZIzi2Fh2EsMUV8lroZrQg+omIg5hAvYkIpUYrEkDC2IilNYmSxWlE3Sy4urji/uGK1PqNulhjborQhqUwMzAtjiIkHDx7y0Ucf8aMf/5TLi6v/D3V/Eizblub5Qb/V7M7dT3v7+/oXfZeZVYmkrKJUIEqpUmGYGDACTIJRzRhgJqM0wDBDGMaAARMYyAzDMEZigjRAhQkko1SgLKoyq8moiMjIVGbE69+7991zT+fNblbD4Ftr+3Y/575374uIyoz97Lzrx4/79u17r73W9/2///f/c3x4wDvvvssPf/gjmqbmzXdeQxcVRdUwOMdnn33GD3/4Q4zWPLx3B6UU67YdNVJCGoMBpPMJQO8u5NOFID+eCnVNa7q3tbflclY+p/laZQuB7D2klBrl36eoRi5pTXOiPKHlrG6/pJPZ8iPslIMdayTQI3mgFFYklJWi79rRgM9anZym5f6qqopYCH9rMVsQfGqL1RBcT99u6Ddr/JDKjxPuk1K7VvK3EWy3iJrFRwiDS5w2lUjnAyF65lUp8tcEZk3B3dMFxwcNs9rgg+b0eM5qNefzZxf0vZOyTHT07YqAl1ZHJdogIQb8MCTyYgFGwksfRPnXGsl4Sw1FVATnMWhciKx8GDkuhdFCHOeEer6grGvKxtA7Ke02swbf93jX8/kTzdX5OX3b4p0fYf/Mu4o7VzldQrYEzek21WnZ4d/s/ZuTi4xeToMN6SISsas+mT4Ow8Dnn39OCJ6jo0O01qnbbmAYAsvlEu97ZnVJRDgoTVWnMpDMd5eXFxArAD755BPWlaBU/eCTXDwoTOrElHmssBaTkK3DPpCRjQf370EhWh9C6taJ4zflKe2Op/0AS0VZLyXYyOdG1q3pAqumj/dQx1fZ9q/Vq26v1voaITovpk8+EFWg9x4dI8vlChcjc6Wo6kZYzLX0YVd1g9Zi6atSlIuSaIsY0UGsfGMEpY30y2tBN/p2jXcdH27WqOBECwIzQqghSJ+8GwaUjtKyqgUytakEYsicDSiMCHlpJDuqrQJtCUaLiZqxzMoCozMELYFLVRXM6hqjSJoaStwl5TKMfDOYROzBE4hi255gvXTZIN1skLlTSSAmAbSGBFOp8XQBuXVWvrsK2z2qdLNlSXeRMxaPltmswRhZiI1WRC1CUe9+412OT4/wvscARkspKsTUhdL3eAd9ElKTdrjkMBnl+E3UlFUhDpvOYwzUpaawJUPvOfvoM1aDYXZ4B0yLKWvKsqasqlQ6S2ckZvVFmdAlZsq18HxeBRLPi1ue5HO2nFGf7B2Qf8+mbXnhy2WWrut24O8YQvouknl1XYupKnIYGKNk1kYX2KIkuE2iHWm8iwzOc3J8yuLwmIODI+pmJguNDyglYl8BIZzqaAgxUNUNXT/wG7/xG7z38/e5OD/nYD5jGHqOj0/49NNPefj6Wzjv+fmf/Anvf/AB6/WaBw8e8IMffB8dPNZKC3DTNKljI2KsEX5NmvRUzP4iSaNlglTkAGS6TUsjt3Va3CwXbEssU4XK7M48RUHyFhLpLu/vNs7DNEAim5EhC79SqfwY2dallbRxt31L1w04l1pZdW4dL+R+TZOzMhoVVep+MqDEYdY5If/ZskDhiWFA+lMTahF3uRohQc9T2XyT2kd9rh7keS8JcxqtCcNAP3TEIVIezjg6PGaxqCkrhcKhUdRNycFBw8XFFSEMaFOglSB+Rnk0DqLCxIgKERMH8UZyAd9tFwhTgdWV2Eu4IBw1o7BKiJBDGBiuz1kTqcpEFGwadNXQlBpbFHjkOhWlGIbNF4dcXl6IQm7wYnAXIk0jhOgYI13bCaoHMhcqs1OGmi5i0/bS6Ta1osjnPRPEs3Jwvpel06jHOXn+6vqKrtuw2Wxo2w3n58/HoFY4G4lE7j11Vcg8YwRxkAQ+l/mmpUVRhK6qChD+ldY6iV2Jk7ZCUZUGayQomOkW+BQF3LtzQrBSEp+u4WqyJuwUmhKMn6oX43rAiKumlxHHBGNi8IuO23VETffzEvFGLoMpuCVsfPntFXU2ImpiVBSVtMAGpWj7nmgNRd2km8tgbYktxB7b2FImQrW98STrl8xfo7bqetpiyprF4QlvvvM1ri7POXv2hPWVo8ISXTKXCck4KUp7rY5QViK0JeJaorBpwlZBtCxEahwfRnEfbRQeCUJKo6lsqt1qYU3YJF9ep/KK1qCCRysr5lBkB9a0pT59MUbzqGjwbkBpmybdXflomVC3bHYxcwtElxTwUmAWURIEJZVRqSOnLJnkizLqaWxrkznD7zqBN6um5tHjx9y5c0fqi1ok4KWlT9owCVv1RNf1+EKQBqsTHJ+0PUg3WVEUGDtgtMDQVlvmswVPnj9h+dGn3HlgmR0cY5yiax1l2VPPZsSqIkwWtpjguWz3LRNM7uwQ8t/0vOVJwzm3I3l+dXWF956DgwOpJTfNSBzNBLbLy0s534mR7ROb3ChFXVWsNpsRtrTJxlnq7BETIbo1g3XEJE4GivliwXy+oKrqhJKACuIHo7VOOg9yL5m8wBI5Pljw/e9/j9///X/M8eEBs1nDm2++wR/80z/k5z//Oc/Ozvn06TPefOst/spf+Ss0TSO6MpslzWzGer3h9FRurtGKPUGg+e5VSV03+G0QsS/KtV/O2Cdw5oDiNpg7v3/a9ZMDuimj/baAAriBEOzvW7LkNFnmWy3GhEgoCIF+ENKnG3zyNZHSWlEWUgYht55mDklSzLWK0ohTad/KPacLS7dZoWyBCp6ohNTpfCCGrdPtFPm5cd60SqW/lL1GaQsfnCfgUcHTB1E/vnNyysMH9zg6MFS1QWmPmJbJIliUGh9EJ0dI+gpj0zyqBLWNWgLLaFIQmMiD2mhKYyiMwaduNh0jJVISt0phlGfVXrNygyBadQN1gy5qQagbS6GkcyPD/0VZUlY1s9kMnb1YlLQJWytaOV3fU/aDdOt50VdByVXcRy1uK5nksZEDjIxeDsPAer0ePY62ImxJizjsdqF571mt1rTtZgxK5PoXY6miTP+OGjDpetqipHYG1DVEuHvnDm6RrN8xuOCTRZGd3C9glBuTTzOpN+Q5QL7ztoS0j+jmc7GPdgCj8qdwglICmvYaJuFI3sTmRI0BR9wNZ1647fCTvvTVL95erYyCnKCY6vcxijqcTKYe1Tu6rscNLp347NqYoNhMblTsfNFMaFFKi3NoiuLKesbpHfFQ+fjD9/l06HF0DGlASe+71E6tRkoeuc5l5OKWhaFw24lgVpU0VS2OnMFR2mTBmxwehQSaSgZGY2xm9MZEMLMTQ6Z0WUNMN7waJz1lFeiATqUGmfic8DvyJVRbJVE7hasj+DgQlJwXUjklpvKI9EeAC7mlMVJomURCkK4UgwiYKaQtNjrxVbFlyd0H9/nmt78lyoNug3c9bXuF86I+p1INEWOTgZRO3SV6DBYFmg10wyDIg7I0dUOkpB8GmnrDwcEh9+/Bzz95xs9+9j73Hvbce/CYsrT0vQNaCRTSTa1AAplUbIqQwm8z3vgh8zn2JnelFO2mRSnhTcQQscmeu+97VqsV6/Wa2WzG6ckp6/Way8tLYhSH4PlsLoiS1mhjKcqS5XpDVcqEWRVWAm0/iOaG04RujXMR50E5TzObsTg4pG4a8baJjKlKCEkqWUm+FLxH24SepZzhu9/+Nj/58R/x3nvv8f3vfQ/vA0dHh/zsz/6Mb3zrO2AK5vPZGFAtr6+5ujijKSwX1+cCoYaIMiq1ZsaUYaXzpXJLrpzXKZIgJZ0kYa9y9rNFI6YT/zRImaJMuf24bVuaphmDwLIsx2Aj7yujGlnNdB8iztu0c8Ag6qAqw+8xS3OHsQ3ce8+QSjZNVaGtnkzSMqZMcmFWCSXME3TvHGHo8YMjOAe+l/NJEhpDUAmT7vwpV2A/ABs5C8nVWe5rCfSEwBrQBEprWFQVb7x2nzdef43FoqCqhbAnCYilHDwHh3OOjg55fnHN4CQxMEmsULjGapc8PgZT27KENXKPWaMotKEwUsIutMZWljYg3RVhYHV5hmoW+EJK4LYoRb05meRZW2C0IBh37txjPqtxm1ZakgdHoS19PzBfLBJnI/t7yNhXSXNoGlRMA4scTGTV2fw4I2V5bOXxlgnfeV0orEVrWUekDLyLyo3OqUXBfL6gKErKZDNhU6CR7d0z+dtsPHANQF3VDJWgwN4nXhPbMTaul0rWilwi3llLJ2P+Np7S9oVpTKU1U8Z+giVUHMdynh+zEuiNyOCWAH6f//Kr3F4p2NDIwjYEB9EgPBiDCaA8KCf1bIEJk7iXypBNIFHEBZKRGgoqJvIQGRDKKh4KYwqCMpyc3OP119/m7OnnGAzEFaEfKLSRaC1qaltgVRTmuIooazBGygI6eQZoBbW1NFY+UCvRx1AKvInoAKXRqdQiGWK2h9eKVJpJniYhCjQVwhj55ZZUoy06Jllg+SZUNkGwQRG9wIka8QZRSst5CKlEkuR8tYWgJDjTQUEQQS5CRAD9QEQyl8IUhMHhs0Jj8h3xfY9re0RV2VDMZxzcPaZclHShI4Qeo0WeHTegSEZ3SqFKgQONLslcG6fTZGk8vYNOCWHUKkWhLHVhqeqAtdA0ltOTQ97/9Dmff37Oph/oXOD47j1miwXOe3wbcN6L/K2xYvymDMbkfm6Q1i45N5jJDatkHIWUPYbkoQPiOIk2XF9ds7y6JobIfDFnMRNX32eff85mtaauKpqqpqlrQIKBWdNIjTWJgxFzvR5CTKGiqVDlIWqwRAYotHQnzY8oynK05SYhMyGAU6BDyEU0fOepaoFtjVIs5g1/6Td/wN//L/4/XF5ecXRyyttvv83Hn/xDLs7PuHd6wvVyyfvvvUfbdeJ/M/TcO1oQgyF6ITjjk9KvGgt2koEZS0ykRCERiPw0I6KQ56+YfGj01kwupvLlHvIAItDns1DQMAjLPS2oGTWy1m4X6EyclCfk+NTkc9QYjo8aB5BUdFVMPIWsiJpF1YRHVlgjBn96W/aThSxsM0iAmIT0kotsUQh5N+eDWkP0MGwcUWu0KlHaEZxK5yIRHsfDzmhJSkFGpDOitLR5ez/gvegUWa0orcESaGaW4+MZVRnRKiQJdpv2JWT6srLM5w3NrMYvO0LI7fGy6FilE29I8GIJoiT5Eq5VwtRDv0WJFHhAq3S+lGJWGmoim37J5uwzPBoTPXUpbZGmrKnqBmMLjIaD41OKssINJwxdJyTexK0ZBifdYWWJ0woD0s0lTNiR/J45PjlY7RORsx8GhqFPiZoSfkTf0+dgw3v6rmNIJRDpztHJEVuQzqIsRNBNm9TWaVPnoHQQGiO+OsaY1NGx5SPGdG51Cjb0dFFOELcirTkTkCCvXxDSGpInKzXOW9oYgtF7dYnIxBpzm4ClYHiH/5JepNGJj6DGT92p1jN5eaocRLUNNAS7f/niyDiOvsL2SsGGuFlAVAGPCFApBYVXmLj9yRHcVtgIQPqetRJyoJy0VLNCiatgTCcClYIVQ1FUHB4d88Yb7/LRBx+yuX6OjgOboRcZ6CALjo4GreVmlU4XKY/kdiCQE1wZhUx7HqsFARGfAlAhUhmNVcLtGDMFBYWRNlbRpt+2Axm1hdvyALXGjHW1jOpoLV0gWmm0MmM3gkr/ZU5PJIkgRYhKSdCkJFP1SWCKHFCpQK4966jQAVI6jUFQn8FDkYI7bw2zwwUH906wiwqlBdKNrk81aUF3QgSvtEg+a0vbRbQp0VWBLpMpEBHTD5RVj9+0hG7AtQO964kqYCuNLQ1K95RWUVrYbDZ88tlnLAfHyb27zBcLCiOCNNF7opVW16gDKqasJ6RxEVNcb6SunrNVrTXRTbLFENE+ud6qABP7b+8qllfXPO/PePb0c6w2oj9gLOvVms2moyzXQrIMAZcEwyKkoDQRUrWIvqligW0KvO4odEVZlJiqgfTavGTmGzwqTTZzFtRGETxoHfGDo5mVfPubX+cnP/4J7733Ht9ZHFBWNW++8TofffwRb735Jpv1kvXyivsPHnN8cszZ2TOG9RqtSy4urnjt8UNizshVLrCRuFJSxgFF1H6837LRllYSVd8oZcQcgKSMKWdOcUvQC84RkvujzWq3CEEuQ9hTJCBnYqAm9WhJTF6kSJhFAJXOiIsayxP7XJKs0omfurBu+Se7RESEg5MUak1IrtPRU9YN3vUEJyKCQYm1QNbJ2YH/1Va4LBt9qXS8uUNMIa2zVkNpoVSOptJUpaIoIgcHDbM6BT5K43ykjIoQHbN5zcHBgnbjCV7uC7RI7WOMuFSHQEAWdommoFAyB/ngGcKAUkm6Wgna5FH0Tlr/Kw0hegbXcn0Z6HxEuV4MBiMcnt4nRiirhmgtZdWgtZXAVU2QrhRUjvLYgHOetl8lNMCLlIEb6Pth7B4DRh6GT/L+zg2pIy2MwYmU3MJoMmZqUeEUdMJQFiJPkNGLKclyn3Rp9DbIlOPP42hyD2RENW0hxnGRzm6teUv61pNxkYOMCXqXQ4PJTmNaP3Jgkd8zIj4JzciBg0HfWPcNapT1n25qeiyTY8pE3Zfe1C4i8yrbKwUbJr2hTyFxTBCOTBgpolfbiHAbaDBevO0x58cv/qYxRIqyQsfAvfsPeOedr/HR+yLu1a9aogJjLSqKtDBJVMvobW1Ka72tYSNBg0YmtBzJKiUkzlyOkH3kCSlIEGsmJznmoZKCFHUbDBbT7zmU39UruE3PYPr+EJJ/gt4OjBBDqi+DJxMqk7z3MBCjl+BKKZTz4CPGakpKovJUteXk3gnHd04oqlI6WLTBBfmJZkZQoooZo8LoCls01LMDbN1QzhtsUxONcEZcPzC0Hf1yxeZyyfriim51SY8j2JIhKDa9o6wrjo4XrDrPpl2z+fRjVuslx6enHB+fCiSZxLasLQSqNm6UOi4KafF13ovcvb7J0M5cAkEh2GnpzBPgerUm+MBqtdppwYwxin8PjEJh2ZdgJJ5N2sZiUqE0SpwvldagpbtBnHPVmMXn0S4L0+7MkmH/rutYLBYQI4v5nO9+97v83j/4/3F2dsa9e/d5/fXX+PCjj/npT3/Kd7/3PQ6PT7BFhdaG1WrJ86dPuHt6wrptJcsberQKW3llxVZELkYRbAsBgvCcRGdCjX31uVOGNKGK3HZGJbZBhp94JowByOR8Z7g6czn2N5Wyvf3J/0Ws91yqvEEczffLBI4Pk0l7/7Xj50/uv2EYRCU3ekqVyyYifU7wkgTE7TXd1ry3Yyx/192FjTEpiRGsVQkljWICWUrGXVYls/mMg8WCwkpgoBIhuvegTeDo6Ii7dz3X1y3OdUm6P5eFtoq1WifOGoz+LtmQMSsM3nZeRhJwell0Pa69ZnkpLd5RGdZtx8HJPQ6PT5jPFyhlsEUyc+taQkw6ImlcTH01cuup3FOCyk5bn7N9QOabTefCaWBQVsUYMGazwNwiWhRF6rhh1KWYlgNvXp/dOfhFj/N99C9iu42vtPeC8VBuWz/U5O9ftP8X/f4yx/ZVtlcMNhQWJVl0lOhsJGulDGkb06WLyzRTernPkQqL1PiyjkEzm/Hotde5vjrD9xtW10tC79KJl9YkrJhQKSQb02QNDNmvSgtEhhdNgpSVFu8LFaFQxWhiplSCGJO1e5QZN4lziVbC/oDNE+s04wkJBs59zi8KMKasfkFK0r78Vt9AxxTQBZ8WSkE3QnQS/JiE52lBoCSQkvukrAoOjg9pZg1DEDl5hyHqklAIoS/EiC/AFDXl/ICymbM4uo+pakxVEqxmCNKRZGPEDA4779DNklBd4M6fcj14Nv056yGKNHlV08wiwQwM65Z123F9eQ5RnDAPj47Hc1JV4F2gba9Hh9D5/GAMCpx34vMxmYDyeZ62dU7PZ34u13VHpCOx2bP7q1JqhHO3ZLOtnkLeppNXURREFM4FKf9oCYbygh0jO4vnPiEuBz137twhhMDz83MeP37MG2+8yYcfvM9sNmO+OODx40ecX8o5sakb6P333+MnP/kJWsP9+3dpNy3L5ZLoO5q6RIdsrKRRViDXqGJSkt0do9Njyo9jjKOuikrnLabSwbiQJGKeNIaonex2RIImOh3T2vz++bztOLYvSsJYk2N70b4y7ykTGac/U9RkGgA571CpjBZiwCiFtaK4mYM1pUSlM3uQ5O22JGL7fbZdVtNj1UpL14IO1HXN8dGxePoAm7albTdJr0EzBI1SlrqecXAwZ9Y0rNcDrnf00WPJnBaZb6UV3I5zXcxoQAw7iq8Zldq/PnnMVyiCHwj9mtCtaa8vcSHSDzIOQj4+NxCCJwyi2dF3/ah6m4OGXGLrh0HajxOpMQcW+wFGDibyT9M0N57Lv++c1yRHYPaCqtsSvH2S8vS63TZPf9ES/svgPWT0ISMX+d90sPmDxtfcxDW++DheFFi9KLj/ov18le3VulGSo6SO8hOVBB6wRTXkJ27hlslC/+KDvK3IpNCmABxKW3RRcnLnHqd37hOGjvVyw/LiQgSwogQc0o2RNC90TEJfFjtsF4rswmhTjddokqqaQUepfeoxIyHV6RJMFrNehvAfVMi14FtEUW58P/nZyb7Crl8ETCZqlCxaOTlVGmMEzs4lnC3UhzhHKuls2EZbUlyOCCemairqxQxdVTgUQzTEYiYBYwU6RIy2zKoZzfyA2cERtpoRTUE0lphExoTUKV4skkx5rJpT6zlel9h1RyguUFWPrcHWHt056AdRb9WK4AbW11esVy2XV9fJNbjCOU9ZVDda4MQl1IwB7XRCyJNkzo7yudzv2Z9mUUpJl45SitVqxeXlJWUpPfR58hvREnYX0DyObKqtF4VAxJmXIPXbPHGlRThk7tLuomOtFenxhw85OztDIXouX/vau3z88UecP3tGCIHXHj/iww8/4sMPPqDren78kz9i8J6/9Jf+Mid3jjEK3v/Zn7JqpUW8XS9ZNM04gZlBE7Qn6ogPN9sLpUy1Pa7xPCoZv2MA5gQVcc6NPA0hLoO02uySJfN5n57D/FgnNcNpoJjRkBub2p7T6X6n9890DOjMVZgsNFPkZF/QTCkjZTAN0Q0oAlYpXK/xQxLj6jraTUvww9hhMJ3X8jmbImaQgrs8hcQ03yiV9IEM8/lcHD+1pt10eNcLn8lLSbiuS4wp6YdIURiOTw65Xq7p+l663ExJMEbE4pQEMn3fSxnBGFRamFHgJ0HS9HjzuM+BuNaKQkPvB/rlJdGnuUEplhG8c6xXa0hW8n3XEVwrLs5ZOC2In4zzW/Lu9rxLmU/a2TVVVY7BYJY6FyJqltbOi2zibk2Q8cwjGP+NuYU+X1t1Yy7Iz+8H3C8KNKav+VVu+X698Xm3Pnd7APSi43xRcvEXEtmQS22EEZAISXnLy2nQ20Bjimx88ZbaOHMdK+aygRgZGVsSkBa0ajbn8OSU68tr+k0LfYfVikJ5isIk0S4olaYuS1H67JNbJNKhYWUdx6gkopIGrNH50qUFPYLScQw4JFOQVlvhu271NXYWouTiCvk8ZGbzzUBjmjFP9xGjtJWK/blJN/AuFJ0nM6Joi4SY2PnpfEq9SBEdoDS2rjBlQVCaIUScMpSVtLWZopL25KLCVnNM2aBMIXVgJWUBFwND8AxB46LBO0F8lFf4aBiwOFNDeUC5OKFuI2rjiXpFUVaUlafrB8wAwQU26xZPz6rtmM1m1HVN08y4c3p3tFs2xo7IgjZJX0VNv/8uJDydMF8U2GVVUWPMuFhuJ9ktapKvR24hni5aTFAQJpNZDFLTz3BaDgiL1DqcPytP8lVVpSDLcX5+nvhFkTdef43XX3uN997/AG0txyenvP76a3z88UccHh3xxhuvs2lbTk9PsaVhs14RFCzXa5rSUChF27Vjf72IBlmijgTyZP/iLE/q7iLzmE2mhpSVZlLlbmkkBb2p62Q/OMuPd9pCU0fC9HOnx7I71tk55v2yyDSo0XrbAXLb4jENesaW36gICS20xuJdT9d3xCiI2Ga9JiTzNWPMiJbmbT/I3e5/t1Asx5LQD6WYz8Va3BbCc1EhUBQls9l8FLEr6hlKWTbnV6ACB4cL6rpktd4QlZl8h0DwwlvLcpU5C86J39RGfNrWnMf4iA56jx8G6qKmNJa2XXH17DO5jpuWq8srbD2nmh+AtmIpP2zIgen0eoz3ndYURTb4ypw6PQkw9Hj+chKRA46bKNaU/7O7CKqklLv9++5CfQOx+JLnp5/5RdsvHIyobehwG9p343twe1B02/aic/HVDvNfALJR/vb/hHu/87/gDtIOhNqyZFVq2TDWoGzBmS34+58t+Ifn1S2Twz48lbKdvb9Jhg/3D9b8d77zRzjnOb37QHrTH3T0m5bVxTMRTgnSQaIRO/rKFtI7zpYgCrL+GkVCMJJck5JoWSPlIaVIZFM1wldKKYmYozjMBi0S41nsaX+yzhNO9ubQWmTYp74o04xsqnOQ5ci1VrAHewcn2iIZQgxB1OuMUgnFSMQ1lUiTRLS1hOAo6gZbN2wGjzcF9fyQZnbAbHGIsjUoQ9SWqC1D1Lgh4MIAOIpCiGguscS9d/heVEvxAd8P9EPP4COUc6rFHYrVgK2WRG3QhaiHSjuxGPSRNEJc6pfPHI22banrGWVqOx3PZ76GexnqNHPZ52rk1+csdyQ0hu2CGWNkNpvtLIhTSHd/ocpdCEprQZ5UTPtP7W3j9d0NxvN+MqKSv4f3no8//njUpCiswTnP9773PT786COePvmMu/fv8+47b/Mnf/Jf8emnn/Lt73yXJ0+e8MknH3Fy95T5Ys7h4SHt8ppZZfHOoffGmQ9OAtaEPE4Xg/H+mELNKnVrxO3rYpT35bJT7nYQ47Jt29/0ut1Wgpr+vo8e3V5Gub2+flsgkc934KaPyxTR2mbbUuqRToow8lScc6yurxm6Fp9al6WzI2zVetlO5Bn9ye2+Mo4iQ8gOsVJm2zkOrZNmSkFlQUdLSAZ/Kt3jbnD46BJhcsAaxcnpEetNSzcMY2BllCEShJSb9DXEbl6OKSMqeQwXRTGOgeyAPJXDrssSF6X7pzKatl3y/ImjnJ8wqAKKhuboFFvWDENPYdXoExWjcK2qpFx8s/whfJTb7q9t0nZTv2T/PtxfQFWas29DCF7E23kRf2NnPMWIuoV39DLb9DulT0Wpm6GLIiHpKYeUQHFMf/M7t/++wpr/ou/1L3J7tdbXgzcoT77zUq91wEUP9F/2ypfZIsqUmKJmdnDE0Ld0bUsz/5x2eSFuq9qI2JJWSZiroDSFqIVOzrP4m5jkY5LaeVGp5py1MhhLKRku1WMoJAtNDEoysywTSx5QMaESehzw0p63LbfscDPSdiMLSwtCTNhrfqlk3nFnUjdGI7qRGhuDqPwlUNxFWLUbOmswVS0lEWWomiPmB8eUzQJdz/ABeh8YXBDhoHGhjRjlcDjZ3+BQ3lOkczMEJ14KfU/brrlcLrm4XrPqHJ2HaEqKuqYdHC5GlDJoY1EmYgkQt1yeYRjo2m4kkuUJO9d2UQpbbMlh+0He9nyYG0HHNHiYPs7n1KSW2WkgMs3OppbLMgnmlrNtsD0G3fnfyfhlMuHlCW5aM8/1bVmwAmVZMZ/P+MH3v88//Wf/jM8++YR3v/4Nvvbu27z/0Se89eZbnBwf8/mzzzk6OWJ9vURF8S8qrMDOOCG3ujwpoxNTXQjRORgeg6zp90g/PjH+NWrkqNjEdwl+S/AzSo8eRDcmf25ObvuT+20Z3PT5dBZ3tmmgvr9t78ebWeG0nDaiEUqy7sIacI6u29C1HeOMnsdQcHjXC7nW6HGs7UPzW4GyLSqD2uWuKSUls/lczPl0dELCN0Y6MBJfxsWQGuDE98MWmtmsYb5o6C+GcYwao4mJPB1z98+kBGaUGeeU/cBuP/MlSqA5DE4s5pV0fYXBoauaGJIeSSJF1/OGuqmwVgJ7rfQoHa9HJGd6PaV9/8Z1myy043qaz1f+X2TEwXeSwb3XTLcvysZfFGjcfOEX//nLtt2Sx22ckPz/3XUBcuI9CTRu7O8lj+GWYP+27VcRjLyyqNefy6ZEYtsWJdVszoE/pVuvaRYLrs4LYhwSYhBH9brCWEpdYHTY6Y9WpPpyjDuXTAIPgT11KhjlCTgh20lqIopGSIyIwEiShMw3jlLpJgrJbQ8EWnSiO8Iu5LsfsY+ZKIHdYCT9q/VopjRm7kr8DmIUgDxkekkUtVG0ZXFwyMHxCRhLoKQoD8DMcMEwdIHWefFfSYtTxKfzoUALSTVGyfxIE5MhMnjpfnB9R9euub5ecnm1Zr3pcT6gjRVNjRBYtx266NFBYQrREcH7EdkahoHVekVxWY7qg6L2OSmTBE/0uzDw9IbMkGs2X4Ot+uCLti06YndKHNNAYxpsaJ0k3VNGnDsA5LqNQOh4TDECelvLz585nejztc+T/jCIHsM777zNj3/8Yy7Pn3N1eclbb73Fz37+Ph99+AHf+d73qKuKJ598yje+/nXmpeXJhx9wPJ9RJWfiGFL2HjNnKDk8pvJK7lYYx2SYGN0p6TqK2QMoZaRozcHBwcjZAKQNXWvpEJvUx6eIXf6O+2N9P3udZqzTv/m4u48vW0B4AfKxj3gZY6jqmRCmhw7XdyJMGMMOcTHvk4TuqNvahJXa+ZwcLMfJuRiXFbVFQIdhABVEjn8kdEqw4KKiHwa6LglXKYUtFLNZzfVqxTBMuCspsLAp6J0Gzjn42A829p12Q8gdJZ5+ENn2qBRe7FWgb4leoYqIDY55ZTg8OcaU4gsyRUj2PyvGLV/nNgOvmG6d7SWbLLLTWysykpHzGd2e2QkSsDfeXmURnSaFeS3Y7mz3ta8arIxjafpniUdvLdbsj68v/ay/gNuvR7CRLoC2BWXVgB9oFguOT05Yni8YLp+hCjXCUFml0yglnIJJgUYh9UiT1PSykZj8LUFYGeHIH45k+Hpk/42A/q2HOx3U4+QTIqKJtMvXyNki7MHICdnYDtAtRDh9bT5Ek9wUdfDJJyW9S4uEez1boGwJ2qJMiQ+GrhVxLkpDiLJQoCOFFpny4Htc7/FT1CVCcJLVGqXxvfAwNm3HetOy6VrWbUvb97SDYwgBbQvq+YKmHRiGSFFCWSdBn+BS14zYvmdk4/nz53Rdx+HhoRj6lSVlVaGCtL9Oz98Uhs8T3DRYuA1Byo+ni79Ijm/h24xyZIQlT8bOOenIyl0Aeuvr4dNioPR20ZbPvwlj5vfkBXtcFEJktRKeS1PXfPe73+MPf/hDPv3kI979+jd4663X+dnP/oxHjx5x9664wz57+pTFrKYqSuHwGCPOplqhC+ELeR9RQcZ9zna3C6K+EZAJ/0T8hyDV9VPZMbcdijeE3EcxSuli5K/EeOP67Gb96sa9MoW1p9ds+veXyc5yy/ht+8nGfdNy3Gq1Yr1a07YrGBwQ5F5SKUiwFh2TdT2B4BQulTum+8vffXeMmRFp2f7slazS4knMQXNBRBZ97wf6vku8CotWwgGaz2dUl9e4QdpFjbKT6yPIapxc5+nYy9dh/5rnLizvPC5EcfJO845FDBfjsIGQAqVuRb+6ws9qTHkwzmUjMjZRgN29DtN5dDLm9gLv6XtehHjtntdbxsLLBAJfsG2v5SQp5MXH86J9TJEISUz2XwOZapeTgbwM3MQ1uAUXerlj+fPafi2CjUiSUlYKZSxFVVPP5ty9f5/u+ownqwuMiQmCVNv+aiDLZuVNqh6j7M32gqbnyfTKEIg6EY3SC2PcwnRa3aym5aPVCWWI6Y2CuiD8irCdhOFmJpQfp9J/ykbkcV7slZ5yQqTMIgGWHG8OmrWWGmpUClvW2KKiahbo+hBjZ2hTEY1G24qoFH3oidGh8CgGVOxQ0eMp8Z6xnVgUIwdiAD841l3P5XLJ5XLNZtPTd5KF5XKIDx5bFMwXBxTlnMX8iIhldb3COXGbzRnWerWh7wexbW5btNZsNh1FUTCbzymqElsUNxaofB6n3SbThe22RW7/3Pf9ICqJe2WY7K2wWzNWZN6DCtsgMMQIWqOZoC5pYZkiWnnLwcv02gcfklukJnjPt775Dd57/30uL6+4uLjg7bfe5sMPPua9997jez/4AU1Vc3l2zlHziOA9Tz/7jNOTIw4P5sIhIOBDwEe54auM0KjszZKPcVuayjwNUU+MWwlkZOLLi+wodpal883NTpTbArwMC++P+9uCk3HR0TcXoOm/u9s2c9xHkPKW+RWCqLXEILpBVVWhVEBHg6ESpKNvcX0nonVxy3mZIjbZmyffm3L98zkUDs82wAps1muubOTq6orFzFLqiDeKwhY45+mHnrZr6dxAREvQawsiBSiR0p5dzFhvRARLx5A8igpIyOiQWk5jjOJJorfjLt9z06Arn5Oc6YziZcGjjaIpLH0ImAgqDKyvL8Z7fO4GTu29sb1Y584+dktHioTc3hJs6HFBjzvhiNZT/kJM5zTP1i+HbPwim1y3OH3ipYLe3Rfc3OfO7xFJjOPNtyhujnd16xm8fd+/irLIq26/FsEGadLSadLWtqJu5nB6h+XFHZ4/+QiDo4jicmqMnsC+jIqDAKiEAjCican+J0N1O6FuF/oxylDpBlRJbXGM0KdDfJeEpRPjXqGEaxF3o3eYWGfnQ8yBTIyTPadHOsuo52BECKNkhUKVo25DNBC1pp4vuPfG29x//W3K4xO8baibY5S29DHgifRDjw8DMfa40KGiwPhGK1Aal/wJMr8l+MjQyyTWdQNXyzVXqzVdN4yulqNsvbaCRiwKZrMDXn/9Laypefr0KRfnzzi/eEbX9yigKGvatqWskxGb1qO5VlBg3UBhC8n4gh+Rh6IsIGVSzjnh5Vgr8uBpEs0/LyKEZWEgrUWJMSMaosdix/p31k2BpCibOlIyxD3yeyZZuqhI7nJMpgHIFO1SEUpjcd4xDD1KW37rt36T3/+DP+D8+RnHJye89vpjnj47Y7VcMp81fPbxRzx7+hlXV+f84Hvfoe0dxeBZrldcXS/php4QobSGo2bGfNZQlYXIvUdR01WKsdyiYp7uRRxqO6mr7UTvPUMuQaUFNSZCNGzLU9OAY8pZiQjiN12wx3IF22Bli+DdhJL3s+a8hRS05f2Mz4etMde4uHpPXYuduFHip2S1QiES/npEakANjuhT6SiV7KYBkpRmzHbeSAvtzhFGkime4up6ySefPqGpDHdPDlBlgfMe53o27YZ+6JPTshKfprIgRI33mspbDo8WLFcb+q6j7cWnSCH+TiFKd8swuBHtMqUlz3wZcZNzDDG6kTtktCGaApWuf5a4tkbjoxcV5ugIw4YYA6FdcfEssljMUU0jejOmwJhExiUkUDhCatG/NUScILnCvU4lr8nfYi6h5HOptj9MFuB9ROyLtp1FPT0eyyZKjWP/q2w5NJjqYmiVjUenr4nj540INvl7qekLv3T7pQQX8caDybGp7QL6ktuvRbChlMKOUaUVVcrZMW3f0mqLqme4bimQcZSsUJeGQTl0xqFkR2A0g3cymccoKptKJ98TkxaOOC4eIQUK4kqrMWNxRY8jPktBZ8nxIaZWSW0AMV8KBMoyi46ljM6HZMu+ZWkDSThJeubRiph0+KM2iJNhIqp5UeJTeEypcHHA9wFPgbcVvqqw8yMefu0b3Hv3HczhAlcW6KLEaY33Ay4MY13aux6RLAeFlYUgeogD9B1x8PgY6Xs3kufW600qofS07YD4wSiiixA0cVAoZSlszeHxjAcPHvLGG29SVTXHR3OePp2hP9JcXF0SA+jCUdYzBudp25a26/BaWnr79ZqiH0TjZLmksJb5fMHh4SFHx0cYLfLOSluBGBO074N0F2hjxYl1JH+mhTUvhCh8PxC1eKwYnRq9lR4Z/VKrl2vhlccPEe3F3lwrkagmxlRW2AYWwYcxSJ0upgpFaQuCsaNniFKa6DzRiZolGh49OOWdt1/n5x9+xMXlMx69do/moKHr13z4wXusk8/Lozfe4s8++oymmXE5aPrBEaj52re/TzObQYSha7k4f8am7zloSmK/waTAFaTlWlnhPnmfOm9SmhljEMl1tQ2qQTw2sk+JngQMIQiqMkWFtmUbuT7T/eTFe6rJsCXmJtlple+TbelmioAoLQtVzN0XkyBRzu8WKdTaUpqCqALaCCqQTSPF+8ijihnaNGi7IkQtXA0vctoh+DRPANHjohO+WLKy9z5gkMDHh2x2p1BBWrittpydX3Pvbss777zFMLQUtUYHQ+t6lAgjE/2QpMiD+POEgNYwP2io5xWrjcX1jsFH7BDRQRxEh6EneFJZTRb8ECVIcz6KWm8KFtuuRStNXUkHYec8fb+md46iLKmqmna9ISpFXVYEHPQbtG/pzqF5+CbDZknwTtp1i0rmTGMQEbSIRsz+4gtK0CHuLWxp7pbzO/5hm+jp7TKdrv6t6Nd+2W6abJiEtmglJS99IzqU/apb9vtlW1ayTgcxPm9uDV0UUW8fT7/X7rr+xSv8bd//VTedA9LJR0Ymwd8kgX/ZeOPXItgAxnqZ0pqyrAloFkfHvPbm22zOn7D6bI0xikJLGSOQYEPldwaOwNp6+kQqnjBORKTHeeAb0SqX54mIt0vabUI7JiHoOKZUzIN2i5rECQEvZ2a31TS1SpLBSo2Wa/knplKJ0YZ8aMPQElBEbUCXVIsjju485N7b71Kf3sUcHuKMJWKkHc+3Y/ueBCyCHEXUuEgHLwvy0K1xbqDrBjZdn/Q+tvLNbvC0m47NpkMF6LqO1WrF0CcfhpQ5lUVJU9cs5jMODg6o6kI0JmLAlAV952i7jrZrsU7af5U1DL1j8GK8FCPJoEmQj6vrJReXl5yuVhwdHe2gE3K9Mhy/C8vf4CdMIGWrrCjHGuGx9MOwXcAgIUkSgmbrJB0loBw9XfZ+phn9fuYu5bEo7eQRwIMGXUp26lNp7rXHj9FlyaPXXudf/p2/wtHxCf+v/+w/p297FIqLiwv+7OfvoY3hW9/5rnixRMXi4JDjk3vMZjPKumIYOk7u3uH5k4/ZXJ9Ta7HIzgG9xNBxHNc7uN1LTF5TdGL6XB7b+Zzsv2bqn5JRqHyOvA8YE2+9X6YERzmX6VoFxqRhWl7L1yEHFUoplDUobdK9nhx7IygMAZ+Y4xatC0CPnBcJOCSIqeokq+/cGMxEGXjyb4iEqPBRgRbzQkek6x1Pn53x2ZNnHBzWdIOjbze4vsMYCylQytYK1ojMABpmGA6PDlgtV2x8pDCFJDlK2m5DAGUsKumlmIQkDYMkRFVZiukb0iYrRmaC4qEcViu0NYkArDDaErVokhBETFCFgWFzjb84Q2lFNT/k4FRTNXOU2VtichI26ajb+fOXjq7JmHrB6/cRjS8rd6i4LdNsEY5bQgG1+/hl7gU9PZ69fe7/Pu2guvnhX/pRX7i9ctCR71cm69nevhRbdayX2X6pwUaMkTCsuPyz/zurj/8BxeEbnH73f0Axf7TzZWMMLD/8+4RhxeE7/2ZCAL5k3xNIy1orUJ4tuHP3Lk+Pjlk9+URKDEYlFvlAaYUsN40IQ9zG1LmefjP6ZYTn5IU3L9Ztk+X0b9NNpYAk6zOA8Di0Toui2pZy1OR7oiYTf8yfmUoo2ecaCZ7avsdjCEahZwccPnrM6Zvvsrj/kFBUOCU6AjJ6Ai5mP4uk4RHSUpoX42SA5L1IUg9DT9f1tG1P3w94HwjCKGW9WrNarYXA5kWRc7PZjO2qmfVflmLjnDkns2bG8WnkYf+QAFycX41fqe8daIU2hsE6ejcwOIcKajRqatsW7z0XFxdcXV3x+PFjDg8Pt5bmWm2/zz4rfw95UGlcxZj0SYYBNxHzssrKudPbG22nTDLJmva5CtNgY3/M5Pr+iLbkGhRyHL0bGLwnGkVRVbz77teoZ3P+y9/7PX76x3/MJx9/SrvqeH72HIWiqBu+9e1v8+7X3uX6eimW3O2GTz/5iNV6k4Ixw4P7p9y9e4cn3ZpudcWiKYnBMVrSv3Ac377tcy/CJKjef82242RX1CuXleA2jss2YJjub5+UqZSYoEW9TQgUyAJqdktY08BFJ/QQsq5NxCeURrxkJhA3uWsjIzPJ9iA9PwyOmHyMxFvFEQIEn8x2CQSl0IVFhYgLkfOLS54+e8bxyTuApphbzMGCwhjalVxHbUSvxthSOBMu0ofAyfERXdvxzJ+JZ1UMxKiFIxaDBCdKVG51Cqjz/VBYOzomj/NTHMZFJBM+SeVTbUQATUpp6TyF1Mm2vMR7T9N1lFVFXdXoskYhnWUhIUxa6xfgGq++fdGY3A82bkM5vigYufH8zrL6cqTTsaQz/u/m3/7CbmpbMXlhwKG+iDmyu/1ygw234dkf/gd0lz+nOvk6vn3Ok3/4v+XBv/Q/pTh4I028gfWnv89Hf+/f5fib/z0O3/1bL7HnLRqhVHJypaDtBDI/PDrhYrbA+B5jNSYOaA2F0clGO9duRWZ3f3LatoORMh2JdPO0qyfELon0vjzQuG3AhrBV74toIn4MMmKahBRp0tUKlz4PleSuEfXTPOHFhEREQNsZAKasaR485vitt5k9fERvCkLK1jSgg1iyG0jOvVkvwZHYq0mOut9qP3gvzozJUGm1WnN1eS00W22FuHh1jdYWFWC1WTMEj0vfd17PqWYNzWJOs5iLyJgCWxYcmSOMLbBliVafyAKhFd5vMJnwpi3GWwrn8YNP51Kuadu2tG3L5eVlIvYpZrOZdEsUdrw5piJe0+uUN601TITB8qSolJpMuIzXTxxFdwMXGZtbcmm+9tN6/nTsTF+ff7wTMSatFd4LU8KWJcoYhqD46U//hN//g3/MarOhbOT7mmi4f/8eDx8+JoTAg3v3uHN6Ste2VIUlRs/QbtisrkErqqrkZ3/2nId3T3j8+DGfftTTu16y2Iz6pYx8+p2nj6fnb/9cTs/HfhCWz28O6pWauG9Ozn+M8YbvRQi71/G2wJE0ftBb6fSpPsoNvk6Kv4OTQCuke200nyMSvYdcgiFprtCgVCeuyUn/QoIQUCrgnJiuxSgCglYrsaqPo7A72WhRaSlxXK82FGXDwaISOf/VFW3bpuAlmak5h7EetMEFQRiquuTu3TsMnePi+SWD78UJO2dMiS/kQ2AYhtRObsf72yXHXgkcHDGkc1eY1FKPBOCpFZioKaoSrVVyZ/WYyuIGIbMSHNfWEp2jPjjm8PQupiiIWGldR5LHF/E2XpZvsD8O98fqfkAxLaFM/84tgcet8/sesvGyx6i2v4zPx9ven5LcvwhbVneYBhyy0Mj5CjtJ+svt85cabPj2OW7znAf/8v+M8uB1fHfOJ//lv8/q03/E8cEbAjGun/LkD/536Vvsati/cFNIKh8l5lBeFmhrC5w3zBdHlPWM/qKli55SB0olXRN24poKjJNYFuNCMXIoQoiEHHVPBl9mVG8P5stviP3MWTKzXQGivChNF6E8+KNUa0YyntIKHWSKIuix7ilxh5b6KNCc3uXOW+8wf/AIP5sRtJXXBYX2ET2qJPoUaIgyYfQSlElpRXwvfFIK7fuOru1YrzdcLldcnF9ydb2kmS0wumC13iRkQzKj6aJeFFIqKcuSuq6ZzWYjW13KHTCbNRwdHdFuepkQ3UBZOikZJdEQq6zU0Sc50bRroe97lsvluH9BKUKCR2WU5Yw1Y4M70H6IdP1WeTBLo2dxLp+JilGM+LJa6H6GvH/9b9OXyL/vT3pa65R9R5EFjxFbFChj6b3H+cB603Lnzl2+9eAe/dBTVRUGS/RSTmi7lq7bUFrD4WLO0LU8+fxztFIMfSedPAZmVcXF83NM9BweHrG6uiCE3NrKjQV8/ztMs8Sd+2Hv+f1zMn2sJrfmFNWYohu7n797rqYLyFSoCxC9hxTITfUebluAVEL7lNKQShApnJd9oVLZQuOtpYgF0YSk6JlF4MDadMzZbiHId3TJwRUV058UnojRUg5x3jNoxcXlimdn5wQ/RxFo1z3RO5TWeAebtpPOrtJTVDOUNpRVyWrVU1cFp3dOWF6vWHdrNJrCWiIqdfJJ4DEMww0zuuDDhCcTQQUR40LQkJDGvM7lk3T/aMAYQTfFmNLRe0doFevLZ6MSatPUWHOEtkLilupWRN3i0XPbvfKq24uCjRfte5qtvwjtkNepnccvc5y798wLPjhvf0ECjRduI+iuuG0u+LLtlxps2MVjHv3V/znK1AC49Rmhv6Y8fFteEB1nP/q/UMwfYarjV9t5TP+LiFQ2LsGKJeVsTtUsaK8uicgCY2zqIhi9TWQTZrcW4lcKImIOPKIw7EkLlFK7AkXykphKLLtR8rj/F0Tb2+e2QjExweW7X1I6IYJSxJhb5mTq0wqik8nBIMTLoDwUFhcsqqpYPHjM0aPXCQcLrp1HW01wEeNEDMv4gI8Dg3KE4Ea78RjDiHBIoOHwQdrm2k3LZtNydXXN02dnXF5c0XY919cbZrM53oXRxGzoBrrY4pI7qdiuF2NmGWOUzpK0OGhtGQZHXdfcvXsXlKIfepwTQt2WKS+tmVbtKnlOz3kurczncym1BY+0qEp4HlI7ss78mXzNYhwXlxF6n5QCvKTU4zU0JMSdm8jGNPCYZvJ5DORgd7pg5nIAZO0F8EaDCdiioh88q+WKth34m//G32K2mPFHf/xH/PSPf8psNuP08JSqrHn+/DlPnjzh6uKc1fKSxbyhXdfUhWFWW+6cHKKN4sc/+hGHh4e89ebrnJ+fU9q7wiOI0m0gbp63Bw3TIOM2RGN3rH/Z32T876u15s+5yWXatQbP5zpzMqYCXDFGhr6XxXQSZBTWCvl3gnRoJX5KZEHgpMKptNpyrLR484i6p8I58SqSY08BSx5XMS9MKhFrM99MbRVmkfwJBW0/EIPi4mrJp0+eUVUFs7qkbmYQSlbLK0KUseGCRxlDXddiAeAVV1dLYlAcLOYcHMzZrNf4GGRyV4reDSPPI7okIJauRVDiZKu0Ge9JtNAavfcMSYW2UGWS5xfl1OAdShnKshAELkaxdScQwoBfXdFHSTaWzwWBK+eHRGXGctX0Wn/Zdlvw+kXbFwUa+0En6maAsT+33whA9g7jC4/rBX/bv0u2adEtr/0CNP1ltlc9f+mAdta6G3SC/PgloY1farAhVtaNfH5wnP3o/0x19A7N3e+hlOLyvf+cq/f+n7z5r//vefbP/08vv+MoFupEESUqjAZl8MGiKWjmBxyf3uWzZ0+JcSBfsAwdMg42KYkM/UBhbss0dwfVdlDqMRO+QeqJ2zpkngDz89PFxjmHteU4MY6ZbAqezJgtS+eFD0hdVyX9jHGwZDRDlkYfIlFbXNFw/Pg17r31LnZ+yHUIOBQqSAalC42Kjui8nEvpH5B95kU2Sbh7N9APopGxWa1pu4HlcsXFxRWr6xXrtZQuUIZhEJvpth+oqmosa+QTnrOiummwRUHbdSitmc1mQvh0nvWmpZnPUKqlLEsWiwXPn1+AEvQjE1VtUUiXy96Wg5j1ep1g54GmaTCFGVUenXP4kFQScySZrxOJyDXt5Z8gE9MbdXp99183DUCnE1zmrEwh/Wm75P548l66GnRR0jsHyrDZDNy795C+d8zQdF0/Lq6r1QqFiMOVZclyec3Tzz7j4cOHeNfz4N6dFGA57t99wG//2/9D/q//4X/IJ598xIP7D3j67IyTo0NWqyustfSDLE4KbnyfaZvuFFXIi/pU0Cu/fvpvPifp26JU3Akqpudx97MVWedgeg2myNHYthwli7dRygbDMIxaEypGbMrKQ8xdJGDEqpeoNMYU0qptNMQstOaICW2SsSO+SAo9fgdSOVSOK4kKKiX3WkI7dApclEYC+yh3oA8KpUsuLpf0g2fWpKAvbIOsEKUVXGvN4Ifk2SJ8keVmQ1koHj58QLtpub7e0CfjuK5vqctKtDL2grocYBi1Fa0zOdDyEWsksGrbDcYMhAjWenSlMKXZ6axRQawM8J6+bfFuQNvt9VigKJoFUIDezo9TzaEXBao7ZbLJ2HvR9qLAYTqWp4nBbeWW/f3t3K+3fPSL7ufxXE+fH8fGzqvhxgqzGyh82ff+RbbpOcqJWQ4wMuJ7a7Dy54Fs5C24jk//wf+aYfWE1/4b/xuUrWnP/5TP/8n/AaVLPv/h/5Hlh38fbWtsc4c73/93Rs7BizYxFpI6ZAyAiYhEdEVRNSyOjimqhtgOWGMJQeqWSrE3ULfZ4zayzYMpC4KlkxvzYhRGgtj0Mu8LFm0/4yacLoNkquSnUka0DTrknkzyxiOaobfy6Yk7WJYV/TCA1VRNw+W6I87nHDx+jeLwiA6IpqA0MqgNoH0AFYjKJzRDulBC0qqISXm03azHssr11SXBB66vV2w2nUzcztG2G1arDdqUDEMQmW8UXTfQtvK6HIABooORFsKstGitpeu6VONW6XGgaRrm8zkHBwc472lDK4ZRA3gn/g63Ld4+6YBMdRTG7HSCJnzxzapGgioqlV4mdeUUhoz3Vl6Mv2gyyxbZGb2YHjNsRcimQU3UYG2JcxFbljivODo+5f0PPuKDDz6gWdRUdcFrjx/z5OkTFtUcaw2Kgroq6Taaodvw05/8CGMMd+/eoSosfd9z9fwZj/9rf5k333iNDz/6GH9HFGBtVRFXehQ2c31PWRZpTN5eCpnyJkCkz/OCdVsJaZ9fsV+Kuu3aTO8XY9Tec7sT8PRH0AoNqdPCGiOTZ4z4QUjPMbVEE0Ud05gCUxQYG1BGDM6KwkgJTQagdG+FmDRkMg6Wg588j2zdg30Qo0KTSjNWOSHER8XgBypdUKTyQu/g4nLJ2dk5h4sFMUDftsQIxhoJyLXC+UjbtaBN0r+IKBUI0VGUFfce3GO5/EBM2oDBBdADOEepNTqE8X7I/24DOxGxazcbtNEUpXR3STAJ/SBop4zfiE/fuSgKFAE3SFdbZaVNv7u6wPuATtoj1cFAOZtDYZJ+jdkZHy/avqgM8uex5aDvy7adbzQ59FEnZH+/L/PZv8KAY3okub31l3Xuf+nBhu+XfPp7/yuG649589/8D7ZBRAwcf/2/y7B+CkS0rVG2RpdzvvQUxyTDrdIViqkGq4XEoW3B4vCYejbHtytpt/I9OVKcblt4Nt1cehtsZEgNUiaWA4yEbOzzLfINOr1hw+RGHvcDNyZE+Vpqb5LNdewtT0RypxTvKnBB0AxlZYHvAX0w5/iNN5k9uI+3Bb0XnQi8cC7kuDz4ARU8PgpbXoINKZ9E7/BuoG03dG2LVtBUFf2wFWlyiSjadfJT1Ta52tpR+Kjre4ZEws28B0FqpGk3xIjzjq7vuF4uiQFm8zluGJjNZjRNQzNrEMM2w7OzZ2JlrxV9P4yw3m4ngU5dAMPYqTJ2QyhZ1AygkxaGD34yNBKihQK/JwC8gxjujiPxdjA7xwJbw7b9CeG2YGR/TGYeAyqKRoRVtG3P1VXL+fNr/tE/+ses1ku+9Z1vYgzU9RFVWRKJ9F2HUnD3zgnRD1xeXAARo0rC0IPRNKVlcAP/4P/797l7ckyM8PTp59y5d4/VqqVu5vSblbQ3An3fY22xM7b3Ebv9rGvf4Gz6XadBiARfBqVu796RczzNPG/eQ7dlvNPPypuI4G05Id4L0TiL6WmSvHeMROdxcUAFKZtIUO6JvoeQBL0SUXNbMsnjaBt4jPMCEHo3fseuc8ReFpuitMKnACEAu0jXezabnuvrFUZHrLZUVYk1iiiUbtrBoWOkKCpW6w3aQFEYETFTIqxVlAXrtpVBbLQQMnU20tu6IGulUldaTAigTzwxCSaMMRRlgVJa9FLajsGFUX3We4+xBTq1uBujwXspM8WB6Jx42miNc4GqbWkWRxRNTTObSTloUg67bfuiZO7Pa9O33Me3bXnJGn/Z+ePk8ZfEDvvzxlcJOF7lvOWEdz/Q+EXO/C+3G8X3fPJ7/0vas5/y8F/5O7jVE5QusM0p1ck3qE6+Tj6rrr3A1EecfPu/j/6S1tcYA91GLK11NGgMgw44HVHKC0SKWBo7JYQrQ0ww0E1YarvfZKo2+T0EETWKKdiQgGSvIyVuXzuFAPM+pr+PrV76dqfS/bJNTBCvSm2oOmwnBBBotnMOXRT0IdAHz+LkDidvPCZUFYMTd1YVAgwe5T0RCTAIXpANtWX0B+8k2HDJGrsoiClA0Vrz7Oz5CO33nbS9xpgcJmPWr5DLKlocIl1cVCWmsKJT4aR1ddN1aGsx3tA7R9d1lLYcIej5Yi5eG1rx4IHDhyBBydUSEwPaePC3w4mZiJrlp533mOzlofVIzFMTF+D985+ho+lid1tJJGevRu8GG/nxfrY2HSf7178sy53nQwxSNtKIQiuaTz79jB/+4U9YLlf8q3/9XyXi2bTXBO85OjykW3fMT+9wfn7OJx9+wOXlJcZo3nrzDZq6pi4tMXjJOjV07ZqDoxM+P3vOpl1TFAVd37GYzfAxMriBqrC4YUCpbenkRZPbNPgYJi6y++WXaclFvq+URjISlX+mZZXpPvq+33lNPqdf1ma7c79P3pv/brVBeUdwgcELQqCikTJLIlEH1yV0w6N8D27r0qsU0v2R5rFc3jLGjKaQEIkaIoGQ/RGUwgVpoSWCVoZucFwtl1yvVhwuZpjC0nYbwIt9e2Upy4ow9CxXK9q2J0YoCktI37UoCg4OF1wvV6m0JQq+KareGYPOJyt6vRVSs0Uh8wASCBkl940xJnX2uXFOyO2yPQoXPMYkj50omh8Oj2/XbNB0vceuN5TLJeVszvHpHUAC9Lqux+t026L4osX1L0Lg8YXbZP158Ur0ZbtQNx5P0dRf9jYWc1RqTpj8G14wB7zM9ksMNiKXP/u7rD/9AwgDn/3evw+AqY658/3/MYfv/i2mRjaHb/1rgm5kltQXbM4NXJw9A0AhwjpeR4JNuhptS3QOW1aUZUGIHXVRYE3A6MliMpZF4sgUDzFASF0foxqd4Og5m8oRqdYigx5DvHHRX1TPmk56ty1c09fsZGsxw/d6PD0hpoutDH0AXdXcv3eHw8evY44O2QRAWywaFaBShqClD34IHh8GPAPBBYKL4i6ZjJ6idwIIK/FgGHqZzOSkbWvRU1g7hDhmOMMgXImu63bg7in6kydhkJbVsixp6kZaVo3m+OiYru8oy5I7d+5QVCU+eD54/0PiZk2MENRuvXl6DaqqGssxwzAIZyPmlsqta+N2Mcu+Ndvrns99ukgyWUzarpXW6WeLiO1fb2CHlzENRqbPT8stkEoqTrLAiNTnX3v9Df4ff/f/zXwx5+vf+BZf+9rX+fFPfohSiJS5ivR9xx//9Kd88OGHvPvWm3zzG9/g7OwZF8/PMKcnVHaGimC0dNX0XYv3jvms4eT4mPPzC2bzBT5Ithxdl1Q/pV6/DQ62qFuefGRw3t6Oun+NxoBqDFyyVkWYTJ7b++JmML4XgKSJPJfJjLGjN8mYKubXpuOfIpLa6IR6KHAyH0jHRRIKc45uaHFDj+tbgu/BeyxJrpu4cx8H74X3k47XOeFkxCQFr4wSOVAt5U1R8xROmY8GHyJ9NxB8pK6E4+SdoHBVLXObsoreScmwbdcoZdBojNU4pfHpe9y5e4ez5xe0bZfmDlBRFE3VJNBKlaWx5BeLsFVQVduySnTSURN8EO2bwREnKK73DlsUyQ0ZysKKqKKPaJM0OXyHaxUQWbcbAsKzqZsmBd2JaDveU9PW2N2kMI+D27ZffYkBXlZbQnKcXzwouA3ZeJXtlc+J3FgScMRtU8NX2lfafqnIxtG7/23mj36H4NvxOaUNpj695bVZX+PLT5p3jouzp/KltQVtMUZTlAXWGEK/xq1XKKvxWhF8lEnBKGzM0qupApMmHR+9wKdRi4OnUknxUwoXOnkjbEWO8kQn+hjyeEIaShdmDBKmC3PKkCJu3JfOLakqd0akBT3IZxodIR0jGHxQBFXQRgXVDDWbsXhwj5PXX0MfHNBGg0cyHHmrT6ZpDoIDNxD8QAiD8E+8ZNDe9WN2orVhSJ0gEcumHWiaAwa3TlLfBdZWEDti1IjJvARAzg1s2g0hRgpdpmOOmKiSomFScgweW4hC4Ww+o5k11E2N0pq6qdDWoLtOZMWJPHz0iOVqTftpj9aadt2K8ZmIeKayTCYtCrnP+UA/eIwLWJJ8uJJ2yBjSFUjcHKPtdgjGOGaz2y0tqCoFfUo0UnyEqCJRiZ9GHl9qMi6MNhgj9vPa3FxA87XPrYjeewlkbMH7H37E3/hv/S7/6X/6n3Pn0UOsKfned7/Hn/zpH3P27ClGObpry2azoqpnGB1Z1CWbzYrLy+doFbh375TFbEZR2tRpFESm3znaqyX379zj7OyC5WrD0cEx7abnYDFnde3ABzRJ6TGm7oEo039AbUWuABGQiviQ/FHIE1Ic7wO5FXaRjfy7n5QkQibxht121hijwPExcWnCdL8SJFtbUtUVTVVjygJblJRlIQqZivG+1EbJcyKZi4+BaFLwqBUmIX7D0NGt13g34PuOkILyYCLKqlQG0igt42DwXgjsKeAZieXj9KEgKnRUCQlB5hpFcpQdwCpModFWJT7VQFPXHB4eoAws12uurte0naewDYUVsT43BJwX5A+tmdU183rGZt1JMIEiBo0yCQlCi+EbSnREiMJrKSy5tFWURdJTkFmo6wdQGmOT9LlSQqRN90lZVHRtK5FNlHtUxYgJHnwnSZ7riK7F6wpfN7jNgmBNCtQsUeU5UThkOhP5tycxjbmbC990AX7R87dvcufuL6o7r9hJtBiTr5f6jNvW5viC57/g2Kdoxhd99lcNBna+n7Q/pbnzi8/Ny26/xGBDoUxJsXj40q9/2c0NA2dPP5VFsbAoayiU5bCaCRHJDfTdNdpqnAo01qJjpFIGYth2cpCRipy8pkxKZW5E6pFP2axKLMF8ekNqSc1Syjb7mWSonO2FH7kaJCjdOwRMBZTIXMcUH/tU942A8pGgAoVJyoVRoWyBx9LFAjU7oLl7n4NHj2ju3SM2Fa0CCk0ZkUnSC/veuw6c9OpH71HOo32Qyq/3+KkjpLL4GBGpDOnfr+oFQ9/jQ2RwAe8VRhcIOGHT4hKISshu/dAmw6gSY6XOi9IpIPBEJbBtrTVVXXF4dEhVVpSVZDVoqKpSznM6O2VVcXJ6yvnlBVfX1+MCH5V0GrkgRlrShhiJyuCDp+8dtpQWTqU9Wokpn3NyXUZ9gLEDJYUKSYo826qLNoLA/WpEtQJBg0ZjVc7GQCO+JiOKBQke31XHBG48zmOKCOvNAHrGN7/7l/iP/5P/jObwCKM0637N52dPefTgHodNRXAtwR+jioKPP/mEqrbUtcXoSFPVFIWFGPHJOCwScYPDpPbqWVXTFCUfnn3KYnGEtZaDxQEximCUtRqlRMo+vz9PsiGRK/NCE5JMe4hhZw4d4+302IeYWiUFdfR+oB96CVZSrZ8UdEh7qceHIKrAwUlAQApqglynvh/YbFqCF2v2qiop6oZmPmc2n1FVNVVZUFgxWCuspShLCps7Z7wgGlE4ETF6+qGla1tUGNBBLOfly6itMVmS5UAJiTxEKTvI/RFHFCtKqxMkZFQlfod4kkgpGOVROqKMouvWLFdXnB4fSgCuFSrtS5o9NEUxE1JmGAhxEFNC58TrRFsKW3JycsLV1ZJh8BgtvIrCQN9vGJyjsMU4dmOU0o4xeWGR7i8XpJssIhYH1upxDOS2YRBkpN9s8M6lwEYmtUJrBiflJ1tK4Ojba2x1iOlbNhfPIQg5t2zmaJsUYKOUnEwK2GCXyLp/D9224O4H9i/ebmbt+5+1/3m3RQpfFtSoFzyePnubHud+qf1Xvf0yAovbtl8LbxTnHGfXz4VMZRRYRakKwvyQw9mc6Af6vqWpdPISAVJ9STGJSBVbFrES+DTfLNvcVI8ZlmbfgVLY19kSXCWSVYaG1d6isj9ww8gPUXgfkzx0ynbG0kPADZ7g081i0oSqDeXhMXdef4vZ3QcUR0fEqsIbQ2k1uhAosw8iNNT3LX4Qi3g9Gb4hJk+HIFCscx5BcgfpKglQFCVd10uP/HKZHCo18/kcpQvOnl/hvAQOEY13w1i+sKaUQE2ZkSS6XTjkOLTWFEXJbDajMKXoHqTsfr1ZE6JCKYO1BavViqIquXf/PlfX1/IdggQNzjnJ6NKiJM/LgtX3A6br8WyvSwI1ZJKMAYu0PmqTOn5CHK9znKySHr83ccVxWtjh8UzqnPJBaoRQp+WkKY9Aa701eFOi6bHZbHjzzTeYL+Y8fPiAP/mTP+Hk9A5XV1fcO73DvTtHtKtrjo+OeeON17heLjk+OmK1Wu2UL1SUDoIRRUHho8dozeA9l9dX3HvwgH/6oz/i8vKC49NTVpsNzWLB1eUFJmffkbHUEVMwEeKWJxFCOv8xoLSkbNNMMN8fU78TpaSrQvg8WRxLRNyGIVu/u20ZBwksBe4vEjlXp98BWuEBDY5N2xIur1DGUla5E6qgKgsO5jOqsqSqKmZNTVmWo+dIlt+Ow0CfWotNSkhiQrckYffScq5CyvxzeUkWRh8DhAm/x2zLdiQEkxSYGaPTnCT+N9aadMyWqqpo6ooQHJvNJqE+msODI9Carh8Yug3eDWlOyiiEjMHj4yPOnp9z9uwc71KgVhi0tjjn2XQtVVlgCwlElFYpMZMAuu970IYuaZgopUf/oGkpMF/boZeSjdz3Ul6LqXynDFSlIQTFupMkqFtd0HYb4YEB5byjOTii0bUgyCoS0QiX6sXp6X55YRpovMyWk9Bpifu2f78i5eLltxRIw7+YoOKLtu2auYtq/CI8kV+LYCNEIQrm7DjqiKoaIFIUls71OO/RuqSZzYjrSyKKYfDsKk1PBpTOKoHbzDRvcQJ9xhh3BoDSW6GvqabATZht/7HCh5TxRvnsoJPaodJoBL70ZG0Qi7IlqmzwtqI5vMudt77G4t4DvCnplIIQJBAISB0+eJx3SFalUdGKvLfacg3yOZAFAykbGTkBbScEvFJXdL2Qbo0tILHpldbYQohm/SDKhiFEvJP2yRAiRaF3SpQKcTztkx29tQVlWdE0FXUtVtTey2S1Xm+4uLwSop2WMgxKiUQyisX8gCfLNc7LIpTdXHMpJe/Hh0A/DOhBZNG1UklDQ8IuQaQE6s29Ppjk7Etk+wXUzvXb/pDKA9uxEmH0scmIVYwJhSG1Yu65+07HTp64h0Eyw9OTExazhsV8zpMnTzg+POTZ06d87c3XOZzXbJZXrFZLfvyjHzF4UXy0thDibjIgA4VNcHzfJ10VpVFFgYrgAFUWXK/XlBfnzI+OuF4uOTl5jeXyOvE2IkQ3ljWmvIxMePY+c3GiCEch1yTzXyIkJdpedFdkdca5YVSoDFECyBACXZ9ltBN5EoXSBUeLQ7SVcolwLUx6fY+xBVeXV6w3bbp3lYyTtaA6WivKwrK6LilTG/ZiLt1PZVliCp3a3kHl8k1CnKL3oj6biJwxKHGJJZDRZklgBLWIIaSRtE02xutNRjGT3g4hWRCATvOCTfPKZrPBDx1GK+q6pqpKdFEAlm4Y2LSdjHu3ddbVuhAkwsN8MePk5JjVaoNPyYsPAWOzw7CYLUZN0h1LiFEMgKbvekyRLe/dSOLMHkI50JD7c/J87saC5E6rmTUzbFnQtR2FNuLG3a3x/YCzltW5ZrNZy/e3KokECjJ6u7Y3O+d2eo6nCd9LLY63cCFu+3dK8Mzo1Ffd5Pbce38c/7f7ua/4Oa/y+i8KauRw/kKWUX51m/eey6srWYSNoqwKqBrquuLo6IiVhvXmik3bcnh0zOXykqAZCZ87Jz/X2qIoKIwa8BJWyktiIpHGPInI+zJB0GZtgHSzTfc//X0X2RDYVym1Ja0m2FWrmHOn9LvGVDPaqPEUnD58ndM338YendIWFQ4hw5VFRQiBtm2JJil+euFmxBASLJrLPFsFzbwYD064CcZYqetaI5oQIDc5kbKqMbZk0w6cXzyj7/yEgwGDy+21YKylKMRFUjYpVYDwaIwxzOcLjo4ORcK8qlAofOhZr9aECKvVaiznFEVJ3TRcXl1zfb1kcD7B7dL14JwEV857+mHAO3l+GBxad2g7JXamYCNGQmpPDUG4MuWYcW6RjTxYxklzZ1NbO3gdUH57zcVZM4wtjaDwKqCj8EvUpMVzvIlz2SWKU3FhDZ8/fcIP//CfcfH8OX4YWDQzhsMFZVUyDAPz+Zzri+dE7yirWsbBZiPeKlpLB0LqHvBBnGnLssEUms+fPeP9jz7m40+fYIoKXZa4KIFC7x2eCFpQIhW9tHzmbpIcQERQKqbFRsSjtDWj3XuIYXI+RYK+d4N8Z63HADRfz74fxk6noR8wphA+T92MxnqzeTOOuzhyOgKzIKiZtSXh7BnrdSvES7Zgt/cRpxyrYaBNrZ9du6GqKtFCqSxlUYrCqIxYQXSCT55BiZisRMnXB9AhonXEaIUxEYyMdq30iHDlEplc72zcvb07Yi4rIYusNoYyHVMInmHw2Loaz4G0vovOxdHRESsCm5XwZfL3HRK6Z6zi+PiY6+WGi4tLtFL4MFBaix65FlGCuhiIqX01I1MkAunUj2YbYPqdBcgYcYaVbr4tWiwSAiIapiOpzAJNU4HRXK6WbPzA0HfMjk5ZGYO1Gn1whLI2kff1WMq7bbst4Ljt7y98P6+ObPwigUZ+/81yyS6y8VUCja90HC8KIOQm/6WVVX4tgg2nDnhW/DW5IQtD01SoaoFVd+jdKYPteV4+I/qek3nD89nHPCNQKbFAPuOAiwcP2RQDPzIPpfUxhrGMkjUthKOxzVw1KrWeZk+SiHE6JXCSwe9cAC8oibTA7V4YhSYgAYo2KssAiVS23trYZ25VdCW9shSzBUfL+5QfHdJ/pPDaoozFaINFJm3vC9A+lUiGlIXJpKEVsuAkQaLg/Og/IhoZOgUbUWq42tC13ZixZPj0er3ivL/AE9kcdKzUWmzfnUvFCLDW4IoKrSQzE4jbSACC4mJ9zNPLYxb+AGM01bOSmEofy9WSGElZlAQPWmuc92za+1wNb7KMS4aDnqEa6Ot+5Go453GDkwnTB5TzeGPoqwJf2PGmHaywZrJwWobkjTUYZbYlt+lqML2Gk8lHatxSgrF6a/BltMZihXgctBABo8ZEI/GsUjsts6iJXkUKhK/dhqc/v+APPnqfz589INz9W3wW32ZdrYhhgSai55FWrTBKsQqMi4TWUn7yWrPebJK8tBnLNZfXV3y6fELXfAv1hnRLzKqaqA3r48fMZg3Xi2M24RLXd2gCKvoxy9kmX3IeQxTzOLEIsInEGXcCkzyWvJcOl5jbLFPwGHxAeU8VGYMkY2XxL8tqIsgmn5vLnCqIJHfO2E/bjnK55Or6miFl2+PqrpAgP6FMSmtsQvuiUgxagS3wqZNFgv40BCKjqZkayyYBjzw243hK/Bwl80MYPkZd/Z6U6JT4h6C2LrPWWEiiermLJYvf5S3GKAiH9xRlidIGFxCiPIrBewYnwZoLMfFYRJE0tgOzxQFHRwdcX18JghoN0nKsBf0E6bbpPKHQEGTOCDGO3jLAeA3Kshzvg4xo5DnQe5lPClskfomIByql8G4QUr81aAelilgLg4n0rqO7OsNo6Ty0RZKTrxpsrIlGuFE35tRbEIkX/f6F21dANl75M2792C9HNn7hfX7J9qrIxi+y/VoEG7F6hHv73wWEbN0BF8BHG2Cz9+JrYLH33Aw4+aofjuDNf57b+3/On7+/lcDNBqMv3y7Tz1fdZunnlk0hniUGmFbOpn0lwy/w0V9py/UVkSZ4tS2P14Wc7k/S44vpa6ov2cf+fQBwH46/dvvLA7BMP9S3v+YX3ab56ZdNPp6bt/eXbQtu/9q/qu2LpgfTfcbdn/17VBe/B2SisRoXLpEGV2gMMQqZ2VpLu9lwdaUprcFqaSMFUtu7JC2RgRDg4uKKvuukJKgFWRq8Q6sCW1rKsmC2mFHPGtrVGk3S9nAR7SRAiiHgvMOYkqIsJfgIYj8/LRHnwGN0gw5hFNBrmgZrzYhy5BKzNaLxEr2ge1VR0ocO327Ae2odid4zOOiuL4ht0uIxlsWJAVumoMcLEvyS2f6XZeJTnt0o0Z72+2Jl0C/e35cdzzR7ySXY7d9SzBN3j31/vy/73W87ri/rshmPIx3MLxtTeeVgI/qe9tkf7nJmU5amEzxZGKnLz2ZNkgne1m99SLXdGKnqivlsRqE1zg2sliuulkuGIanOJegxpIxKpwyiKCx1VTGfzWnqGucc680aYqSpSrp2zeb6OjG/A40vOOoanA6cN6sEV0EGrbbXRk2D3O1rVP4tbp//kotxc1CosaabM7Rxt0rgSiFFyet0UWHrBmVM4gOIkZKUX7L4l2RqAmn6sfwjF0r+t+UVxPF9+e9iVBYTJL19r05lIqm1bw2upN1NJ3fRbrz3xjLFOJnuijJlFCFnbbaw4361Moh1tRjC5Tq5Uir5mYjNfEjiR0Nyoh1NsIijm2uc8ChA6vT5OuUS2BQy3YdO9yeZ/eseJ993ep1v22ceIzmLvi0Lm97c+9PAcrVEKS16IUkuOncPyELlRxg8EwLHy5722LadlMuSRfl2i2m8SfFOJcQleCGPNrOGwlohFY7nQfY7nhLERVdIjmactLfnaPJpk/MmuiZ6ez2y1w/TxWF6z+0c9u68s/M3Kd0Mw0DXtuP3g60kfD5XWYY5w8Tbh7vP79/C+4c0vfZa7f7rF9/GVw/x1WtYm3RetB7vLQFXc2liq3NhkoaF957mcMG8roX/EaU1tagqUAVt37NcbairWhyLux4/DMSYSrsWUJFNu0EZzWw+Y7Nc4WPmLevxnhaCrE6oixbyq/PYYiuxn3lFMcaRID/Vipnec2MXTpTysNZaVEtTl0lA3GeDc6ANNkZqpXGDGDj21xe09YyirBLPrE7ncPfcf9m2/5r9xXYaSN1c+G/u/xcrIuyP5tv39rL8iFf9+yuVQL7gHPwi2ysHG759xsd/999icMNoaGUKSz2bUTc1x8fHHB7f4c1Hb/Ltx99iMZ9Jn7p3BD+w2awIUWrB3/j61/mt3/g+d5uKy7On/P4f/BP+wT/6fZ6enbPqe2IhLWyt87ioKKua+azg/t1Dvnb/Hf7yD36Lb37t6zz7/Bk/+ZOfYJTnm2895sM/+Ql/+Pf/C46swvqWby7v8Tc+/B4X1Zr/5Dv/DGsUJkGeRgmHIhsRiZNIypTzBJJuFiUqPAKxaiGU5W3/wux7DqAM2lQYrSiMwmjJT7AGjMUpA2XDoCymmXPw+rssXn8b0zQMaFRdEY2hKEsphwwDpVJEN7BeXRJDmxj9kstPOwC6butXEhKXwDvHer3GDY6+H6TOnSL9sqipqophGLi8uuby+pqrqyXr1QZra5bthp9/8L6QzozCFpaisNjCYG1JWVTSMZDY9ZWVwPP+/fs8fHif45Njrq6uuLi4YDE/ZLPZcH5+zmbTsula1us1PsCq37Bcrjg6Pma5XOK95/nzC5bLJavVivV6zTA41qvNaEwGQrIMwVNVifhnzBjo5KyrLCWLm4ptVRP4Oj+3z8cBktTz9jVGa6wRD5TSWqyx2MnnlGUp/heT/eYJecrd8N7LYqoVP3rvx2zaluVqQ1nWhCj197ossSrSrteURkPq0HDOi0aB1mzajvPLKz772ftcXF+x2rTEIHwS0TOQwpdKRFzheBhc21JYzbe+8TXuP7yfNCZ6+a5pocynI8TIerUmuoFmsaCwBZt2I9wfbaQ0lUiTWVXVGpuIrJK5KluKfov0j0pQHXJJUU+CeskKQ+IJ7OqgiIZKREo1n376KZ+99zOA8Xq3bcv11RVdt0ETqVIpIPgcTGmcJ+lm5H3K2JV9C0SlkncSKpc/JbgojaEpLVVhqApDXVqu/6X/GHf4G5Ik6a0vzw7JUKnUURspjOXg4IC7d+9y0BQoJW3KzjqIflzgWa0pyhpbVsxmM/oUnHTdMJbQqloTkuZJN3SUZcXp3RM26zWbi6V4RhUiC5D8Lckt6t6HcawMg8PaSeCgtrymHITke0KusZRNpX1WSLJKRaw2Y9tx8DLvFUbar71z0opsDD2RNjrCZsny/HMCCCfn4BA9nwnxdcJl+PPs2IjEl/r8aflhGijnpOiXVaK47XO/6nO/qu0rllGEfDjWv42w3iHi/cDQD2w2G87Ozlgtr/FuIMv+dt2GojBUhU4Ln/Sa6yitegqwVlNREmxBVdfoEBiComwamnlBWRXYwoymXspm+3LPEEIiUgV6h/gd7Gd1EW5kTWnbgZLSgIohiFfFTra26+eQ35szvP3MWW7GZPZmQGxDtNSvNQRtGND0GE5P7lKd3qFLAl3aGEzUhCFIkCIxD/2woW3XDP0GqzwqCvkKBT7pBfhxgg4jYhBixAUhyA7e0w0DLgpyIFdxoHeezUYW++vrFavVmtVqg7WBrkvaHFZUAo01KLOdrILNSIJBKam/27IUkaAIV9dLzi8uRFyqazk/v+Di4oKuH6RtMcKHH33CbDYjRnj27DnPz58DsLxe0vc9Xdex2bT0vWOzacc2XmnfDeJGqwcKTOpSifhEUi0Ki6hRZgfWJCLlwpjs5iBzRGkUI4JirUGZHIRmYzjJEmMljp8hRGwQDoXWApHnbNsmYqqJMqnLoqaJCJqjNDx+eJ8f/eSn3Dk95b33P+DOnfusl0uq4xNW3Zqh3WCbBqLU632UvH25WvPxJ5/y8aef0XaOdhgYXEj7l84jTUiOpEl4CkVwXurxwXN5fslhU6W28KR5EMTjJiT0SSZIg7Ea6Row1PUiEYotRVkI2VKbEdnKKJPcSEL5C0qjtN2iHDEvIlMbgIQIJvEwdFrMUmCQg7dQeuq6pq4blFJUlbRXG2NYr1dcXV5wfXE+3p/ZwE8WTBGoi+nTtDbSs5lrYSmxijovuAFchOgJxqOVEEVDsa+InF6b+GCByZyAyP6Tsv/j42MePXpEqQPBdQQvLa9VKW2wSimi0mhb4kNgvdnQrluG3mGLRCItSkKAfhCNHudbilJUOod24Enn6dabhEKpJIwnY1v0YIQ/EhKCkY9tGmjkxdEYM3agGGso64otaCRu06YoISbhuyAlEwXUZY33QZCXELBFRm0VXd+yPD+j7QXZJHqCitTNbEQfzSTwuG37lS+i8eZnvNqxbMsku4HTLyfo2C/DxBvr4L/47dXLKFGMtELwUoMk6RQYyQJ8WqTOLy6o64qqyFmgWCq7oaNpaozObVQGHSM6yo1Lqs1Ftp4iMQR8DARSD7dSibjC2JLnXGB5fcVnViZOU1isVmjvXilqnEbOikTeI180WXSyemKIcbIoqfExbDPYOL5GJeY6ZKts6XjxBBROa1qgmM+Z372PPljQGUNpLcYUonIaIrQD4NHK4/uOvt9gjGLoejl3aXOp48QNHmstZVnK724Ygy0hioooFkBRlpSFZIN9Lx4rqKynERmco+9X+ADWFoTx+ybpcp177sMojxzZmpM5H1it1wjE31JVFcEHLi8vWa3XKZNfg9JcXFxwcXnJfD7n00+f8Pz8nGHo6bselVjzm80G76S0IshAxJiJQJaSbpkMyefxlN1nbWFTu6OofRZmezvka5nRiWxcJeUdCIOck2y2ZYyhsJa6r6nKiqqQxTYHeUVZjje7tZbCe4qiGKXURRulTyZxnqYqWcxqirTfXHp0idirlHgABT/Q9j0+Rs4vr3j//Q94fnGFS0JsAU00egyuSARJrTQxBTghiHhSGAZUDFw+P+OgtsybGSiDKUvKUsZQzv7LsqKqqpTlii+RNhaUHgOMMWSPkwUXElogk0JIrxtLK+hJN5AagyGJK5LIWBABLlkIoapE+CoSOD4+pmlmxOhHomVZlhwcLHhw/x7PnnzGs2fPaNs2Eb9lDiGalN2HUUJchezAPA4KRiVZUkeS9zgC/eCwRlM6hS/MmMNmsbJcXjRKj+csxm1wK8GsZ7Vcsg49J0cLiqpAx0BVFsxms0TwXeI3PVGLsZnWmiJJfVtbJB6FFyHRrPYZPGVZ8fjxI4po+OC996QkSrZcSqrKSW5dp5KaT6gR7PIY9jPyjPLmIB3iqMNirE5S+ZqY9FimFgFpckWlFtlSgYuBOLS0S0HUnPc0g+f03vbenR7HbXP4i7ZfFoLwwnLeFxzL7uOb5/GXFQrcFmj8Rdi+ErIRnEtwrwxATe7oSIt/9ITg6PqWEGVCNymzR2l8DLhUl5RAQQKYfBMabTBRjbDv0Pd0zmNsiR8MbjAJUk2ywp0IWK2W13weWuZRPCaCUSP8C/mmnsiDs62cRZXBGp8y8vQHLa12IUbMyJLYyiYzenVskQzxFBAdgKi23Q9EL/tK0GlU4LUhGM0QIVjL/PQO1eEhzhQJ/jAJmXDoKOSsfmhROuIYyPCuUO+yD0XulRdTplxKcSEtcNqwWq5Si6i0ow6Dw2hL08wxxnB9fU3fD6xW66ShIAGFeC3ocdGJ6ZoLaKuTF0vSR1ARQ0Sbgvn8gKqucV7ExK6Xa1arNUTDp589wcfApm25vLySDN8H3n//A05PT/js6VP6rme9WY8W80AyuyrGYzNmGyjaogAd8dFvJchTMNY76XRRaaIVeXhNcH4kGGTxN2stTV2LHkNVjWUTKXHv8kCstQJ91w5XVhRFQeEG+mFgns5TJGKcx3kJ9PJELdyKgbqumM8aisLw9ttf489+9nPu3bvP08/PuHvnLuv1iqqSRbQbBvquZd21PHnylM+ePmW12uBixHuIKhHrlEHZApQWQzuCdEuQL6B0RPkQmdU1bbuk3XR87Z2vU81mmJQ1F0U58h18CpayvLg4pCZH4hs8jNun5ggEteWZ6CQGp8Z7So8lFEGXgijgBo0O+T7OgS3YouDk9A7HRydcXV9RVhWzZkZVVVRVSVWVHCwWKGN59uwZBE8ZgqBC0RDilvyYwCwypylFO6n8tOU0Ba2JUdqvB+cYnAQBeX4XmXjp8FBa9qPzwoxojRSFnISLy0us8ZwsauZNSWkbbOrOCT7Qdz3eeUxRUTezkWPRbnratk2iaGkeCBFVaIrSSvARA/fuPsDqGZ89OWO1ukarSHR5HMsEGIOoJDvn0IUd53UVE6/EyHNTHl4e/67vKQqDtloE5YLH6oKqKAT1CVJWMdpIF1OMYtho9Ch77n3AKk1tNH10uPU1yxAIpuDg4IDCGhTFuNbk4GYsf+WxdcsCu4ta5xE2Tt83xuYXbfshy/h7fJl3Tz5nGnBwUz90+j2+SqD01QKOlFi/1Hte/pheOdjQWnHnzpEs2gnSU9oIg9haqU3HgB82LJdXzBcLlJbJvzQFrRtAR5paJi7vHVQVg1L0MRCtwZYFhfMYI9LVJkqHge9auhX0haFvO4a2xXUbutUV188/5+LJp4TKctWuqVygCApb61FvAwCT+vQngbXPQkWI5sJWCRARu9E5w7JsK8iRqAei9oIiK5GMUhGsLgGNsRVDiHQ+UFuFjQMqRqwp6F3AKw3FjFA2tGj0/IDZg/v0hQWtKDDSt68TqS1IEDdvGnxwhNZR6xLvHUoZXJJU3gYBHkgZuFUUuiSEyPJ6xXK1pqwaylK4GUUZWK3WXFxes1otOTt7LqqgPqCxrJfX+CHgBrGXt0WRRLdAhN5NamP0eAZIhNCoNW0/0A2eOdKO2XU9Z+dXrJYrlqsNfS+W9J9/fsnZ2VkKMgOr9Yar62VCLQJlUY/14hDEN0FrjS2LnbIWyH3igqPUgigIGVVhkzNn13UUVq7ner1mSIhMJvAWRjJ6rcH3A60LDOt25FoYq/EEyiqfvxKlFcsUoCwWCxaLRSJOG/oQKYuKorC4wdN2LiGDWoLmEHn9tTd45913mM0btFY8Wm94/8PPmc3nfP75JcaUdP2G2byk94HWBZ6eXfDBRx+zXC3FJTZqXBChJ2MVWom9uoopIFTJ0C9sDdLyfZARwhAtZ1cbju494vT0johmTRAYYwwFu6qYks2SBK22m0r7VrdMXCFufYvGLUr765bbMPm7UgSlwEUi2e8kCu/EWGxZUc8sd+49xqMoSkNZN9RNQ11lrY5D3i0aqvnHnD17tkXmnIiTuUG4PzF4ucfj1tnVpBIKPmzRSWOIUfySut5RGENTTxYIrVMVRlqhQZSDo1ZUZSHlx+AYhgjRcnpyj1npsVoTfcT5iI6efi2t3lVZg9L0XUfVNFR1lcZ3x2a9YRi6UXPEDxGPBlNh6gPKo3scH73B0dMrzv+rn1Lh0SZiVaBMZWgXnNgTDB3ROyor/COlwEQE/QpJ6NAFTEJUTAQTNaUqUEFT2ZLWdeDBq0iPIFFKW3Fz7joCirJKujwJrR6GFpSm0hYTPW7T4fs1sWnYnDd0y2uqZs7hySmmrJA2XhApAzlXYlip2F8IFVHK0jorwiYyvBEp+ajVxIxz++58NafLiIqQKavTIGBMXmN+z+2IRZ6jd4f+9FPZK6+w8/yvdEto0ws3NWKNvMqhvHKwYYuC737326A0gwtcLdc4HxmClzp00laAwKZdSftVXeODRxkRchE56C1zOSjxBwlotJH6fqkDA3KjhhDxvUhTtyri5iVDP9C3HdEH+rZldb1keXXJqluj10uOtZZujp3mRzk7t+VZuWQgsr1IV8jklSEtZkSNTtwGrPBFdM7KkH58oyAqKQspwOhANIbeCQx4uemwVQNFzcqD0TUHd++zePiY8ugOwZaEoKispixKpOPEEaLDxYD24tQq2hkiqhRDJAZGhUaFwhqBVV1weBeISf7DGMPp6R1iTCJaPnB5ecXyekWMsF6LhPAwCLRvVbVV5/QBHzw6GInEo3S1hKT2SWp5G5xkey5lwBFYrlYsFguePTvj4uKSzz9/xnK1EUVIY3h+fslnTz4fFzTnQjLRUoCbOEx6rE1jZ7JoTktaMUZ01GOpq6kbYvB0bUdZlCxmc4L3LJdL6qpisVhQpqxNJQGikIy/UKCSWmkcHA5oNx5bFSPPYjO6a0p3xtX1ktPTU45PTyBEzj/8mEePHqHaxMtQRrpFuoHZbMZv/dZv8fbb77BYLKjqmrIqOTj0fOe7P+BHP/rnnJ7e5erqijt37uBD4Oz8gg8//JDLy0uuV5vEzcmlEinVqYw4JgnrPPEFwjYKYHfCiFGChq53PD+/5M69B2grpUSjCwqdy0ma7Fch7xMzMcJN8aUcCO5vRr2oxfDmJh+jwXsMoNL+MqIkQWCBtSXHJ3fpXU+ILnnv1BRZvKsoOalmaFuhTc1ms6YsC1zbEYLHOeGcuaEXa3nv8Il4LcinCHyJLHta0BREND44umGg7Xo5F6SSa1CMtktkFFXQNq2ytohOUvuOYlZQ2gJrxEDPdXIPlU0DClo3jG2zJORIqYi1CmsqlDa0nRdJd1ujigX1wTHF4oiqOOTO4zf5+OOPcKsrlA9o5SkyQsC2e0wrKUk7BimFpnFU2EKkzGFUFe37TgKrIlIkPh1+UjYsCoaE3jnnRIE4OUG7hP6EdH6KVHZV/YAOHq8V64szGeOmYHF8F1OUNHOFrSqISbU3eHxwCPJ6y9IW8xVLgz/u/GmLdOcxvff26Qje7iftd0Qn5JKMQfZkf3sj+kuDhi9CJV424PhFCKgvfEfcfqVX2eurIxtK0TQNIYKxkagtbdsTuxbntxOAD55u42hmc2bJIwMk84lGoslRulkh6EESmLJFQdRR3FujwlqP8VJSMEbKIqNyZsp6264VXscwoPqe8ugYZTTSv563xDFRN/IpObYYcdFjcrklZbmSEUsgoUkThNIoY4naYMYMTSVkIaS6pMNqySg9iqWuGDqomhNmB0ccnNzh9PCYNiqOH73GlfOsB8Xh4ZF4e6Sbbhg6hr5HKekHzyJQenwc0qIqAlPbiFiQDYsi2m3dVekC5yJd1+J94OrqWoIKa8d6edu2aK25f/8Bzz+/IIQ4yoSLw6dHa0uIJI6G33ZvpFKJ934UAdpsNlhrWa/XfP755zx79oxnz84kc9OWtm3ZbDbEGKmqauR0lOUEmdC5xr7l82wdRLfqrZmkG5wTdVYlokIKxeHhIcF5+r7HDQMnJyecnp5SlyU6SleSVippD/ixeyd38uTSXzcM2Lrk/OpyrMmvk/jSO+++w2/85m/yV//qX+X0zinvf/ghP/5nP+JP//RPGYaBBw8esFg0NM2Mq8trTk5OODk5Gb/H0eEhx6cnVFWFMZo/+IPf5969e3z22afcuXuHtm2p65pPPvlEjispo+aSBYA22WqdSXDw4m2/thxi4NNPP+Wb3/6WlOJCGMXIMoFTJRhf7mtJFqy+GVTsq+yOd+OkRfrltlQm03rsTAFGgmjmSd25c4dIoG1XY4BRlgXWFiP3pqpmxKh5+vSpJEe1tGWE4Om7jq5rGYYelX6Xbi4vSGz0qXyzVf0FKR/2vWdjOpqUkGQpdjUe/9aDWrqPkIRFJ4NH54jRcnF5iR+kU+P04IgYo3jfEPFpfur7Xko6RMqiSIuAFosB4/GqQFdzdH3AbHFMUTXoouLu/fscHB5x1a4ISuOCY9O7VBWPo5qZNnrU0sjXcTpGpry07BOUOVFVVY33TD7nfjIvTLu9nHPimKs1xpbCLIph2+3iPW6zpBsGghJBw+H4iKqqJLnJzspanPGmjsS/VltkPI/jU39B+Ba/jO2Vgw1jDA8ePGC5XLPpetp+OQ4yHRnbQYdhwKU6X900ExVAIeNprRmcY7lcop2h63uUVkI6M4YiKIogssDKWLQuCGjKKg/QwLptWbUb2r7Dx0BZV4Qw0K9XuChoS2m2EzCQMjzYj1sVQBBjqMKK9LLSEaOkRl/o5NiYDNqskVpnGLO7XJuORKOIRhGUF9l0YBUCbnGfh29/g8dvvEU9PyCicVXN+dkZH55f8uCNN+hjZDN4mqpGK+lHl3KGGzMGN4iHSdafAGkps9akgCGMN3W+sfMN3/c9q9WGTduTpcSLokRh2Gw2XF4+5/LyCtBUVYPWRiy4SeZnaYL0PpI0FJOSZyJoikQRznnatk31a1mgiqLggw8+Yrlc8sEHH9B1HYdHJyilub6+3pm8ZrPZiFJkQmQeZ5kB732WWzc7v+fHVVWNKocameyM0rTdGjcMvPn6Gzx48ECCVh+orE2KrOIFohErcr2/ICqBW5ftegyInp+fc3p6yu/+7u/yN//m3+Q3fus3OT09RRvDerNm/W+t+fGPf8zf+3t/j7Ztefz4NQpbStcMSNvvpuX58+dcXF7wr/zO73B0dMRv/dZv8YMffJ8/+qOf0jQNV5eXoCKPHj2iKAratqUoi52JPHcJ5FrhV8qCIjz9/Cld29PM55CuO0qncpMeS4qgxAMmcmsWlx1LbzyffWn2tim5NG8R4QAoldtPt6WgTD2NShGVopnPOQXW6xnStSJjJmfY3juK0nL/wWNQhnazkY64NC8MvXAghoRu9F2H63tBPVyPGzpcaud3Pru9KtCW4Ae63lHFKDC70uPxZT2U7fVIukM+YIMkNt7LfXM0n2Fnc/wwsFwupXMroQfzowPKuqbrOqyxlEWRvp/D+UjEEG1E2QrbHFDMjrHNAdFWoDVHp8fcf/SIYX3N9WaFS8isTvwvbTQ2FqKMq3QyxRvGoCOPFdEEEen0uq5FVC+hjRnFyGOq73v6vke6uWyaLcNonBh8ROmItZHB9RAVygi3xfU9xipxqFaG7rpifb7AGi0SBrEUZ2yt5H3j+Pp123KnZPrtLxjB8xfdvgJBVC7hxeUFy9WG1aYTuVzvkpeIImhNoUCnm9smR8+MYvgg8tJd27Fcr9BBjIVQOpVQdOqulaDCDAVaebZdFDmS1qzXG65Xa4y1HB4dY+YNV8NAiAFbVmjV7cQVkhkpVBJF2q/qKa1lkKdWV4XU5ka/hORjolWS9k3YXFTCrI8ovCoYQqR1A7q0lE2Dqhb84L/+r3H4+C3c4BkibK5WfPD+n9EsDpgfn9L5gC3FZCoGQVmCF3v0oqooS4s1Guf6sRySAx05zyaxyrcGViLExeiq2bYbVusWa2u0NiyXK2KILJfLCSE0cHJyijGGi4sLyUy1Hk3PlEqGZT6O5m6Dd9LCpuT69H3PcrnEWjtqYoQQWC6XI7pRFAXOkzJ4M+phZBRjLIckFCOPoWmmlFGOcXylLfs4kAJgY4yUHK6vOZwvePPr36Dvei7OLzg8POB6dcViUeGitMmq9LkioJWWi3GNiHSD+MEcHByx2az5wfd+wL/9P/p3+J3f+R3mi0UyuwJlNbPZgspU/LW/9tf41re+xR/+4R/yySefJfJfMeqDlGUpHQeXVzx79oy7d+8ymzX87u/+G/zwh/+ck5MTPvvsE07vnDAMA6+//jp//NOfEtUwBmLb7HMrjCX3TeZmvHjimp7vEALPn59zcXFJPZ+PZS0J+qSEtouYpIBb3QL5vugDb6mr5+O4uQ9DUsEfA6J9f45pjbtpZmhtReEy3UNa2WS1bkHBrFlw767i4vKC4DpkelKUlaOqG9wgC6RrBoJLZcWuo+vXuKGj6zroe/rU4SW0g0DvxPMlK/YEpUS2HjWK9qFCQnIVWUcjeI8xiqquEiqVTBkTMmSNRZmE7iUkYOhb5G609IOnd5FgjAQXpsI2h9hqTjQVPgoZuZ7NePzGG7TXl6wvL1ADaB0wWgIua2X+0yGOiWE+rxk1zB1mIGWSqipRURKevu9Zr9e0bUvTNMBW2nyaKOQgJuax6wKu7wUFV+KnFLwcV1koSjQORexWLM+fYoySgKOeUdYztC1AGTm38SbC9uuy7Whz7AUav0ptjl/19srBhtwritVqxfX1Eh+T4lxMngVeLJat2Srikerfo7wtEedqUMk5VUtJwhRCmHJ9pO89zkdcQCzXJ06WKI0tRINDGOSOIQSaquTBvVMaIuvPPsOFiDXqxnQ2zbFUmiRyrdIWxUiI2qpuSnYeILVzBgk+gkMpS4yaYBROFTilcbGAqqY8PeDR229z7+230YtDXOtYXl6xXm04u7zkvQ8+pnUD3/ne96irgsJoSqPwfUdIGUKGJcuyEDpEKgttyXkCnS7mc5no+p6s1gkyOCUrkUxjs2lxg2e9vmYYHETouj6VtDxVVVOWYvHcti1bZcEtA13lbpDUMhmR6yvdCAEfOtp2w+XlJSDeJ+fnz1mt1hwcLNhsNhhjmc/n1M2Mum4oioLNZjMee0YplNr6MUyRi/y6qT07MGb1IQRcP7CYz7HGcHZ2xma14vjomIcPHhCcZzGf451neXlFoTXdZiMoMqJtkkt/zkUJQpwfJ8rNMFDNZ1wtlzx8+JC/83f+PX7wm78xliBGuD/EUTSr6zqapuF3fud3+OyzJ/z0j/6YzaZjPp+n7xyYz+ecnJ6MLpt9P/D973+Pd955h+fPn3F9fc3de3c4OzvjG9/4Bp98/DHnF5eYYitYJucokFtd00iXiUuxsyjn85mRo3xuZTEYeH5xzv1Hj8bgj8TLiiTDsXx3jcXqtN+XScaU2hIZ9v90y8tzHT5DzXnhG98zBqhgTEFVCnlziLkMoPAe0aJIrdGz2QHORzaba7mntaKIkVCKCGHfD5C63pxzdG1L188Yhpb1psVsNpg+eQkNgrA6N4xBXSYrKqUISqeAQ7gRSmus1RAU3g841xNDENdXlQSwtKaokqmeQuTIg6frexprUKZKPilGEqRSY4sZx/ce4SiItiHqgqAsQ4iYGMFY7j54xOrqiotnn9NeXeCHFqviOCHKtfUia5DK1tN7Lp//oiik26cuxc1VM6Kx+d7M/2ZkSVrWJbhybhDZBLNFxJvCooyha3t8CJRlSfAD1si5atc9125gGHpWqxXV4pj58Sn14pCqbkSkcTKI9hfmqVbIF203EIX9XycB2C8bhbhNF+MXDTSmx7v/3G3bi9qKv2qZ56u1vgaRkFZKj7BPJt1E8sKtBVpLE6BRhvV6PfkSirIoyV0gyhiO79yh+uwJl+tOFkcf6IbAJqEn1hboKFbaWhn6XroiDo+PqJsZttDcffCQg6Lgg6trVPBo7cfWVzl44XhYAybBh0JGzuJNk/5xmZlxPhIQhMBqg/MiiIX3WB0JBvoQ2YSAns1Z3HvE4YPHPPz6NykOjnl+9pwja/gn//D30E3FH/yjf4JpZpzef8h/82/862miDijfw+Coi4KAJ8CY1UtrW5r4XCaIittHkWyggxcSZVVVY3Yx7dKQhVKg3826l4mirlJWphkGEcVar9dsNp20IGtLUURiFJQkpOvbD0LEGnyfukekFbPrOkGbroUHkmHhzHdYLlfMZrOkfXCANsVO2SM/zmjYNMiZIhcZ1ZgiZ8456TiYzdisN5hKzLaePnnC9dU1rz1+zNHhISpIZhidR4XArG7oNi296yiMCJVJy2N2+oS+kyDZT7gbSomq59/+23+b3/7t32bdbkSLAtEG6PueumkgxtEYLHNQHj16xMHBEe/9/H3pjCmknVVs2AN1XadW2BprLX/9r/91/qP/6P/Gw4cP6boO7z2LxYJHjx9zcbWccFe2QX5O7sZ7VG1bHN0wkDlGwctYK20B6fxrrXGD4+c//zm/+Zd+m2GQe805lyZxNXbTTD9EpeBzH0PZ6ipMn1dj2WU6gd3+eFIOjYlXEBW5K0R4YjD4KG6/2mAKS6UMSlvhXERJXmKaSyQACCwOj1BGpQ4UOaQQhD9RlF5ECb2QsKuqwfk5w9BRrTfUzYbNZkPbdXStCPRhDTp1PbV9TxkArbBKUNOIT8mXZxgChZVuIWsN3g+s12tUXUti4wN9L3wSY+U7mbJI86+iKmuKokGZgnJR4XSF1yXV4gQVDOvOCdm8qimqmqKu2CyvsXXNm+9+jcvnZ7z3x39EcI6gAkSHiXGnNClz39bdNZdE8++5NXfwIashjGOw77cl35z4OOfouxZjNFVV4AaP7wfKpsaHSJeSnEBGFwMqhNSarqhtiQ8Dm4sz2s2GWdfT9QOHzmPviqNtlhzYH0c3g4I4zvs5gHrR9iJU8KsEGKlSufec3ul4mZLfXwbt2H/8ouPcD5KmycZ0H9OAPj+X15J9obeX2b5SsKFS5Ku1kkQmZzVyqGMmNxL6UtabocJo9DjPKKUwRUHz/+ftz4JsS8/0POz5p7XW3rkz88xVpwqFKswooIEGGgMB9tymTLIp0SQdttQRouQI2hG+8Z1DN75y2He+cTjC9rUvHJbDpi1LMkXKEqmwKFNsoN1sdje6G1ONqOkMOe6911r/5Ivv/9dameecQgEUvAKJk5W5c+81/MP3vd/7ve/mgBsps94ckh6csN3t2e0HfMgM4wiqSGE3LV3XslqtODw8ZLM5ZHN4VMoMhlt37tBrxfsHB6jdZVlwF8tbIWtVIqBcx9zRr/WMhMhGXTY5ZYhKkbTBdh19TKxWHdv9HteuGLPihU98Cnd4g4/98tcZtgPf/9EbvPyZNd/5/T+i0YmffP8PiSmyWW946ROv8MVf+RopBUw1MNKK1gnJzmdNMm6CK0UG2KJy4vxMsobNRuDt/X6Ps5pkbFkoRUFzHP2k9qlU1cYwE1ojaEFiGEbatitSxZmm6QoZUOrzwxhlkVRVK6KUGrToKshrBs4vLjg7O+P8/IJhGKZBKHoeMl6apuHg4GAqnUzKkosJUsW06lhb/nudqwFM3i2r1WpivXddi0Xz5uuvS6DxsRe5d/ceKmdiiASErBx9wHYtB6sVKmXGfiB40RhI9fyTWNkbazm/uOD4xjG6IHn/+t/41/nGN75JRuFcdUaTwFuVFgRBAdQVIy5rFYeHG1599dWpI6hmhMM4TMGGIFSZL33pS/yDf/Afc/fuPX782g+5e/cup6enHBwcCBKxWASgkDKnzpR6Tsz3K4nXSgxh0gpJudiq50oy1Xzw4CHb7ZbV6gCowRJyXYu9X54hxNr9tVzwps+XrHn6TS7qo1dex0TMVqV0VRR8qJo2AtCUQKeI7k2JQgH8ZDEsQl2Ipk0u5dfKrlJKeAFGOdrugBB8KVmAIWFtFA5P8KQYyCljYyDGkSa1NN2a1ThyeXmBurhEG43vFclXZVbwIbEfR4zpwIjYl8qVDA+T0zBSwqgic9vLS9HU0Jo8CqpinaM7WNFZK/wxpRljJhvpErSrQ5p2A7ZjSIYxZkKaVUJRipgzpmnIKDqtuf/Sy7z/zjtcjgPiAS/ii9boQvifvU7qWtR13cTLqIiFMYXzUUq2y42tjvmafABFV0M2MWOFaJxKAK+1QWkjVhLGiJt08OQUSSmSo8cAUSX6rccYh7GOOG6IQ49KlrywBPhpR93CftpxFSP/6X9RA4r5Xiw+86n78xwgLVGM6xv60pPmaYHF0zq/6nte/365Zix/Vt+3knyvByo/S5BRj58r2AghTqQoXfgKUUUhQOXaPjUvepW4No7Sw965jlW34vDoiOMbNzhYt6QUMa5jtTqQcosfJQqOQkw01oi528EBXbemW61Yl01LW+lg6dYtB0eHGD9iGst4GWkWLU4KJpEaUX6sxkkl2FCFm1EgcJWLK6LSZOPQrsHnRFCWXejZkmkPb3H03HPcv3OX9a3bHN+5x3/1T/4xn/r053n/h9/n9T/+U1770Y85WDmeO2547oWXWN+5x52XXqFxjmgtlIncNBarIYw9SVlcI7BjiqF0h4gdtHjQHBGjkLacc6zXHf1+X/xCfBFdEiGmYRgm0R+QRfdgsyHFxIMHD2jblouLS05Pz2QBiVlIo0oxes8wFjv3EliQBFnw40jO0ir76OQxjx+fsNvti6KnSDGLyZPc8/X6gOPjI9ardfF4SbNA0gKBue5JUo9lpL0kk9af1+uuiNrbb7yFH0ZeuP8Ct2/eIvpQQCQpg5HlOnLMYnaWI9oYYq2VZ2nHG4PoImyHnsObx/Te86lPfZrf+q3f4W/+nb/FzRs3ZSOydiLFCadBrj1dWzCmzEBA9SLLPi80MSVc464QGj/xiZf5whe+wHe/+10ODw8n3w/p4EmCwiy4LTFGaY0sI38GCBbZaOHGxCjcIIzBqGWgZ7g4O+Pho0d88pM3J8QpxkSOcp7Cm5DPyBoJ7utCKG+yCBzUFEAwtek+CcleRzbmkqGgMiaLzDkqkVTpzJo+U95XaVM2LVEFrfe/IjO5nJvRGgwovWIcZVOrrZ8qi0JojKK7kXIih0iIgnTEVWIVE93qgNX6kv3ukvNTy357Nl2DD4ndbqBtG1aFs5aJ5bwCurQhd13D0eHBhGRZK22vZAh5mEpgMQgRWFmD04aEQ3cbVkc3casbBCx9VGRtGULPMAaUgVVONM4xRo82mgg467j93AusNsdcnJ4Q4oAti6U1hmxMIUnPm3Yt09YAv6KRKHn2MYYraEa1lJB9IxQUsiRx5TmlWnpEyunaSHJX7RPIEIpxm1R5hKysCaioGC5P0cbRdivGbgUHa3J2V7gmH3os5ucSGXhiDboWa/zUMszi/7n2vWjrXH97Qdrq8bSN/lkIYP19/btnXcf1gGOZvFUU/WmIxrJkWdfqp53Dhx0/l1y59+N8ElqJYJBSU7iWkU2pQsm21O8qlFk3irqYWufwoXiAOEvTthwdHYHeEyMoPaJQdK2YD61XB3TrA1brDdqKhkPTisqjbVpc0+DaltQ06CLmJHemyp0Xx9SyCeoyWSpUq5URYpQyoC0+Qh8TIUeycxi34vbd+9y8/yLHt+4QUuT23Tv8k//0P+XWzZu8/aO/4M3v/RHDxSXHqzV/6eN3aRoHzrFqV9y6cZtbt+/SK8uYNLbpsM6iDIxhZAzi2tjWzSPLohxjmODJuAjilFJcXlxMtdE6CCozPAQJVsQOWjbWYYiFk6GmUsd+txdORwi0bUEJYuDyckvfj5J9h0BGMYbAOARSTjw+PeGDDx5webkjpXlOZgWxPO+m7bh54xYHB5IhG23JKVxpY31aZP20qP66gVmVY6/EUhEIe8DF+TkvPf8Ct27dmsiEOWfxaMiimqmBHCNjSvgSuBllGYNcG1rR+1H+DSNEw737z/M/+Ht/j1/99q+y3qynVuDKtl9OcqU0WpQtrl2LzB2nJVschpnpXxfputjUa/47f+fv8OMf/4h33/sJwzBM6IbIbecri8Pys6rqZz0vbTS+tv7euk3TNFycn7Pf7Ygp4GzZIDKEmHjrJ+/wyic/Jcq62gj6MS0IErzJfYWcVQEw5uCikkmXz1ZNHSdPQrHXF8mr/KSCduSMVplInILPMkKm91zOg1p2W8LD9UvQNY1JeUKhqspnNhEdxJk450Q0EZsdmViSoYjSFm0sXdfK2qIyUc/I3Bg8Y9GTsI1FY9A6TSZsKUZ0I9oqTduw2RxgQbgNPrBar+m6jpgTscxn7T3KOkxWYDpst8GtDgleJO33YyAkWRc1ihxEsMx2DdYYovdEH3Ftx43bdzh9+AH+YiiIiSjCaq1F76OsOdWcsbao1/LlOI6gHK11xKKtUcne9R7XQEM6WEaCT2LK56QcnmPCthJkiWy86MHEGMg5FfVaM7ULxyQu0VY5wtCzvzghleBxk2/jVuuCINppbfnQ8sJTsv4nX3j1+58WyFQEbTlX6pHSU5ABBddLP08r/yzN75YIRP399XLQ9bm1DKyeVqJ+VrmlzqHraMtHDTh+9mADMe2ZJ3EVYykwafm9x2NLu5NZBBs5RemDvnJBavYZKQNkdXDA4MXUKopdygTlOSdKpU3TYIp9M2VS7/uelKIEMNaK+FSVK0ecHA3IGy6CI3IGXdQ6VQGgi3+EaR0tolJ476WXMKuO2y+8yBsfPGbdHfL/+a/+S6zOvPaD76PGnueP1tywio994i43m5a0vyB4C8cvcXjrLsc3btHvRzjocN2KaIx8RU/0Ca0dq24lDO0indy2DUo5VE6MY0/wIznHaZD0O9HFyChyAu+l5jwM0ura70d8EHGvcYycnJyVNknLbieBiPdSL67tqjEKEW232wkqFSM+RLyXNjwfRKPj8ePHbHfV8bPomNSNrTyz9Xo9tWrWmm8lCy/LJk8bvNdrixOjfeFwWyFdheLhgwc8fvyY27dvc/PWrek+CtFMnnsYvUgwl3JaiDP5U/bLXMTKwFiDTxHXtqwO1vxbv/d7fP0b3wAUZ2cXtK0om/pRukqMNSWjr7V7aaGt7183z1wWrHo9VSsgFDJizpmHDx9MJac7d+7ye7/3e/zDf/Sf4L3nn/2zf8Z77743Bco5Rml5rAsUeYJ+lwuQ90LKe+WTn+Slj71E13U8eviAN15/g8cPH12559oY3nj9db7+9a+z6tblGVuUkvM1JpcsN01GdepK2eZakLH4qiWU5QL6rIysBm7Xx8P1Y35/pi8RD5R7ridDxczcNFuJxW56jSQoMqBT+TyR7PYoJdorxnpBXV1AWysqpVrRNY4HzhGQ8sZQOE5jCHStK+XQUr5K8oSapmG16micI2fEf6qSpEtpurbO1hbfnCErQx8yeu9ZaQ/Nim7dsvNbtFGsVx1Oa6xSEgytWqwxhNHj4wDacP+Fj3H24D0e7s5RJLQpc1fpOSFcBPS106u2vo7jKGacam5xr2O6BhkTjyjPyImtyInW6EaXEp2UVTNpgYwJpy+HQIih3A9DU5oPtAEfRi5OHqKUJmZFc+hJMUlptaCA9XhWiLBcY542vlS6jjp8BGRDMSF91z/3iffnSZ7GxJEwegpw6t8tCfNPQ2ZqYHD9Pa9/AVML//Wkr34/+pHLi0sJgGNpV06CaioFX//QOyHHz96NAlitaZRh1JpUWgBDksmYsmh2DjFiSq91M4wi8etFEEenVPxSRPHPaIPBlPpomjJFVCp12ETIiTEOjH4gBEdIfo58Y2S4uCRcJi4/eEjeb4n9ALXlbRG1uVzaVXNA1SyMIl+LIqiGaBwhabTpSKalPTjkhY+/QtCaza1jfvD9v0B3a/7sO7/Pa//yj3j9h3/Bc7dv8NmbB9xY3+bAwo11R9hdYk3AHrSM7oDLzSHNvedQm0OMdfTZo3OLK9lv70diGDlYC5Qax579OJRaesYaPUX6qiw2IUSxce/aiQEu7XmSKYco3iC+bAg+JC53O2ltw0xiXqOXdr1KfuxL6WU/jPQ+EiL4BN4nLrZ7+r2w8R8/PmG73Zc6uWwgKdUMVAhuXSc11WEcGQYR68pkxnFgLGqhtXRSJ8cyaq8DX5Ca2gqrRFjLiM9CmU3st1tOHz3g9vEt7t+5K14KGZJSpQVSSmReFQXHwkXJZFzrpmw1U0zlcsK2LVpZOqX4tb/8a/zNf+NvkoLwAI5v3CgBlDyTyvOoEvNaKQwaXbqDpqw7X71W2bhrpug5PT/n7PSMd999p+iYiBcQOfPlL3+NP/3TP+H7f/FjUBaVvCjWkklpRPxiYlmoi0T2ojsl+ZHN8REvf/xF1gcrfD9w984t6b7od/T9KAsVCussZ48ecXZywsGLB9PGl3PdvCmLaSTnSA6FQlyytOoLVIMFQRKuBhozJC1jZv5+ClVqTWaKYeS9CiE9lxyyoFWUn8uYtCJrX56pyczzR3wGynUY0c4pQcY08kq3TM1+rabcy4QzGuugSYm2aYh+FDO+ruPElmCjWTO6FUMQD8WDbIhF6l2V4NwoTdc2HG023Lhxg+B3GOe40Tl0yoz9jqEf8FHWQ0yLti2qWXNw8x5mfRNMQ1CaVdOybjva9YZ+34t9QPAimkjxts1SsotosA3Hz99n9dYd1IP3UDFjdcIQoIzhnNNUNqmohipcq4krpLSUoJTCOTuV52IMGK042GwmYnPbtmRritIyrFxXjDw1wxiozlWz0Hem321Fq2MYsY2lW7nSMKAwTcs+JPKwI5w9ZGfEfE4lKS9urEFjUQgBUyspm2sSNi/I4Arh00zPvu4NZcwtg4syHmTDnuKJKYHIZUyq0kUETMEjZGIIxGktmCsD+2KZgCoBTS1TLsZgqv+mdKVEKGXyPHXN1Q7QnOT7GAo6l8Q7p8rwr9Yrbty4wUYdToiW0rI3Cjqd6IeB0/MLTk/P2O32RUMpTNf7UY6fo/VVcbBacaJFttvkYoiTKzytiMWMa/RSC1YhYFE4Ld0rTelOkW4WTQpAzAy7gaEf5UaW2mjO4NPAEAKXvaG7tKxWmn7YE6KnH/fEoSft95gUuHjnPYbzE8LllkaJcdAMTWVUFGdLEcnqUNrgQ0Kbhmwdp/2IWTmS7Xjh45/i6M59Trd79J37/ME/+6fcvXODN19/gzde+zH+0QMOtOKr927y3O2bbNYN49BjtYIY0O2aswTKONL6CHv/Y/gbN9g7S8hRuCbKo0mEIZJ8j1bQOCswqwpYI73mSsvCLjbqVztOZJMRgzatxfxtLNyB0QtTOxTRrXEUvQ1rHX0/iiW4MVxc7kprnQyuNPpCJMxkNFlb9nvP+eWOxydn7Hd7ttsdIcQyE4BkMNaRcpqg+5QSq4MDVus1xmiss6xWK4y1GGcgSBZfM6bKRdhutxMMWwMPZx1DL2iIdZaEEN4g07aWy9Mdjz/4gE3b8dzxDVojjsJVUMg5R4Lps3Jts00RH0eM68gqi+9MkV9XZAmoFXz+1S/w3/3v/G2sMmSn0MYyjL3I2xczM6dN4aoYrBFOhjGKnA3WymIkqFPViBASbi7zKITAbjdwfr7l0ckZPmZCyOV3IlsdfeRjL32Slz7+Kb73vT8mI4J4OWdiGOlWtnQqJVAlyCnBTU6RtrHcvXWMyp7kd+W8IkeHK1brlt1+j1Gq6LYk9vst7/7kbT7xyidKEJKn4FwCBYM2oIq2C9Rgopa7TAk4ZoO2icsiqwqoak42rzPXj1xWv1yRVKVKKaxmb4JO1q4hnWpgIz5OqrxeypLM56nE3SerJGTSRQBUGGgS2OQMOqMwqBLA5ZI4OaOJ1uCsobFuyqTXmxvoG/fYbs/YjZlNrAiKEYXgqFH0eB8Yhp6jw0Oa5hjf79BpRKeIyQMqG3RU9FGRrKXd3GBz6x7d8R1UsxGNnP0enzJ6u6Xt1lgDIWeyk89CZfGY8iKi5WOWLpbDG9y4d5+TD35CPAso/NQ5Q06yBhTH1hiFLG5KuUMbiyoEZWflPslzFMK7bmT8dV3DOPYiTIghjFm0MIzGaPFGCUWdFaQzKHhPrG7S3hcCqpS5ldLEEDDG4RAhsBUJPe4YTx9IkupHxmEQ1ElbjNVyXUpJuStmjI6gLSHJnqOMBLLSiTZzilLOqDAjG0Pf44vC6uzqOycQ0sWTZ6+VnFmf9eV7ePTwIUHna1oxSEdPGfsxpSKVX5LuJGOucsDE5K92NuWCNOTyuhJsxFSCEvl5TeRTjOSiwXT33h0p1cUwWTQoKr8oE2Ji8IHTiy3vP3jEg4ePODk5ZRh9KedfswR5xvFzBRu2bckakc21mqwL8710ndRIzRhD6xrapsUAOUhWbqu5T3UaVJmQIj6IZfow9IxjzzgO5CzOiMF7ht2O3aVjf7CWVkU/4EdLv9/h+55hd8Gb2zP85RmOSNs1GNLVdqKiDWBXHX1IoCx2s8YnRR8Tx/ef5+j2XW7d/xiPLwc4OOTxgzN+8J0/5I/++M9YryybruG5Wze4//HPcKNp6BpLJnKRPNlJZKhtQ1SKgGFzdMzmuRfonr+PW68n3xAJKmSD2O/3oBTtekVMkUjCWVN8ZpgGbFcQjNpOCrXbQwiYIQT2+32pk0Z2ux7vPQfrA3a7Pduwk03bBw4PD1mv1+x2O6q5WfVAyVmY+LksuClnTk/PeP/9Dzg/v6Dvh2mCqIIeqaqmmuvPBR5el5qzwKixfFYsgYVIpNfySiV6Vmt3pVTR5TD0fU8MCds4hmFAZRjGgZs3jtmen/PwwQMOuo6XPvYSK9cI5Fpq3FOJJF+d4HVhqB01sXQ3ZOT8U8w4o7h55w7/9t/9u7z6hS+IA7C1suktoMYl/LpkeKc0k61g3lBr9gOU85AMYrvdcrndlkywdpkYQDqMqgvvX/vrf53XX/sRF7sRpYScV95ZrMVjIlfX17I5xug5WK24e/cu3o9QWrpFgOmA9XrNyePzovIo7a+ubfn+X/wF3/jmt3CucmNks0HNKAZcvU65xmnluPbv0wOKDz9E6OrKO6llieh62YUpWNVKE4mL1878n9kVWi1g5Kv8oZxr8FFClPrcdZpKssYYrLbSPl0kvTaHR9y4f5+Tx5bddosPCXPQolVE4dEqQQyMY+T05JyHj064/9xtmqYlDonDow2r1YrtbscYEmkX8LrBdAeYbsO294T9uZQrmob1wYbVao11bWkzRfQ8nMM5W9Zn4TyMfiRFhe0aPvGpTxEvHvGT71/itz3OZHFOzqpsarNFAroa8tm5pXX0dK59aktk5U1U7R/vRxrn0IriqSUI6MSrKsGjcH0Kj8ZaovdTOUcjxG0VRc2YlGm0JuXIbntOn2DlPS54bOOwbTuV3HOWhAoFISn8vmcoKHwdr3K9spZVYr3pM18o4+vh4xP2O1FArUFYKkiKBAMlgcgzXeD4ZC57vPnG23gl7c+Vv5GBkIFCoI0lmIg1YCjfV5QzleCjBiWheGXFIP5VYiwYpjLnMPRyTrGWQASR++KrX+DmzZtTN19jHcpaQbQKshJjZLfb8cGDB7z77nt88OAhFxdb+mGkX/DNPuz4ubpRooFoFd5lfJaNMelCuMsSiVpjWLUN665jtepQKTGUm6XVDDHrUp+LOTCEkf3QMxQvAiMFD5wy0lIXM2HwjMMwSwg7JzDjfst4fsJ+2JGHLS/cvklrnPSM6zmTydaRlGabFe3xET5rtjFz4/ZdXnn+efoUWd++zR/8+Q/Y+Uzz/gmvvf4WMUa+9NVvcOvmIStnOGhbGmUlmLIGrTMqR7TOuIMDtLNghOfRuBbdtqSunTenWgbxgZhFL6LWFv0gmap4uyw2qbLY1cGdywI3w+RVOdNirdjKW2uJIU61NmMs/SCZ/s2bt3BNQ39yOpHPUi424ahSXhCfm+3lJY8ePeLk5EQ6UqgeJWaCxyu0V+v2Smna0qZcVSmrB0RKsZRPJNioG38Ige12O8mVgxDl1us1VWhsbQqEGwKrtmV7ccnDBw9wxvLCiy9OC6BCXSHRXmd2Lwm1urQlCfxbJKiTiLxlpfhbf+tv87Wvf4P9vufg4IAQBZmqR92k6mdV4aP63Oavmv1V+DOVIGzu8BkG8cJZ1mTreQ7DMAVk9+/f55vf+hb/5L/4f0FOuKbB9yPeh9IuKCU0rUWGWsz6Mr6UPrUSx1ulFEM/0DZr4ZYgQUKFyJVSvP322zz44ANe/NjH5k23PGNj5hJJXXSvk1WfdlwNEJavedrr5xBDLaINQR0oyEN5v2sBTuUEXfdoWZJVFaqUFpcqrPP7zDyYmdeVk6Ac0oKTIYmTs1Kggry+7VqObt3GOcPDBx+IPHdMrFctKgqipLQErmOCx6fneN9z7+4tWtuwD5lVt+HW4U2GqGh8xisHbk1ULTExoYWHx8fcuHEDYxq2u30ZO4mUVekyC5ASWlsZnxmMlpbn4+NjXvr4xzl7703O9mdi+KjFI0i4S2lREiueRDpNZo9+HFG0830qz7w2AiwD8Bil28qo4kldqDMyD652m6msJ7QpZ8raVtaMLM89Bj9xWlIIGGXJYcDvzlEG+suOcX9I2zps00gBJQb525Q4uzhnu9ux34sBpQQNgNLFvkACgmbU5PwcCvjx629wbsaiWxSnMbcMCCpKIAhD5M6lBl4gpcS//OM/ZiRNcyUVxCLEUvKoxpcliBBJ9yjq2yGWoKLOtXxlzsXCi6xlrFi4VNqU4L+QncmZ1WrFvXv35BqWU6+WaxBCeVVtrh2Otexdk7WPcvxcBNGQYhGvUWIylARYLAwWtAKnpWziSr90zHlym1wSuHKBPMXaOIDKWGfocofRVgioKaOSdDBYZSCJKJEfPaEZ8UNPDAOaSI4jKgXWncNZhfJpuoNZgTcO03RgGh6NiWZzyK3nX0S7lnd6T+8H1vqSOx//DLfu3cc2a379r96mcS0HqwYTR7ICbTVGt9K+lTPKKHGCTJFJvk5J2912u+Xi8gKdopwj4r2SyfjgQRXvknKPu7aD6K90/VTS1Xa7lQFQ2s+ktTiQkme/j+Va59VYa2F2n56elcmuCqFLbOwvdztOz8/Z7felvbXoFmixuE5ZCL8np6ecnZ0xjgGlkHJNrTVS6pRV1VvPWaUrkHKFlbWe26GtrYqEc6eAc+6KxHEIQWShy33x3uNDoGs7kV5uO95683Wssdy/dxer5bNycdCUDpw0LXhLefNlcFAnTkrCbxn9KC6nxvDyx1/iV77+NXIWm3jvI9rZ6fqnjgauBoL1M2pWJwtoLi2CccqY68yq7eHjKEJpS5KYdBRJoDEWy/cYI7/2a7/O97//Pd588zWBX5UQQIVUKqWznFPhqYndfQiR8/Nz7t69w8hIJadKEJKl7bGclXGuEIsD3//B97l565Zk3TGKXbcp6ICGnGVRWgZxH1bPvWoOt0RDfloNWDLeekigJ0Eci4Cj3r/aNVEDoWcdWrKlcg7L19XyD9P6JZ+rpt9rkpQQUyQYg0oaEjRNx4E+xDkRyDt79IjRJ9SmoesaktdkD+iAT9Kyqm1DPwQOD4+xWtMHT9N0tEcbVt0R7uCIqBv2Q8b7hKm+L22L94Hz8y2+mA36EEBLoGU0NLZ2mVhiI6ibNYZuteKFj32cd9+4z8XjDxiHrbSIpzCNZ+ncLet5krZgchJ+RQkGpg2vtEnXttn5PYQ3ZIyWvaK0A6dcASLRtJHWcz0hHXVM1HVnSrS0gphLyS9DCjTOEuLIsA1oA701DBdHrLoVtB3aakIW3tEQBra7PWfn55yenoptw+ALSZ6JABtCYhUN8BwAf/7DH3LCvmzmgjj6UPyoQiwEXwkyUllXPx7WoCXY+O4f/iFjLn5DNUkDlLEIQhinz65jVkohaVqntDLMgbCq/5vmUA3Qcg2Ga1ttnvkw1aOsak5ZI2Xg+X4Ln8w1bhJjtM5e8RqqBqw/7fjZkY2cidGjTaLrDG2riSERhoTPAe8TGkOjLa11pY4HKRdIKEVC8ox+ZL/bsb24ABPY77cMQ49Sia5taGyLd6W9MiRUEkfYxlpUlm6CoR8YnBUFRmtZ37iBN4lwGek6+eyMQddShNLk1RF6fYjqDrixOiTbjkvbstoccu+Vu3zilZfZ3LhJTJCypmlXDH21mvYSGefIuNsRTSIbSyahQ5mM2giXpUyEMSZ2STFoTaNKBEue7LVjjFOwYWsWkIqse/BFzMtMr63aCvv9nrbYZleZ7xg9SjFJySs0+33P5eWWlISQ6b1nu+9x7YqHDx+z2+3Ex2A/4n0sHAyocGMIgYuLLe+/9z77fY8xampvq4MarmaJ0llkpoxyCalWU6xqqlUDorqp2kKwq9yNyrXw3oOCdtURfWAfJSN/9+2fEEfP/RdewBjNxfk55viYGAIUmejahlcj8KVZWV0YZUILiiNk2oxxmtV6zTe++S2eu3efmDKukXNJNZtSM6dk7tCKU4BQ78FMUlakWL1f9BSUxZgmP5ntdicLnk9TsO1HUU8UEzTD0Hu01hysN/zO7/wV/oP/x9/n9PREFFlTgKyx1hGjZGpY0T0BGSePTk7YHG2wrpFypYJdv2M/DKKbEyIU0axaM/6zP/szPvOZz3H7zh1iki4Au5Asn0m8s+LkTzuW6M9HCTLktfX7SqyrpNQ5KKgw9NLDQ/xdrgpOTWOzrNe1pFKh7fn8yrnWD8h1cZ+7b7Q16FRKin1FNjoO8hHaGFarDU47zk8e4bNi7RpxJbYGxUjIhqgsR7fu0TUW5Q7YHB8TU2I/BgZaGrOiaQ5xbkXQAfRQtIJUKT22aG1EENH70jmoy+91QVAdSUdGL1C6sRJcHt64wfGt2+hmRQievt9hUpylDdBX5ktK0rmiUQXWj9OaUYO8STOkjIlpk7KiH5RrjlpKBfJcmNBRrVR5lnkKzJc+KzFGrFa01hBSBKtxjWHMgA/k7SXnfc96taYpyqvt+hCUIWtHyCPbXc/p6SnvvvseDz54yOXllmEYpyBiv5duvYPckF/5TRSK7/x//5D3/flE4oylzCFkzMrnKRFUEZZU7ja8JNf7/gcPGUkFVSu8R6PZbA4LATszhsiuF9O/ZYmw1PRKmbSuvfPYz/nq2JbxnSkq+NR2CK2WisjV6LAi6Hki08v0UHRdJ9L0TVMsNBp8Qeo+yvFz6WykfsDFgLEK7wPKKILJDDozKCEGWa1xSm6kc5aUQkExRPNhGHr6fs9uv0XrQL+/5OzkMcN+T0qRwuQqNS2ZMGQl9agocsNyUxX94KXPfbVi7TR7BbZdkVQWmF5LrVAby/rOfcz6EG9aHl7sODo84lNf+BK37j1H23aoDKd7MYULIWC9eLNoMk5p4hhRKdCtDslZEZRBGce05mqIyaOcBaTNNJYaes5eAszC5E4l8tRKiWInssgPQ0/0I6SKIuhJrKvqL1SxHKkzSouwBCI9Dx8+QmvLMOzZXm6nSdP3vSAYKZO1ZbvbF/vsQMqZMQjhRyH8De9lEj169IiT05NFgLDMPpc18MItyMIDqJnMdZnxuvnXiNu5mVC31Ampn3FwcFAkvZ2gCqjJp+LhBw944f5zWK3JIU3ttc0kp5+fWPAmCf0SGEyfqwzjGCTCd4bVas0L91/kl770ZQ6PjopujJ/79q+dL3DlOirKUcs6tYumBh8ieDZzBCZUI9Y67cyhqcFQLV3lXMjTPvKpT32aL/3SL/P73/l9xn6HMY5x9LRdA3gmZE9WPWLOnJ1f8PjklDt3b+PaltgPnJ6ec3G5LYicBMEpeFbrNX0/8vjxYx48+IAbN26QEFGqECJtu8JaJyqPZWOqZbMlOlPHwVWuhp7Gyk87ameNfF/HXuFa5FpGWSJ7szBSbcG+jjxN/ILKBbnCAWH6rOlnVTJ5IrSqsimWJUupSRgQwBpLa1dkBUYp8h3ZiMaxZ/SwaleoZEhRY7sWbVdsjm+zOZAy4uroFiHBuN2RdINXlrD34BWUdnxnyiZe5pFSGqUF9tbGkKi6RqoQq+Vara3PI+NjwKO4eecem5t3eLjfkZN0zNiCjNg67kuXSoqR6D2Ucm8sQfTVZ6am8lr93rlG0BijSX4s5QB5LlprmsaRskVhBG3NnkmvQilccY2tpVvrHI2z2KwZAWcUOoEySqwkxp7tyUOMtbTrA6xrMc2KmIX8bpwjZogp42NiPwyllBkZhtlULmQ3Xdd+HNj7oZQ5ypgq6IRMtlpXqeUeCKYEU4CPkaASKteuu/I6LVy1vh8wxmKMxfuC9CzuJ1lhbYNSBRGvQfHieymvU86rlFFIqOLtpVXG2BlZTnWeKvEBQ10V6ax8GSmluCnY8OEXRRAFjp1BtQ2Na2msI8XIfjdyoXsu0o6QLVGLJXsqrZrGaDKpkJYqyU1goaG/5PL8hMcP3md7cS4+FFmRopparlIC5Sy69MOvujWj9zw6OWPbj0Qspj3g5s2bXDhHaqwULLQmOoHltWtobt/kvZMLdmHPp7/wZT7x2VfpDo4YU+R8P05MZ6UUaEvMCmXtJKqslcGoRpwclQRVSleXWNk0bNsV4mdE5RFiD0naz7TRE4ekTi5rpAg1ltYw70dy9JL1lIla7Z232y2Hh4cAPH78mBgj6/Ua7wf2+54HDx7SdWtCiFxeXJJzLkx3CSrGURjeMe8mKfOU0jRhrHOFYCTqnufnZ7zzzjtcXFzWgPrqeLjyg1pOkHtRN53Z50QgvWVmKQTIWlax08awJFrWYER4BOJpY4zh3bd/wnN37nC0PqA1DmUFfpzFteYIv2ZbdaO/nklnJeWiECJN25Ji4OMff5m/9ru/y+c/93mMs+If0naEGDFWl2xu3syWOgI1A6z6MjXIWaIgy6M+B9mgr/68wqG11awiJjMHwfCtb/0qP/z+DznTiu2lZFxt19bi5nxeyII2+siDh4+kJLVqGUfPo0eP6YcRa1q0lS6Sqd5bynavv/Y6n/70Z0qNWYJ+4ZHomSS3KC+x/OzFBl/Hy1Vko46NJ+9PefWi2DKXYkFcmOel/CpaEkKYNASWKOHyMyq6MZ3ZlXO/dp4lq1CaiXc2k9DT5E4LkuAY5+iULPoHm2NyypyfPiapjHYdnVsTwp523dId3GB1eJNmtZKgfHMTnRQ2WnyGrBtiBoOmW3UcdC0UXRaB+2PpdpHAt3GOkEtApiUokRBf02Qz2UiMJKwzbG7c4s79j/Hw4SPCdodOArHH2skQPLYVYbCQAuQkaJBiQiGX9/56t4YkSpYaNMYoSOJcepP7LQrPRnR4kp6ewRI9k0TC4OxsOUERmXQoooKQI47I/uIU5SzHt2+zRWG6A1abmzSNY70WQ8jVWr72fU9GkfNILCKIupbG6nPV0uGTqQ3l0l5/fdTqPLkHYWy9N7KOQJrawiWIMzRtR9et8VFcg9sEoqYq6OIUEKMpK6H8vAbfMKl7TyMyi6igdbJmkWMRxRMkOZY1pyZPBeSbET9mMnWzQDUk2AjFJ+unHz9zsGGU4mOHh7SbjqOVw2lF3w+cne94aC/4AM3ZmLkMGksmeU+/32MageoSqZRVC6kxRVQM9BcXnD1+xH57wTgEBp8YfGb0kX4IoCwra7FtB8oQs2JzdJM7t25z9+5zvPaDPyf2O46ON2Abht0FTincZkOzbYCAD4mHezi+/wpf+cznufPcfbK2jKW1UZLb0gpnqoqoLCRiMz8z4TMZUxckBHkxRjJ7ozMpjoRxRxr36FT4JEWeV2k91d5kgdUTGYiU0VOEa/HBT90YtfZ5eXk5bTjWWi4uLsg58/jxCeM40riOD97/AGstfT9MtvHeC7k2pIzf98SYCuxa+B9Rat6htHjt93veeONNPnjwED/GUpf/aNC41k8q1dVrqMzq+ppacpgmnVJTcLVaraZApB96cha4+uThYxrneOmFF2Wyl1a5Cr36EGgbc2VTrjDuMuteZt8hSiteSJGvfe0b/Pf++/8m3/zmX8K2zWRSZ52Ttl0rnTVL19m6ENZ7AEyBYs55UgatQVnV1ahIxrIF+DpHcu6KuFrCkvXAcOfOPX7tN36D/+c/+I+EOxBFdl5UF0tAVKzhxfQts93u2O22dJ2Iku12e5SqctKUYNfM3jn9yI9//CMeP/46N2/fIXgRbNrteoyxV57h8h48LXCY6hbXrvHDD12CJwnql0iH1rrA1Uw/W5bv6vsvyzzP+rxaMoAa/FQtBTlntdDnyDB1bEmyoSsUAlCywRXRSHnU2RajNY1rOD95iE9wfHBIk1qcM3SHN2jXN3Ar8dkJNNiu5dB2xJgJSUiEaI1V4KwRcneMBeX0KDWiCglUkIFqz6CngMNlDYwMg2f0Aypb0Q1ZHfD8S6/wzjvvcra7RPUBlIxVbUxJHvOEuFojZocVdVgGlpWbFUKYOEtS2pJxmNKcEdfsOZUyBDGiKD5GQcTylnMgF/S0sRZnDUZJK6gikUJGKYfOmdD3OGMI0bM/P+XRe++gV+d0h7e4qQxtt2J10HF4dMTFxZbVxZZu309uvTFnrHcYH9FpjiKdbWh0h9ERa+ZulOtjyig1bfydWU0/71YHGHXt9Urj2jXNak1TO+iyQtlZo2d+uZ7HIlfnzrL8Nz2LLAaFuay9Kgt/0Fp5drUVX1A+6WCb/x4oz7tpHG07BxujDzTNLxDZuNe0PL855vaqQaXIttnzKBsOYsb6iNp5hm2AmIjeM2hotAg5oaV22DhH1zSs2hbXHnH64D3SMDDudux7z+V+4HLvBUKMGeNW2NUKjMU1K+49f59XPvFZXnjhOTTw4osv8fCDd+kvz0m2obOae3fuYNuWFQ+BH7E62PCt3/6rrA6PCFnTh0AMPTlGnNUcdmtCFg3rGmTMX4UEBQWGzMU1ttyVLG20Skt3zTgOUhIKIyaLnXWsHSZAWGSxKYkBllEa7TRg8WOPD9KOpbVmvV6TUpq6EWqAUDPoy8tLhkGQmbfeemvqPLm83EqpS2nGMeB9JCstfh+pDIBSH0wo9kXCnKx45733eecn7+FDEC2JPKODzzoytbY6S9zWUoUs9nUDkjJC7dGeyEalHltLD7UsUlGCtlvT73suLi74xEsfp3EOqxSXF+ekGHGtqMqmnAvh7yqUu+QTLAONCQ7Xhrbt+J2/8t/iV3/1VxmDBAI+iJ+F9wHjrJTDlL4iK/6sja1ekzw3CWJnGWWma6sqrtVvRN6udq/kGXGbdtVU7p1jv9vxzW98i3/+z/9r3nl3kOBr8j6R86vKptJGKxocKQf6YZDsqGxIobDvMaKuWtctpRQXFxf8+Z//Gb/+m79NCOnK/bweiH54sFFKEHVzzpSZ9exBVrVESu8IM+KQAEMVoCqhjozHxXnV7GyJQNXXLOOeJ5GXBeeo/CxJveVa0CIkca2YNhjRxOkIsXidxIQpvCU/DpBGlGnpVh2bzYqjm3dpN8eTjPfj8y0xXZYaui7QunRphBjYMxPIXYG1x1H8jCqqEEq3F8pIkGItoGVMF2RIlRJos264c/8Fbj13n3D2CB8Ggdu1o2lEiCsVoS6xfijlISPlCLiqXFkD7boB1n9tQUCl9ViRtMJqK+tBlvGXYmLwI8M4YmxLFYmrhy7ribNW2miLO2+MGmucaDmlEec0qEyInvOTh6wzHGyOuTx7DNxEGcuqW5cW/RVdtyqlBUFzxiHgXMTFeQO+ffPj/M5v/E8WG3SeE4TlWFr8x4Fy/GN7n0jm78Rfl7+Zxn4mKyHUpzzyj/7x/0Lk7V0WLZMCu9V/Zc+ZP+/K7xdjOJMnHknMWWQqkoIkqIvMKbXoRim+NYYSPKZpvlWUuX4tOTkf5fj5kI2jYz5955jbrYNx4Nw4NhFsiIy7nssRPkgjfvRoZ0gG1CjZZs5grWG16jg8POT48BDtFa025NET+oEwilSvtJhJbVQ7S7PqODjc8JnPfo5v/+Vf54UXXiTmTMyJ47v32RzfZtU6VPIYJR4upu0wpz8GfoQ2Fn1wk4shoHUmxcy661DBk6OnVUVWuiQmsqTkKdjIZWLWQVTzHKW09JApTcoKlRVh0Q9tFBJkNQ5tZ6KiNgbrBOpsigNnipEQfNnAZlb/fi+tbEvC28XFBdvtdiKNBh949Ogx4zhy795zvPXW21SdBu+91EZjwqeAL1oNle3c90Npe5WF4vzskjfffJvLrfidLPcAEa2y0ya6PHKumefcFrVcaGrPemXyVw7DcnOe32vW3/DeTwv9e++/x63jYw43G2yGYbeVBbwxuKYRUbLqbQITolIXhiptXr9U2VCHfkRbwzf/0jf52te+JrColo6rtpXFLgRRVowhYO3M/wCutLvWckkNNmqWB2BNs5B7lhLXdruVZzip8skoo4624tpbu3lyDuRspmfSNB2jD/y1v/bX+ff/T/9H9qW7pWmaci+lE0wQnAClI8AaN403IQCCKIcaUSLNcz1daYVWhu9973v80pe/wsHmsHBp2qvcF+YA76eiFSXzq2Omln2e8WLUlYW8Agg141VT8L4cQ0ukpY6x5Xi4ejpqGg+5dkPkOVtUaj5niTfKKqBZrAeLR6cN2jqaOrZDJFkr4zQEdttTUlasDg65e/cOq80h28HjIqDMJAWgFKX7qsF2HSaLCuUueFLdCJoGFq6h1++BcDnmTUgpWYutE2EuZQ2u6Tg40jz/4kvEkw94ePGY6L3gPGVg5hRR1sk9qG2U5fyW3IKpi6IEHXUsVkS3PumUJbCQzO3a08/z+S/J1lqDM6JDZLSaCPyyb1isbaC0lccUhIOUYdxdgrG0qwPSXiwWuoNDjDF03Yr1+oC+L+TaJAhf0/jC35sDncPNTT7zqd9+5kh91vFW+fdTfPaZrxmGC6xryGrEpqYIjLEIKuZySYUd6jyQRzIHzypD1mVcZo1Kgs8rLUUqa4AylnJK5flKKXAxgqa545w4r1dkw40ea/1HuvafOdjQWnHrYMPNbk2nMhlPmxVNVjiUiMIq6Tf2KeFyi0rS4qmNximHsw3W2MmBNccg6m0Fal+vGtxK04bMmBVmDCjb0K467r/wIr/2a7/O88/fpx892lpZFACPJg2RMI6sVy0hGfDQRkWLDOoxg2k7iJHWWFLwtNqUdqmA0Y45m5SWNq1YyFozrXIqChNb6/I7JYvmdrel3+0Yh4FGSZur8DpkU8qlJUoBRiuaRrpsPIlx8sUobYVGyKHn5+ccHsqkODs7mzav3W4nG5d2DIOQQW/fvk3f72kL/O9LKSsXZKYfBqISUmoVfMk5F/KjvP9rr73Oo0ePr3SeAJOmwvVAY74vMyS63GgERuUKyXQcfTFYml0kl6RSpZSQPdtmqgc/fvgQleHG0REpBPbjSCzlk6ZpcW0jGU5ZwFKcjcysFeRJunOqrn/JrlC4JtO0Ha9+4Ze4f/9jjKOQI4dhFAJkFPVEaw1DPyABVZ5aTo2xEypRUQylhDFey1QpZpJj4hD0fc9ut+NyW2TCs9zfTBUXq3C9vJ8QGZUEy4U4LSUpzTAMvPLKJ/mlL32Z7/7B75N8LChGCTYmRETuf4iiXSOjeIIv5NyVKeRWzTD0uEYWWmst52dnvP76a3zhi7/EOA6Ts3DTtE9AuNdLP8tDlU37Ce7EMw55LxltSql5Q2fmCFXJ5mt/SQ1ItK6BYKlf18F7bZ97dpBUAxHQeTnG9fSkrhzldCY5epNRSUh6rdVcthbnMrdu3+a5F55ntd6w3fdoNeKahsEHBh84WHe0TUPXOA5WK1adIH+7weMLOdw2QqAeR186j+R+ZGLpdDNopSf56qp+anVVwswieqgtN2/fZnfnLufvvsUunBe+hnTlkWvrZNGESKokNGHyK6oJxLL0seQrVbdnSyb4SNISbLStKPqGGPF54f1RkJ3JAkAZGtfgrIhJjoNImSslHUUhBiJi8RCil/FMwLqGi5PHjD5y5/5L+P1WklDjaBvHatXRdSsa1+N9xBrhJRljMXkONox1/MIOReGIJewCgYUFWiiZw5RsXJlzC+PFnGtbckERM6hsUCSMSliVCtIubbg1oJyOMjdmcq+jaRxNQTeaxuHGj3Yvfg6dDcU+w0kf2MYR3+95fLnjnYs97172vD8EznxgiJ6oNFkbbLtCNxYXI3EU/QIVYWUcrdKEMlFTFp6sMg1WN+Q4cLA+oPfnNM5xvNnw67/2a7z08icKYQmyF9Z8TlJfzkph2hU+i1mR1KDnulZTnANVFujQWEfWiqC1EDMKZG2KzbTWtiQLReiKNC0gSsvDS4j8bc4JPw70uy05im8HJKIW6WdS6U0PfhI/Mwpi8Fzsd4U4Kxl5JtOXlitrLZvNZqr/a60Zx5GLi4vpuvbDwK7v6VYr+nHk8mKLcy37fouxjtFXIpb0gdumRSuDHwN+DIQhEnxk3w/84Ac/5p133mMYwsQvqYc0RRR1vYrvVKGfUkN3RklHjhbNlGXJRzZ9g3OW2q5VA6bK0zDGoEzZ5LqWfhho2oYcIuPFBTe6juODNX4Y6fs9XVEHlM17KD38Er3bYlktqE0RuwHGEOnajpASYxCo2bVrXnr5Zb769W+inSOHxDgU2feibdFYh8qKpvAepK5KkRhW5CQdUwDO6YLMZUiJYfQoHcirGdK/2G45O9/R95GUHSlrxjQSSdLlhJYxsyidVD0JkR8OKKfo+x2r9QHee7797d/kz773F5yHM0gi0ezTSE4KoxtCFoJgNSLLLDbuAutFIlmDT0n4VkqypZA8GMVffP/PeOUTL+Ncw353zvpgw+XFJU0716U/fCGptuLSXSRBjqCIKeanohsphwWyUY3slkHIXHqS7wUNSklNUu/GNIhwlCLniFIJNFS/FKYvyqJvSInSIVe7VpSsD6iFQ+wyOKnRi5yb03YmkGpZN3SOtOsVR0crlPY898I9jm8dc7BqIDn8KOTtxmr8mPHjQNc2tKsVru0wbYGy15FQ5mdMqXxsSy02+cZxcbkl+pHkHXYtJL8QE0RILkpL/CjWD9po4aN1HevjO+A2eHakNJLTSGsExDUqlZKwYclTqd1fk7Jo6Zarbs+VCBxTQjcWoyw2irS3UoquWzEMI7nv8QSMUjhtxOCua3DWSMKCIM9aW8bBi8y3c+SUxU9KReGYlBJ1Yw1WGWKIdCmTLs/wpy0rk0nWkLSIM65XK87tJav1hiEktIemzez6AbsINrjWdfPf9KGshihoVQhRuHyLsqTKiqg0iVL+WAy/Zclver9syKESbRMoIeZbnYgqk4qr9aE5lO4iJWX94khKUkk0sxalFJHpt6X9/acfP3Owkcg8Gj1jGKHfM/Q9JxcXPLjc8nC75/1+5MwHAhnVOtxqRbNao6wR6K/UxJ1rcMZi0GXxk8GqlSVrizKWtjMl01Os2o6v/8qv8PnPfm7qua5ZG1RYsGRJSrT2q3vhdMMBU9YSXSNvrVFFE0MhCqhLKLW8ecVrJTpUC8i3QLc5gh9HxnHHOOwwKklfszbCAdFikuTHkTiOaLJsXAr2u0tqbRiViMkTgyx+q9VqkpFNKfHBBx+w3W6nlspaRz+/EGfW9XrNyckJm4NDttt92Sg9KaeiXhhL5iolqhhEFMx7cYR9+623eeed99jteompntZCPd0PVci+ywV6zvyEHFfajhcdIBUVCSFOmWb9/dSWqJSwvQsakzOcPT4h7Pc8/+LHRDBu1WGNoAM6a7S1GEp7rZaadFYzApARmWaltZSzUMKdyZLRHd+8yW/+9u/wsY+9RM4zmbSWw5Z6INfJr3mRwVXYXa5PtC1SUpycnrLf72haR9uJZfbJ6RkXlwPDEMnZEiLI2iJ+HtooUBplZsg/pURWQboKFKTosa4lK8lY7t59nm99+9f5h//gP2YYRg7Wa/xFT4oe0GTVlAf5lEXiCiohM17p+WcZYcW/9+5PePvtN3n11S+IYd/ukirYNAcAczb2RFlFlYdazdSuTdSn4wqLV05AzPye8nk1iKovUuWe1etVaG0xJk8w+YSmXPtQdf0zVIWns2BBT7z+ybPOJZGq5XlVkF+tRbfAuozWFnQmxBFtWlJSBQVMdF3HjRs3qOTm1aoDpRl8IiSPjyMxVXRSLkJphR/G0u4+0vcDTdPQNg5rLI1rsKZ6jKhS+lDEnBiCJDeu63DrQ5LtGJPCZXFnRUVSDISYMFgwdkLfbEEPa7BRn8mSsyQWBEiAEzzOWYy1NKhpztQW8Fxb1bWmsfJlrZ4I7PX91bS2CCJYnNbIKoHKOGPQ2pKyFtE/ldn5kd3JQ5zR+GTQ7Qa3WrFqWrquox+jtMi6gAlSmrnSZfQLDjaMNeggyaylSiMwoZBKgc+ehJBn62iTG60XCFvZt5IuCQZkFctYjmgdyVoVZ+OyhtW3KuNVlvtZ8dsVmXpnHc4G3C+Ks5FS5q2Lx7Df4bdb+mHPxXbH+X7gYvSc7gd2PuNzYt042lWHbVuShhyikNBK5pq1IhbAuG4qSssGJnrviSFJ21rXdXzqU5+iaVvGIRZYUohetbXqCky3mPhVqAc125PX10gdsBo2ZQj1OmeRGQlK6mJSwG2lUMyCVT54hn5HP+xKz32pn+VcpGOFd6FgoWgYUMpycHDAOEqW7kNRvDQWnwQN6LoOrTXvvffeFWW+KlJUfVLatp1+f7DZlO6CohiqDeCn9xaNiSRKrCX72Pc9b//kJ+LiSlXr+xBS6BSALTYUZj+Aaltc72fduOs9bRoxZ1JKTVbUU8vokGZRL2sJwXNxccG9GzfK341XSKX1PaqnSt/3dF2HD74QJUu5iyzaAJRWUqSc0LQN3/j61/mt3/otjo6OpnOs97heQx1Xy4CDxfXP82ReEOuPLy4uODl9LHB2EWtLSTGOqSyUeXq9KsHgku+yfO+5Ji7IXNsWTxlrsMbyta99g+9+5/d58MFPcMcHNE1DSpHFWT3joX60YxxHfvCDH/CpT316ymAPNzfwgRJsPllOeVrQ8bTre9ZxnXD6tH+Xz+j65l8/aylfPrcuz4HJ/Ac8/Wc/9dZdfYHI8S/LAEX2Wwvq1TSWYfCcn1+w7jqyLwhnuloCFG7QzIXQWtO0HSldJxhLuQ5E46gG/pMXjK4qnqa0xwrS0Q/DpJWhtGJzdMjRzZtcnj+GUdBe8khGSbeSBqMMubLHmZ/zUl+nJhFzV0rVtamtlvOcquVh4TfNhN6qK1TnZJ17k3xAUa41xtA5RzaGMHp8RYpDKKReKXeTJTncXpxj6Gg3giK0jeNgvaIfA23jGEcR8dPWTN2HQCG4/qIOQWSjqR0iSJekPHUoAYBWDoX5kPeRIyMBmS6dZllVgriauDgyb+SzSRl0WduuzWMAU9ZdIYn6XxxBNObMWxfnbC9O6Pdi+7vb9/RDwEfofcAH8UzZOItuHRhZTHwMpBTIWknAYQsmN8VhWsh3OTGGkZiFSd+0Hbdv3xXzqNGjtZtqgkuPkOtth/K9wJb1+6aRSy5ty4JyFHntmrEv27dqm5e6Ej0WZGNpajTu6YcdMYw0zqBUJJV+ZmVLTRXhIFTFz6OjQ9q2oe/302SsE8ZYEZVSSrHdbtntdqSUuHHjhljCjyPvv/8+MUZWqzVNK9f9wQcfcPv2bcZJ+0ACjKZpZjnqYgEtYjUDoQhIffD++5ycnE4tqfVefug+UG9i+TZDQV1ECbQGEHVwVgne2mVTM6FxHKcApHIZtDEY5BmfPT4hp8Rzzz03PfNhGGhb8V5ZtqBW9KHtWiF4Tht/LtyUccqCjRPxo5dfeYW//bf/Ni+++CJVybRuTsu+/vrZs9phGblP0c9YsvB9kK6PqrgXtvuC3jhS0qRcEJAoWZmx82ZY32v5/nUjSkmDMnKvEijbEEbPrVu3+da3/jL/6B/+R1zuelbdAdvdeUETPupsf9YjV9im4a233uL999/n3r17NE1T7s2Ti/BUO74eVKhcAI5/tYDjelAzia495VnU11RBt6sLqWJGe54SVeTaOfNM6OWph2SM5f1FnAOUCLIZK10kKXn2vSdlhXUN230vpRtt2e4HtPaFHDlM613XtjS4ohWxmTqPgg9st/uJj9X3w5WNvGkaGXtlE2+TyL2J8q+ekoLD42Ne/PjHCeOOsw/eIfXn+AStbTBFMNFZR1aaGEXSfinzXjeh+n6Vd1VdkVF1Hi27w6oAmVhVKKVo23ZCcZek7oqaiNBUEQZUUooPqZQ3KQJVuWrFeEIWv6ykYHtxSaPXKNMwNi26WbNqW9bdyH7V4YuRmXPi5VKP2rb+iziUknsXTBHzUrEYx6lyNYt2V/VksLGcS3O3jCBz8t+JnCMQsVo0lrz3ZQ+es8sZ8bvGvVFqLqWUZ/VRjp/LG+UiZU5SYlAQrGFvDN4U4SEjLNmcETGs4rNQe8EFAkZqUlaTjSIqqaOjZaLFpFExFuRABu/HX/o4R4fHkDPG6ikTqZGvMUulypk4kysGPz+KJ8ptC7Iv6vpDqohLmh/U1B+eKOQ/zzjuSXEs3QIRYyp8J/VdozTby0u56Qt4fihCXm3bYqxMBq3FdnnoBy4vL6c6aBW9GoZhkhmvG/vR+pD9fs/R0RFHR0e8+857Ba4UHkTV8K8DZhgG6X6IQkbd73vee/99YphbB+tC8MxjgWbIoq2oEHbTNKxWq2uliCcXfB/m1rh6ft57GucgZYw27Hd7Ls7OuHvzNqbUDa8iB3KOtU5cOSB+6rKQAChHGZu1n79e49HREf/tf+1f4zOf+eysoqdnl8qqPLk8z2dtjEsi3PIYxn1BYHRBwoKocA6CbinlROpeG6p6LlMZoAS31R57Kj0ZtE6EJNLIxjqsriTAxJd/+Sv8yZ/+EW+/8WNy44ilpL8si/y8h2xcgR/+8Ic899xzaCU8ImPbqYyyvCf1b64gGiXDvr44Put4VoCxDMSWgeH1Iy+ebX3t055V+TRmxuj10szPeJTggum8q5Ny6WTD0DQGa6FxHY3Tk7uvtaKEK/LZYdLLmUusDav1is3BAW3XUSXtq2OyUgFj9NRRNCU0VjhTy7VziaIIXO64c/8+Q79lf3nGxfYMhwJlxX4iS9acsxh+qTQnAVUbZ4lWVsTCubWAyFEQSaOFCJ9zxo9BvHmcY0hCWO9WHYo8CUICUwuwMcKL0rZ2f0X2w0jw0l1hpyTUkJQmeV/WFdkEgvfk/SW5EKJXhzdxxtG1DV3bsG8cdhByrV08+8kC4xd0mMW4rCtBhtIRybIK+cShjZRRZL1SQiRFku5ceFpUR9ucGUt7cSrryLTnXXtfWeurLH5zpQ32oxw/V7AxZNhnGLQhKcVgDKGoZ+aSOWkn7apygaAzwmYulrw+Rgbv2fsRHyMRUNZgmxayIeqERePaFYdHx3z+85/n6OBQ6vAl+NI6Y4y0q9b1YlkznxaXujFlptZLgXqvtmPmlKCI1uRcBbfmOm0Vo0plUglBTKLr4AeUihhtQckgbxtDysLgrgTDJdQrOg2yWATv8btqiqVLHXw/ZR81E6vE0L7vp6x+HEcyEljcunVLJmUJZGrGL46Ggh6EENj3Islba3KXl5dsL/c4ZxjGWNjslJr24vk/BVbjyn8LTNx13WQrv4SsgamUkrNIpFsrxMu6SYzjyMFqTd/34mlS2l5feO75ORhpmtKOOmc7NVip0Xb92Txyq+6BbIjeB8bguXv3Lr/9O7/D6MfCPJfSyWrVEsJVE7fr5bXr96U+v+utlXOQVUXNpDtJbN4DmYTSoo6rjZlneqZsCst2WulG0VrKiW1rqaWXGCJN09H3e+7evcfnP/8F3nrzdZQyGNtIhvO0pP1pz/VDjnqdP/jzP+fLX/4yB+tN0ZO4+prr73+ljJJnldcPCziuIxdPO5dlALIMOJ5WSlmWU64GGxIIzOXS+Z9/FThIyrAzAliD+YpkDUPEOikVJ4RjdXR0DEjpVbw6hmn+13m82+9ZrzpW+56h96zX6wndTSmVds4OqAnRQNe1cm+88C689wyjZ/SeYRioLs7WSJv15tZtbu23vPv2m5w/foBRhpg9MRZpeiNrlveBZvHZy4Cvlj2qRpC0XAuXxVmLNZbgA0MQ12NjrJS+s2y6q7ZjHEUPyY8SaEmAIfyT2eRRC/cpiRy3MrVV1pCTYj+O5KJzkhEC5LrTbPc7QsiCBmvL6vAmrbNYZ7BWl2CslOnLo0sfIWDPOfHo4Zv803/6fyCT+Ut/6d/k/v3PcdWA8OmHZtrQxJ9o4sctOIPp6cEGoQaBeQoeRFojkXIkEwTZyAFLwOk8dfBdn7MwJ+BTQH+ljPIL1NkgZ4IPKG1I2RCjRum2LBoBUjFBKpvwOAxo42Qz7QfaxhYi5cjJ6QmtU4TdDp8SGMvB4SEn53s2h4fse09rGv7aX/1r/Movf1XKACXGkwF9NctRqpK+ZlGZ6YGVQ0SmlpczS+rmlKbofBlU5EUIWfvDZZGSuqW1kEJpJyPQGI3KkaGXSSmytHNdc/bm0IzjwMVFXwIDz63bNyejteqAWoWtaobtvafrOtbrNY8fP6ZpGnb7cdpgz87OiCFwcXFBjDUjEEJpRTRGL1lFTBL9Xlxc0A97Rl/1EkSHo9YIF6uu3GuEZJvzQlVVYCTaVcvt27cnzkVV7JwM1Zhb41JOuGYlbbeIhfq6W7Hf7ejajrHvOT855VMvvyJeDJMle54CuJqhVu5JDUDGsHBMrL3nuSqUDoSQODg44Hd/93e5ffs2WjvpWilBiyhjmokbUgW36uS6HkxU0m5F2JbBScpZSh3GMAZxCB3GAJgi8CadETFndKxqj3oaZ1AclkuQnCIoZWicmThPZNFAiTGQs2KIkW9+69v84b/4A05OHmJdy+jFK8WWNt16rh/VJnp5aK25vLzkz//8z/nGN75ZAhBT1scn1RSvH7IQzlLWS6gWnh5YPPO9FvO9/t0ymFiSe+v4UQUOrpycObtfjvfStTEhG3U+fNTzSgKBZ+E3JDQqJ1SSeeNjxibFfjtysN5gTYMfAlsv+jL7/Z5HDx9zud1O5ceZt5A43Gw4OjrE+0Tfj2KU1baFh3aV0FzXh91uR87ginqwMYaulCAq+Xy1WqEydMdH3I73uf/KJzh/9JC4O0cjSVUsgnA1gGiaZgooljB7/Xk9l+12S+ucONBaRyquwipnrDLkmHAF3YgxkUPEaUM0FrcW483ONbRNy6pbCWITo5S1o2jsiOGjiEWEcWQcA2MsAb0zxFzWxQwaw/7iDD8MNN0a27Q07ZqD1YphHOnHgW7VwdZPcfq4YD897Ugp8tqPv8N//o//99y9+wm0UvyH/+H/kt/+rf8xn/7Mt39qGUYpBUlEMcdhnMZoVpUgqsghofJi3izWgZowUwIzlGJIiZgjKckaoHXCqADBkmISMCAlSXZY8OwqUdeIRHsq61z1Sqm8vJ92/FzIBiljlMUQUaoQTpQlkgQaRC62kpa0TtNgSj7i+3FyEhy8R6NENts6Uh8wVloytXHcuXuPmzdvyc0sznhVqGoJyc4P+aoMdUppUkfLZYAppSbb8mWNP+eEmgiM09WKn0nJ9LVWk2Sr05ngB3a7LV4Vq2Wy1FZqdwtzRnw90xJYNEyQo3OW8/NzAPmMpptQDpiFvW7evEnlciwXlLZtuby8xDnHbr/HWof3fbn2NAlILe9NSsIAv7y8xPuwuPb5iZckdD4kjb6SIVYxIWcNN27cmEoaIlzlJ0SlZsT1eRxuDknFeVKljLOW3W4nGiw58/DBA4xSHK43ssSnSNd1V6yXc85X0J+lUuhMJhOuhMqZEKQ7pWksd+/e5atf/eq8yeR5s6uTTZ77TCpcbszLzLjei+v8A4ElU+keqToDFq0F9pWREiWziOLuunwG8wa4fASzRkWFTAGyyuQsz8Nox8HBEV/56q/wD/+T/5gbq0P6YQQ1i639PMeVskXT8KMf/Ygvf+mXpXTYrKnzZkbw1HQfr77H09/7Zz2eFpRcTUKeRDeu/62Yc1Y+Vv3dDAEpZgLvfP5Pf9+noi91dcgABlQqekTgvawPZ+dbGqdxJrPfbafE4Pz8jN1uX7xPZI6KDTjsdz273Z7dtufwcMPh4SE5Q9e1peNmUb4u658E0G6Gwn1gLNLmdRNMJXB06xWbfIubd+5xePMWF2EgjRGdE1rNAVnKV7lzS4G+mV+0QDwKGmLMjPhaawk+TRtZCNWNNBWEYRbnW25yUn6R9SCEQGMdpnEEL23+gmYUmYGcRGU0wxgDPmZ8AmtbWcvPz+gODlmtD7BF6do5i3GWbILM1SxqpR92hDDw2mvf4Wtf+1t85Sv/Bkopvvvdv893vvt/4cWPfZHN5taH/j1l5PnRM/Y9wQfq8JzmfcmB61YlfkVFOZm5FBJzJqIYUybmSExexp/OGB3R0TGWfSGV4Fg9Yx7WknlNwn7hyIYgABl8wmoJNNDi1BpzLsqNIgITBo8pi1saAtlpiGm6UWSwjcM2juMbN7jYjwx+R0iR23dv8dnPfpaXXvoYzjkpKyR5/TKgkNO6yrVYbkSVY5FymjZsuLo5GGMQW26B3cTavRKZKqIhk9wWZvI4bNn3W4ZhR85BfAKM1NRN0Z6IWZPz7Fy73IxqsFEnffWpsNayvdxN9dXqeApz9vX48WMuLy/ZbDaTINayO8caw3htsR3HUYKNxT3KJdjY7wfRh/gpSduVDHTx3stM1lo7BRjV2r0uNsu6ekoJ4wy7/W7y53DOMfQDq7YTrsb5hfifKKntppwmoll9zxpkLMeDwPRM96ycvZQq89wR8+1vf5tXXnmFGENRHeTK2FnaWU/1bK2fuSkufze9pq4GxTtDa2kX1FqhjEKXQEOElqRMaLR9yuZVORz1ORTn0axRqkp9l42tOCSjMl/80pf57u//c4ZxT9t29IO/wt+5+hkf7ViWjB49fMgPvv99vvTlr06/X97Dp92vD/u862WTp5Wrnva6n/bv9feph9aa0Qd0rujj8nelNj6Np4p6PIP0+uTVTJ+XKgqoQLQpmIL9jOL8Yss4bHE6cnl5Tr/fi3R8LZ8Uy3io90CRmgatTOGOzW7BkhgLCloTjHquq9WKzeYQ13YELyUUriFLOWdMK+3ZBs3t5+9z67n7nD98gPdyDk5nrJX2bLMIyuv9rmvVMvhYypdLolU9gmYyfuWbUIKXxjVoM5vn1Q2u6vdUs8Ma7AAimli0KRprxZNq9AwlUTBa0+kGYxK5H3FGsx0j425LGPpJnsA5W0q2Db4PE3UnDR8ebDjX8au/9u9ibVvQvsTZ2fscHd7Fue5D/1ZRrlEZkg+EnXBgckzSREIRNkOkHKaoPYtzbCqIBpQqQwz4JAKZ0urvSSSUSVibUalht9sRYiAUDRSjn8baYHq2FbFar9NEQ/hpx88ebChQRlwHrQioY5Qmapk8PsuDjykQmpHQjIBsBn4YsLoVmVktMt3r1Qpiz/HNW9wbIj968x0OD4/56te+yS/98q/w3N3nuHF8TAzSdWGMFjJPSley2DqAl19y/zNuUUiuk2AZgU8SuAoaI4uLfKVpAihjy98BGfpx4PL8lHG4JOeENUomnhZ9D1tIOhS4s24Oy2BDKUXbdhijOD8/R+vCp9jv6doOZ5upVLDb7aZzH4aBvu85OjqiaRpOTk9xTqyInXOcnp7SdR0nJ2dT6UQG3pOW3zHFqc3uIz3+KTPX0wIlEXGRoe9Ehl7ruVOoenQsM5/6+cM4TM8wBVEnNFrjrOXhg4fcu32H27duYY3BD2NZ/PO0gC43/7rwwCxRrhaTri74wziilOaFF57jr/yVvyLBShUpU0xBDHAFJanjpkbyVxGi9MS4mzbyxb1S1WxHNITLuWuxf06BkAocnGd1UBFQq2W7KmZVAg+lStYtYklkKYvV7gI/eg43R7z6pS/zz/7pf0G7WqF1fKIc9DMtAQtEMQRP6xx/9Ed/xOdf/SVcc9X181mHlN+e/P31AOhpAcJHCTKu/+z6+1z/jCtrR6p18crnqvc/FdS2yqtfPaenoR0lJpCkNIu1gmzMipCyuBykjC4GiGe7S2LYsd/vpo25cojC0iwr56LArFFUt2hpmQ0hgEqsVl0hh6YpcarJTMrS9j4MA+PoCWU9rQGCc471ZkOIggzcuH2HF158iQdvvslu7NFxL6TTFKY2/xoELUtUNTBYPotQEpEUEylEbBFazDFNWg4xirVC0zR0bUtGjCrr39dF2mgtzQUlkNNKTQ7WRutimCgBeNs4slf0UTgdSUlRrHWWGDw5BKK2XF6cMSqDalfCJ2ulnK2HBHskoN+Pzxzbcp2arjucrvuHP/yv+dM//c/4vX/rf0Xbrj/0b1FKtHF2A62xjNqQcyDFRA4SUGgUOUUiaSLNX4UKy/iNBa1PmZQN5ETICaXl90pncoiEYZT9NKVZHO4Z07euhW3X4lxD+xGF/H72MkrO9H5g9IkYYokkZUOOKuGTCH7lEKESdZRCZ9Apo5IYmK26js3BRuzR+8jR0RGPTi843Gz43Be+zK//xu+wObpRJJClPu2ckfupFSrNcriSoadJ36GeJ8hi3rbt9P3h4aZMvKWXQslgc5YumbLpyFfZIEo5RKGIKUjWEbzURo2TshCFWT0hIXVRELZ1XJALl5v+fr9nt9tx5+7tQhiEYRgZS/S8zN4r0nF8fMzh4SGnp6cy+Zh5DNZaxiRqi9ZattvttFAtB4xSlI6Y8ZnBxnK/uF5br50bNfPr2o71wboEEnMQV/U/lvB7SqWeqDVN+b2z4oxpjOHycsu473n+pZfkJFKe2PlN00w+IvVYkgKvIAoF1IgxMoyjSCGHwMHBZkI1lBKhmgo81sm0vCf1vWvAcR2mX27AS2Stci6MkQxQlQ0CqlOoBBqGRFYZTSrKoGkKUqdM01y1sK/12cUDuhZsqxKwKD772c/xJ3/8L7gsXjrLts+nbZI/7ZDzKsEScHJ6wg9++AO+8IUvPzFW6mdc//unUt7r7574rPzEeV4PIp72u6f97HqwIbDzjBotD2lbnZGE8tPp++voxpP3cv6blHMpxiy5KdI9orUEmH0/MvS7qfNESgOylggRXk0/18VEK8ZEFQiyVnhGq3XLatUVAUU7daTUsuY4+tJ2nfDBM/pQSpO15AwxZSHvB1FDPrpxi1t37pL3F6ReNqhQuF9aK7TVJYuf78WSuF31kvoylsc8+xTN3V9xWh9UIWXGGDF2LsUtEZMrwVdF0LLIlBtj0WhiysSqwJkhhYAHggIfgigpD2FSHL08P6fTDaumxVkR+VofBMyYJdgAtP/pHKf6jF/78Xf4D/7v/3N+92/8e9x77tMf4e9gs9nQX+xYrVakwaOjCNDFGKeATDRbZK2dEitV4rCaCIGIdqGxSZJ0nw1JZzAJ7RJGV35ZWXeeNTGnkSzX1jYNzrVcm9rPPH6OZmHJR2KKxBxRWZcsSuo9YdLGdzSukRMylqgVflTkHIRE2TlWByuca0h5xRB3+Jj5xKc+yze+8W0O1odoDGEIpSxgRf47zzLfyUhWWFu7ZzRprq7mlDHOTHcpF2nc6BeMdKWkXUhJZCwkwVSyyoTSotLog5fIsAh4GRVYtVai6yD8FWtKB0qSLLOiADGKBTpKSddLCWa8Hwjec3Cwlui61B3HYWBzcIC0RVL4GBfUMsnh4SHb7Y6TkxOUMoyjLE77vmezOeLk8WlxL5S6ZyyDCVXrxlLXCyHRDyN96Wipg2nxuBfwccn+S6qWC5lIKbDOcLBeszk4uIKc1MXmurV7jCIzb43FWsPYDzTdqkipax6cv8/xzWOOjg5JUTRLjo8PpbumQMH90BNLd9Mwjlcio6qYapydrj9GCAmca7lz7x6/8Vu/jWi2NKW0NBvEyXiaLeOvBxHXN+rlwnfl9pVFwRiL1halZrM2BRLI5lJuIGFyQe3Sk50sy++n88giOCeZTibWwm7OhDCijbRY3rt3j09/5nP8iz/4DnbV4H1CG4p3TO2QWvIqavtt/Xd5zLV6awVxss7xve/9CZ/+9OdompYatOVUx01ZwNR8TSL9//TW0ycRjbmUNJfvZrXDKRhQMkLnesX8Ja+tJRCZfzK0i8iWkudRk4t62/Py/ac7kKnaO/X7ukhfHQPlfVSmCimJjGGpq5f5GIoq8hAy5xc7lJJOuxQjIAaJ0sZpC6IrJexkEjGU9XfiGEnHQNetWa0OsFYI/D5EUi1BGg1EQhgYh4F9LwhHSsLVGJoGu2qopbqkNavjI+699DInH7zHuN+Six+WS5mWcu+sQSOCeaP36BTRoZQFGifKmEXQTiHW5jEEnGvouhXQTyNMvIx08dWSdTDnhDFi/6AUDEPPOA5IMDYLlqFNGQdapAfQ7IZedIeiKM+ZCSUU6e7WtuicGYYePQ5Y77HWEa0lth2unQOM9hoH6VnHa699l3////w/5Xd/99/j1Vd/h4/SiaKU4nC94qJpWLcdqhvR/UiKZXbHgpbmXBIUQM1yDK1z5KQnBValNAnNKmpC1owYogF0QtmAVgEbPE1I2JCxyUiQlmcn2LpfoRIVNTFWs1q3WPMLan2VC5KHiNZkoyVSjIEUMkRwukErYSdbq3HWoHPAGOncUE6RlbiPDsmTtGjTrzc3ca2iazdEn8mx9P2SydGTjLRkKi3ZoCuR4+QVpub9RmVZBFKK6JrFIBpi1uiJXZ5zJIZSkkmZajyWKcInOUEOpDgizHmBjo1WdM7SFmW/pEsgBDjrir6FommFv9APg2hHIBOELEtO8B6tVeF7GHEtJHPj+AhrLaenZzRNy3Z7IYI0QZw8QwicPD4lRehWjrY74MGjR9y4eVukx6HYo2ds06KGUTwUigFVTPJ7tGX0gfOLi6mHm2mxljvBggFdW5kpbramoD+ttazaBmc01gns27bCdt9ut1hrJ6b6EmJVxhBzYrU6oO/HYogXudwKV0MZaedUQFbgS2tyJYNNi1i2V0pqSik0Gtt0jNstEc3ee3KGg8MNv/Tlr/Lix18RAaAiTR7jLEm+NIWTcTJnT3VRX3Y7XM+uKqwNAqla43DG0eeA1gZFpHGifUHRbpEz1k8QFeu1XidcVoRFFwXHSCUpBwlqdC6tbgltDZ/53Gf50z/5F4BI6ecciSniXEOOlbBZcf+qulu8WK4dlfcSY0BbyNlzcvqIH//4h7z66i8VryIhqtYNrESosjmrGkRc1b6Q+/UkUiQbiC3lCBkMBbsBmBj3U4lvGsryumqULcz6PCEyOWXQBekkC9/KiPT1jP7UyVDft6wdi19Vb4/p5/WVuXDcVLm/KgNV/l4V3RdTuG4a06yI2TD0W9arhpgiWklrYsZKOTDJc9IUHkQaUVHEr2LK+BC53O558OAxKEPOppApLSkNhJBRJUv2XtrjnVGYzhB8UfSMgfHiAtNYYsjoDG6z4eDuXZqbN9luT3GpZZXB+C1GB4KW0ocxZhL4aowjpExjHMO4L/PMk7X4amirIQnBs7Z+1yy77TpZKxoriZw1YqOQy9iNiRhDkT9wM5qlnXT91OeBIFQhJ5RRtK0lKyHYRp0YEjiE1GlwrLQinJ+SnCOOYgXgYmRcIKmt+fCgIefEX/zFf8nf/7/+z/jLv/p3eemlL3N6+i5dd0DXHT1BmF4eSik26xVt29A1DUGBY8QYSVLHnEhaPMkTM7FZqZJ0UAixWqGUKRXBTETKRE5bgtFknVEkTAa73dGFSBPAJis29HI2iypBVdquqCtYq2nbXxRBVO6GyCLreWJPraMlY9DaFPnXFqMVcWSCkacMWYn6YQZ2u57N4TE3ju/QdSuBkmOts1eIJxKjdKMsRbxynrOQ5SE/j3PpAhnU/X4/ERhhXsxjsXU2BeVIyRPCQIwejThgKiClwKpd0bUOWzZb18z1b1mwxG2w78MEgdfaa9t2xCT1UmsNXddOfwuZ9Xo9ye/GGOj7NHWbpDRMBNH9fs/h4SFoRYpSQjk6OmK/F0LRarViGPwkZy73QVoo6/f1c5clqOsI2hRoLDYDmDsxpDx1yEEpofS9n8hbSqnpWpZ/Wzs6GmvJIWGahj4Ebhwf86Mf/oD1ek3bdfRDjyubaj+ItPlSfbQ+v7rxT8+9wM5DP6CNxfuRECPONhwcbPjVX/t1jo6OCDHSrVbTe078kQXhdYlYLEsrFdGoaEjlhUyI2QLZqZuh/F2Vu1cSt5fMuWbk4oi5IPHmmfdSn0MNNOr7Sat2IqUwCbjlXDapLOjPzZu3efmVT/D66z+gbTt22x2ubfF9j2tXC6LXslzw0Q8/Dvzp9/6UT3/6sxjjCCFycLBmt+uvjKb63nKvrpYkroy7a2WQj3I2H8bdgKtE5iU5PNmZZFz/5kliq1r8+7QAbBFwPPMMS0siEtDUv5N/Za5pY4khMgzSNUARzYoxobLH2obGNRK06akHDh8Dyo9EBOHKSqGtA204OjykbUqLYwwlV5QAZb1eSTegtux3Pfv9gDGOGLzw87QT5KdpODw+5t4LL5D35/jHEeUjJCsQf/AoI1LnmlJ2RLLi4EfIiUavpCsxhrJJltZgVBE0VBiraVqLs83USWitYxj6aS2tc6Ouq/W/5f5rMSpjbj+PqRjVQRERc6AUIUViyJKYBZmn1oA1Ct/vGWPGbhRWK+xiXfwwZCPnzMnJO/zn/9n/lu32hO9+5+/z3e/+3zDG8ernf5Nf/42/96HdKApwjcU0jmxE+DKVhJsopa2UHEGLGds0nnPta1NYpbFK2Fw6Z3RCkpCi5yMofpbXZFAlKclKZCu0WpRoC6pRS+9Xgcgn0dxnHT+n5qpkU6a6mpUHnepCa8TVc7VaiYhMnFsIYxI5XakzyhFDwtqGGzdu8dy9j2FNC2h2u17QhlBEj1SeNpllNrkk8E23YJrAiTQMbMrPdrvdJIozBxlloc6i+S/EolKrLUGGNUIi0lrhnPBHtFbE4AGFtY1AyoV0VZ/UMtOuIlWHhxv6QSzfRWAqcn5+TtO4Sbp7HMdJ1ny93kztsRcXW9Zr2dQ3mw23bt3i/OKC85383DnH5aWQSbtVR0pXgwNZzmRyC3T8NJretaetlt8/mX1aK/4u4lkiZNRaG156ntTFuy7wzrnCN4FxGGhcw8nJCfvdjuc//hJNlSAufI79vi++ErNpW73H1y3vUeXnVZV0FA0CheYLX/wir37+8+V95qCgvueynj8HafM1LzcsGWNMaMYy0KhjNOVUvAnmrhitsmTAORVosv5GMgeo96m2DFahuUoqrUQ8pnKfBNZx4tJUlr5S0qmwXq35zOc+z2uv/ZCYMmrRnnh1DOSyr+YnfvNhR87w3rs/4Y03XuPzn/8iwxAKmlUDiic36VzqINf5RMvvp7n+lM98Fk/jabyP+TPnz5ueUzE6rO3ZS1LjU49FIFr/vfL6WoJZnHUdJ/X7GnRO9yBlMiL0F0IihD3WaVLwYpOuFUZZUflNmc4VfQNVvHKylFtU4Xbt93tO1ElBeBNHhwcYlXBOi139qp3sG2QNXLZ4B3wUh9+2sROS1HQdzz1/n/H0MY92W3IayTYK6ls2NYeUXSDRoIkpFLHERLMW0mUGki0BcxkaIXoa06CNRkeFNhmrKBy7q87R9Z5fXwtyzlCD+ZLRS0knSDdHGUc1IB9DIGkzJcqUUk2OAb/dQptZ37hJ27Sk7dyBsnqaieHiOD5+nn/n3/3fsdudUjsZlVKsVses18cf+rdQAiItKGcuwWMMIykkfMhEBck4cVYviJn8k7FZ4bSi0RqnJKExBOELZSGcm2wwJBolPEOVMzEHoo54kzGLYKOWYipqqLRCpY9mL7A8fm6Bd601qixsdUIpZk0A6wyuSlUXffkYItoKVCYaEhY/Ji4udxwd3mCzOcIYYUp3rSWlTgaKyng/91wvSUFL+Po6UUu+T5jSE51i4uLiYspil5oJsrBb2rYV9c/W0nYNq9ZhTGa7vWC3DQIbNdUyWkan1iw2rrmeKH4X+coCprVmt9/T97tynnM7ruiSDNPGudvt2Gw2WGsYhoGzszP6vme9XtM0DYeHxyUbl/7vO3fuMAzj1CobfLjSKTEtwjU6zUwZ8YetqzwD2aibbi2XVISh2hBP6EXTTFnIsj0VJItvm4bd5SWb9QFvvPE6m82GrkCo+/2eVfn7GAKYWQK5+sjUjX65yaPEe0Irzb7fs+97mqbl4OCA3/qt3+L4WCZ813XT83naJgRMG8/1ja2eQx1vtTvm6vhjCmiYNsJS3wZUufc1c6jJ8/wzPX0/oyo1CBAviSl7i7FYBVQ0JMozzkmqgWTu33+Bu7fv8O5779J1K3alxBVDYHZR/tmCjPlZKpL3/Omf/DEvv/wJuu6Afj/SNO01ArKqZAnqCv80kuoTQcMzTulpAcYySHnacZ0kavTVclgdr08GHDVwyvV/V07sic8snUTTKxe1l3pLSvmdVG67a1qU0iLsFzU5BSBPJMqcZC3DgXWW+rzqZ1el0To/rbVF0belc9J67SblTeliErdVT4q5EIjDtJZrI+W9HBTWOTY3jjm8dYvzRx/Q95cYk7A5kOOAdI0oKO23KhdNDkSe3CDkzZAh1vtbkMFYuluIFJSjIkzqylpd52Y1p6sI6oRwZAnMqwZFzlk6N6K0latC2kYLYuFjlE5EaxCTuYgPA30cBRGIAZUtKi04Gx8SbNS95PDwDoeHd575ug87TJaSiM7Fu4tcxPrm4qFCo7Ke5ngq/hnKgFWyHxmt5T1UQumISQqbAipDk6DVUoLUOUKOJJVJKk2sIgnalvxG+VLqoyMa9fi5gg2jNUlDGIvNdd3IFjAv5efeiyvpUCyPOy12v+MYeOP1t3j4+ITDzRH3v/5xGtchEt5uqg/VhV6kqWsG6afAY0k4rP+9/IoxoPvS+pnTJGozmRC1LW3blEDATEIxEktEMp5x2OPHAWc1bdsIolMehLG17dITgojuuMaWFjQ/ZcopJXKca+/W6YnH0PcCDzaNW2QWYi/tnCsBUuDs7Iy2Xc09zqsVJyenwjAu7q8XFxezH0rpdKmy5XMpoIqdSd+7COJ8yMB5BrJRN9fNZgOIjkfTOEKU4O5papv1v/u+n9RFt8VL4aK0vt26eYvGOVIobaApE5NYGac899sv4dN61P9OWa4vZlEl1UUm/Ctf+Qpf/9rXJjOq2vu/hMyXTPdliWY5ruU+pit/U7+WnA9B+vQ0UUuEUbLasgkV3WEppRRCm766cS2D7OtlgTqmKooy++DIwwtevDC89xysD/jM517lvXffnR6tMc3EL3n6jv6hkeh85IhyhrfefoMfv/ZDXv38l8r8uNbpNFdOpqx+eV+X1zhfq6ovfurxLIRj+b7wpA7K8p5eQVEWz/4Zn8ika1IzQF2AqusBypXrXSIdT2nXz9C4FmtavD8TtEFl2tahVek6MEJ+DCGQxzxt1kopQuHeONeAMow+su9HLrfSTt8cHRADRdguEnScCMxdZyArvI+AZoyi7ZBjQpf1URvN5vCY49t3efj+u5ydPkapTKsMtnDkfJCbYo2UeEDK7uMo3StG6ZKRS6ARy00cwyjohnMSdOQylwLFlHNWm112GVYp96qQmktQgTJoBVZB0BpFICuwxmDLOm9DIA4eVCz8KUPICqMyq8YRSMRxkIcc53bX7iMSRH+eQwGrpFgBDYpkHN5aqCiGNWTtUMoSsyLkKJyfFMkp02rNisxaQacVNktgEpNG2jMkxm9QtEpKTm1MmJjQpHk9mk7oScTwaejhTzt+rmAjkwuZUi6yRpZLmDnGyOhFi94PY2m9VGht2O/3/PAHP+JP/vTPGHzg937v3+ZwcwNTTIe0Unif6ft+WgSbRuzKRYa3kWcfCz2mBDXLAKR+OWdZH4sqp3OOV155uXQGCK+kwtAxSovZ9vJCrrEozY1eDNYUGeeqYBcl6pZJUjODGKNYxGdHNT6qrWRS1zclQDEolaeW11gMieT69JSV1J746tbaNA1HR0dTh8Q4ei4vL6WtNkb2+z3b7ZbtdsvZ2dmkGFrby6Dcswqze4/3ge12K5Mzz0+4DjLUbHW+zATlmsQD5ejoaEJTlot3FSKrm+GyK6Uu6s4JmfZwc8jDDx6ILX1BLnJKNK4R0mytzca5rNE0zRVU42qQGfExE9K8kB8fH/Ptb3+bw6Oj6VrqvV4GE/L857+rfInrAUh93bJ0Uq93KTKklHSiGGOpN1rpTEoBYyEHFouoRam57TWmVEyvSk01Cz+peveg5vsrMPxSHbRA9KqWzzQpwqc/8xm+853fx3tR6a33TyDo66HFkwvKEk28/jPbWGKK/PjHP+SVlz+Bs13Nka69x1M25fqJiyBh3pznQODDSiTXn+H181v+9zJINaqShCPLUtrTskIVxUEAAQAASURBVDcJEtOVuEw+d/m1uNbp/+QpTLlpMcPKFeWZUA/NarWGE10CxLasd7EYmclYHYOUJ9BX20ElEM+FQCnKwbvdnnNrWXcdbSNrUc7ShF0DPuFZlbUsRVIMxACgRbU9iJ+KM5bu8Ai7OqTHEVPE58xaOcQgrSC/KhFQoIxQT5SjH6WM48kkLRm8KkFyiOKXlUk4a4hJCPry7Ob5WW0BlnIA9XnORGpNKkiAUmIJHwqC1baNlKomPQ6FsxZ8kT3PQl5NpYyxvzgjGUse5/HifsaN9mc5FHCoDOusOEBjtCFoi7YOLdEGKRuMMuQkCqhRKZJSZBVpiazRHKTAKmcppUTPCHiliGjA4ACbhDSrxiDBRkjoCCSemN/15LTW5CKlsLQ8+GnHz6WzMQwjWTP5SFT58OUEHceRi/OL0lGSiKMXN05r4XzLMAR2Q88XvvglPvnJz5b2LHVlnxMOxFgWbqgKn8bOok2yAUir7fIc66ZjrcYudDa6risTcCSEoYjajHM9kOLqqnJJGKIEFwYQkA1rnKAsxWBtyuCLENDk3Go0KVWRKYuxRjozsgQ7lc/Qdc2EtAxDP3mf5JwncmcIgcPDQ4wRUS9jDCcnJxLQMG+MS7RHzJfGK1l2SoEKse/7nvPzM05OTp+eNJZgY/lslyWUml3USa+1ph/66TNqsFHVPpcci3pst1vpEgiB/W7Hc/fu0jYNKUg/efDS+aOYyzY1MKjBzXXSptaiaaK1Iowi/uVj4Etf+hJf/epXi6hRllayPKM0y43qWV4hy01rGXjUTarei7oZGyP1aWsEAbq8vGS738lYUqJ0SIElUTOaUd0Zq8qseKcoUgk4FKqcfy3l5InXUYmq9X5YY8vzl03/cHPEJz/5af70T/4E55oFWbpOvrIdKrjSWnHtHtf7NP13CdyVUbz73k94+ydv8plPv8o4eqxpmMoP8i7Te31YhrRc5Grd+Gnn82F8jevPbVlWrD8zdhZsWz6/q+Wf6ROfEvDMfJwrwUZW5ImLrcr/Kk+qvHa6xxJo5KRYrzY0ruPysscaR0x+URIQOwQROGSSwEepaR6PPlAFyeQZB3a7nt22Z71aYbQt5RshoCZmDyXvpR01RlE2jTHi8ZDLBpQVm+NbvPyZz7PaHNNvLwm7C4aTD+i3Wy6GHqulQw2roKwHetXQ58wY5JKNNlOwlaIIA0qGnlEUgnnOZMMUuF/nT9Vnu1yX5DWLNnUEHWqcwxatj5gycSieLFAaEqQzUUwLHSkFNJphd0m2jpaFB4h62rj4b+pQrNGslWWlDRlNi5BajTKQLSkpHJqcPCPipJ5N4dXkyEFSdDFyoDQdmhADvcl4DD5rItKRpEiyFw0j+IjyGR0yymbpGi3JUWa+l9eR1V9YsAFFClZLm2aqi3oWIicwCchcXp4TvXg/GBRN07Hq1oSYOTk5xzjH88+/wOHBMdY2i6y0QoGGlBoJDsYAeQQcSs9eJTHmK5nk9QzGe+i8Z4UMqOoxUGH8+m/lLRgFMXqMga5r6Jpa0oGucbSNw9qiabDY4EMYQdVNSlON3OT+QIyquIraGSZk1nUQAyQpFWmtpwBoqWDpvRfRn2GgaRrOzk5p246hl//e9fuJlAkwDuO196ktmcKhOT095a233ubiYksdP89Cqp9WRuiKWqiUT6Qdt3GOzGy/vBSPWrLHKzrjx5HDzRHv/OQnkDNHmw1kCSYp46HKYGUtAj3ABKHWjbIuLEuyJ3kWDbp58ya/+Ru/wQsvvAA8mVVfL1Es0Zvrr7v+38sSR/2bGgwvO1s2m42gQF7GXLWSd05a+4IfioBToYXltBhHNYOYiaLLbO7qJnsVEag8AaUyxlqGfsuv/MrX+f6f/QVaG7LNjOOAsctrXWD/V75nepbLaxbhJVHezAm2lxf88b/8Iz77mVfl2di8yNznAOJpx/Iez9dVN9N85ecfBcq9Xh5Zfs7y59cDluvozdV78+Q5P5sjsgwmqsZHFRWcg5OcKV21GudaNpsjLi7OGMaRrnNULk7KorrprCMtYpXl/RCPC0Us2kdj8NjRcHZ6Xkj2hs1mJVoeud7e0pljMjlLS3pKWbLY4lCtrWPY78na8vJnX+Ur3/zLMgb7PeHyjO35OY8fPODRg/d4/PADdpfnDLtLxn5P8iPWaNZdB2EQUUitsErKQloJMTFnLXyWLFwLmzJJGbSa/TiW+jcVlVsGF7U1X2ktBoYx0rVOjMRSwo9jIfeDM2IOSkw0xqBtA1qLH0kKst/lPBmUAf8KbMePcmiieYXNjRvcSi/QHZzTrU/xuy1GaZSyZDQ6JohBnpPKwtdIEaegM4Y2KVYomqJEPBjFiMGj8Kq6yEYwkfXNQ4J5jhQyKrJofS1jiycD+v+/lFFYwMa1PpZrRLo4Ce89KssAbl2LtQ3GOPp+oN8PbJqWGzduYZ0rkGJdTDPWaZSSYMOaUCB/UewUt8I6ceX11ZHzyYVfoYsqp6Ayw8STqJ0jU5lBZXQKaKOKX4mlaRyUjmZZIBLeC8S42+5QSIadkpQnRDZ8nAINlEj+pJzQSrpN9vs9wyhEz83hhv1uO8F/4yhIS9u2hCA8jRjTROjyXt73wYMH5Mx0DdaJ5Plut6Pve1EaLWTTJW+kSnrv93sePnzI2dk5VV8gxavPeMqWyIUUNA8urTWr1Yq2bfHeT/+K6FCakJqlNLlSaoKC6zjp2o5YEKK7d+7gXMPQ77HaoFEiZFQQr5QTZDVdQ0UTKg9kyduJSZ5TDWw+97nP8ctf+QpVX+FpUdWyHny9LLgMKuqx3PhqiWUpk14h3hASCbkfR0dH+DRycX5O3w8icW9ncm3VcFBqIbGerqrOLj9fnm2asn6lZk7CRBotf58KA1Erw+3bd/n4K5/gBz/4Pk3rWIqZyQkA1N3vyQ13WQZbnoc2ugj7Kd555ye8/fZbvPTSywLHq2Ww8dHJZVOQu/iea99/6N8tAomnJSTL1yzNvj7kncvfyFnVYGgZREzvy3KoXX3PZYA8rZ+lvm6MY3NwiHMt4+BpW1cSnLIO2VIesFa4D9OZqQnqlo4GIYGSJTHb7XqUOkNi+WM2m05QHT2fh9FSulVaMYyjlFOiIGTKGJSxeEaiMuR2JcT6w1uoO89zI2VezBG/37M7P+Hy9DHvv/s2H7zzNu/95G3Oz07ph0gT4cDJdWpjiWkUoblS3glByI5k0VtSRqPtVSffeiwF9WqZllpSyYJQS5DiCDEy+gG0wjlL9nFSaBXRtAalNSElrBYvEZKUk2Ks2jOKm5//Ox869v5Vjqwcl0d/g4MjOHj5F/YxTxwDj+j5Z2xUCQuyYBpZMSWjUzfKz1FG+vkIosYUYS0D3k8IR62CKFU6FDK0rhWBLyOGQcMwcnlxSYiRpmlpm5VMhEDFaKbFUxuFsQrXOGLKBF9bHAuJUwl3wjlLjM2EcCwJczFKq63cu7k9cdlhMNdqPckHnDW0bSMiXEpKJ85qrFVoLfofKHFmdVY21L7vC6oh4kU14tamwvTy39utuDm2nfzd9vJyUgalQId1wtQgyFppIxaWuQRVl5eX3Lxxu5CjRMRpv98j8uOldFDuRd2UQ4j0/cDF5Y733nvABx88xPtUNrbycMszqN+yGFTLzN05x3q9foIhro20VC0JqUs+w7zxFQGtlHn46CFaa27fuiXoh5K2Na3Ef2dqzk25OPCa6RnX96ob63ytgTEklLY0bcMvf/mXef6556TksbgWuBpkLP+7bk51w66L2vJ1FcWomdayrjwRc9FY12IzHB1vaFaSVT5+fMrp+SUhjMSoqG3dKStE+OnqOS43yWVQX9UvZdxdff3M4p//u5Z6vvDFL/LmG69Ll4CxpKoY+BQk4/pRg6k6LnLOxYeiIITOEoaRf/kv/wXPPffCQmVw+b5P/4zrJbvpenmynPdhvI/r/I2n/fccfFzVjbkeWD7reNpLrpxSCUiWn3e95Dw91yyS1FYZco60bcfR4RFnZw9F2E4vsKaCelklraKKWvKUgEPKusJRyIXfFlRgTMVDhygE9nTEet1iihifQhWuR5xCo5gi2SOGb8XMS1mHV5oxZrGDx6B0SyajcsRs1hytjzm8+yL3Xvk0se95/OgD3n7zdX7y5hucvPkjwvaE1AeCFgdZpSSxSzHJZ5CljELG6CfJtDV5Wj5TMW5z5JrsFf6GsdKFI0mfpI/CywuMvpofKshJRB6zmCEarTBJEJaU5886fPFb7IGwf0TyA1XkO+U8BX9K1ZVLgkiH4nZekcmcVpMV+e20d2YFxlqMa/CFO5MLgTanVIuPkuBTg9lc5MmFR6QVmIIGV7aWKueVgQjSOlsCCcgcHr2I17cZOCAW3mRazJmKbIhU+rz+/SzHzxxsKDVvnjWi91FYsFobkpIseL1aoRJ0bTfB+avVAfvtjpPTU5pW3PBkU5KbVk2mQoiYYKZavXOWnBUpDhOpJ0aLMZSOlZk7sMyyZFAuLMFzDYS6womopKuxbMwDKTiMVjSNLXK2IqijsiZaqVcqJRyMZi3tpZXkCUwbvEyQMsCT+MhkBAFwTvgd4sLal01G+Brb7Y71ek3OvpiwSaBhjOXx4xO895yfXxQkYZzKIlrLZ5AVQz+Sc2Lo5bpq2UTKRntOT095/4MP6AcpFxXOaCW1zxnktcFUN/faDWOtpe/7iV8CiIR52YAr4lNRp8nwTouUrtwXjx8HNgdrIQaPA4bqwisdNbreyxLMNAVFqYtO3dRr4Fg5Kd5HbGO4f/8FvvzlL6O1aH/k4t8g1zlvMPW4zslYBk4wB0/X+RvL7+v9Bgp3JZfzM6ztGmelzdpYy9n5ll30WCvBl1TiROp7WSOd69Wz5bx4UdTNp/J1mLLsqQRR3kcrTYoRYw3PP/c89198kddf+xG2sVcS70pjfGpAkGvbsebo6JAYApeXl7LwqyjuuUgHwxuvv87bb7/FKy9/crmKPP19n3LMC1oNqD46srF8zbNQjelnzGJpHzXYWD7v5WfluqAxbwZKPRnwXPn8Mh5zziij8SmhjWNzdMTp2WNCTLTWTQgENWCpyUFF5GrWX34fUiRVOfOYMI2Mnd1+IJd6fc4HrNadEE2VKdYTwtuoKKLRJVHTQaTOI+z7gRBh1awIMbPrAznJpt1aWdO0aVC2odvc4P7NO9x98RVe/eUtp2//iNPXv88br/2Ihx98QOh3WJ2xEgmQAFuVaxcBWkpJuEopkpNiHHpirOWlLNYQKRHGsfx3IZYrXdSaxUBsP4xFE0jRGEMqpX9JvgyNNfSjtIiaMlz1Uzr2Tv7gf8PJG99h5z2XKbBFWnqTVuLr5TQ6ZZoU+YRf8T+6/DqeyP+6+X+TUumqBJS14BTeKg6ff4F7n/kcP3nvAe+fPCInTxx3DJeXNNoAlpA0Phl8gm2/4/z8lH53gfKBQ625rS1HSXErazYYdIykznCG4hHwUCcudGBwkWwi/87/8J9ysHlOPGNyxkxju46vxZ6gPtrcu3787ARRpHYu7RwZrS05a2LwGAxWaxpjsEmTYsb3vvhXwK4f2A0D/Thw8+5dtLWgwAdP18omEVPCGEtOUlMSQy9N0xhSzAzjvkTetWwzG10pZci5LOw6F939OG+iOROGgOkc1rUoldGNIjYtPozEYBn6SM4BZxXg0Yjvh1HCEzG6uBXGCFqx34sVfNeJbbDYnzeTrkhO0lqmlUUb8QUY9iNSq2/IWayZjG3QIXDn7vO40qYokKd0yVycn9DvPdvtJd4HEfoaBfkIPuDHLSpqdheXZC8bPBFSkN9Xv5f9fuD8csuuH8lZJnX150iyQ10pIwCIRPuIK90fKUdWqxbX2Ek5NWWp2YcYClKepwBjvVoDWZjT3hcjtUFg95Roteb20REqRgyQgsdTCZbSMpqVtEKvVx0hxmI7JeUpkBKBSDtLqUmU2Bu6g0Ne/eKX+NyrX8RH4Q3kWMzjdNFX0KIMq4so2/VgY4l8LLtSYIaeK0HWGDPxZGrwUyV+naF4YSiMc5iDA1TOrFzDg/SIi/NLLBnXWELIjMGjEF0CP9YrNiXD16RcfDay6G3IOdVNeRZxq4GOUgq0w/uMtR3GBn7pS1/mjR/9CKM0KXmZT2hyFAJfjJG2a4SUrFWpeUcMms9+7nMcHQtn5/Gjx7z51psUvisi+Z3wY88Pvv/nvPTix0BZlBIESLoBhNj6NCSj3v95gxbkrwZZT+NeLBE0BcWOJM2ZX0rFMbNkk3K3xAE0JpK+2kK9fO96fk8LLH7awisZ6OyfModPci4xzwrHaEXIkI0hq4RrV2jjuNx72k4Cgm7VlWgSKe/mIrKoJGEQL6co2XD59Or3EsmEnEghk/pEPj0jqsxt2+A6J2ZkUWG1JimFSWnipkWkU8M6i42Zfgjsd1vWqw3GOFatYxy9SKCP0gFircEaSwoydvWqY7O+zeb4Dvc+9imOP/k27775Bq/94Hu8+/oPaXWiVQmnItpkVA7iDBulUzF5MZg0OZJ9EOXLGMjaiS2DMYwpEZXDdrK/SCkoYqzsDcItjLSNeM30gwdlGEdR4EUL8TYlL/NNi+T304KN5Ax2s6bzCRMyB3VsKWl5N86CkTL1UVzBpYy55uYx0XuMlzJl1kq6c7QCD9sHJzQ+cIQhpECioesOxbKhrIc2K6z3hJxpVhqfHdlC33uCcWjnsNnQKosls9Ni3aGiQhWuUEwQNdOo1GhUDFjshJbVcW5M0c5Sc7L1sxw/lxFbyqosdFJzM8oyhh4VM61pcVpDKBOpqoUag3WOi8tLuoM1TdfStA3PPX+PGAOZKq4lmVu9DukBl8ndtBYfdMnkfYGDdYnOZ9EbpUDpjNe+eJrMcPt+P6CUw9kOrQ1t49A6E2LDOCiCP5fPcgJESSBjyuaZGPZiXBRTJKXAer3m9u3b5Jy5uLhAKSXseystYJLhiviULWUUEHJlSgljLYeHh+z3e6lZajg7u6CxjlW3EQ7GfpTNZxStktVqhUJKVfv9HgXsdwPRJ/wg2UUIiRQpku+qiPYEhjEwDKWnXEHKVZb5akfHdRjaFKGyWhe1zpZnUx1E6wKs0NYSvZ8ssnU5V+ccjXWQinw7mrNHj1i3LZ216HIOpqITi/ZRay3WaPbbHcroqZNE+CZGPHeKxoFJGduK5sCdO/f45a/8CkdHN6cxkAtbvSJderGJwLzR1Oy2ltyW9eLlprP821q2glonttdeI/MmqowylhubQzrr0DliCFxcXBJiQitN2xi0zwyjBDymOLhWy/kS+U/nsRSPmjPp69m9QquGGCXAff75+xzfusX28gxnXeHTWKmdJ6bgTGXR1wl+JKfMpz79Se7du4PWiq51bA5WOGf48Y9fK7bhVlw2teKN13/MO+++wyuvfJKUpP19GMYrhNRliWF5zEhE2agXi1+d89fH6vT9ojxRg41c64W5IjdCaNXmSfLpsvPh+uJ6HclaHk9cw/xJJcS5+juW70vxujDyPJVtcN2a/uKUmBVOG5QyUp5FdGnKbS5fMp6VnltqJdmRdx/DCLrBakMOibQfCPmUkBJZKY6ON7i2BRLGNljrcOOID4X3RpqcqY3O+KHH93tWa0NnNMZpdDKi/RBLy7sxkmwt5o9pDjF3Nzx34wVuvvx57n7is7z/5g/50ff+BWfvv8XF9oRORVaNwSiL3w0cHjhWbSNJjRdE1BiLURptLca1JKUQnlzAZ0lwxsKFmcZBFhO7rIAURS1TifOuNbKRj7Hw+IxCZ/EhMU8JKkeV8Y10GpqkUUlhqCVghbYKdCKpRJfLdqugcQ1RGTCKpDVeKwmGY2LcjfTvvcc+jITBi39PKSsFnQk24Q3kcWTc9+y3W7a7Sy53e9Lo2WiLbR0H3YZNUjRj+v9x91/NsiVZmhj2udgi1BFX5U2tRWWXrm70TM+AtOEQIM1IM76QNkYjnvgD+Av4yif+FTzROC8wjgEwGjgDAtPdJVPrrMy8ecUREbGVKz4sX7597xMn8+adLnCqPSvqnBsnYgvfLtb61re+BW96QHnAgUS6HJWfN9JEjhWPwRiOmYVSQ2QRz/lsP8TgeDKCaAjwlnKgZYwPqiAQnIPUFFt13lLqoiWVUSkV9vsGxlqc3DiFlBL/9J/+U7z66qtREMtOJIKJHDdCp0KMLH8W5qIFgRdVQjmKuAkmqMc5qhYbG5MjKW2zhNZEFBJSox88rKV6JRAxNQux7kRU1ANGPYyiJGXPR48epeMzKZIFZvi+yrJMXILFYpH0JVgpkyTOkaTKzUCLOpM9OTxQVVVSvazrmjxxAGagqrTOU5qktTYWbyJ0yNkBXQxncVgjbxxfnMfC+ScbFVprHB0dXal3kmBqjAYJGX7EvwghoO9IHKfrOqxXK0gAzb7B6dHRhIQ5J5UyP8BH0hZzQ8xg4MJICGZhMmstoRxS4/XXXsMvf/lLcHoqIw6H2jxcMudyAFeh87mgmJkZSHM9jhwRYeSDxzJ9/ltcXDYINkBJAQOqfEG6A7TYs5hUtJaubGDz68+fY4j9a+0ArSUWyyVef+N1/Pv/4b+H1iVdo/eAoJCO0jKLi1NRvNVqhTt37mThMpq3d+/exf37D3B+dhFLFJAQ0Xa7xQfvv4cXXnwJzrP2CI0pRqa4n697NgFX4/WHxuqh78+f2TyUIuLmnD/vPOzChsZ8gb0OkZlf+SQ+deDaJuGXiEUApACpdYHlcoX97pJS4iuFwRgsauLA5UjJeD4xOf6oPwFIOSJFpMyJKEZo4rrpsV6vIKWENZQKSgZ6FJALDkKQdgwhpS26vsVytYIQJFcAlBDCRs5Z1GHCaBhKqWA8bbSFrrE8rfD8Yomnnn4GL7z8Gr78+F18/tG7uHzwDdqugRs6rMsSHRSCBYx30IL2B2mJjyQQAG/AGhsCHrbvyeCKY2ywNJfYQAuxXgoRb6MQHqKCaHSUghdADOGqOYkaQO8sWmvGsu+aCO1SSDgBLKVEEUO1yzBWH18OQG89euexh8PWO/R2AKxF5yx6GTA4CxcCGTtxH3UKMFrCKkl1UgaDbdei6QYMg0UwFtV6Ca00ZCCDIjgHeAdnDbynRABrHQY3oJc99UEcy044eElcjnGdEfy/cb78TxFGEQBEVKBEAIJz0CBRFG8j3OYswZcCcdGnzfvy8gJaKSwWCzzzzNP4X/3n/xlOjo9wcd5MFm2AJwkNClK8DGmBYhIgx8LnkKdSCjrQ5qwQUMRCZ7yQsGKnczUCHJRaAcJj6KnMMhCrsRajV8qLqhIlwZ+S5HeZxLlarQAgcRh4gvOCDCBlmWito5AWFV3bbrcp5MBppFIItA1VSayqKn2etDZUyqKhtF2S+WXxJ+uJWOSci0xiCeMsjCGUpY/ITN7X6fke8BDZy+Pzn5ycJGNlotwXwzBMLksxVutIYr0q4YxNm+vZo4coygKLxWKymCfD4gAyUGiFpu8SH8Q5i7KqAdC9J40EIbE5OsLbb7+NZ599NqEs18HeIVDRsnzDyw2FQ/10CFYHMCGMzjUd8o0u957rusbNmzcpc6u+xMOzS5yfXxD8qyRkDJk4F8CVUxFA9Q6umfiHECq6PkZIiHD2+utv4P133sG+2ZERaRysHaCknqCM1pKRf/fuUxCCsoKq6AWz9svNmzex3e5SSEtJgaoq8cGH7+MnP/s5bt96Cs6R7H/+zOeGUX7Nqf8xNRLm9zq5bzbGYsuz1ObGBmU5yWRY5OJe83bIcDnUQvo85vv/5FjXGy+UWaSVxmq5wnlZoOs6LCoKSWglUGiFYB2kHA2iQ+gbz8MQDQWqyOoiEqyASNw/OztDiOTu5XIJJWJVYamh1Ghc05h1UZKgRde147MRIhoctNZay6JbrMdE6euEjisYARQaKMoVipMSt1bHOL7zDF77ya9w8eg+vvzsU3z9+ad49MUnGKxDDYFKBJSQ0AIIdoCWgHQOLqrnQlC6a3CGCLKen6WkKqkhpOcjksEWQ3GQ8Ti0b4X4eQEudzdtu77HWdvA+Q7WAQIykSg1SJxrozQWSsKYUaejuOxgnYH1Flvf475pcTm0cNZgCAFWCfTBUTKCdTDdAO8CLAKMJEVUqRRCkDDBkQqr1CgrjapajNw1Y+CtQ3AGxnVwXsANAcEYeNchKJNCbAAQREBQAV4SIj0icodDhvO59F3tibOFhfcjOc06yhSQAojCQoQIkNVYVBouDj4JSpd74403cPPWrThBDltKhGbkN4UJYkCbjQfLh49fxLjYYxT8EkKQnLYliM+YDmgNikJAKYG+b9P3raOsFNLzoPLvITh0/YC+o4GiYmZEWZbY7/do2zYLK4ywO5OsGJkwxqBt24QO5BVHSSGwSKI6bKwworBeU2iFdSbI4IqqpEYg6TMETzn4nqpBdv2AwVi0XYeu6+MCeDX+zf10aPGvqgrr9Tpt9LmYVf7QBmNQRmSjKksoOWbrKEFkXuscdrs9nr1zJyEgvFjyOfnYVJlySdk720t45zBEtATZJs79571HWVV49tln8fbbb19BTQ7dMzAiZ7kRcN1ncwMsNyyAUXBuXJjHSTk3TnhcKKVQ1zVu3bqFxWKNoqzhvcP2ksIq1hFRVgrSd4lsm8mx5htMjgyl80pCR4Qkb9474Padp/DyK6/i13//d9C6gBA0f6UikS4ew0BIImWcvkxhI5MKBdZ1DSVVRJm4PwS67SXef/9d3Lx5i/gAMVtAR8G3OQI0NzYEkGTfDxkp1xlWed/P0+LTeIseLqMbh4yNefjmUBhFHJxPYfwhxOSf47ExAiARyaXjgGoHVRVWqzXOHz1A35OC6DCYyA31xAWbGRsJVUz9wf1DmwejgN5LKBBKQDyqCwASSpZYLcv4DF1EQEjvResSIdCaaa1D2zbougb1YgWAEbuR3zSuEyxIF+KmDwwhwBnaXAtZQGoBdVRivT7F8uYzOH7mNbz+kwt8/cHv8fCbL/Hg3lfYXjyA9ANWhYbisGGgTTl4EjMznhO2A2BJdl3FNG3romSeiqEdTRLmygcYG+CNiUkJCjaEWMDNA7D5QwIA9NbicujhhIZ1AdZ6OE/oSSEEWqlhqxoBJWzkXSEE2G/P4f0AJwIGMaC1Dc5Mg4u+h9USvirQOwdnHKms2oDgAlwAjAiwEYUigpSE0gXqQqNQgrgaVQkdJKRzMKaHMx0EDIQLUENAYSwWwcJLB0sKDdS4qGMMq/HYGe96Ps/+xMaGgIDwRAASEGiNhRssNJDKyPPiD1B5YG+pONBivY6bbo2+J5ErdaDCInM1mIvqHBJqwQgAb8YEN06LJnEJehswpupIieVyGUM6exgbYN1AVV0LFY0NillZ6+G0iue2GHoyUKwhshELb/HCx1AzhVhGz5YRi7quE2PfGEMl1KsqeeLcX2VZktLkdof1mrJ1uq4jnoYgTY+mabDZbJLB1TQtdNFBDZGljoAQR49zPqIZA9VP6Qf0MUsibUI8WGawdP47FX7bQEqZQj68CeXee1mWkEpBgDZfEwJsTBmr6xrNbg/vCUWSUmK9XicPmY01zm6Zh1EQ31tvNtjv9yms1bYtvA8YBhszIug6nn32Wbz8yiskNhYNQkZM8sbXziEwfhZzqH6+oeWbziHkgt+f9xP33aGNksYPEfWCp0Jq5xcXQHC8BaWXYDJo3KDy67hu8yXonGK0hS4gBJUBf+nlV/H73/4W3pIRozXVleCquTSPaRO+9809VFWJGzduTPqBNF9oTmitU70G5wFVFvjoww/wxhtv4qmn7kIqAcrsuj7+m99L/gy4/+ZjdfrlCK5nz+LQsxn/7eH9eOxcLyUfJ/NrvBoGmV1T5NewwUTGMWbH4J9i9J6jsiahqESyPguUZVWVVPnV65C4JvNXXkeEwyZ8jUy85ve94zXMY78nHY5Ck5PA6ESe4k4GuYJWEs52aNsWFxfnWCzXcSwGkNERoLWEEAWMEQC4Zg+JdwkxqlAHDwQlUcbsEecVXBDQK416tcHpyRF2Zw/w6P49fP7x+/jms4+w3Z2hit+3zkF4KqEeAihcJwXgqICjUhIKlPYpJNUDCUHEeigCUmloCRjHfBQJCIXgqKyAdx7IUl+5vfrj/wLPvPa/BTFoSMskRMlYqssiUWuFSipoK/Hf2iNy0Id/Ah08jgRQwONWsGi9Q+89ghSAkqnumEQkdIZs9mdGKQTdk5LEK6mExEIplCFAWwfhHOCo3IH1wDM+YAgBBh5OBjgZUC9O6FDOAZYiE5EYhHRiMZ5ynA9XuuTa9mQ6G4JuynU9mu0ej+7dx7JaQOsCzhgUBdmbNGjiJm0dhJQ4OjpKvAnepL33URWzQAi0IFLGiUDcY5KnmEOdXdfFyaTgvaMwh2KdCzZYZFJ+E0Cy+AGPrmvggoUPxLZvuwZSWAhLNTmoyh6RH6UQiQuhpEw8E4A21aqqcHJyghBCLKstkkfOaZCr1Sp5WHVdg3U3OCzCoaGmoQwXHRGNzWYDIUTqM9a4YFnzpvkSSkvUixrFTkMk7482i34YYlG2DttdAx9EhM5iyxZw9tjnXvF6vcZyuZws/ABSyjGAJP0utU71TZxzKKIH4b3HcrlE0zQQQmC1WkFIgVITSsNGAPMqWO48oT4DKRDyZ/tumHA2koCVILXOv/qrv0qoUNd1E05QHt5KmwREQhr4vXzMseGQoxpzFISvNScX5p/NW46K5P3t/YCyUHj66adQFAW0Enh4doFhsNCxnoYLZEh656AKfcXL5nPPjRo61+ipIgLELz7/Il586WV8+OEHWCxq9O0eUsYMgDge2PgahgHn5+eRP1SlfhqGAc2+oTEetXLI2NZUEKxv8c67v8OtWzcgpYaUo9z8IaNifv0h6yc2bhhRmRsGbIixx58Ua7M6Qek8kbuQjwelVEIh+RkeEnXLjU1GxfLr8GHkl0QgbvJs8uOMeAeFUJRStMlBYLVaQ0qFZt9guSgBIeHsYclsPl6ePRX/MglRKhV1XbyBMcS3UEqhaTrcu/cA3gUcbTYoCgUpFZgQzruOdTbqVgg0bQNjeoi4No/y7UBRCAih47MmdCRgQCF9VPgkYyEEASMkRKGj7gvgg4HxFmp5jE21xOL0Nu6++ArO7n2Fz95/B/e//ATN2X207RaLsob0VJ8KgjIAETysbVGAsidZv8cHGv/Ok9Lo3jZwPmCwVI7eearzU+goE249tBXAzN64dfeXB5/Bde3T9NtfQAKo4uvkBx3lT9cKCITeQK4AgHiQNDK5pN7Ib/oujtWh9mRhFB9gugHNdo+zBw+hBeUSu8FAC43gfar8maamiMVugLSR8GRjwRb+G03KfHKK/EjJ2ODFRikR49AxTTGFXmL3yDTD0+RbLGoEGHS9QdvuEYKH8waAg0FkdMc6FEX08vb7PYL3WC7qtLhw2KMsS+x2u8SxAIijwR54GTX5m6ZJm1/f92lhyzf2YRgghMB2u03Xq5TCcrkEMBpMY4olILWEDkBZF9BdAdFSSqf3HoMZsNvtcX5+EVGJDBQ7gGJw4wX9xo0b2Gw2qc95A+d75+dYVVXKdecj5UhB3/dY1ot0j3fv3EnnyRdf7gde4Pn+fSCURkSDQ0oZC/BFiDZuihACL774Il577TUsFotkQHDYKid88vkBpEyFQx7q3Pi4sqn4UZY8/9shxGO+kebGEp2LwhhKSZyeHpOR6wMuL7fxuBbeWBLvKQtwwOIQMpBfA3uybIiyB8Yy5q+//iY+/OB9CACL5RJ934LSyRFf4+Z2eXmZ+EdaEw9qt9tH/pGHkCzwRRldi2WN/X6Ljz76EG+99SaeeeY52ixnyrTzvpu85PjckyhcmPIU0rESWvAYrlf2WX4Gc2Mg78frWq4Iym1MPz5w2pmBSD9EZP4DXMtGSAkpFDabI5yf3ccwWJSFjv08Hj53FA6jOKOxwyKM45glZ5YKSAY4G4mUELh58wZWiwWM7aPCsYHWBYBYNiIQn6dp9lgsVxTp59ohcQ2WkoyZEHRESgxcsFEYkTL1rHPw1mLwNlaZJcI/goILpGgqdQldr3F3dYLbT7+A83t/xB8/+QCff/AO2u05XLeH9QGFlkSqNBZluYQdOhhrQVpQHi4wcoBYdI4MHhuNMR8AO/SQqoibrIPKyjD8Y23SgYq9ZfWVCCWUyTCfr31/sjBKCAFt0+Di0Rke3PsWhdI42pwSTBP5E96RwJRUMhEFebH33kMVmrIR4kbqrUgsfl4Qv8tiYmODNpshQnWUhRJCSJOV+mnEfgQQwy3Eyl5gAQiLfmhg7YDgPYw3kJ5kssuCBlfbNgTFaYnFcgWtVFLr5OthpUb2Ijj8wSgGl5PPFS55QcsLpVH9kw7eebRNg9PTU3RdlxZT9kwYVXFRoElJCacCirKIpC+yRo13aJoWZ+fneBS9Y2SL5nzQ5JwFIQTquk4EzlykilEHvl7OuOHj5Uqtph+SgQIgkVurqqQCSGI0NuYbDF+jlBJSFEDwJCKXoV0kHEZaIjqGYX709tu4e/cuGD3ja8k3qnyzn3uthybT/OecazA3KPKf1xkac2NkNGYo5361WsZ7YPLrHhCjodUbCylHI/6684/3E8AFA0MIESEVQJB4+eVX8NRTd/HgwT2s10u0rYvjgTev+H0Abdvi4cOHkVNToO97bLd7NE2T5huHDpxzEEoDErjcXuDDDz/A3btPwQcNBHmwT66+yHjODdJc0XX+LBjdzI3WQ0YD93U+Znmtyp8PP+/5WHkcz+66j1xnHDpH3BwZQ0G0QQpsNkc4e3QffT9gvVohBOInjLIBjIz5K+MqO2s8t4/olh2NeU/vE6nTEccgIGYbHcF5i7btYl8Q0iElYsaJwXa7hdIFqrKahGYpZZlqXdE9DvDewllDlVgrlRzRIZC+DJxFXdbQhSbD2AeEKPnftz263qCsNrj10o9w64VX8fSLr+Pj997BFx99gItvv4LsByyLEsYOsM6iFBLwljQrRKCS9Ux+juvpWLZCEO8okBQBAqUjq8erN/Zn3UIAvKd6OZETTCnsQiR9jbx0xaHQ4nXtBxsb1hh8+MGHUEEALmC5qKCFiNakhlYaxg3ZZjFmqHDMt1rUOL1xmtL+fCEi/wHR4xqJodc1Vqgc0Q0Zs1dEFjcEVKY9wIs0EOBDDAFoD3c5YBhaIs95+q7zFn0fEKKSnowbb6EVFe0BFaCr62WCkHlTZm6GjBwRTm9lUigJfxWJx8GDPARKC+26DtYYLOoFVqsV2rbFer2OEGeTHnJd1xS2kIoki11U94vhExcNhEfn57i4vIyZNrzBuskqyIsTL/hc7+TWrVs4Pj5OyATzD/h3vo6yLLM6LQXB+9kmEAKRY50hI4yyd6bPar75s3GVjNAQELxD23eUnYTx71QVlRbNZ555Bm+//aOYFeQm1WHzjYk3Jx/JgY87afg7DEfnIZbJ9eLqZjT34g9uhB6QIiDEAVkWCrdv34QQAt/cu49HZ+fwkpAPYaOWBsS1550iG4h8mmhoBJLIRvCoqho//dnP8F//m/8K/dChrisMA7Hyx82Ljwk0TRPRLRV5OFRzgAx6CUT5cyGJfF2WGt4HvPvO7/HjH/8YR0e3MO/y3MA4FALKP5cjG1dQOSBqKlxNlx09/XBlvLFhmo+VvJhgvonPr+dgGMWT4JrIY+wQyRDKn9X4tZA2PYDFwAgdVVKj63qqhqwErHOQsz7M+yM3mPJrz58nv8h4G6/PWIfz80syKILH0dEqhoK52jArNQPBCzTNHvWiRlWVUCpq0wgRHU7S+ygKCe+Jz2MBdNbBgrL0pKaqpi4IKh4XEwzYXTTWQmgNvaxRSAVvPRproUSBZ370Kzz16o9x+nf/Hr/+H/8/+OqT93D+8BybWkWkO6CQOhV3dCHAwZPOEKZzUEoJpRURbxVnY0nIH7A+/Lk2JwCnqFy9Ejw2RQxLTrWGGC37kyIbdjDQRQklJZbVggRHAiBCjE9PSlyPErpMTivLEkdHx5GExalS04u+UhgqawytM6GPGPF0LIJ6xs8JgclkZChIKQUICxWJTLRZAVpzaXiPpu/hPZEXdRFDHwhwUQWTeBcqIRrkbZpoAMhYzK1ISMQcpuXNOecJcIE45pdQNViXQjP8OQ61MOpB9zOyzYlvHbBvWjx6+BBt06do1HWDI998mai5WCzQdV3q7zwGnGek8HUURQEfKONICpEWfI59M4J1cnpKMWBICD9l/c9j4HzOvLqviJY2x5z5+suyxOuvv44XX3iRjIxM7S4vHT6HmRGmKMQcxeDjzxGP/JnOP/997XqvgMNc5H0CQF1XuHPnDoSQ8CHg/PwCIXjUdQVjSd95gl5k/Zn/jDls8VOUhYCAWPPK44UXXsTtO3fw7f2vsFzWEGaG+Mi48MhIADYDbCLZCyhZxN+ZXEtomU1Gocf24hwffvgBfvzjo4SQ5e0QqgVM+Q+HjKp8E2UYeP7i70yfr0hk86s8immYj8fQ+N3p9V65lyu/Hb7eQ9/ncBobAgICi8UClxdn2O33FM5VOYggJmN7bmQBueT9+NmxT1UyWiGI7D8MBhcXWyyXC2w2y1ggcohcOxfREADwcJ7WgarqUNeLybOl85IAo9KKskcgYAeDwThYQeusVAVUqRCcg/WkdKqVRKklvAnYNj3qxQKyrmB6j8GAQvdGoCzWeO0nf4Wjk1P85r/f4Lf//t+hGfbQpYB3Fl5QDRbrAhwEvKBMQxvGAp65catj6FYEQCsJdTUT+h9dswCsUghq3LfjEkFrp5hyNf6kyIaUCuvlGm4wuHvnDhZlDWccrCSEwQwWHh4egYrASM7TpnLF1nlopbGsF1FcRSQUgzzFsYIfoxzTNk4OhuaHwcYU2AClyMqm1VfCy1hCGQB70gICRUH55oM1cGYAvI21AUiql4WvJF0Ymn0D5x2qoqSaLYJIU4wA8KbMvIDFYpG8fc5aUUqha1vy/L2PWRRR6z/ev4uE2fVqBakErDU4OTlGWZXYXm7hg098CQAoqwqL5QJN10NKGxcMegESu+0Ol5d7iu8qGUNMKUgdDRSR+pMnHd8Te94sx85cEyFEqvrKISMAqOo6FlEiWNpZi7qsJuGfqqqI3+FCVEqMm0bmbTnvEszlQ0CwDsYaGOY1QGCwlP0wWOo/pTWKusZLr76CW7duQWpNSqrReMonSO7JeO8RAOhItMw3kzwOn3vbeQjnkJc72fhwvWbHwTAKj/TAoRoisxVa4tatm1BaodAK9x88AIyFk/Rhx8p/goKHPm1C/KhFRvMCuDa5D0To1Eqirhd44aWXcO/+16QsqABnTIRR43EAwI/hjXws0fCitOs8pAggcmoEglb4w+9+i+effwW3by/Hme3JTEYcC4gLnUeGbM2REIwLHm+UgV31iKoGZGP+YJtuyIfDD+Ozve49PkbO2RCRsxESantd9kqICAgJFPp0D/RdJRUgJOrlCo/OHmG3b6C0RIE8zHWdgTX2Wz6e87FIglYxhBr1VyAErB3gg8XF5SXqRY26LlFVJRxbwaTYR3NZBwx9j65rqYil1mnsjf1LTqeI41pKCin30Xkqi4qcC0QDmGwUtN0QkUwP6xwqTeNDFEV0NqmmTLXe4Jk3/wKbG8cIusTf/rv/Fl9fPsRRCVTCQUa0LbATrASssQjuaqYJr1dCULbK44TM/twbybST8yUFrxPswI4ZcDLvi8f0r55I1EsLyod2XmAwNoUy4AOEIilzKTSCkPCeCn15DxhDFewkSALWGZ9icmWp0bZ7lOVxQhloYR8t50iDgxABzhELfbms4ZyJIQIBpTS0VjT4hCBde47zAiSRHIDgDHQpsb1oAWuxqmo4OwBwaLaXafMsiwJdHHBVVUErncSmpJQ4Pj5OBgb/rOs6kTk5nOKcI3EVT8iQEAIiAFVRwluXUjOrskKhNRaLGrtmi5PjY4iYktUNLayzGKJ3v1qtASmx3zdwXqEqNvC2gXcKVbHEed/gm6/vJcMkOK6mq+CcmRga841xsVjg+Pj4ClqTa0hw9gkbfSEEtH0PGQuKwVM8bLAGutDwzuPRo0d47tlnqR6Fp+qORUHpzznygECGKV03Iz8OQYpoQDhijQcQH0AI6KrG0ckpXnrlNQhdgmsUMJ8mv888lMKGCFvvh4yI/N4BTDxcYOoxcsvTmpmvwn3Hv/MY4X/T9SJWfh03cyE8lAIWqgBONmQcB4Pz8wuo3sIoD+8lQhDwUUeBBNQinCVBxqYLQNDRuCSdmiCIlV+oAt4Cr735Jv7w3u+w32+pTosnYp2QEtZYCKFJLAmZzFGseUIofOQe8IYERippYxICOLs4w4cfvI87t58mYTLniXmgFbwgsTKq8hvtDgloUSbZaV7hAkCpgYI+G0Ig0cFA6b1UO8YBguolUXgiHnOyro2o3tzD5eeTc0SuM0Tm6Bchvcj6xmd/s/HzbJxEvpmIIS7+HASMcRCyxHK1ofofxsBYh6KgUAUCqX0S10PDmkiEDkSwZOQigA2NmCIaQ96JrJ/mQoBxHi5YBOexa/bYdB3qxQIQKnEZnDNErPaA6Rp4Z4Hgo2S3QFFUkFJH3QrAeRozpVLw1sLYHtLaiNgRkqeUQiHJoPbOwxmXSNAiAKYfIINAVSqIIKgWSnBonIcVCkoq1HdfwF//r/93UJsN/u2/+df4+sEfUcGiFB7LuoBWCs5RbSZhLeBHjllyYi2FWZz18EOHytdXnvk/tlZLjSL0gKMCflKLpLdBVWUDyXtg+nqc9oONDe89tttLLBcLksOOHmsM9Y3WtGCi0jgxeZHt+x5N06RwixDjIj2BbGOcU4hR7Cm/Dl4UyrJMst68WRDSQdVi0yGjASMFYD1IvtWRlK6SEkECZqDU1tVymRYaKUlYJ9fQUEqn9DgmPK7X64RuMD+FQylmMGibJl0zZ3VUVYWu67DdbtF1HU5OTuJ9eFRViaquSOZ9uADHyNigUUpht9vBuQAlFdU3iBuUiNU9h8HMvMEw1oc40BixWC6XiRAKjBsh34+UEk3TpI2Znx3HQquiRFFRJVFvLaQglKUqS/qb0ghSQcW+54k+T4NkQ4FCFQFSR08R5MkbSwasisbfc889hzt3n4IuirgYuonhwOTiOfQdAhUB9NmL+yNHRfK/58gHHyM/5iGI38/6Pt/Y8sbGbKq6maVl1lWJGzdOEALxUe7fPwMGAyccAgT6YSAin8gEsOKzp+uinSKE8bxFodG2LaqqwMnpKZ59/nm884ffo4jZXOTtKtLEAaMZ+VJzNYST98Mh2PXjjz/Gz372K6yWG0gZ54wPUDrjMMQX38PhcMOUXEvZBB4sHHYdAvVdLR8vbCDmhmj+Gb7Ha48FrokSUoRsinDlIR5GJMZ4Of3OmSkKVbXAbncGYy2cE7AiXLnO/D443AmEK9kEeZiSDXHvfSxt7uFh4Sywb1o0TYOjzSZxMmRMi/Y2hsicpbR7T+J6/dBDCI2y5G0m9QKt6YK9Z4rjBS+ommtC4HiD85N7gfcxY7AkFVWvwUKGxguq6gyJ07tP42/+xb+ENw3+6//nf4mzs/tYSDLEFxWto95ZrCud+GUcjp7Maw43/kBgoyiAF18EFjXw7X3g228PIfXTpjXw3LPAakWff/Dw8He0Bu7eBU5Px/cuLoCvvkIKawoB3LkNGAM8Onu8axbggoVxrDIIjpFILQQb+IzI/YnCKCEQX+Dk6BgAUqxeZotx/GCs4Dqyo/k1DJSKyf/2sV4CC3VNF2zqAmAaa89jjUWE0qiEepc0LEJAjN3yxSNNIuccmv2eqqgOPUHVboAzA4RA2uDYys05Ilz3w3uPhw8foigKrNdrCCGw2WzStbGhwtetlMLx8fFEbbTv+8TTODo6ioZTi8WyhhL09/2OdCmOjo5xebmL4Y5AGRjeQ0AmKFFmm3bbthHx4b4UkQNweHDwxrRarbCO4musiJrXeyEDxyXxrTHsFaF2IWghjEaGEgI+OGwvLrFeUgVYay0hXHpc5HJCXk7+G8/h431SahobIhDAIoqOvfnWW7h582ZUZR036ENx8TnczJod+UIzNxjy7+ULO//MOTm5p5trb+Tfz8+RYsURBZlvbHkmzWq1ImO1XkAIjQePzum5xBAW6RlRSQFCFSKfJ9u86bh8jRIwlEIOL/DGG2/is48/grVEKqbshRAF8kbBqSdtIQQ8ePgt3nvvXfzqV38VPe1RFTXvfyHjz3A9a5yfRd63Pvgrzzjv7++6Nn6xccprU/5M5t+59rgRhqaThyvTj0oxxLAxxtBQfgAytMj4Wa6WOD9/QKnvpYQU09DMaFyMfZjuKaIp7BDlBOfc2KD+swgiQISAtulwdnaOQhNKsVwsKO06MCrlIZRGAKkv932PoqpQ1wt47wChIATfHYAwCjQSwmJjvwpIOSUl+0AEbv4qE/IBYLNZoih0Ug+mUgkSXmtoKXB86yn8k//0X6A5u49//9/9N7j49isEawBfw9sezhhov0iaRs45YBgQhICQo5EkpYIWj79dLhbA2z8iXSxrgTdep/c+/xw4MHwAAFUF/MXbQF0Dux3wk58AH3wIfPHF1c8KASgVpd4L4M4d4JNPgC8ir6QogBeeB370I+DXv358Y4PGmgfXYApxotNwHEN7yYEJODgfDrUnKjFP1t90MeRQRYLBwROGRkhCBCIno+87cEEm/jswkhPp+/Hmk4sztdjzDYqLk3Ud1c1gdU6V5SsFBIKBYYHgMAw9rDVxEYk1XQJNFq6fcnR0hMVikQyOnEQZAtVEySFINh7Yi80JlWVZgkh1BqvVCs45PHjwIB1vuVySyJfW0LrArrnEfkcS6rSx031QhkqHtulgDYUzSLkRyUAIIaCLqbZC0ADnvg7XGBt8jWVZTlj4h7z6OWKQjMloDVNpeAFEON9lcu2BB2gATKxcycfgZ8uLYDJi4kbrDBMNx+cfQIX+bt++jVdffSVl/1Da4Gis5KS4eQgkhEBEqOyz81j8IcODG/8t77OcuX1ILCz/TH59bJwwqTYvepdfX1VVODmWKIoaMlZsHXa7lAkExLoO0WCXQsLDp0WbNi9SUgQC6rqCDyT+duf2Hdy5+zQ+//RTSE3pbt4FEkZKDkDerh9Th/pKCEBIhXfe+R3eeustrFZHVAJAl2ndkJGMSmXTBdGwDpg48+fJhul1z+i7Wm6s5KE2ns+HjnkoG2Z2VKT1Ky2JU8OVHhfzYhjtGHkeIURDL84hrdk503BSTcYN/+R1IPW5nArZ8ZjitW18NpEMayneRGPEY79vcB8PyNE6PcFquQSH+oh/ITEYSkMPvoEqCqyWq1hjJ+f3YDL2ffCJBxaCgNYBXDCOjI0YTkviZBGJdBbD4JI4Ga9JxjnIosDgAoI1uPns8/jn/+J/CRksPvrd32K4PMOiEDCtIJn0LHSSwqlAEkfk9crh8RmiJ8dA3wPvvU/IwskJ8POfAQ8fAtvt4e888zRQlsDf/i3Q9cCtW8BPfgycnZHxkTdjgM8+I0PktdeAoqRz8fA8OiJ0pGmQEiYepwnnoOBzHnnah68geUKMBsljtCfibBRFQcqQOmMbB7a+Y/xPCMA7cIaI0hrDYKBUzKfmgmeWF9lxYedJMi7ISBsp32g+kXjQFkWRsjtYH8DPFiIIuk7rXKYboePiJGEMERE5G2O1WqXN92pqJhkBnBYaQkihBUZXjCGlUWdJ8rbruhSOads2ISGcddK2bSrOto0Iwu3bd1CWJfp+AHuV3hHEuN1u0bYdgtAwxsXCbNFDzAyyx7U+l8tlkkYXgqrRLpfLtPmFQJkmLJaVe0XkDQVKGYuIBiQV9dk1LQqlUJUVJIBCaRrQnvRY8oWyKIrEAZlA1iIadB1VsG26FtZ61Isay+UCL730El588UVwuMc5j+CupoNeiamz1wdcmVD5/fHnc77GofAHt/n1H/Kw5xkB/H02uLjxeJ8TXcuygC4olNe1pDzLY1AVCtb5yNkhzoJUIhHA0qafGcZcLVcIiVdfex1ff/ElIBWkVlRwK8RrebzhNLn3HN1kpOXRw/v46KMP8LOf/jJCtQSpJ7WqeH1SyIOGxvwc3Cgk5iZ/mxuR33WsQ8fMkaj5/eTr0dXjAckYmyEb47mQNrrx3+OC752HUhLO+1iDZoGupbR5RjZ4bI4F8jAxmGQM/ZJj5SaOAzuD7DixpoILLhqsIo2t+/fv03qrCihNHDAV62QpRXVRvLfouhaDMSiKKu0NowOJiYHEJRBCoPIWpDArR2NDixQq5edgTEjrJfH0IgIVAtrBoRA0pyspcevZl/Hz/+RvUAmP82++QAWD9vwhuv0O1hOTMK3v8WkFoSJCHcntB+TKr2v37wORvw0AqEpCOLLI9JV2egO4vAT6+JnzcxoDm81VY4Pb8THw2qvA199M3z8/o2P9zT997EumZgYIYyC8T/sHIxsJecvG/XyOfFf74cZG9KjIx8jY+dkCyMZ7TqYryhJaK3jnABSRgBlSCCUfeHmhL4C98mmMkc+F7DxlWab0SAp1yBgPHDtDKQklgHbfo2n2sHaguF9wCMHBxqJSy+UyGRr5eTicIoRA2za4vLxMMt7n5+epUFmeqsll452xODk5QV3XODs7Q1VV2Gw2uLi4gMuMn7ZtcXZ+hn2zx927d1EUJYyx2O8bDP2Ac0e1C6x10UgJ6E0Paz0uL7fo+gFt28RKsfOCYlcX2xxy3Ww2KcOE+ktNUl95cLFBlxesklKSEqD3sMMA4z2UVFhUNawxKGNhNt42hBCx9gYm3lie8joNvW2xa3Zw1lOYJhCisVyucHR0hNdeew2nJ6fjJPBTsufcC803FZ8ZANcZHGwU5IX25i1H6OahlusaXyP3AV8Th61ysbjcQGG0xFoSSLt182b0Kj3QdUSoS2GzAAGJJHwXxPh+QmVo7pZFhX5o8PTdZ/Diiy8DisKG7737Tkw/ZQ7CVaTncTdyIQSMGSCEwkcfvY+33nqbamuAWe8jdyEE0h45FAbLf8/72nFBqQMG3iHjM38/N0yAq7oV3HIUYH7c2ZXiOmQjv/4QQuTAs4HK98XXjlTKvKpKtE1APwxQcnTAuA/mJFYaP0QgHj3WGD6MhgePs3QvYZwb/H3vAi4utih0gUJpLJcLILB4W+SMSQnvA9pmj+32Aot6Aak0nItE4+zu+Vy8jngPKGVTGIU3f6UFiqhYm7dRs6iEiiKSCIA1jkrYFwV2/YD18gi3nnkRJ3c+hu32WGLAUgV0VYFt06HthkSkF9FZ9oe8+cdsNgNBVkvgjTcozBFtqoOtKslA4VNaS0bGYnH9d0IA3v8AONoAP/sZ8Nvf0jmcz/r4sa8awDBAGQdhHVDwOcYIBTCibfT74+sTPUHqK2kZOENxORHCxCLOC1jJOOiMMSirCkVRUn74eoWm2adj0sSWyAmC+WQ/9HPOGmdEhCXEE+NfSRK6yjoKCNEI6KLJFmOGcZKWZZlgOU5trapqsujwZsy8BWstVqtVqqfA3mVuAa7Xa5RlmWqcKKVweXmZJjyfq21bAAJaFyjLCrvdDm1LVVP3e1IuPT09xdnZBdq2h5QqXo+EiyGgvu8jt8JOQiiCZ3q0UqUQaSNjA+ni4gJ1XafQFBt+ObzMkutXwgBKQTqHQik4S4Vtmv0e1lrcPD3FZrWG7QfyrDFdyBmd4pRhfo/7pu9jRkxVIIBEZ5TSWK1WOD09xeuvvw5dkPdDsOy08uo41kYxrcSxANLzz5GGuRebbyzXbUCHxu6hUAy/n4dW2MObQ+C5wTMuzDGs5VwijbKB67yndEIEKAEiD0c0TgjAgzNlxo3KOdrYqL8kiqLEr/7qnyQk7uLsAl9+8TmgY4jjMVexQ0ZCCC7p2Xz77Tf46KMP8dOf/oJ4FrHKKHvCgffoTHsn77M89DH+m0pZ5obG/LleF/441O95+GHOhzj0c1ybv3shFmlCIiExIk7Q3FiiMeuIoDsIFAWVKx/6nip9ZiESdrbmfS+EQvA2CW7N11keV2ntpqAbJNh49/CgopVt22G32xFhXGvS1CG3F0BIKMx2u8Xx8Ql0UcIHl3g3/FylpIra4/Nx2XPPQp9CQM3CtoxykLZHQXpN0fiGAIQuCLUIAi5IHJ3ewc2nnsP2wTcI7QUWiyVKJaCrBcTFFpeXlyRTEJ+IUGPlXBqDj7ep5k1r4Be/AM4vrqIP80bI0PQ9pa7neACEfpyfE9/jn/w1hU/u358d9wdcrzOesrm8Zxo4zRmZI3fj/ivF4cysQ+2JOBtpAkfvkT1cICum5RyE4FhniBOgSIs5hTtI5ZKzNthQ4DTS77yOMELUOVTN8GHTNGQEKQ3ubhGdMWMG7Pc7mqAxHmmsQfAukabYiOAFjI0LPl+IXnXTNOj7HqvVCpvNBk3ToGma1B/sKXA1VyaDsmAXLxJ5kTCqM7HFnaeewjfffBOLrjkMvcHFxUUMlSASTUlNE1LBWofdbofLyx0uL7douw5XxwEtBiGEVJqaF+DNZoOTk5O06LASalmWqX/5eqm+zCJxUCapoN7DC4Gi0CiLEg/ufYuqKHG03hD7PMbFvJvGQLm/OVzDnjvV23BYrpYI8Oh7A2upAFlZ1jg62uCVV17Bc889h7Ioo7GJRGbklofCcouc3xusSc8sf9b5Z/MFkDedufGRh1ryje26MTw3JPia+Ps5WsKGF/cNvU9VlJVSuHnzFCEEDGaAiynkzmm4fqCwZqFoA4mLPRUH5v6Q8EECqXy9xHK5SQTsX/zyL/HHL/8IwTLPjIrEkvQ0zR6/foRUAs5bdF2DX//6b/Ha629A6wpCM1JK1UVzhyLfPOdGRv5iUTv+3HUtRzPmzzlHV3ncz1OeDz1TRgXoje8Ko+TH4TVqbiDxfeS1gjTKsojokJ3U+2HjnDln0/4SkKpMfAi+/4N9yt+Na6b3gIshLmupBMKF3pJA42aDermEMQM5AVpDSgrrGtPj4uIcy1jmISAq1iILnWfoSlHIiGqM4ZIAKgGfzxO+dg5VDwMJLSqtAdNBwEJCQ0gF6xU6BxTVGk899xLO7v0RDz69QPCAEuTgnJycoCxLnJ+fo4mlKEIMmxC6IuHwA2KHIKLnf/JXZGj8/vffbTQAhGJsNqSe7T0ZEMvl4RBKXQGDGY/p/ZSXl7cfgmyQcquFDiHxMaI/fmXch+wzj9OeiLMhpYSXknQ14sD1cbCk2F8IUbhFAVEOVkpaRKy12G536LoeOjKagdGbY2Mjn/iTa8gWiLnHyIhE0zSksikVdKZQiUAW/GAGUkEMDkPfou87SsUqdMx4cBNPwTmXSIu8GZO0OPEuiqLAo0eP0n3k7Gjuk91ulzYpzp7ZbDY4Pz9PG03TNFRzwnt88803USwsZqwMDl3XUyqsoc/u9w1Blv0A5zzOz8+x3TU4O3uE7eU2eRCTvhMAICdVVlntj+89hLHyJT+TeUYFPyd+8YYAUInm4EnkxwwDlosllKb8fwQPFmCq6jLBv7zRsnfFaZ/M4XDeoR8Mhkh8VQUZhbdu3cZrr72WuCV8n4m7ginkna4xLmA8aXKEJR9fwFWjIzcgcmMj97TzsXvI2ODxmn9+3hf5tXCf58adlFSkS8bKpSwDv91u0bUdek9p0VJkUHvUKxEeEDJE1F7EjZ1CLcJJCKGAIMD/Pffs83jhxZfx6WefxLkR+yINroO3eG2z1hBfBwKPzh7ik08+xmuvv5miDGMIRMRN6jA6NErWHzY2+BnNn9V1SCk/7xwRY2Nj/rm8zQ0WpCv4vjDKaJnkC3viiMSPeM/FBkWqT9TZduIQ8ZzmNWpC8hYOWjh4f1XOPO8nmg/TywtArGMEDP0ApSR2uy2RNLsB8o4k2fo0jonL0XUGu90OXdeSLlAAAA8u8MfXysazEGzEZ6gikMrd53OUnwcT5MuyIKVPBARPqfJCSATh0VsPDWBxfBPHN+/iwRefwAw7ckqURiEIedZaY7vbYd80aLohji3QXsEE0ccY58sl8Je/Iv7Fhx+S4eAcETuv25vvfUv8i9u3gO2OUmC3W+JeLBZEGG0b4OISePkV4n98/TUZGE/fJX7IIfLpD0E2ugB0SqCUAkXg9YvXp1l4MIINfzJjA8gXWiLg0eSm5r2HzEhs+aLMkK1zjizIpsFxdRIHPBVJyzfzORmOj3fIGs//zXA8lTtXqLO+kJJYzNZETY64qJdlQZZ2nLRkZZMhxJA+exAjAmNwcnJCA3S7TSmxLCVeVVVaBJy1ECDuwVhEzuD8/DyFPS4vL9E0DXEktMYXX36JN954A/v9FhcXl0AQaNse+z0VvDo/v4wpnhLnl1t4H7Db7bHbt4RstO2BZzdFp9j4WS6Xqfx73/e4ceMGFotFKrQmJaVbsjGXe9ZzCLvQGgIxo2IYsFwucXx0DG8s6XxhRBO00gkez6Fx/umcw3K5JMOjNZMxxX389NNP45VXXqG+9i5mRpH3LQ9sCnmYLzekEGOR+djjPpqPu+9CKvjv+SQ8tDkJMWaa5MaFEGKSBp4MojAtx56I0YoqLTtnoVSBxaLGzZs3sNvtcH6xTfwann8J6ReE/ngxLoBU3ZEVfxVEkCANDDJU3vrR2/jjl19GoS/SwPnh4DIABHI+lIgcnAF/+MPv8MILL6FWJfHhHanIElwroCFn68lVo+5xF75D4Y95WIXHAv+Nx34uT3/lrvg6Ju9l7xxENkL6fUQ2RmNHRpVONgJCvN6yLNG34/XmfI38+vn+hGSE9uraDMyM7NSPmVEiuQgXaeNY63BxcQkbxeNu3DiFUISOOUeVW4tSYegHnJ2foywraF1G3hBSyM4am0QD6Vx03jTnpJx47PwsOOzO88XaBYSQ0IJS7RF5O54AGbSDw7pc4vjWbaxPTrE3Wwg4wI/hm9VqBV0U0GUJsd0nBB5CQnj52Dv3W28BN28C+wb4p5GkeXEBvPfe9dkoDx9SGOTtt9PQx9/9PRkVN2+S8XF2RkjJV18BP3oLeP45+lzbAr/5Df3kFgIZMPv94fMdaq3waJTAUooUNiIDOPKnss/SPnI4FfxQeyJjg6dTCCNHI6+dwYuAiwObwylcJ8Nam4yNm7dvxUEvEIJKi2+elTI3JoQ4bHSwN4wQsFgssN1uIXqJdUaSNIZCEcYayAj/0sYSU1+jkcH8hblHT6qlyyhupZO2Bw9+Nk7GHHKOsXsoKZMyKTfmbJyfn+PychsREYuziwusliucn51jv29wcXEJISQuL7dxoxd4+PAhef5lid2eNDW2uz32eyKudt1wwIqOHr6YboB1XacsE77Xi4uLhASwgZELm/H95iXcpRBw1sEMBgIC+/0e6+USi0UN1xtISi9Ii3g/DGlE5TBpzhVp2nYsAW1IbbAoVHoWt2/fwo0bN+mYkqypsixIgTRMN6K595r4D3GRzj3BQ69EiM7Geb6o55yWPDRyaBPMQwPspeUbBhOG8zAK/zsPCWlJaZA6qnwK53ByfIT2zh0MxsI6h9JaGGfZ4qf55j2CIC5EcPMsmShcF9MWtVII3uHFF17Ecy+8gE8//TihDqSfQGPrhzYqKEaZQ1/98Ut88unHePOtv4hCYkBwgPSc0TaG8+bzPnnBM2ThkAd/6GduvOXHYcMzDx9et7jm/Ze9ie9HNqYfFxhTuxHJTaxBIuL8CgEoSwoZ5wRjXjd53jJ/jTZtHTexaeFAbhMibHbVAGJ2mSLEQo5ItvcO2+0O3lm07R7Hp6c4Oj5O46YsC3TtgPv3vyWn4/iE6L88bzyFsI1hg9jzEAWnPgs1KkDT2kXzpdBFcgAZ8VNSEmHWB8AZeBeVS6PBGmSBen2MenOC3YOvIZRD8MSTSkiQlFivVlCqxL7Zox8G+ABoo4DvyCbJ2+9+C3z4ASZpp9ZOjYF58x746CPgj3+kMMluPwp0PXwI/NuH42cvLoD/7/8ArNc0Zvb7q2GaEIB333286+XWBIcyeBzDJ6eUDF064OisjAbw46amPZGxQWqVhjZn9rLiAEgZJCLWRgkOSlClDm8tCqUwWANrB1xeniOE5yPaEaKnV8DaWEkw0MQgslS8SRFrPmSbJXeIEIKEohRZvKXSsH0Pm+UbiQAMXY++a7FYFAT1Dx28t3DOotIFgvfoY3n4MQYbFSadg4xeRfDEPTk6PkJZlCSt6xwEBHzc6Ajio8HcWhOZ2qzsGdAbg+ADHjw8Q1mWuLg4h7EWw2BwdLzAYAMutjtc7vaQQuFyu0M/DHDWoek6OGuxb1tYK7DbNWi6Htt9i+2ugckFzQTrLiAZGrw45iGUvu+Tx+C9Tzn4XBuFwz/8fTYwkxdWaEAJqKBgBwNjBwRfwVtLz4/ghhRGsXZEK4DIcZES1vMGTRkrzhNZzQUBY8moqNQSy+UKN2/eRqFKaEX3IZWGYPhfTo0FHi9zpACZUTDfZPj6DnE5GKnLOTrz7IQcfufzzze8/Ly5ccvn4s/kmx7/jUiVjL8TCVQXGqv1EpujNbb7HYQS0IIkmoOLz577SAgE5l0ImnNSFBA+oKjKEUkRFBP/8Y9/is8//xyICqZdt0dZaCilYazDIaPjELJDnm2AVAGAh/UDPvzwHbz6yisoK0CpkgpyOaCqSoLGBWUJ8GYYPCtMxp+R40DO8dU+nhuN6QU+IFePoX9LEfVi4mZFtIUwWX/yY+doC508O9i0R7JxQHdDX+MxGO+JQysiZL1K66FSJZQq0PcOZcE8BwElRToxjylCZyWULuC9AmWlkLHo/Sj8Fu8m9slogFF6KxkaUkp4F40CqeGcx+V2j27o0HQDpNI4PSlT+ntVFtjvG5w9eoi6qkguQAgY58khkBrOE7k8BCoGp4QARCzCVhZUhVTS+0pqFFJDKwl4CQUJ5y28tagXNZwu4CBhfYC3BiKK+1lINAEI1RFQHcHJiowbP1A4wIcoBEdPS0nELBcBax2keHxjYzD0epLWdfT6vuY9hVj+IZu3Adp6SOuBgkjWAoG0FgAgCCofYQ1gB5J6F/Oxfbg9EUHUx3iYFCIJrdD7kewmyTNCIINDIkAFkrJWWqN3BPl+++A+3vQGEBVV1tOITOkhWvbxnBGGZFGYANJzSCBkmuBRlS5uEIu6RtPsYkl4mkpaShRaY+h7VKWA9wbGDAS7BY/gSfbbRkGluQeFENB3HYZYYr2qamil0bVEyOLNhr1SF71x7z26oYt8Dp8Qkb7rYYzD2dkllssFvr3/CIvFEsY67PYdisLh0dklmj2Vlm+aNpFMGUUZBoOAEk03oO8tus6g7XOZ8pEoGTBqonCoaLVaJV2Qtm0TwpHXd+HS9izbzoRZFuNhT34wBv3QQSuFbt8AwZPaoBDQUbaYfT2lZDTKMrQhEOu9qMbibUoV8MbADw4mkoq1UDHlbYHTkxsoixJaRfGrQCRgISVEDFml8RumCqH8XJnoNN+EJqmAmMby52muuYc9h9r5/UPcAP58TiwFroZq+HrmhFGWaqbjhmR4LFZLHB0f48HDh2g7dqkEFDRxVDKBLyqOJTKVzgAoRYu8Jq9WQEFIjZdfeRW3bj+Fb+99BWuId+G8RS6g9/0trhFcRAwe1rX46qvPcP/+H/H8869ABA8pqO6N8AJeBAjhqZZK9jxpwxiJlDFPNvVZ3n9zlGq8GhFttTgG4r+lGA1jNszmxzvcRrRn+pE8ZMhS5KPBMRJK4zEEpwJn6AYEECSk0CiLBdpmC+JgFfFYMobOxlTnRHAXAtbGUIhSEUHQEIK4dXmdFuZPUH8gHsdDynhFfGOCUj3Nvk0IhXceJyenWC5XKAqFqiqw217ggZa4e/cZqHIF4w3awaAbDNp+QAgyhvHIeSW1UgVdkMyUVISsKFVASU0p9NFghvMIzkGxMSQFZLAInhxiHwALBSk1ysUR9OIIUDWs6ZCedux7RnHZqNU61l4Sj09+/nNtfnBAMyD0Bq6ISR6YOkjBGgQXX97icbXOfjiykWBzEl9BRspyAGU4cIwyGgQenCajEDwJulhj8dVXXxEMJkpIJUboTEz1BiZ8DYxwZd5Edn0Akmw3VRcdNxddUKpk8J6ExUSuHhow+GGyeTKsnsfwObRSFCWWS0pfBWjxX8Sk6L7vJxsJhwWGwSQeRN9RDQuqi9KibTt0XY+6XuDycgsIiQcPHuLhg0fpGHOCYN8PFC4BoSVNSzUMrLGYN/JgqbdIV2QcRAz95xAsXzMrcubemxDEl5hvoilLxVoMQ49CFyiLInJWqKU4clmSQZrB1+SpB3jnx/t1hKawPDurnC4WC5ycHOPk+ARaF1kYIoZgsmsbh8cUYucJJCEh5NVU3DyOzf3B959D13zcPGvpSt+HaUjlkFGSIyk5AnPoenhMcAopvT+iHEVRYLkko3G728F7IhA6CLD+Cvd3YI9ejERXGUl5WitoqeEdefrFao0f/8Vf4P/96AFMv0e1quDtAOssfsiSEjL4XykZU7v3+MM7f8Dt20+jLokvksZMtr/lzzMn5Y7PNw8CXA2VzA3QQ8bJ/Dz5M5gzVa7nilxPoJuHg/iqx4u++hd6RmMdj6qq0DbbuE5VqWo2ESppTeX+YeNUCIMQq0fPkbvcuA6pGODUME6XF9/n0G/wBsPQ46uvvkLbku7P00+XMeSqMAw97t27h3qxwI1bixhOtXGtdJFUOl4PkWApg0VpLhtBhhGhTbFoYbZWkdM7XmPwATZYWALyELRGUVaolyvK4PMeBcjJYV0NHzxcLI3g43PyCJD+h4cJ/9wai7n54NGbIVVczp0p6x1ciOt04GrT399+uLGRPAOK9QrIyYT3zlGlvODIM4CAUHSxWis4hLQx3Lt3j2B7VcXNZswXz7UyJh5EmFzKuIAwU3ZmnBRFiZB5XBwCASIbXhLK0g8DqDS2Spto+k68ppzIlyMYu90u1arw3mO/3ydjhSviEmt6iFkyBl00LIyx2G73aNshbQD7/R4XlxeAIKGw7XabzpXzWJKR5yys9WnidjEENH1szEindF8paMFkDREOneTGBnv6XPgNQEqH5XvlbBUOrUgoCCVSxc/Nek39GavAWuegtILk2PeBkAJACpDOOVg3ZsewEciLYlEUODo6xmazoe+kzwF5XRQ+9nWxfPplfNb5ZycZDtnYmhvB/N53kaUmYZtsbPExckMn3zz5NT9Pfo35OUK6X59CYDynZJy78ONx2NiQkqssjym3RVHEjYsyWqyxMIPFq6+9jt/99td48KCLKCEVG/wh0shs7DKpvChLOAt88vHHePtHP8Fzz76EEBys9VHqf7rwzQ2M6/p+jmYcMijmqMc87JY/Ixn5JPO/H77J7/57/jcKbX1nj9H6KzlkrSbZJyF4CEE8KlI9nhoaXBQzN5LzcT1H83JjYx4yyvucjF5Ks/DeoWk6CHGO5XKJ9XodM6RorHddg4vzc9SrY3gnMQw92v2OMszqJYUzAEDGuklSJiNZF0UMlcpoaAQ4R0U3x/0ixE2Q7s86C+MDvFCQkfAvpERZLaCLCkYoDMYhGHI6yRkjPN4FMlysd/De4QcIiP7ZNuccurZB1y0RJGgfz5wvIQSMM7DekhHnLVWSfoz2RMhGGmz5ggtMBnI2NGceB8uDBzx48ACX2y0W9Tp+NySLlsuXs8DWONjHRSMCm7RQEosKPk8JjAaMKkZi2WBMkhYfBgshHdq2w765hACwWZBeBgtLcWZLvgGVZZlqlTDhk0NInCmy2WzgvU8puM45XO5IOMY5H1GNluKdlztst7t0jkcPH6E3BsY8RNM0MLFctPcBRSHhHBXFspbRDodhoAJlydgI01RNboJh1TiBy7JEVVUpXZcRmcVigc1mk8I9+/0+bu5HCfHx3ieBsly2fbFawA4GUkgcbTaxQiDXQwnQiqqHct8xahACGSPee8g4RoLPF3oBb8cNnRVYF8vFxDhKmwAoJMOhvhwVyEMe8cPwwU8+kxNI+RrGaTCiFDzW8hDL4akz5WwcynLh8+Sbac7ZOHSMEEb+CHl1IW5EhD6tN5uYQt1FZc0xbXUyNoSAjChJAKCi0aaUJnl5IVN9juOjE7z2xhu4vDxHs7+Ai3LVP8T3Iy6AjEidh1LETdg3O7z//ru4desOljUX8Jpmhsz788qmna1BeV/nRltOBsWs/+fPjZ8zhWkVlVK/pk2u5Voi6FUDkr4XDvYhH1JgRFeYpM33kaes598Z72naT0wgJUdQp/R+5mGxZPh8fOYG+MgxiuGruB73/YCzszPUdT1BfGmN3GK7vYCuN3BmQNc1MKaDtQbWWZSCamgJKWNBtEhIjwiJ9wBx+cfwI6O9iJyaEEQMV/dwAZDlAkoKGGvgiwKL1QrVcoXuTCNYTyXVY/gtBJBTpjQ8aDO1zkP6x4wX/Bm3zWaNQrfRce0mayLPI2MNXKyobJ197En/RJwNE5OFi0jEBBDToqK0rJTQhaaNP9ZhYOayDwGyIM2E/X6P3W6H2zezNC8pY6xRJiW8uUeSMgHiVA6BKhMyg3v6+VHoK8R43DCQ4JFzAwJIw3+320NJgRtHJ1itVpH41iVLn1OztNZYLBZYrVYxhNFF0S2SJd/vqZrtfk9pU9vtlgyAvoMPIVZwldEoICOkbTs0TYO41mC73aJeLnF2dh4fNG0iUhKxiyu+DsOAvjcYBovBUIqXMZYgTXoqk2fHsWEhARkzfxgp4M2as1HY6OCQBUOVjLLwd/P0Xk6hraoKu7MLQpGKktKLA8HmSikgYJJxlC9kTFY1ftROoGfFCxo9/8VigaOjIxwdHc3CPJEI6xxlWmSGRh4imDefGRc54RUYDUn+nTc9/ndufF3X8gnL/+YNA7ga3knzbbY55BsUj02Ko09j7UoRQU4pjfV6jaOjI/R9D2M8zBA1cNhRCNONPBljkjLJiqKAEjIatAFlWaHrHH701l/gN7/+e5T1As4O0EUBf3hvPdic84RySYmAkZyrlcJHH36At958G8WdCkqV6PtuUg03N8bylhuP1y2Cc4OD+mCKoM432PzZCEkckoPnTW88Xh98Jypy6ICR2sHGt1RjVWq+PtKkMWkdZeNBCCJX54ZXjm7w8x+N63BlHuRGeP5vJq0yugBY7Pd7nJ2dYbFYoCw1jBkAEAK73V6iGAL6dg8z9CADmSA3pRTKsiRip0RMt2VUiYiRbFzRNYxcJwrb08s5SqsNQkCzk2UsxLLCYrWBrpYwPkBFtI/W30CcPUdZXM45GGthrIX0P4ST9OfZTo6OoNUOIYxSDyHuQVKyQx/HjJ86Q9/XngjZ8N5DRIiJF1qahDEWGgBjLY8KKDmWJ3chQEuqt3F5eYlv732LN157Ky0cDNFT4bE+i0tzuh+xkp2LBgynK4XR6s89VqVUjCUjpdzyhKLMiiZlWJSxVDyndHKIgD1wRlkWi0XcjAM2mw2stWjbNqabdkkXYrfbEX8iEiytI4uf88uNMdjv99jv95FjIeImHLDfN9EQIeRguVwmoyfnswBk3Hlv4WK+OLUsTMBCOTPvZERoQjIwAExgdy7ExshH13VX0kM5LEXPy6LZ73BxcYGXXniBrrkfUBclQLxmWhgwGo25zLy1JBvvQNdUFAWEj96vdSgLIqgul0vUdY3lcpk4OblIF2ltjJ5vbjDMNULSgi+mGhz5ODqEQPA5uc03qtxrzTkCfGw2NnjhHKfYNEzG1zBHT9hgyYu3MZ/ApQ2ZCLqr1QpnZ2fw3sFg6s0GN1YI5fvXSiFILgwXMxaERJBjCOfk5Bivvfoafvebv4UIHAL4bs5D3ih7glEmmcau8wGXl+f4wx9+j9u3n4ohHwEWo5oTZ/PFbh4Wy59vbvDNn9FcjyUP0eScIoC4amkch6vptsD32xqHQhPz3wVGrQP6nYmk2b07j7KqIqI7hgvz601ZVUJA+ukYn5ONrbXZuBVQasrrAJijMVYk5iYFFfIbrEFRhljPaR/rR9VxLTawzqDZbzFc7LDb7eGsiWUvCIkrqwpSK5A4ukzoDfM5nCMVUw6fDIOJAovkHJZVhWEYUd7legkJknbXMWOqXqygywW8UNBKI1i6dp+ygiRCoHL1iOTZQ9GCe3/7f8P+wa/hQgCkRpAKxgNOSIiiRqg2aONetb50+L/ufowBHv/q/F9jb3q4uGknA1rEdP24oQkhUGgFLSVE8PEnBXpsAExaWwjp5r3NRaQmxLmhlcLxaok333wdL7/wIm7fvInNagUVx8FF+N8gYEFkX2sBbyGUhAyelL9VTPXwHkoEyBDobwJjpsr3tCdCNqy1EVZFYmingeg9hTSAiaHBXjWzxpUiqe/33nsXf/3Xf4NCk7Y9zz8OXfDimhaYaIGSVyeTgYH40OYkRCkFdOb19V0HYzoadAaURmoMtFY4OTlJVVjZ2GHpcSmpjD2Xrmf+hPeIHqNJ5+RwAot0OeeingQJ4TDc3XU9tts9+qj+SQOFQiTG2phq6yOD3MVJZuOiQP92ltJCrbUYjI2waLQrZgtvdIoghEyGYb4gbTabtKFxDFQplUS92JNmo6vvexRFkXgplB1S4dGjFqvVCqvlEj5WJLLGUg48Z1NQ9SiSiQ8j+dJFPY0gRSJbGkdEUZ6UbPBtNhs8++yzqRAeQJlSad0WVze5+QKfhyg4n5/HG4/rfJPnMF/+/Xm8O//uHLGYv3J+TH4t81h6foz8uXGf8fYmhGQTC1RvqACExHq9xnK5wjCQXosQ4cq1hBDA8nxCCoKwxVgFVChJx/cexmiYweKNN9/EB++/A2cljLWpDx+rpejFuImSUmgApMTHn3yIn/7s5zg9uQGpCpC/+t1IUHbozBuWVxC072qH0JK5cfp9IbMr13PAmLnufAcuiPoKQHBTJEJrCi/01iIPWWtNoTIhMpn+GBrJxxajA/NQHc3TsVBmblTnxtcknOcAUqFF4lQQ2rvDfr9CvaBUUyEVpKQlQIoAwEEqoK5KLJY1yqpMa6uQlHZbFAUhotHQGIyBiUbGMPSTZxE8YOI6knUiJDhk61BICVHWgCoSCdQ5D8+cD+/BqdmMmBwyIfv9V2gvPiZhPKHggoQTCl4pBFnCVmsYUaLre7gHBifD0+iCxcNvPkBregRnIWJGXlACRnoMziJ44rYtyhJVWaJQEioEWCGi8KTDICQaY2NZAhH3FpKm6IcBVBeLOC2llhBP30Ylb+NkfRebusHRQqGqiNuzvQBcoKhF3+4QgocuFWysVaUjOqaVQrAWwjsyOHh8PkZ7Ys4GS0h7huXin0nsBYCK1Qm1RlVWCC6gH2wk/BF8aozBJ598iv1uh+Pjkxi3FWmAs+c1ndTThTcRJiEQ4Cc8El4UxqJENOH6ro/cBdpUTSzaxagGIx0cCiEBryL93G63iSvRdR3atqUCPnHitW2bQkTMD/E+wMV0Xu99tMSJIEoiPSFa6rFSrOVNk5Aia7KwgmNDw8O5kNJHKWODkrsZRWYjL+s0Sg2exWOZv8FoBiMfKawRjY8pIS1gt9ulzX8YBjx8+BDby0vcvHEDhS7g7IDVYgnbD6TFwoiBD3DBQUmV4n9SSuiCvEbjx1RQE0miWhcpLZeNjTt37kBrFbVZRi9ZSglIkaoZ5Bv41SE95SDliMQVDzjbuPI4+dwIyFGOeejjkGede9KHDA02Sg4ZS0IAY8pi5MfEvylFBN/lcomTk2M0TQdnB3gbIvluLLLHYcd0XWw4BLIKOFMsxHk3hICnn34Gzz3/Aj756IPpOHusRvVYgCiXGJgQTv10efYQH330AX75y7+CEoB3AVJeDZ0cRAgyzz0Pwc5/pu8hXNlL8lBDjk6xamKeqfZ97bpxN/89xFAqUpA4mZFXjBw+9xyBYy0MNjaSYSsEEKup8j3xPeQGL6NeQigoNR3z+XjNuUxaawTBDhNteqOxscd+v4MuFMpSQ2tFJPVCwdU19lWDEATqukIRlZwDKAQqNfG7ikJRCNAQ8ssOHcsH8HV4T2EPax2FT3TUBxGjaN9gBSqlIHUJLzUoCZzIoey8OecSuuo8p5Zffc7Oe7hACqOWHSVNKL+zDkYMkIsC1gwY+mF0/JyBdBbCWizrCjeOj1CvFzAa6C1Vbi6LAuvlAsuqRqk1oYexzth+v8e9iy2aR4/Q7pspUiUkXHR+2TnVosDp8QY3To9xtF6iKjSUoiiByHQyvPex9paFdyQQKLynkvMqGlHxPYWrfKfvak8k6sXs8SsLKCLKIABEARbO86YN0oIZ78zyffjwAb7++hscH59E75b+zptf27aTiUBGQhavTXEjkp3NSWEU4rGcpwKlJDbrNfp2n4wFRikoF7xM3vzZ2VkqNU8xR/LmOW2VHgrp/jPKwRNyt9thv9+nzd9FiDOAFj5Odx16A600nCTGPYdjKJUVsaDRqOA5J2aN/ybTIs/gmXjE2YKTYDI4rNdrnJ6eJuOqaZq0mTNnhjNruDidlDLWZNljtVphsVgkzkciSjqHdQxvWGtRxAUuEW1B/A1nLYSm6pDJm5ISXim44CcLGyEqRUp5XSwWuHHjBtbrNayNfA7QpqsUEcxozR49uBwWzw3SQy3f7Hki55BxDs0f2jRyw2COTuSfY8gzj4F/X5sjJnl9FedoYfQB8JHrY2IYcrM5wnq9h7M7OIxhl7zaLW9OMrqeFI4fYfXgc2RRoet7/OhHb+PLzz6BDMQTeewWgCQIFEL6ne7Poagr/Pa3v8Yrr7yC46ObULKebLT8c4785D/z/h430QOL44HLzsdIbjTOkY78WR869vc90/x4bG3k3rRIRigbxXxMkcY9MIYHldLgAm5T4xkzv+NqRg+/T2unA8nWT42tND6yz0spIyrGThFlqDhHXIy2bXFyeoy6LkEhMwspJFbLBYajIyjZoygLCIxzR+sCRVlAF1EFNCk6jwKEVIyygYxGkbUOLsL6UikUukoI+LgPSQStEaSGDQIqCJBTRyETHwJszJyjInEB3h0upGa9g410AeKZCgRBwo4WgFcGCg7W9TBuoB03AEMYcPPuDdw5PcHp8QbrBfEKRaEBAWipUBYF6qIEKfkSouiMxWAM7j96hFBVaKzBfr9D2zSQUqGuKwTvMPQdGUKWDPn1coG7T91GoYB2v4U3A4a2oecuBHxNqeVNs0ez30OJAFVouID0glRkcAQP4TwUBH4AjvnkYRQm5QDjZEwS1oKsRAmKr3nXI1giOKqiAGKev/cel9st3nv/Pbzxxhtp4EYNFVRVkUq1Jyuc5C/TpGMIR6QgQXatceIaY1DGT9V1jaIsMfSjIeCcx2JZY7M5mlj5jGbwQsxhlbZtEQKFQdgYYkOD2d1sVTIPQUqVMi1ImIs092miI3ImBvT9QHFTKaNeCVJ6V+558HscdqGsEeKR5CQqJpiOi7IAJCn7MQcDQEIxeJFhsS5mkzMBlhGtk5OTtMiMIQyPoY8psDFVWEpJnkW2UbNRWhTFJJebS6M759J7SilI7+JmX6Rnslgs8PTTTxOvBnmtEJXu2XuXDBnuu3FcII231E/fsWHk4zxfnLlfc3LpocV4OianXnOOZMy/kxsv/O/8szm5lyFTNjbYiy20xmCIMLioF9ipDkrahH5MUJaIXkilKP0wqr3KEAmAwcE72rWUKmCGAac3buDOU3fx1ddfHey361qY/l96V0oJbymtentxjvfeew+/+PlfQpaR9xOuzvMriJGUk5o7+Vi98nzDKCB48Dozw/LqfJpeww9t03uJaEZ6b0TbiEvgJ44DjYNx7SHCeJ/S1Hn9A3gDR/o+v5cbb2Pome6T+GFjxsmhUEp+7y5zfsih8RAyYBh67PY7dF2D1aqO65MHpEJZlFitlghBQmt6ZiJ66EUZQ+uSkN2RZ0dFKHe7XSTgt9gcrRK3g50qpRSKSGp01sK6qKAsKZPROA9jHZTzkJ70aUKIOhsxNJ1CKqxfM39+3I+B0m1DUHDR6PNSQIDq/lCq6FjIbXXrCPXNFcRSQ6wlyqMahRRQnsoPFLpAoTW00ihUgbKoqEK6pdqzQUkYpXDedji/uEDbtmg70iuhEPcQ16WAxaLCnTu38dTtW1iUBczQQ3iPoGx04BVCRaE67z0x67xHsA4eFi4AgyPdIpkT2sN0PH1fe+KqrzKWmc5PwzCOdZbyrqUEyZ1Swa0gBHywVO9AKZRCwXQ9Pnj/Peybf0npURGVsc5CFxlrOtDEY5lcKcZFkaBdB+9EEgrKvcQxtMD/ORoAdoj1WwKWiyVOTk4wtB32TZOyLFitk0M6+/0+GRFUQC0qh2oFa02s7Dqt6UIbeYUHD8/Rth2MsUCgyWkGkyYnWe0RFgcovU4wdyEAIBKd954guwj5GevQtC36wZCGv1QQMkwfWvZ7Lleekz3zTdk5h7IssVqtsN/vJylmzNtgAisCUGgN0w/ouw4nR0eoi4pie4F4MYVUcNlGmeC3CMFKwcWUaAIksr8Q4DLjSmnUixUWixUWyzVu3rwdkR8BXUS4POpLemcxxMVi3vINlk4hxutJp53+LYSQjKd802KYfl5DJxG+ZsYCz5PJBo+pt3idx5lffz7fnBtLYSulIAPxNoKQMW1wDEdKJSG1hDCS4NEMuQEoYiIlIUyUDaBIpTFEFAYURgiBDcYSTbPDSy+/ii+//AJh1oeMlhxsMVUSiKhGPmQFMJgeqtB4/4N38eO/+AnKckkXiDz1lVU4xz7kLA1k/T9/bpN+FeJK3DkFMMJoEIxj96oEffre/HllYZErtw9GMcZz8cdI4wKxf6ID5OnfQkrAjdlXnI3CJMnVaoWiVLGf/HiP2RDnec68qNxw4DBMCJg8vzxslEv5AwECEqougEHAegMVFEKQENJHLaEdLi93WK3WqKqSri3Ky2sliZegNQqloIuCQidaQilBoQPmqDkfw9Rb7JstdvtLWGuxOVqiKGIFauXQW0P0WhHHbQgwDoDUgCShMOstjHNQzkE6DxtD3c6DXtHuo58CPoi0wWaDBz4AzgUEIREi0ZmyLgkFMAPtM96P6dJCC0ADVjh0vkcXSgQnUYoCwgNw0VsXEgEWXkYulpRQhUa5XAAxW5F1krqO9w+qDKxigcbNZo07t26TBLwHnLHonUdQnNgxzj0tJKqigPRE/pQAFaqLYSk7UKqrAK6sYd/XnkjUy4eAru9RlyVEnAgMf9EGRpkoSUQmeARJpEsKfTgUWqJSCoN1+PTTj/HZl5/hjddfJyjKCChdwIWAoi5oQ3UUqnDBQjkiDWkV66YkcRc3gcuFEHAmoFZlunzrenTdDl23g5QBXd9BBOC5516kDJcQUMVwwaNHj2hSaY021jjJDY2u2+NyR4O97vZRP4TSrKy3cIHSL5VW2O52aLsBg3VUHCtqZJhoBQ/OYnAGUEBwAYtFib7r0TZtJM4qfvI0gK2N/SrR9g0eXexoHkgJx2I8AHwQcWDQ/bNvEkJIxdf4fowxqKoqpcoZYyiDAcBquURdVcTp6Dpsuz5DsxRVD5UKw77B0c3bKCHQ+0ASw5zREEIUfqL6Boh9A0kTWcVB7q2DlhLGdDELhbJSCl1D6RLVYoXN8Sk2JzdgPelt8A0aSylrjHPlXhzN1evLa3O4hn/PUYucuc8tj2XnqYdjSGMMjcx5Hvx9DoHkUHWOwuREvDkpjxd9LWVKD6YaQ/TAlaJidNZQTaK6qmJ4BHDBplAdVdUcPXaAuTUSQSiMSCQZVM4beG8hEMlnZY2jzTGeeuoZfPXNlxTq9A6qLGGMJUfjUHgljBuhCONO6AZSrbXWQiuF3eUFPvzwXfz8538dlcg1IYXWQauC0mdFTOmWbDtMkadDC2P+nheZ4ZAMhmiUxP4MApG+MhbOyzk7PG7iQehePGUE0N8zawIA64eMpk2Um08fGdFa3viReC5kZFHZBpn4DcZZbPc7HOsjABRSoerVFF6QagypBAgoCLB4HgAoKHB5G62IP+G9hLVD0uAouexAVCGWUgAiEFFRA2VVwUgBG/VTgICuHbDbtmiPByyrFZQisuFyUaOXDqZ1KCCxKEuoQkOXBZSO66h16BpCgtuW0GQK5W5hTI8QPIpCjwRUEVAoARdTd63z6IyFQwGogCAlgrDoTAsLg85ZKB9gXYAxLoVlbaxobj0ZOgLqyo7pnITzOimQAoEMekFzJlgLoTXCYGDaDqBoCey+xV54FEdrNNagv9xBK42yWEFiVLmdOCbRWpQRtdt3DezQAd6i1ArLRQHnyHAodQkIgeVqgbt3bmFZ17C9wcWjCyyiVIBiw04pLG94sm18gPaAZJXWmIkm4jxgfmaIzq84kCF1XfvhyIYQqErSTlBKQYSrxadIvXEkZzIxh2OmvDArKbBYVLi8vMSXX36JZ599Fuv1GkUxqlnqokAftStYc1/JqA5nMVmYueWwtBT6ygLDpez7gUq7v/ryKzg5OUXXdtSpIKVMPgahFWNlQSaAem/Q9xRG0YoqFlZVHbkTIZabb0b0QCpIGQDYFHPkFDKOt05IhiCCnxAkH+tjyIQFuyAlhrbDrmmB9NCvDwXkCyLn4HM4A8AVkaB8cW6aBn2sblsUBaqSrGlrSA21KArs93vcPL2BOqIebJxYa9M5pB7HCsmSE6HYuxA1Sijuytoe3kePVShoXaCqalT1Ak8//QyOj08gpEqoFzAu5ULKMcQW74GNg7lHmn7PPN48ZDJvefx6noaco0M5MpGT6XIDKKFus/PmSrH585t75t57qECidiEtBJjM/7RQzcfD7L08RMAqivBEsg2Jmc+cIQ/vqP6P1hqbo2M8/8KL+Pr+VwTlRiOWr/Gg9xM3z/SXMF4He91aazg74OOPP8Ibb/wEJyen6LsBZakoxk5BHkJQU/+Qxy+u4Rjwe1f6g+dH7L5kaGRz6hAilj+7q318XWNUI/85B1iidRNJvwFcoyXh1wQKCUFGl9LwnkKji8UCRUHrLKuLMuQ/vYbpvBg/H4Agsg0PCEEmLkben855uGDRDzZqYoAMToyGU9u2ePDgIep6gZPNMY42a2hNasZWCpQlGeNlUaCoSkBSCrQ1VEE6BIFhGLU7zs8f4fLyEtYOJOy3qKdzJkT+XojiXz5AaAlEPstgDZpmj2HoUtq2BwiZY4MfgvgKjpxZG9yVHfPuj/4LnL74n88euEg/g9LwQqHreqjO4b+rXoULHv+L7jVIRXpUKhuzJM8vIhAlIrLLY3P8XQiBuy84vN4PVF/LmoTok2MTK0IrhXpRY7VYoCoUCk38DwgRDfS4b8vF5L649ljCEQUlX/ssw0dE0i2HK7+v/WBjg+W+m90e69U6ZRfkGxnDjPNYaoJyMy9RQGDwA95//3385V/+JZUoj4aMFFTtcRezP4qiQPAOnhkaswU69/ySbgEXpqIPRka7xjAYnD26QFmUePHFF2O5+A7BWrjowbFXy1LczH5umiZySYifsV6voVWJpmmg4qTn7Imjo2MMQ49m36fBYK2NIZg+DY65SqWnXRZKRVTAGVhHpB0RyIMzxmAfyZqBB2d2DP59vkBqVWC5WiTjieuZsNGTe9Vaa0itYYYBZhiowFxRoNDEp9GKjMeiKNDs93j27tNUtdXaZFTw5psbNrknbx1VuS3LEsNAISsOqeTQLdVKIM7InTt3UvZM/vznZL3899wQ4Pfy2LONKWTzccVt/v485n3Vu8XkePPnkb9yrYx8DOTXOydHJmG0eGwf4Ww2NsgLGcMko0cyHR/0nNgIZOSHidg+FcdLselYrGwYXDTC6Tpv3ryJ05NTPLh/DyFuXkVRXG9sfEebPCcp8c03X+PjTz7CL37+q4Re6EKiKHQ0LEZUQ0ZeF2ZIRt53h5CPvP/nxvahz/Ialx/visEhBA5ZHBQ5mRsaB9Cf8UDpM/kmzs+P50XXWVjbQmuN5XKBxWKs4SPlyMvIz5ejfXn4jisyMzLHz4TT3PNsNek9QhiLtllJoTcjqML3YCwuLi5IAPG550G+gMNgOjgHykIMDsPQk3qwFxgsaWj0fY+uGbDd7nB+fo5Hjx5hu72EcwZ1XeH4+DhJoveRtzJEjgdC5LtFQUAVOXxwPXbbLYXIY3ZFCBkrI/VHpkGS6Un0zT1g8TJOn/1n3/HMrrYP48+f4hc/6Hv/U7TgW0BaIKZNQ5C2S+AstGjspBYn3Z/M2BBCoKpr7La7ySKPbJACFPdjIa+kRBZCUuJkMamh72Eh8cF77+H+vXs4OTqC9x6lpqqxhSJrjMWHyMggj3cONeUwOBAXZ58TAwFnPZTSODo6xnZ7iaeeuoPNZoP9fg8pBPoo01oUxSQs0/d9QjRY2CoEj0IXkEJHeXWDugaGYcBqtURZVmibHsEDRQkMwxmMoYyTtm1HAmUGwaeNJkSYSlDFQud50hfwwcJZTzLruz2s89GTHxfT6zZcAHERWaCKsDqRU/ssRXjcoLz3aHY7LOo6CZg5OxqNUpBHzYI6dV0RkSiGYXIjJvcEeSO1hqor8mJWRhIgh6wYIeLspMWCrnu9Xl/ZOCaI1mxcTJCAmRDXPK7P13dog8wNFjY48v7KjznfROYGRn4Nh64n3/Ty9+bX49kDnxhG8XhyfI4J+QoCCLmTwPMo470ELqA4OVua30LEUEtRwFpCOOq6xnPPPYfzs4cwfU9hMTlVY32cllDNOO8J5QI+/vhDvPzSy7h58w5cTLlPRpWkNSc6pmD/P++n6/r8UF9fh3zM0aXcwTmIbGTIyKHGX/luQ2M6jzExNDSoWquLYY8hciS26ZlTuimFeL2bEh3nhi2AFJ7zftxo83HPBsZkbZESZRnX+6xQpBDs4BCiYIxB17cwZkBR0tjz8HEN2uNyewmpC0hdwBoPawP63uLycovz83NcXFxE8cQGi8UCx8fHODo6SvWsBGJ9j94AztPRraN7txZCSAx9j2A6NLstgnPwzhNHw4X0IgSZNlgf+DU+tD/8m/8L1m//H6acsIg+paEjBIIqUFQ1FssVjuUCP/6qhBfAr18JY0zbs+oqSTggGpNsWPK6ftUgnBJ1EchA0JGvRHwjH1EJUDgvG5hi9gyD+QzAt5BlFefSPNckpB+B708I+D+VsQEhosIkQWohqATB+YRciNRZ3HgwsxeXx8alFNhut/jd736Hl156KSl3+lghllNgrbWoypLiuxg7nRf98RLnG2wOmQOFrvDC8y/COYunnroNVvSEoIfDixwjMW3bppDHtBgbeYIk3BUSC7zvB5RlBcRSz9577Hc7sPIexxx5c+WNlgcOoxoOBOVx+XDIWJ7e2KjAukPT9pQWlbG/5sbF/D3vkQyLOQIBID0fzkphI9FyHQWlE9fAxUqsTdPgzp07ODo6Qrffp+OwAciGJyNczlFK1jAMEEpC6zLC7vQeX6tS5LVVdY26qpO+Bhe+42efbxTzxX/03sUkTDQnEuuymISx+LsJVs7G3FxFNTduxrE2/c78WfDf8uPnf5/fw7wx4qNCYNYvEEgzIE+JnBs32REgBBu6bHDoxMOimCxnMcw3Wkp/D4H0WFxdwzuDO3fu4Pj0FPe/+eYK0vS4jY1TNvipfxUePryPTz/9GLdv34ETFAoMwUFInT2HEZKGmKJKfOxDxt/c0Dhk8M0Nxcl8Ba55VocCWIgL9mFk47v6i0MEZPAxujKGv7QqgBDQDz3alsX4lgAEpPRI6bMikuwzKQE+BlVVVVeqIOfEcZ4/7EQEADIKPSIoBEQ0gQFmGkRwzqHZN9g3exwXS+iCFD19sDDGo+8b+HAKEYg/0TY9Li9GRINrTwEBdV2hrusoS1Ck9YbvA1JB+ECy2jEECB3gzAAMPbr9Hp65b95F0r1J6z5xNSzJl3sHnelsdM1DfP3v/u8x8ysz9uOLRPEkfFFhfXoTzzz3Am4vnsZf/dsSVgF/eHUJFApSBATvogrnWBSRsspcUkcmHoiKNgTxYxAElCiglQYbKOS8Rr5VCGCRQylIA4sNDJaAn6wNFSDq9fi82OAJvE7SwA3IDB4IhMec3k+ks8EXOwwDqqI8uLgTDDfKjPMDZKuZ/04wL23Kv/n1r/HP/uZvcPvObQx9j8VymSDCruuIryEovJIv+t/FCudUWfoHIKVGUdQ4Ob2F04tzSKnQ9wOKgrT7eeNgY4Blx3nRy/tgNKgEVqsllssl9vsGWhdomzbKx5J42Tff3IPUZESxsTEXLmM9ixCiUBcYBYh0HCkxxBDMbr/Hbt/Ae5p0gxkzEvKWb6xs4HE4Il8seCPm3HUpqf7Icrkc08DipmgchVS4zknwHufn56jLir6beUhsOOQGXFrQAWitYOKmX5YlmqZNDHkqJ036HFydVimVpMrnyMbc0GD0JTcy8s1hsoFkZE/+Xt6Hh45/XVbJIS/kOu+ezzfPkDlkoORhm/yeeSEP6f0RxYGQ2bGSS5K8lhDyxScWWuPYMHODZpszIyRCsGIry6QD6/Uad+7cwcP799P8fBzRq3mf5FwYYwwgiFj94Yfv4Sc//Smqchk96VFsbBz6sY7DgRK016EWh64h//2QsZEbsd+HTBxq133nCtoRQraXifh3kQxE/g6JcI1OBIVr+4hEiGicxvHlA7wYj8kZPjwGuL7OIUI1z08AaU7SGm/TXDqEdrPTstvtcHlZoiwF1isNCA8IItIOQwtrDTxklDrf4eHDMzx68BDb3WUq17BYxCKMiwWhnlUJIRDrQgloXQLeIgxkYBFx2kd+hkfX7tG1Lby1hAxHg8I6n8S52Hm2gcpsuMyAd47+7SP6wH8SMr68QJDRMPQOwdsJ1lZWFUSlaJwGn9ANGdOCnY+IS7ZepnIM4LAmEYB1RJoAJBrCuI7odAzPNpGUCQn3mI1BAdLHYqfMB1hnEyqipEyl5fmAj+tMPLGxUdUVTD+KSCFkIRWEyFkYy6zn6ZI5G58GvUPfdrj/7X18+smnuH3rNqqyAjyhHkpIaMnEPn+l2FO+mM+9TZ6o9DcJpUg3A97i6OgEl5dnKAtNFWAFGRf7/T49YK53AiAhLgCiwNcA7wWRFqsK3hMBduht1L/waJoODx48oAFviIfAxdlyQazcoyqKAiZYSKFghafkNSFhPeV/t12Pi4stjDWQmsV0rsLz+YabSJmesoSGYcB6vU6GHyMd/Mx4YTDGoIhaI8zPkdm5FlWdqtxWFWUf1AUhI7khk3vvbABZa1FVNfr9DjbYKCBWpAWN6jKoREqlvHudFhkm1ebeZz5GuQ/45yh6pCZZIFJKKvykZNo485BMvtHn95B7fLmxkAu88bk5wydHMviaxpj6dGGfGyj5MfMxA5C/4X0Ys0lBxD2IUfOFtVpoM1YJ0aNFjLzZPOWSZc254BLfN2UoCAiIyE+izacoCkA63L17F5999lmSub+ujYbL1cbjhz8XgkcQAV/f+xpffPE5fvTWT2CdQaGrzMjgcR/1FMT0OfHz/i7DYL5w5qjGHLnKScKPg0ocblODMnmPmaHB18Hn9PBRGpzrpRCZlxEg7x2KooKxQxTraxECUJYFOI08BIAJv0rl3KFiIl7H585D1jxuuZVlGYnfMesvsBowedy0oWpYazD0Pc4vzrFaF1ivK5RlBWc9gqcssn2zRdNuoRStk2dn5zg/P8d2t0u6SEIIbDYb3Lp1C0VcaxZ1DZIQoL3GWEcKyzHjj8LQJo514MG336JrdlCWVK1DzBCk7BWq8oo4jkIQhDBnY9X5+BnEwm/R6ACH97lPQ0giW0PRgdNRjBngQyTTCkqWEAiAG0MolGE5pls7n1caJsTex6yyxDubOTY57ysEARsCYBmVjbomTCsX0UiHQHCBRARCwGCozkpZlnDxXtkZVlI9domCJ5Yrr8oKQ9ePiEW2mYUwEtr4RtnoAJC8TO8pJBAgsFkfoes6/O53v8MvfvGLSapgDnUaY6DEVWubvae5FyolUrqXYIs3KJTrE9y+1WG/u0TTtJAywHsLHzekEIinwWqgp6enKIoCbdumjYrLs7OXbYyDFBrGUOn4vje4uLigYkPOoe07PHp0hu12myxy3uj5+rmsfQDgQiwj78jIGIxB35toAPVQuoBSEsZYKFXkT2myEV3xnLNqjpxlk2fGcKVXvp6u76EVKdoBU9XLoe9xfnYeq68uoK6JB+fEUw5HKaXg/FjQicvY55sqk1R1fK8sS5ycnNCCEq83J6/N7z8PeeSbA/87pY9qndIaeWzyK9fPyI+Tn4vvM1+M8+PnCF9ucORE2bmBMr+XHHGZGCNR7E5JiSBA1Sq9h5QKbGrzfbC6InnFvJCp+CJUgzYvEnGWkkh1FIsmJoRA1GcItLFx/xVFARt6rFYr3LlzB59/+imlZM5CU0/U4rh1dsBvfvN3eOONtwiuD1RNmq+fDaQrFkg6zFUjNH//ujZ3aHJU6z+GRteiIAT1hZQeWmmqoRF5codQO2A0yK6i0x5cKC8fq3ndKp7XUitUFaXB66JAITS8LmALC2N6ODsAiM7cbo+LixrHR2vU1TJu6AFCAm27w+XlGZTusN1d4vycjI2+bRFAY/j09BTPPvscTk9voOuadD1CCjJeBk/ZGdbBGhevUUCVJaQUcKbH5dkZ2v0Ole8AUKafjWiBC6QgiogGuPhzkscTRlQjIEcIKMtOhEBEfgEAJCpm+iF9f7/fwyoRKyuHlESqJBuCNK7JQeBxFzVksudF64ab7HtzEnBynGQWHozHU7G2DoVECJEhpFNAOtqHjDMI3sfEqKhlFZ14Bw8Z/kTGRgBZxCrG4FnwKl9MhRCTrIPcIub3JjBxIEMgeI8vPvscn3/6GV548UWoJRHVpCSCkWU1Tj2mal438ZNXSstkel/ExVQIhdVyjQCBtmlQFALeWdiIwgBI4Y6UCRPG0JAQAjdunELrImV1DH2Pvjfo+yHKjvdomjZmr3RougHn5+ej8E4MZ+ShDs58EZIWin6gXHVjLZq2xeXlDvumIdEYkNXNG8p8schRBf67lBKb9RFWq1XSEVmtVnDOpWfG5EyWJ99sNkle3DkHKUbp7r4jVdWnnnoKUo6iL/nz4U2bC7YlREJKOG+hywJaFTg+Po4qqn00xOg4UkoU0QDiiq/5fbJyZ26Y8v3yzwnalbWJAZJZ6PnncsOHf/LzysfyIcOGz88Iwny8psU6myP5c8w3aT5mbjiGEGJOPy2SoxEZCdohIhz5+AiZ0RThd7omjvXyXJFQEghCEWIqFBBrRDjnJgBsMtIceUC3b9/G13/8I+nI/ANsyAKAFAHWDvj6qy/x6acf4ZWX34iGBntk/HzUhAT5fe37DKH5upU/v+nm/B9oUD1RExCIIbDIuZHSI4SxhtEwEBeK1mUNHZ0UbuxJj8bm9Hnla8m88ZjilHyA9gIhAVa78V7BOxagIwHCs0fnODk+wtHRKaTi/iRF7Ka9hLFbPHq0pbIOQ0frRKzB9Mwzz+DGjdPkvLKolQ88zslr94xM+ACE6JTGGibbywu4foDxPSBdDKcQ6d85CmOEEGINJz+GDmJz8d8J0aCO4kcSCcqR72ANzNBjUF3qs+12D6vi2iIoCErXJyCg4iPIiKIhRMpBeijUX4LCIlLEMiHxWaRHGDBy/iLfgxPSpKBKulIqMibCOGuUklBxHrlYe6sf4t7IhgmIpiAPhCsPtScMoyDG81TapPLFnkMmjETwQnrImyuKAl4otFFL49HDh3jnD3/Aiy+8QBVDZUAhC5RaY4BAcB6imC7YhybCuGiPliHA0GGAErH2iJDouw5dR6WPg/UpU4artq5WK5RlmcIrq9UKm80GWuuEfJCMrkHbdHCxlDxt2g7GWHRdi2FwaWPkVM6qqtKGw3A3bcRkYJh4XOJptKOhoRSs9xA+kNxs1q/z/sj5CrnnvVqt0vPKN7o8Ddc5B9N1QNzUKJyiIEBGyX63n5AuedMTGYEyh1zZM+LwkSpqOAQ0TYP1eh2rOFKIhzdJFVEVqipbo67rMT1ayoRw5BvB3Og6FHvOx4n3HiKWMM/Jn/x5Jrjyv/MxnHu9c3Ql56mw98/HO0QwPMTL4N/z68nfk0LQ4pg9/zQ/8jmRUiZFMi5yLYWRyzF6P8jmFy98DL8HP8aU0+fj9W02G5zcuIH79+8/EW/jSkt1U2hT+/3vfoun7z6P5XIz6adpaObq5j9/7qlvvsNQyA0//j0Phf3/x8jgFvkzKYxCBgddF63RItYo4hIEbJjw73Rv2V45WVfHejI5UsifS4iyEHDWwQqbBNaC47pNdOyErkRxrt2uRd8ZFCUJNwoBrNdLBCg0bYu23aNpdxiMgQStl7dv347FFzW22y2qqoi8EQFnYrVqx8RnLiMQ4OGgPGXKtM0eu8sLeG+pvL30cLHYYz5nqV9CKsSW8xvGwpqBaVA0tuI/PAAEQAYiaXpro1o1f9/DCX5+FCYJIZC6tiR9JZlIznMkLsTnFcDVm5EMkauZa+MYnYZlpZQQVkDKjPcYBwLP/fGcU0QvHyeP255IrlxrDQGgriuYfkjIhk2w9gjZMRKQQ/n5zWqtYSj5Ig2gd955B3/913+N27dvg1OteMDngyD3OOaoRtp4M/IOfRaIcAmCFyiKCj4E7HZbWGtI6jte+263S5uylBKr1Qrr9ToVKjs/P0+psH1nEseBCg0FWDuVOw+9TQtvXnOFjTKC6ynu6IPFYH0Mx1A4p2lJl4PEwRTF0kHr8BzVYGg7J2kul0vcvHkTSksMQ5+Oq7XGarVK6qEAkjHU9z0Ga2Ol2Fh+3hsgBFRVhWa/x927d4HAZECJMlPVJM+KKuLyMflvSikMzkCCQmzb7TbWnRl1RoqyRFXViSy63mxwenqawj/cj/zc+f75+echjNwwyA2TNIayWDmPzdyInn9/vvlzv/Hfc84KX1+OwuQb8NzQy7O1+ByHNkdeDAPi/QApic5aClGmzKqY5sffVZJj/WMIRQjuP8pFCWI8T24QA9OtnPunqir4zmG1WuH555/H5eUlSdpf+QZwHV/jUAvRg1SRK/XZ55/hq6++xOuv/2hyLOpH/ud/GKKSG5F5y8nu//AtXPN73g4jD1JIeMGhPJLxZ4eOyKJjOIXnxJyYPB4zwuxqzB6cj1EgW2sBuK6L3CBLqsfxSkkzqUxOAdXXkLCG6ksR90yhXFSo6hoQpNrcDyRQZq3Dol7i+PgYd+7chi6o9ofWClVdxfpISJmC1glCgw2hzF3XkTaTKmGGDo/u3cO39+4Rih08qZQ6C+d9RAamBv+4tmbGRva+DyGJCM77USkV5xkmyAj1m0CIBgDVIxEAp9iGAIepYOBoVIjJNSTnIK0zfvK5eMVQjJYgRhICFTZNzkOcOEIALlA2EY8DOp+HDVeRrsc1tp8g9RWR/KJR1iW6vgME5eQPdkBd1fEGxsJUAJL40pWqiyHAWYNSKxSFxH63w717X+O9d9/BzZs3UFYlqLiMglQScGM4IMFL19x4iFYav0WbGD0cLwS6voNHgNQ6yTrLgo7FBdeqqopqfEVM+aUaBGdnZ7jcbmnySgXnO1jvEQQN9KIsYS63aLuOkAc4hOAAhERq4snuolEhSKsczlIsTMRSy13foYsoCUNmIkioaA3D00AYVRRpUPGrqkssF0usN2vUiyqq7Z1gt9sldAOgyXp5SYzvk5MTrFZU3GgbK78iBOy2W3jnORgFLRU2yxUZSyYqhcb+dtaiH4YUJlCRe8GIjXEO+2YfkRlQRo0QsNYhgPq1qCoUVQ0oKp28Xq+xXC4nntacp5MQCBk9A9AUc5HxDREnqp9mGE3V8a6vTzI592fnKH79zdTQCSFl7rD3SHDjdAGYQ/EBgHakFc1ltpEdN7+W8SfiuDqE1tAxl85hYy02XYdbTYd+IP0SUrNlL0by9EYAsK8E3nm+JBa690BwCNZSn7FRFvj8tAhKpaF1Ba0cqlLi1s07ODn+I9pYW4dSVXkzpEVRQqZr4F6+9ndBGiDWWOx3O3z88Qd444034bxHWZRwzkMJmsvk8PgDXiGu/A5c5XodavPv5wbrdR5euv703fkznJ0rAHMPNN48ovuMwK/AYmZRsMvnGwEhHFqzsUn1LYxx0Hos7EgedZSkTtC9A6CSpzxewtVQZH7fzhk4BBg4OCtTijxlogHCETndC6pLsu/2OL+8QL2ssVhUKEOJQguq5yMV7t4+gYLH/fvnqJdrHB0do1wUMLaH8xZFWWC5WkKVGi549LaHg4P3DrYf0A8d9n2P1pExEIYO2htsz+/j4uE9eNsjwMKLmG0SAoLzKWyCwEXWaON12SP2oKrKiGBGEITu8HOirUeikBoakjgZOXHTGHglAEEOAjvEUlH4xefzHrPxG9gAmAYLA6Or0ckWvPaxUy6YDCpiGEXAcRGqINKooyPL5MhyqCd4MUJggtZ//v1x2g/nbATAWCJpSiUhlEDTt1jKBSAFpCYLj2E7tqxzGDp1YiAvvipKiODhY2G0i/Mz/OY3f49f/eqXUErGzJZV2jg4TRSYohpzj1VKSelJ6aQAJEGOPnj0kfzYtB3ajgr31NFj5tLxHC7hMNB+v8fFxQUpiIaAoqwoPicE1flwEk27g5JUaZPTo9ooBMZiKclT9jEu52W8N8QBGGLNEMo+McZF71yB1GAEIctBRK9WpNjnSEyUqOsqhX24Dsput0uhjMVikbzV5XKJo6MjcMn5P/7xj9hut5AFZYAsF0v6XkmhCzMMqMuS4oxKQyhASwnb9+Dqoc5Y6FggSQiRKt9CkELgYrlCCEBVAUKRVHnfG0hdIAgRBX40hFbQZYmjo6OYV6/TuMq9LTY2GMkQsQ+9GxdGKWVaQHgsMhqSEzVzFCNHPPK/6y8usfjXH/zQafQfffv2ROKd5yUtNmnpoQVYChmJprywimgcagiQwRGCwGKxwu3bT+Hhw4fohx5aU9oeVZoKQBhhfGC6Zs1/F0EAQQEx1dVZg88+/wQPH93D6eltWGcAEEfFuECkcNrlARw2Ig6FXuc/54hS/t3vDMXk1tLk73zs64TOQvSQ4++CYZqAABk3Nx85AZGroQSkFxAuG98+FjGDiOFIQrCscTCKMr1Yzpzuk+uyOIRYyM/5qZpuvq7mhjK/lBSQIhraPqZKKkJZEEN0SlPIxHqHpmuwa/eoliUWyxqrdY3VagkzWJi+Q6Ulnr5zitWiRuck6uUCQXoESZk19WKBxXoBVSh4BNjg4OFhTIeu2aFpeuzaHjYAVVlgGAYoabG/eATTbSH9gCAcXMw24WwNH6X5PVdQZqRSZsaCEPBs3GP8OeW9UOZesB7COTgzOjNKAlrSvkG6JDGFNiZYzJHTK6HhyAfhf+dtwkvLnBKfF4QPUZ4ducMew8jT0RgjmCLdFjm4tK+SbfV41sYTcDYoJbJQOkHNu90Oy8WCypE7B7afeFNgQ4Nqhoxpfil84InNq12B5XIJawy++OIL3Lt3D8+/8AKKsogbUpVkrBkZmFxZNtnTRMg9ScS0JIGEujDBEUCC+JmrMUSv3HufSslvt0RastairBbwkZvB5Zht9B46O6SHyMJYZGxF8pL3sGaE2+lckTsQB+8wkGHQ9wNCmKal0isORgSQngL1bV6G/caNG+kcLMjD4Y0cbVoul0k4jWHW4+NjHB8fY7ffw1pHYaVhgBSEQB2t1lgtlynGp7WGCJSlw6qgRVmkvHvvPdqOquTqQkcxmNFTsn7MbEIWCpLxWTO6xM86D0vMyZVs0EzIwXHS5vVI5kz8Oax86L35QvuPtmWOS77p5Omj41ymr5RlCQhaCK0lWfmHjx7gj19+QZkNiaMSMH06390CgOADpJa0kUmBBw8f4te/+TX+5b/4zzCYHlWpE4E5wS7ZM8t/Xjn+AUPjurAV/7xuTEyPy1f/uC0c9BQZoQkhjPH02efy65lygca/e09hTa1VLKh2ldMUQkyhRoAXV8Msh5DEHG2ehw35O7wPkDYLcTw4U2axJJ0iARHnOZWV11riRJXYtR5KV5CQ0EJjvVxjc3wcxxuHTfjlMEQyuvMWQhYx40LC9APu379P/CbvEYQnViqAxLuIzTo7uT8X8m0YcePFweeV+iyM2XgOlr+GG6enMIqrxI5In4vod57JyVGCfMyJiGwdWn9SmPPAfjgPgQhg8ry4TX7HiJrMkVnMkK7vak+Q+hoHGTIFvUyUynoPLYmzwNkWvNn52QVzZypNEqvsNZoI5//ud7/DU3efgoxpjkVBOg4hbjzf510IIaATGjAuWDyBQggwlmpylIVC8MQazuufMN/AOZfe7/s+cSG6WC/FWpegSa0KdG2ftDaI9ImYwkoehPOk8jcYA2tc1EcQEVIjhbj9fo/LCwpbUOXX+aiOogoC0IWGzxjbm80mFTNjFIOzZkIIiTcCjAXB1ut1UjhlEa39fo/1ZgMfdVO0pCStR0qjaxrI1WpczeLzXC8WFLKIkzcIJCOGkRStNQoBdF1PVne8BmtI8a6KRhHHi5VSKKsy8WfmLe8bHgOW4lFXNpp8QZ5O3pD6Y76Z5sdmAmkIAepaD/XPvMV57t1ImGODNScIjjwWSqElMa3xea/XR7h54ya++eZrODNAFZQ1QHH8x1ukqDH6NGb2mKHHhx+8j1/98i9x4+ZdeOchBWKmnIWU4YqxeV24JDdUD4Wr5r/njdet0aHIzYvww2yNa9s14bzokZPlTugFAfyMRBGSy2sg74y0R0YCadp8GKmaCuLl9y/EXDRq2mc50py/l9JTBWmBhIRq0b8FYjFKBSwXa1RVjbbt0bUDQqBCl0ozqb7GarnGoqphPRkXRMK36LsBQ29gDRHrrbWQSsCaHio4NLsdzs8ekXHEIZAQU1ujtlYIvKQxOZPv57tN4/lmPmZ4jXyn+OCgtULQigydQEZfxDYgxJSzxS8WapsrGvN7eWoyNx6bZOyVGeqtwUqjQox7Mb1CIsyOxs4oBYAZGiL/dHLloySqi14xGwNlGWO8SiPApTRHrmvR933qAF60CGkg0pCQJDblvMdut8dvfvMb/MWPf4yXX36ZBmxJ+vreTzUNeIAfhElFli4UWPHQAYKESqy1EFJAywL7XQM30EDd7XYIPqT0z67tEqoxxBQg6zyatsUwmPSQSKRmQNdRHZW2bWGMTS9rHYSQ8d8uCoYJFLokTy+WZt41Dc7PL9C2A4qCBkfu3XBEaswyIXVUNjSWUX019zo45MBICk8IfnWxqutms0kTpqoq7Ns2AYMklkMCXCdHR6jKClVVA96T8Jq1NIiVnIgyMTIBIVLGifHUF2lxExJSsVclUqiEjY2qqiZ8jfzFEyPfCBn9S2MB0z47BAUDmIynMVNjOvFHTYzH9c3/vBqHK01Ujs0XntHDHrMR4rKdNrWqrGEGAykFbt26gxunN/DtvW9oEeeYsxCPvRELAQgpYdzI6Nda48H9+/j973+P//R/9hS8d1AFICQiEfYqAnHIwDj0/ve9N/fwtNYHPcp/GEMjt+fz87NJEWP/IgtLCQ9OiSVytUzhqxAI/WH+2hjKErOf+fmniM+hPp0b65ypmBsv6W/WwkCRjpCltVEqASnJSPUOaNshGbFKCigE1CWlyC+XC0gl0A9UQt5aD2eBYQjojUNvLRHtHYleDb2HDg4PH95Du9/COQuJ6NgFDxdwZZyTgcuowPWoGLf5mKB/U5jcOQfjR50NKRUKXUAVJZSqxvVIUXoyRwV4HWKiPb+SpHpcy1mugJ8NPydev/KkBA4/547cHKGbz/d5fZw8y+5x2xMriAqIicU6DAOOjo5gQB2rZpkWfIF5VolzjkIvISBYCx09bSUljBnwzTff4KOPPsRrr70Wsw9o8DozTmr2JPIKjHyN3EkjVyQyceOYqCsyJIZ+gAFt/KXUZAS0RJK8fesp1NUSu22D/a5Fs+/S/RjnEwHSRWJfWdRRIZQHBU3mIRpebJRwkbGhN7QYwMbJL7BvGpxdnGO/a6N3X068iTwbgg2NECg75OjoKFVANMakNFGe7ABSKIUtZR603HjQ8rOt4uBUUmLbbWEHA60Unr57F26wKJWCC5EgJUlrQRY6PQ+txpx/F69dFwWcCbGfqD81K48Gn92bmkwYNlR5IpG362eLRByjapqmxY2NiTnjPE95zb06hnrz7IND6an/uFru6YzjjbyhCNUKkIEsIqE1eoRSatQ1KbwORuDmzVu4e/dpPHj4IG44SMbKD7qiwBo/sZZQdHLeffcd/OSnP8d6dYwQLFVHVtdj3IdQjDlK+n3Gx2ScHUDV2Mr4hxwdV5wpcFl0MB5OpPKoQ05gh4AUChIqxvmJ/AmEUSNJjsYMh3lzJ4DnynWIYL4u8XXy5/MwCjfKXqHxYo0lDaKmhZQiZsoN8I74fCEIBO8QHDBYi6rU0BJQQsIYj67pYKneJqxxGAaLrjXo2j6tK0oAdjDw1uDswX1Y08MMPSQ8hUpYk8OTeGK+iSYtjTDV2fiuNnWCSIodVmGA4ScZ1ysJBcQ1voDWCvWyJj5KXSdJCe6zHFlkp5EybvpEL+B1jJHIHKEK4ZqQ2ey+cud0fj/Xfedx2hMZG3yxbDislkt0XUd1MTDGCyexISGSeFQO7Ye4IHCnKkUalMFaNE2D3/72t/hn//yfY1GvYqEsBYexGBovFPn5ciNEHOB1EEmT0qYW9QLfWoOha6GkQFGUcTEUeOaZZ3Hr1m0Mw4C27SKUBDRNRwMzEAeBqmSS+MlqGaJiKMF7zhEUbXqSzJVak9fv4mBxDtZ7DJHrYozBxcUW+z2lgGqtUr/w9fO95cqjSmucnp5OwhQ8YL33iTfClV7zgnIAVezk0u5d16VBWpYl6rrGxfkFNus1vKMy0E8/9RS8deQduHFA07N3GCI3g8NNnPLLhlpd1/AoItJDWSwiGpQMrxMcOOpTVGU1mXxs5OYbBrd83DECxv04XxTn3+Hj5+/NoeXRi5vFcf+RtBAX37lUeQgq81LHcCqgUiyeuAABxgwkKV4UeOqpu/j880+x3W6JtOsCdBTimm/y13mQNHdZKZQUJ8uyxLfffINPP/0Eb775NiErAoBQk/Xn0LGvMy4AXFlH5tfBC3K+saaw8jXfmR6fOFaREZP/YWIe5WM7IQNAKi5mLZExXQhgCUMIGY0QylbhuDyV4bDRWDSgCqfRg0/YZY6i+OTRz0OX+aY1n3/5nMnXmAnBFBEddx773R673Q6LRQUhSZeCqsjS2jUMHiEYwAv0XYvLizMKD6kCQz/ABcrEIakBk7hz1lnS6DACVaEAb7HfXsAYQhi8D0R2DoD1XPyM+nFMbQUgYj2Sa8ZOvr7w/Sdn11NSgHMONrCTDELOTYl+sCgKmygHxhmUJRH5Waws1+Qhgz+vkD0qRM+RxzwcDCA5xNPnOI7FPAU25PcPnxyEHFlj1Of7EB9uT6CzQTfLLF3nHGRcwIdhwOnxMT3ADFLkDpqTRDn26r2DCBIihEQiCiFgt9vhiy++xLvvvouf/fQX8XjTWOKh1LOJRR7GDmdomLT7ycgpK3pg1hpASVxebvHo0SPcuXMHb775FgCBhw8foWlatC1twgyZNk2HYTBUaRGk1Mib3zAMGPoBfRc5Hd5Bao3gKI+aCUyDJV0OBIe+H4gT0g3wIA+RxWninSUjD+AaH+TtH52cptBJ7pFzbjtrgzD3BECqzcKf4+yh+WeVJNW4y8tL7Hd7FFqj0BqmJ6IwVEQ1MC6dQohkmbd9l4wbHxeg7W4Xq5MijQUuLlTE7JU8hCLj4sPwYo70pLGZGRZSZuXHxTTENk/duw4an1vy+Sbzp9FY+I+rhRBGEhyuwsiceEf9GeMjkQeglEzORRs8Tk9v4plnn8f77/4hPicF71jO+ep5r55r3MgIPYkXJgAXHH7/h9/ixRdfgpQKOtZuUVHsLt8Q8wX4Oq/u0M95O4RmHFp4rxos2aYEgTHbJH1hdo5DpNM4FikeFUPFZFggrbcaoxw9e6YArEQAr90WY5EyrlNFBctorRnDIvn95feUE7M5LJ4TGnPji3V2lFIYegPvHLpugBBb1Isai0WNzWYJrymx1FnO1PMQ3sHbgM4baE1OYb3cYDAdgijQD7E6a1RdNtHLl0IA3kH4gHa/xX57AWcGyOCioxDIOON018SdiE+K1wcxDZkeMk4PoT3j3JgK/gkR05cx9htA0uBaK/R9P1n/ONRx6PjzdYr/zmtUHtKJcGS6Eykl6Z7M1rj8RTIBPvFbeJ12kdDPWX3f154I2Qhh1CTQWkNUQNe2qdPMMCSINF848gGYIHatIWNZbCKVDbDOoWkohHC5vcTf/93f460330a5qMFEsUMdP+9sMjZGMRUeLmyxBYzGjfeU+z20xCs5Pj5G27Z49OgRzs/PU6yMa14wkqFieWtGP+jvVIzNRF1+ljv3kLCOrU9CNXwsNkcCW3t0Han8aVVGLy1OgMDxVRGlhqnEdlWVWCwXODo6mli+bPzlSBJXaOTS3SwklsR2srAE92NRFNBSoTg6QrPbY+g63Hn2WUJd4mBmwSiuBaA0EQV5gkw2ZiEivM5jZJQy9wjQukhxRZXxJYQggS/mnfCCl2ej5OOKjI0pWWvuPc8hxUMoRz7puOWL7zV70dV2ZwXx5m2E/QD8/lugt/9w3xEAXj6FeOEU4aIFfn8PGA4QV2+vgGUBfH7+GPj+dC6FgDQGU39kRggvqlSunGLSy+U6PiMaX889+xy+/Owz7No9ykLBearpwsf4LlRjerPscZJ3r3WBzz/5BH/86ku88fqPYJ2lrJVwFdXMx/b8b/OfPxQq/i5EJvvX5Fbm3wj0hYmBdPUY43GFFGAp7nyc58XUcmPDC0LjrKVQCZP/lCIRMPoMFe2SsW5HHobN0ZscTc6NkPl153OV1hcKoclYGt1alzhuRUlEUDa0tNYolIKsFYbOYLAOzvboui08Arq2QVGv0bYtemNhg0NviLgforaLAKCFwP2zh9hfXpAj7El92cMng+KHPu+8HXJ4QwwtG8s8FBbwimMlBFJdDRTyUVpBKlrf2fHj9ZPRjblIYf57vmbNHSwAEPLqukdJ7WOIjAuzMXF4/hwP8dcetz1BbRTy2gVC8hx4A+u6DpeXl3DWocqUHbnlm868Xoc1DoM1GAaOO9EGPQwD3n3vPXz++ed4ffEGhIiFpmYCTNfBpUHIZPgAIwQlJZUJJjEgsnAJrWhxdHSM09MbOD+/RNcNsNZjt2tgLRVXKwpNsFKs8mqtw35P2SvOBazXR2gaIo5yjntRlOgjqsPZKd6RZ28MGRp9z9wAChcJ8AIedQnAi06UhK80VuslETpjyCMEKiDHoYrFYgEhBHa7HXa7HZRSsWhanYwRRh3YGJmnWfW2Q3CkhrpcLnFycgpnLbSQVOwoGpdKkRCXjyJCbMSwBayUSogOcUZMzOIhgwdSRLXQaMnLUdNCSjkJC81JnPlCm65djqI2ORScT8x8scwNmXwi5WjbfPwegsyvtGePIP9PPwcuOohlifDWbYT/xzvAbvgP/44QwC+fhvyfvwL0DlACeP4E4b/6AOgy4+Skhvw//wrhnfsIn59//zUjjrUwNbrykCcbwuPcC/BuXLiZ0Nv3Heze4OjoBHeffgYffvA+rJzWs6FbmRIOr72meK6QeAQBgzX4wx9+j9dffz1yn8oJTyn/br5WJI8yS4c+9HPerjMsrrx/7b2MhtuVt8FjNr/uObQ9Hj4IGSEiegkEKJEZ2+nDHgrEk1DSJUODpQSUilflBSA9vGfDbhomyu9z7vABU+4Gz2UAEw4BApU9IKIq0LYdzs/PsVxVWC4X6TtFqVAojWAsFCSUBWxwaPZbbPcNLrc9NoKc0rbtMUTF5b4fEJxFWWjUJYklnj98gLbZQ4qEW1AWDEKsCkvWX4hWYOp3NnAx3c++r7FD6mIKLafOBsRilAgIwiL4uMYZCUgGq6ZjdP7i9YqNjRz5YCJoblQIIQAxfY654ZC/Pzd08+fN18NGUE4u/b72RKmv7GGLcTZguVwm2H2xWEwuljeHXMqZrV1jDHWCHPP1lVKo6xqr1QreOZyfn+ODDz7Ay6+9CmAkBOYdcQguF0JAaJkmLYUzJURQAGixW66WkSMgYB1li9T1AkJIXFxc4Pz8HGdnZ2iaJoUWqorKBPd9jyKQ5O4+alE453FxfpFCE0zKoZxvH2WDiT/hbIAxNkqHm/ggxxQ19gIQs1ToPgK0Vlgul1itF0nVtF7UaBoKj3A/s1S691Qc6+bNmwAovLLf7wEgMZNzS5m9IiYaCQAmCp29/OKLJNpjHRx8gteUIDVRpYl8hmyh1Eqhz4hNOd+i700aE0qOMCtPJI5ZFgVpsJRlOZkY/LmDm74QaUPK67/kgnC5YcHv5+8lhGxGHJsbMNe24wryX/0U/r/5BPgfvwRqDfl//BnwNy8g/L8+GqUDn/Q7JzXkXz4P/1/+DvjyAjiuIP7Vz4C37wB/+xV9ZlFA/u9/DPH0EcKHj777esHPjY0NIISpF8uLjPMj34ARDSqdS4ssh+SGYYXBDKgqg+dfeBFff/019vtLKF2CU2zzzev7vaUxjECf99CFwheffYpPP/0EL73yOm1qGLlj3OYGTb4Wzd/PP/84bb7pIvbO9L1sU86ciMk3ZsjGFbRl8v4U1eCWQ+jpODGThzlWvJ4ZYyOKGTeOFI7xEGJ67jk5ez7+R9TXpXmTGyj0HQWuyaO0JiMncMkGSv2UuQo1ABkcykKiqku4oGCcRO8EFlWB4B2s7WHtgH6wMQPQwFsyOFblCmcPH+Lhw/uwxqAUhHgnszWOwcAPLD2nMPv5/c9+Pr6sNUCIhOpst3XOwUuRND64Xo2fqceGECZZfXMD4pCxx88hFz4kpHcMfeUGAycCzBGSQ+fISfSM8v/pjI1oUQkgaqcLdAOFHowx6LsOR0dHdEGBmcdZPC+MsJ1UpFQnRUC9WKAWgtAA///j7k+aLEmSNEHsk0W3t9jm7uZL7JFbZGVWZteehekFGFANaA5zAM0ZV/wh3AAiHEHUhAOIQIRDg6inp6qpBtRV3ZVbREaER4S7x+a7bW/VRRYcWFhUVO2Zh7tnVWEwmmlh5s/s6VMVFWFh/vjjjx1gyYicn5/DOY8vv7yP7WYN74YGYdcD5p+995Cph+aDl45QMaMFJhNSxdwC6FoTZWrPz8/x6OEjbLYbIkwGAqcM3fDahjgZUmk0QWtDBqSnM10S/VHr77ptSMo8CNkYQ/LoXUd5U9roelheJLlyAAHaIliTqk7m2Nvbg/OBgyHoUTL5EyDSZ13XcTPebrdxUvHGmpamMbs5VciER8zJKaVQ5DmMMSiyDKbtm+wJD2JytzQBZaajsTEuNJgLn1cUJZbrNbbbGk3bUdmvVNAqgw4/ZzqD1hmyLI+l02Vw8i6hCuIK2HuHY5Au3nGkkG6oYy7QuIIldXZeeFyfAlUGfPyUnIRtB3/vDPjeEaEQu5yNV3nPuoX7f/4OeLJC6IdN37skJfTTm8B+Bf/gDC+RPxkMn/ehAyYNM40hAt9AAp6kWeEdYJ2H1FypRugdC7HN53MY0+Hw8BBH165hvVyEbpzDKDn59J3XxGlQMi4enjUMHJEZP/74I3z/+9+Hcx2EGEZd/fRIUQILbs4I4NL3+LkvYVCvuo/dzoYAxiJR6W2nQRP67a7Xz/BBSlqCy16jHH6wOfy5lsmDwECcKf7eWjSNA5DHDYgCHAfKRlLAxgRCoCenpw5R2pCTj5SzMeB+gNJcNlTl6YzGvK63sWGc95RusQCUDCrJWkEKBeEkYCWsBRarNZp6C2McNqsVlsslvCWtfmMNnLN4+vQRLs5PAN+BdC8scTkEImKROr3xcbzQ8R06IZfniID1DlIpeGOhEluhtIbXCs5L2BCkWku9iKQcpqb4GlI0gj6dgwFyvJnMzfaLEWOyZQBraae2jVPW4/NzcDa0hRJKpa9JsCL2yxyvgWxwwy2SiLXGoJxWWK/W2D+kfhvbtoEUkqLdLKO0h+mgMg1ICRWMdCQvTkus1ytIoSL3YTKZot4aFJlC19Z4+O3X+Or+Pbz/ve/DQIR0RoayLOB50YH1D3qUwwWRlP7yA/lJeijmBijiGHiQBG1WTnC+WGG12aLebkkD3oUutUJieXqC9cUCwnoszy9CS/QMsW5dEVKSFSU6Y9B0Bp116IwDoACvYI0NDN9+I+PrAADvDCkmKhXU7xwkBGbTeZAOr+AtpYKUyNA0bUwx8Lg656g9vPeU0wyt26uyhJYK2+0Wm9U6aljkYSwAoO1adEFPpOsaLC8ucPv2bXhnkWUq5MW5C2yQqO9CmbG1kN4hLwpYT/X+eV5ivdmgsy2EVOgMLS6hMnQeUFJDZhUgS6isgFIVlCogRI9aFEVB3SFlYHoHsrCxpJkCTwiQTLgiemRU04ULjCK/JGLjf6dVQEVRRIiSuTjfiWzsFfCLGgjIFTzgn68g/vAmaRZ3OxCZV3lPa4FHS/pZAOLP34IwDv6LE3rtjT2I/+4DuH/7G8g/efPF1zo6HAScNxBaQEPFueq4QZOUoQEV4ISCEoaE1EBVI9umhs4n2D88pMqt7RbGWLz7zvs4PznDerWEUjRPiyKPJcZjRzvcGqhpOSEnHgi5dkTRO9PWuH/vM3z54Au8996PqNGWKmGNo9SkoL47gIPzpLfDzgbZj909P8avXQU18/xJoWUpxiqPwZmJTkiKDvnAe1IQ4LRdaGPgaW0J5yCDDaPS1oz+XvJGwCmV/tqU8vDWwltqOOZhQ0+VHoWwVsD7FoBEUQSEz3pI5SPS0POiEPQxeuRDCAGpAGNH0HuCGEkpgVAKKgPpXECRorOjFPXibIn5ZIpC50QU5/WnBKwSgPLB4bLQAMpSYrt1mOQKi9NzLJ6foekcoDMoAGUhsFmd4/z5Q/hujVx0sF0D+BaUMKGgljrVJpVRnmTX2XlLnx0ACIW40UpGlyCgICC8gLAApAeUQu0shNY4ODoCVjQus/09tAKwFkSEtdRV1nobkcTU+UkR4ShTENJB/abPXzIEzQ7wMnyJkJZHdMwB4mh0ba+h0TshdN9SDFGUMXdkl5L3VcdrEUR5IAYEIUl13daT9kSmNKA1EDgB5Jwg5tCdpw6OSsvYcVVKDQ8XOBE2GHbqFvj0yWN8+Nvf4q233kHbWUipQi7dx9RGqobHBqG1oxw3R0UeUXTm1q3baOoNtpsaVUnRgzWGLtYhpHiCg2AsLVjHpyPvVgoJL/rsXjyEDIZAA4KcJO9xCcofR9ICIpStUTTBnVlnsxmhEUHi3Yca8zKnjT3tKsqcDI7AYy4PAtb05Vb8e95A2ZByCmOzuMBkMqHuisE4GWNQaOLUZAGugxQwnUFZ5MjyIkZUUhLUKaWEBS2WzhhqDBRq+glOLaACugEhIQVPaI0sI/E4Yw0U+pQIH7s88XFUkjoUwOUNZSwHnyIfaTqH3ytlYHK/6PCAUKEkkQ8pki3mH+k9AMQv3oL4o9tw//a3wKYD9kvI//6nwNZAXJuS49EY4Kc34T9+CpgXoxw+GGDeUBAizbiBJtEXghQ5RZ2BbyBIWTTPC1y7dh0mpPSOjq5hf/8Qdb2FFIwu9GlWHt9Lg5L8RL+mMbFhTuZFjtXFOe7f/wJvvPEuBApYayCTarFLeWghQkND7mlxxdjuRC2GR5oDT6+1j38vjzffx+C60jeCEQ36t/M+OnukQZNDygxMyEZQcHVcKQDQphM7XtBJh2WSAcGy5Ixp7aLj4p2n87ExRM8p4H2Yf2beS2qD2WFPESPaN0K5ZTit6QRaIdC1JupjwPuIxHivaANllIT3EKUxmxboOoPTXMK7BsYEsUlBvZqWp6dYnp1BmI5Kfx0FQzSmAtIDLypg3/3EPcZPl/gew3d6QcrRe3t7OLp+A/iKfjOfz9FJSeXHxgOOqqo608K6PuW8K90Xn1vcUYcH27E0zSWEgJK9imvcaxxid1n+u/Rm/Oj8vD+kKZR/wjRKb9j5gwHENsZSUpMuGUiMTApK9Rb4AnkSdp1BnmfwPpRLlgpN00axk7qusVqt8NFHH+LP/vwXuHb9GN5fjjBSBbVITPLDx+HDf6TSEALIs5wEh549Qb3ewLXk+dqugeAJGW7cOOrQagy1f+emPTQfgjfoBbh+Xilu8EMT0oxazNehJfMuRrGEiI5CVVWYTCaYzWZRpIsnodYaCIaFtfz53iMnBj2c2bZt8NpddNK4QVtaugYgPr/ziwsc37gBoG+CJ0UvzCaFiLnBSIayFttQYovAaIeU8EEIresMTSZBzZrGZCf66jd7/jd/Ps+dq3KXu5yN9Hfj8eYxAjCYQ7xw2eHYFdG+8LioIaY5VYG0lm75+hRYNIC5glz6qu8RgPjLdyD/2x/C/p//E/D1gl4/mgDrDtAS4k/eAG7PAeMgPrgB/9lzwLzAxLKxUiR/nY7LOOqK3z2PTQ+bE0naYjabodk/wHZbY29/Hzdv3sTJ86cwponz7ztTUjsOdgo7a5DnOWzX4e7du/jgg5/h5vGbsJaajjFpma43RMchcgNEQBm/29m46ncpBE3rJ03tDuH2774nRKPlR14H/S6kc5WGUjmkyqCUjD2FHDylKCyTQH3IiSE4In2wmM5lht1pfeWDNeSdg3GMCopLa0gIAet6ZyONdlNVX/4uOCnkiSRPtkRGfSLnPJTUofIO0CqDUIwyEJJKaIumqhYhsa1rLBbnaE9XkMIROuQ8zk5O0dakgkzplR7RQCSA7n6uaTpDXPq76Ab2zy5xPAAqAtA6w9G16zg4POjHxPnQKVZCaEJDtNAoyizKA6SORqqQ3AsYmijtkD7L1OkbXm07eD67bOeYcDomk6bHmA/1XcdrK4jywTAzM/bLssTGrAelTmkVSqrbnupuMEIBAJBEqKQ+GCKe/9Gjx/jVr36Jf/1v/msopaO8dqxmSK6PjZ4XQIQhwAbTwxoHrQEhNPb3D3Dz5i202y3a7RpaeCjhSVkPJIdLOUwNLww6R5K4fN10yQRlQoXWw55ynJBcdWOidPtsNotkWh6f8QJl3YqyLHF4eBhbwfewp43oAzsI7ACm3Xa5GoW9Ue7WWuQF5vM5mqbBYrHAdDqNRCF+Jtz9VgWHh5+DlBIqzyF8X/7Kjic7HE1o6pYXBTWnc+RkGWujFgl4EYs+hcQRGiEuPcktRWZ4MfDv0g2QN580dzn2vq9yNvjnyIQPaSWel+zMps8gty+KiQA8XcM9WgI/vw386iEwyYE39+E+e06Q8qu+RwC4s0eOyMMFsO0g/tW7kP+7H8L+334FnNX0u8YC90/h/q9nMTsg/w9/BKw7uP/HR9+JagAhhxt+TjcldmRTiJf4WB7CqZgbhqe5tNlsUBQ59vcPsN5sYE2Ht956Cw+//RpPnjxCUajY9DB1dl/m8CDFYVigqWsgy/D82TN8/sXnODq6Ca2yoEQJkAaIBHfn5Mi83zCuhoN3OZeDzTOJ5GkzDX/z0nfC9xMiVoHBZhM+iHhuUkJpCsSE0JBaEzIoSVtGcEdeAXjjCKJ3rLLbl6HucsZ53WutwGqx7DBxlJu+LYXf0yg6DQR5HxisW8niXsRDQ3BAOPjkoCLLNPVEyfNwT5Qap8hewFoDAY+yErh9ax/bzSGatsVq1aAsc8B1WJ6fodnWUM5QeiPIrgomOF/x2MfBCwYba+9oEOcjcTJYih9AZy0OD6/h8Og6XOLMrlZrOK0InRL9s3Po0bd0TMfokPcexnY9guV7knOqBh3tmwe6rifoj5ET/tseIea+NXIQdKXBV4omv8zx2mkUdhQ4+uVByfMctdzGm+GNg5EHVpFkQhGnS8bKZVJKrFYrCEElj7wQPvvsM3z/Bx/g3XffiwPHBiqd5HydUKOBCA5+LwolUJZTHN+4hXt3P4NpGhSVhJakuCcDyYfV+SwEjBOwvp9sUtKCZ40I63gyOLjQDVYIqgjhdAQRX4ctzVPjrZRGVWaYz+eYzWbx/tmrTT1YFRwAFjzje2fuBivNCUEqrnpvDwJ97i8tJ00ntXMOm80G169fj8qkQovYB0eHZ88Cbgynek+CL5pZzlpBWWLft21LdeehLBVAnMwkRNRXotAhQlfaKebzeRyr8fNOnQK+lrQ0K3Xk0s0hXShpioUNaLqIeez5851zEea98li38P/uMypj/elNoNTw3y6AXz68OifyovdkCuLP3wLe2oP/f30CTAvI//4PgdpA/tUP6JzbDv5vv4T/6AntDGFY/LcLKoe13+1o0DgxWhHIgS68CG6eRc8nmH9IEVrRSxXIihbeWrRth6ZuMZ1UONg/QNu0ODw8wttvv43T02e7jeMrHN4T/8paiyynUvbPP7+LH/7gx7hx4yas7VO0gkvhhQSJV9H9sC14mc8ajtHluUQbU/i95Cj+Fe6HPmjwed4DAoReCCmhNZXIe0hIpaF0BhW4GiIgIMoJcvuchTMGzpo4b1N0ahcZmlBOTpUI7Irr+xRMsNnq8q6dBpuDZxvQ4PBXYDKvMRb1doumaWO6Jc/ycK+9DACZXxH6RjkY45FlFd56+xacV/jqq6colcLFyRlWiwWcMYAx0GEDED4EhIFsixfMu/hc09cAUOWVjLfjQfsF/1sIgawscf34JuZ7BzBNjxBu6wYupKokFL1PAFb0zsZV6ANfExGsSY6eEGJ68FplEZkUQsTA1Zi0sZq9NBeGCIkNwzJ0qFN7usuGvuh4rdJX54aM13STyrIMUqnYcS/N8wMMrRIRbDKZIMsrGNNhu93Ex+m8iyWO1jpMJhM8f/4c3gt8/vnn+Pjjj/HOO+/GQUvRlfTmvfcQOyFviSwrKH8nJbTKMZvu49mzZ1g8P4G8dkgpFB/6MFhyIGxg3FOQpEjxVFIErrSGzkiIy1guzTVQykEIcrL29vZidH52dhadjV0TKc8z7M33olgXVbsM65vTagzn+94z7FwwyrHdbqPsuHMO6/U6NMmiZ1CWZez2ypOP32+MwWQyic9NSxWh1i5ob0hBDdvoeZkg0StDeaSFUBmUANraxBLgLCfeScqHSJsD0ThQiiXLMszns9DzpXcAxtESP/NdBKar0I1dCyVFL/jgiI/nWzzfy6yzbxdw/5e/A27vEZfi0YKQh9d5jwD8v/uUnOjGAEUG+3/6n4AyWcrG9aTR9L7++t6AC/Cig2w5pVC8c3FzCFvzaNwkSQN56kkiIUKajTY774FtXaPIcxRFGWSYM7z55lv44ou7OD05iaRe4NUcDppzFkJJ6GCPlNJ4/OgRHj3+Ftev3yBEQAqQUmYfgTKpHGCCaJr6uHykqaNdv0sj0n4cX96Bie/vMYTwvRdeUoEnpJWCVBk88510Bi0EkT8FYA09M+9saKceyKF22EBrl7PhQ3oY8HHDkYPI3l9aTzQ2Qx4Vr0UONvnzOHUCuB498x4+ImE1Vqs19kPnaoCqnTx8TBt4QfKzQkjoTKAL6NXefoXvf+8t5KrEyZMn+PL0OTbrFaqiRBu4duxoICg3X/XcU7tMSGzyu2Qt0KlEeE5hnATghcD1Gzdw49YdzA8OkJ336aSiKGF4+lkAzoemcCaRSt89D4cOQFpZkjgl8W/73+d535k4dTLSf/eoIgcZaedyysOxMwtcfY27jtdCNpi3wTwMTqEwVF+VJVzXK2dyhM2TjkmJtPEY8KTLsuBgGAcZEImiKGKH0q4zWC6XuHfvHjabTUQ80qh2WL4j4USQpE0elHPcEdJBBQhsPt8nQTHR51y11phIjfW2BvfAyLMMCHwKhRxFEXQeIJCW0AFcKqRQlRN4D2RFjjzPqWJnux1cE29uSilUVYWD/X3MprPoVKSkz6ZpUJYlZrNZJIGxOh2nZ/g62MlIIVIpFWazIj6vxWIRN33euM/Pz/H8+fNB99iqqgCPvvle00CxU8H190oiLwpolcFDwDiSD67rBtu6RmsJ1XDeQ0gVm8LR55P8eu9EaFQlpW9IhKyLjlQK46Xw/tjjTuFtNn5jp4P/zWkmRuRSWDzlA41TCC91nNX09SrHrvd4ANtErKtrgc9PXu58u1RFrzrYaHlExCm917TskdaTI2RDkSqhtYa6+OqMencYh+22DnagQFVV2Nvfw/e//338p2fPoAOHKQ9O6/h40TBzdRJddniWtsWHH/4a77/3PubzA0BQQIRYPQGw4aRd5DKilZ5veC3971L0K/KZZC8keNVl08dKpHwY/gVVBPf/piiWNjGhMkBKCJUhL0pIzVFs+DQf5Ma9g+lamI5IkVS6ZgabTIqCjtcEEBSSFTvV/Bn0LHonf0hwHwd7abq3r+xKeS2EB3hPBF4BIpqenJyiKkpMJlM0TYc8p81UBpQFQRLfOGqa6XzYWL2D1hJvvnUThXY4eXyEbycTrM5PKM3tJJwn7SBGg533sUFkTIMJMZjjY+dKSmpuByEAKQNyFuaEVETaryq8/70f4NqNY5RVhalxAEjfaD7fhwv6It5YeOthvINxJBGQIhA8Nzh1279G7s5VSMg41cGVX/z8B/MOveOZIlaUdvMR3eQZfVUq5kXH6zkbflhGyB/OD0Np2kQY8eDNyFrWmDCxIRiRQ/VgQ+Cjz9+KwPWgQXz8+DGePHmCt956C5PJJDat4QHggTPGAGrIp+WJ7r2HFEBeFnAN8Q3eeftdfHlvC+tA/Tycw2bTQCqFPFcQJsB6eY4yy2L6wDnijBhLXjLJ8IYyIZ3RIpASOqOKkidPnoQUUVpO1gtLTadTVFW/yTN5UwjSBWEiHb9uAxKUaSbcdtFB4YnGrYidc8iTFsPkxPUdabMsw2w2i8/02rVrVBLGKJLoORMiz8lcpPMgNG+q2xY5N32zFp3pUDc1lR6KkFpJ0idcdaKUHiBUvTcdStSSBXVlNJl4/qnzyUYxHe90waS/4/tP53X6mX2U++qw//8/HLyBxmTWaNPlceJ5xgeLEgkIUu8NEaFzPijk0jY8nUzhXIujoyMcXb+O09NT5EHB9lU4G1dcPYQAHj95jEePH6IsK0iZxxJyisABIThyp/fwNP4u4zlGYNLNNbaZj5fy8pFf/wHp9YQIWlJ+XygNJRWUJgRZSBUifASHIpmjCE6Q6eBDu3VrTdxIeT5fQoO/A1niMth0PK6E+kdIR/o5PmQwvA9qysLBAmhbCk4vLhYkXjidYD6dUh8oJQAS2oSDjRVOUpBQGHH/KK1/585NKP8zbFcLfPKbX8NstjDewTpDc0F4eDt0CNN7T+chjefoIQVkgR1VYwzysoKQpB9yfPMWimoKBwHjBYAegS3KAo47E1sHZ6hvlBE9p4KRZf45JYiS7XKRgzN+Fimxs3cEr77Py6gO3Refi9/DmYz0s/5pnQ3wjbqB4eaJawKqwZ4hEzjTluYxGtW9ce8dhZQkJqGUCKqdBJOulivcvXsXb7/99oCdyw+lJ01aSC2QduYUUkI6DakFbEfiWl1rMZuU+JM/+XM09RJVWaIoSvzqV7+GFy2KPEdTN/C2I9hSKkBRS2Nj6HM7S9UV5EkmTF6VBU6FQlZQqejTp0/jJGDOC6umzmYzzGYzSNlH0+kiXS6XER3ilAmXvNZt0NGoKjjnYuth5lhMp1NyUEwvUc6k3qqq4musyXFwcIA8z9E2LbwPnXp1X0a7rhsIIDqVWZZR2Zan5nwePkrLt8bAshhVgLCV7qtOxpUoXJarswyz2RTz+V6UU08XFE/6MZIx/jldHKmDMSaWAv1Gm+a1x9FaNNivt4D+Z3/EsUOA9ePmzM4dlcQS0hMgdJDxk0JChKgNnvpsOGfBXZM9SH+nyHMcHR3hjTfewNnJSRJc/P6HlALr1QK//e2v8fbbbwOQEDpA8gl6Qd/7911KabwA2Rj/DVdzMTIAIELi37WBJ2cnVENwKosFu9g5zyNxUqoMPq4HANbDuA7OJu3ITYsu2IC+FH1YOTMOGl90pHB9eGVwvvGY7XI4mDfnnY+dVJ1HDERaTwTyxWKBqiohBJBrDe81lFfwsPAgFFVnOZSzsJaqYoXXyPOAdnUOb779Bv71v/lXaFZLfP7Jp/CdhMxzeFgY11CpsOvTDmOHaHDv43EACaoxb0NpDScIMZ/t7WH/6AiddViut1CtgV73Z1gsl4AOKUcICO9Jiw99aiNtKT/+ot9z6mOI1vU/078DMIU8z6LdSoO5cTqFkCuFICUbnxe8j6KXAGJ37pc1gq/pbAxzlHyhqVFnzgXn+lNdfClljLSn+YTaiktu4NQ3CKJIPy3BsdhstyirDp9++in+4i/+IpaDpkJWPerCMFC/gKQQkFrDmI70LyQtYOeBt999D9eu/+9R5jk++ugj/N3f/xcICCwuKM3QBaVUIUQoHaX+Ad77kMeWUFIjy3OQ0IpKiKMKRZXjm2++wWKxQB6UOHmjJlXQvVCBI2NaJI2y2VnjclWGJa0hdIPTG6wUyo7MZDIBgIRQqpAiQABCXxeL6XSKi4sLnJ2d4c6dO0m/kL7qI003pBuECA6e0NR1sjMGddvAcpSsFZW/hgVNkRkr0Q3L6HpnQQQnbBrmVOqpX3YqUsJten+p4xCjz9GmwXMoXYDjSC19/X/ph1LES4r14ki/M6rjg9MBOE+VBZIjNpazD7014NnJC2k/Qd2Ib968iXvTaSyVTp/f73PoTOLLL+/j+fNnuHXzzXDtaQSfbi4vj2yMEdgXOiivg2zwEeedikGMFEFpV2VhkxPhuw8aHA5dWJ+262A7AxMCDPg+/Z06W+k9pV/fNQYibKxcMpwGn+N1k44PozUcObMD6OFhvQcMoJRDU7dYrzeYTidBYIu6TUup4QMnwjoP2znUtYF1ZIOlFsirHMZT2vn6jev44Mc/wfOnz/DsaUtqx9aitRaZGgYSY1Rm4DgNHKrgJsggbyDIgSbFUI1r164DQmBbU7m6kA2KjQJQkiN1cQGviWekhISCgPUerTMxhZk6AOP0B9EOZBz7FMUYc9jCTzGDwIg2/z51avhneiYiKnane3yqGPoq6/S1nY1xtJcuOK01lCBSY9M0cVMa5wiFIJoN1cJn0eOSUqFrTdxsuKxSBG+/rmt8++23+PTTT/Hzn/98cP5Uf0EpBZkNW4pbxz0TfNhIAa00TNfCOo9qNoftOjx++hzzg0N0dQ0sF+jaFipugkQWVUJBZqSsKJ0LzkuGPCtiEzGVFZSyyDTWmxW+/vrrOE4MGbNYV1mWMXJWUsLZHuZnb5Y5GJyeYARjvr8HqYgH07ZUT82NsBDGrG1JZXRSVZBCxmoi7z2RRoMzsliQTgN/jswzeGspnWJdPL8MC4wdJilIi0Q4ic420TkyXUcRHpLFHEpctVKhzK7/PlSmE4mY1rD6JEU5UqcjrVjhudkvIlyat+ncTUnPPKfS84zn/++xlfzP//BhW9hhT3ZtRiIgez3e4+AsORuACdLUgYQWEMI8z3Hjxg3ceeMN3L17N9Ha6B2D7zpEH2xFRMAHmej1ZoNf/eqX+G/+6g45wnGDFuA+LuQQDDfEF222V9k9/j4wwPHnl5spyX4cibiX57gKHAGPVBuEuDEWxnTouhaW158xNB4SVLWSIM5aa0qLOxtazPOGdvXY++B8eh/GWQZnZwe8Pt4n+t8j9HsSMbUGIKDQtHbrpsFiscRkUmFvOkWWqxhwIJBRvXEQUFCs5qkyyNwDwkMoAZ1rOGtw56038c5772G1XmBxcQZ20hyi4OolB2OcFlLJPiIFU0TJ4YCgPSXLS8wP9jGdz+GEh207OEN7Q9tpACUAYL1Zw0oR+r4AwpGj1XkXx4XHjGXie84Ec0p0tINpH5S0PLUPwkRAkIftGfqsACMpBiSd7uEsdqAp5tIc/ydNo6QLiyctkxuttTDOUSfU7ZoGGpSjatsOADXcirW7ELSpGgeZaShJSpv9QHFUSnlfpSWc7bBaXeDj332IH//4A2SZRjWZINXwh5CQmqBehnt66I7USz086tYEmFjDCzKCF8slvMxx687bePzoEQovILY1bGYDLOzhlYHsHBwEpNAkiy3p+oXSkFIgyzMIKYl9nyl8evcTLBcLZAEtKKsKSkrMZnNMphN459G2DS2EYBBS9IMmbIeiLAlGDS2SVabQtC2cpfRFVU0AT6Snrg3t3IXApJoSqco6eEdOCaEkOfb399E0DZ4+fYr1aoW9+R4m1YRkjkE5Vel6WfVMZXDBA9Y6gwya+bDU5bVtSXDGWUfORpjEfR8HSSiTJOVQrQtonVPKSdEC1hlpbxRliSIQRXtkg+vAFRku0Xv0vCjTSCDNNWqt6FpG6UBOCXjOIwd5wzHSwU6Q5z/8X+DBkstCD43KC3O0cYNkiLZ3yIRQ8FBwQeNAaQnrLFTeYrrncefNt/Dgywf8QQl+IoYfAMZT0leS7x6kZqoA07WQUuPu3bv4sz/9X+HG9dvog7IguR6u+SpfYJdDEa9mR1SXbk7xuliB9dKHjNEEJM5J4ARIGdE/Rkt57rNPIByVKlrbwZqWRAltB2NaGNuSkwUBqXJkOocMBG0qgwhpHo8glY3eIUu/fChxdqTwTONBqEa/VtKffe+octUFEEuBaR159ChWiN69h3SAdoA3Dpu6xXK1hbnh4ISAlwJWAN6Tc5TnGbJcoqok4MkJU7lEY2o0psZsr0Kta+xdm+Gt772FLx58hpPTZ/DeIMtyak7nAa4AErJ/dpEiAEauk+cc+ppxCS6kgHUO89kU128eoygngFKAygGhiDifcDZIJRlAsCs2sp2oCy7NB3IwUrYIoykkSY6g3MtmiLtcI/6NUqzBIojzImUkVEvnAWHgui44fxLSK3gvKVXlHU1dS1VAzgWBQR4IXg//VGkUWg9iIHQkhIhRcl3XFI0LgSzP0YkOy+USJ2en0Fpjb28PRdhsAfLGpVQwxkEp8uJIhKf3grkDIFWteHRdi+3G4f79L/Dk8bf4/g9+RFyNPA9lqVSC1FkP5Ty8HUYaLi3ZEQIeVKcsPCClhcoqVJN9zAxwWxU4ef4cXdehrmtCCJoWXhpoxQiNTr7Iu84yDZ1RHruoSmzXS3zz1TcU/QUtiaoosbe3F3UurCWj4L0P5Wo9LMkt2A+PDuG8x7apwWVlWZZBtBYGAT41LuhgZEH4jNIr3JXWwyPLNfKigPMe68061ocvl0sICEyqClqSpr7vLKQX0Er3KFGY3F3H3BwR2OS0YRdFhs16i7Zu4BxrcdDWwSgGldNpSJlD6RwyOBrU+4LSLlIp7O3tYzqbxVI3FvsirgCjWGQUUyhwWMqVHuJSymTIE0JIv/ViREPYvGfTtx9cw+L/+MeDaM45Th942jDCPOun4PA1RoU8etSPqz84qgmnCugLYQcmkP24pwM8glEYOkj9PVHE0rQWq+Uay9UKddPCOw8bSu8gFAQk2jwo8AqAKybo3i9Hq73xCc48TxEfumt6es5KC3iYMM8BoVrk5Qytcbh28xb2rx3h9PlzcFqG4VoxUPYUyX+DUcZIl8lTNVvnDLRQWK2WuHv3Lo4Oj2OVlJCCQkp4QAkIk541OdUVaYWrHI8URaUh4Wh0aJhpjV8+twCo/40PTltwLqTSwRmn9IkLfq6Ah3fkaJi2QdduYEwNa1t0pgmRKFUUZVkOHSr+ZLB1xnRw3sCH7dajrz6BYMcxINIWAV2VcU4CCKRMkjj3oUra+d6Zk8m4Ci9COoLWLg0XvZ8dLi9Iy0gLic4A67rF6WIJkSl4KZBnbD/IvsLT85dSgsyHRyE1vNKot1ts6w2csrj11k0c3jjA1988QCYk4Dy00PA+6AQlj86JHvHwXDnjU1vi4YWDFyKkdIBqPseNW7dw/eYtZHkBJ2QQ8qJ7JoyZbMpsugejAiQX5jCv955/aOFcTxRFdHjIVlDjytCxWyl4kBKuFR6sSeJhiQ8jgI7tRYLiDdENS2j5QATOBRUdR8KtI8n/Vzle2dkQwZPTmhQ8AURSJit6dl0HqTVsMPqz2QzNtqbc+3QWHDpCPIwxUEnXOaCPQpmDkGp5VFUOa7fIMo3F4gIffvgh/uAnf4j1dosiMVDgnhspmckPO35yvjD8EkKo0Oa8wmy+j/W6RlkK3DjOUddbrFZr6GyDtiDCpLOW6rZD/o46r5L3WBQ5ICwhEBL46MP7WCwWYInw6XQaNS7SihOG8oUQsRyLNhQBFdRSiahJehd101DKBip213SO9C+2220kjGqt0bYtNpsN+dAG1LnVGFRVha5pcXJygvVqjfmMNC28p2ZECJERQ3Yp2pJuaExWYk6OkIKa0lkEzQ1AqKB+qDSUyoID0zfP482d4fSiKHBwcDBo/85OARtqTn3wwc5Z+lp6sBMyZuGP0yWpA5GeO/IOnEd3UKA7KHaeJz1Hv36GOWGg76DJa4kjkjFxi/km7GTyeVxiNFLyK/8b6MuCrQU2NTW8Oj3TWK5WaJsOnSWjBKEghIqNFK0zMbIa30s6Jun9je9XCJU8txCVORuiO4csyzGfz/HGm2/i/PwMzrToNTC+O2wa/4UHwuZHJGVvLO5++gl++MMf49qNW6QFEjYqNsrDLfH1j0t5/qsuEhjMmeRFQmLDpsLjSaRpXiug5+IA6mBKKEbbMiG8QVs3sVpO6zxC7Epng89UyoVW98PPSzclvlZy9MkJ79dJKnpnBunscZl5eqQ8hHRNjFPebddhs61xfnGBrKAKkjLLMJmUyPIMTVMDUFBCIVM9skYIuoSzFnXdoDMd8iLHj3/yY3x1/z5WFwuYrqXGoAg4jA9IBQDpw/370OjME6rAh5QaEhoOxLVQSuPG8TFu3ryJyWQKqXN4KSBlFrkepbEAVuGZqOghp8iZtR5S9igR2YkhgJraWw6a0vmUVvMNuXBDOxarMqUc2JmrfubP/GdzNrwHTEedHXmzIQXQXoOgrCoYa1GHktT5bIaqID4CiWT1nA3vfdTRYKPLE5XPm+YClZSxP0jbtvjkk4/x5OljHB5dC5EoN4Qix0jtmPAvyss6B5RFhevXbmK13KJtTylNonJUJaBk1pchmS4sVHI2qJkTV0gQ+1dpiYuLc9y/fw/ec4v1IlZWpFU6QO9wdV0H+L6MtaoqOHjSuhCCGpIpFUmWriPuRt9SmEi67Pw1DZFbq6qCdRbbZgud8BE2mw1OT08BgSg+xtwRqSVM4IJwpQhXvEgpo/aHc8F4O4dt06CqKngIrDdbULmhDd0VFYRS0YFKe6CkiwNAJM7Ss3G9VLHvWf6RKJtUA/Cmu8vYsYEbOy78O55ru3PNXFqIwd/z312V7+XXxkevZMvGJnQlHUW9/PMw5RPI0Ojr3se8lJTjwigAzY0MZVWg7dqAdgWiW4TN+b6HjkR67Brfq/49HhcfjDhH8EVR4ubN23hw/x6WFx1+78N7SEGRns4zPH3yCF8+uI+jo+sQUsGYNsw/ReX3cYP/Rz6uOGfqbF52zniswsYt086aiQMmXCCqGxjTBSKoCdV/FBAJKZGpLKAaWQzG+vkk+tb04wsWQ+cj3ZRSZ6O/lyGBkT/nqvvnI0XL+rmRygKQknHbzOEmDkYYrNdriK2AEqTPpLIK3jtCxQ2lhNq2hfMU8HVGofUN3n33Pfzxn/4J/vav/wbCZbHhpuIxT/0+TgWBQcj+mlWWQTgNZx1UluHw2nUcH99EWU2o6s5TlaPSXNnB+2bYQ40hUS8M9yPn+rU8rogbj+c40BvbqfGXUv052NaMA6n0511o3lXO48scr9VintMc3HyN+5MAVNVgjMFyTQpwh4eH0Fpju+krJAjucRHdYM9vXAGQilPxTRpLn9c0DXSm8ejRI/z93/8d/jf/9f82QISX2+SOj3G02t8awXla59jfP8KNGzWaxmK1WiDLJITIoBS1wjYdCZZ5IEBtlKMGWFnVoKwKdF2LR48eYrPeYDabDEg8DPmn1wWAepuIQD8Km0XbtsjLggyJ6dAGp0IqBWctFKhlvLUWZVmiLEtkWTYQD0uZyDwGUko0dY3T01NsNhtMJpPYlt460uQQ3g2cQHYQx8gA5wPrtkaeF/Ae2G7roL5KLGsFJnmy7LKOcutpVMTltdPpFPv7+7R5yCHLeoxwpI7Ci0r4UuInH+yo8PvHxnBsPLnzZvo3/N60SmbX9aZ/T+ca3sf4falRSI0LV3mppIFZGhnqJF3J7zGhkZvOJIoiQ55nqOuGWo5DwPnAQsfljXB8pBtD+n38N/w80k2E/9Za4nAJoXBwcIjbt9/AZrmEx9XP72UOIYhJD+dRlDk2mwafffYpfvSjD3BwSPowUlBqkCu/ft9jl00RQlzpw+zacOlnJGtBQ6u0AWA/V5yzcCZwM7qWgh9nQwUBOSsklEfpE5Wsn5SkP7hWkWxWGG9cgPcSzieicvH6Xbw2XltpIPCyY5auQRZ/ZI6UtZ7S7SGY6EwHLRXK0kFAwoqANIeGbV3Xgkpk2fFWMNLiX/zxH+HZk6f46De/5dxktOMpEhXYJb1vlzzI1jrUxkDnBa4dH+P68S2oPMe2aSGUggaha50hNM97j3xLgSngqQmnvBz4ej+sQhkjpbtQxBSdGAdi6WHM0Jn4rsq6Xc7w7+NwvEbX1z5CYZGo5XKJsizRNJQj3NY1ZrMZrl27RpF83itn5lkeCZIyIBVeiMHk502No2XmJRCi4KFziaLMCIrywK9+9Uv8+A/+AHfeeANCZDTpRe/AcB1yOoDjQQQQ4GgAFtBZgVu334CUGb59+BCbzZqux0tkkFA6RPEIaqQupPTC6YuygPcGXdfi3r37qKoKZZFFBUxu6Z6W7KYsYh/IUjyR8iJHWVXw3qMoSlSTCay1kRjKzH5GhJxz2G63AwcjsomFpyqVMLZnZ2exAmVSVXHsJ6EfiozdHoeiVwBi51opJaV9rAtEXIe2M9g2LajEjZ6JTIS7dKhASiO3FEpl7ZE8z2M/FWtcRC7SKJ6fZQoNXgXjjh0LRpj4M/n1HmnAzgXNhnm4PIbRRLrwx5txigb2XI2h451+bvoZjIaNDXv6Gfy80+7MSlGTKO8zFDl1C/U+dEwGQhqlJyJS1+IhmpSundTRSP89Nkrjsj0pVcyFF8UEbddgNp3h3XffxZf3vkDXtSNU4OVSKnGMfOh7IQBnDYQAvvnmK3z99VeYzmYoigKdpVSoFCIFcH6v47Ixfrlrju9hWwIkpfl64EQSkmHgrIVpOzjToutqdN1QYiCK5mU5KY8KCbiho+A9jVG/hnYHZ33FiY9jxa+NI+r03FchG0A/P9P3c7p0sKYtKdCen1+gbRsc7E1RVUX8jK5rAQ9kKoOSGXUakdQrxNi+55PSCpmeIJvs4c/+/Bd4+vgZnj95QlbcR0yPPt/3RFaIwKdK0iitA/LJFIdH13B4/QayoiBHw3ioTMNuNogdacN1TmoAIKL7crmCkWPyMaeA+vEb24x0nY0DqrF96s/L420H70+/0mP83F60Z77K8RppFD+AqFn3gW9cKYUbN27g8OgIOuTunafNbbVahRyppw0kOCusw8CRfq8s2Zc2MldAiL4ledd28ABOTk7w2Wef4fYdKm8jaLRFpvNAuAzRAIabRjqAtKAU9RhxDkJpVJMMx7duobMWX3/zDYSxKEoBXwNwVKLkBYjo5ahUSMBTmaggUtY333wL07U42N+HtV2s2OHyUU5F8QbIm52URDHmjqtKK9jgkHRdC9+FrqRSYtN1UJmKqqxs2FlGPo0ujDFoDXn8RZZhtVrh4uIiIlSz+TxKxMexGkl1s8Q4gNgnhQSEDKAklM5Qtw1IvClHZ2v4hBgrFX2pjBGN3a2MrTU4ODige1E0l7ztF9q4DIufKy/QXSmR9G9TKXiSQ297Z2/Hpjr+zutuvGj5s3ct5NTJ4U0+dUS48oqjoXRMUsSEq7/SeTxOyYw3fSEEtNQQMjhcsdyYIFbruHKEo1gH5+2l8+1CelKHapfNGG/C9LcZiryCdR2yrIBzBkdH13B8fIyvv3qATOfo6hZFWYLapO9Oh+56rQfAaTMSkOi6Gp999ju8887bxAfzgpzjUNW16/p3RXVXbaAp/4APGTfwl/RmRE+C7itP+s93rgv2ImjdGANvOtj4ZeA9oV1aZ8izHFpT2Tg8BnObzsck5KEDvQv1SKPhNMXBr6tRI7b0/Wk6L0W6GNnldceFBum8N0EU0m882Rhn0HUVikKjLHIYQ09bhSZ7HgLeeHTOROErnWVQKkOZFzBNhzffeQc//6M/xv/4P/wPMLVFrhWE8xDOR+fTex8aRgo4OLgkx6KLEgfXJsHRyGG9gBMC8I5adTgLKTyE6dePMRLsbFBK+HLaYtdevgstTJ/JVa+lr+9CTMc/j18b246xDdz1nF90vDpBlM4ePeiiKLDdbmN/jVu3bmG+txdJa3whUWK7beEVbYB5kLtW6KW3UyKcHsHDfdRHJVvcfKxpanz44W/xBz/5A1y/fgN1QxUYxnZQKh9cf7oJjQdKCBEdEiGIoCmkxHQ2w2QyoUiyIA2Npm2pjtp5QJBXTMRqR02SBFDXKzx98ihwEgSc6yPSsaw6IzfMufAhhVGE1u5d12EynQZD49CGKCbLqWwVgSnO1UBFUcQNlBVcWTwsL3JILWG7Ds+ePcPpyQm895jNZqgCslGWJd2HlIBWEBCDPje82XFKqyeJWbQNSbd7z50GA8mKhYkkpVBk4Jyk9eJpRFaWFQ4ODsKGHDgH4dGlZNr0uV6FaLAx6x3LoThYr+UxRATSuTfcyHeTSccOzvhaxhvSWMCKzsnlg0OodLwBMDE2ddBSg3H5mkPlhpeRcJjnOfI8g7EOwnmYuPFwKaLbmYpMP2vX9xRd2RXhCkGOutYFvAGKYgIBh66c4N1338OjRw/pHoKTqXUGZ4e6EoNz7XAAJPo+I9TG3OHLr+7j2bPHmEymEELDC0ndM8XwfLuO7zKquzbpVwFMhOAKFCb49ZUgPL+tNeBKKSZvO2fgLJWXAw5CADrTyHRGzSGVBldVCIJ64vnSFuXja+FAoJ+Duzc+vu4xOpkSRTk4SZ2NlHh4lXw63bxA29IcIL5bSSnVcB7mfHnvQ5k/oo1yfL1CBlRPQmU59g8P8bM/+iNsNlv88j//J9SbFaT30FIGG8PvE1TdKAAhw34kgKPj23AHGVRewAsF7u1G40MoroOP5Hoa73Tchmv7qtnyImToRQ7DZfuHuHZSW3I5ALjsXKTnSwGAXX/3ouM1Sl+pQoHJh+xoFEWB4+Pj2CFUSBk5B5IwLZRlifV6jaooSUc+8Bc620/+1PjyxpZ6wjJWQNA1tC3QdS3uP7iPDz/6EP/mX/+vg35ETgtTJHlr3xu/1JHpHwCQZRpcJ24jPC2ptjxEezy5HaieH46Jd6CaKUHdL58/f471eh0a0JkBXM8bBQvrpKQ/GjNBXTKD0Bf/jrkSLABmjIE3BpnMImLE48eCammkkE4OFl0zhsby+vXrmEwmFAFrDSWJGJon8utAL/TCMD7zQrTWMAgbtaU2803bwHsmgmoIRd0qlcqoz4OiGnQ2SKnTMZ1OURTEU7HOUHmowyWjxoYlvb9dX2l6Jq1wAjD4me9ljHAMnQaLNH+efh87GWmaZOz0sLHhZ8z5aS43TecFnyt1mJm3k87jXdccyaTeQ0qBLNMoXI6yImejNRaupc2K20tT9HU5d5+eP43206/UyRijLHSfKnC2REinAVI6tO0Gd+7cwfHxMR4++hZFlhM/K1RRvOyRmj8ZQHBAYHF+hi+++Bx3br+FvAgCgKkQxBXHVUZ88JnJHOvfl+RWX/C+/v2KkL8Byifj87PBUbCO1oRwHZzpqIW6RxBu0siKHNxrCFLRugEgnB1ULzmXlGnj8pzhe08dUCH716RMBfaGxM7U0Yib/2jNjdcF2+U0HSQEaTGREGOOIi+Q5VQZk2V5uGfCNLwnXR8E1pEVVH5tg6CbhwAcoIXCrdt38Iv/6l9i26zxyUcfYnWxoAIGAcB7aEmltk4AXinIrIjP7NrxMdaFg7GGegBJsTPTlxJOf59M3XjeXeWEXOV4A0N+x1XPib+P1+uua3gVRwN4LWSDPFwu4wSAO3fuxOZdQCCmARDhxmxoczyfz7FarWIU2bYtdGL4eZPjduVN0wycDykltKIOqyxxrrVE21l0bYPf/vbX+LM/+3MUJam0xc14NPi7PEKAJoNUPvxE3HxIh6zQOLi2D6kFNpsNVusVlAtSsT7oQgjACw8hLSQ8mrbGkydPiNiZK1jbk7vSz2boO90snXOYzmZ0r4FX4b3H+eICk8kEhdbUTTVUn1jnoEsdz8WpFEYzqqqKm3bTNOhsBw+Pi/NzbDcbIFS5lGUZNB96p4LHfZcnzM+HK1fobxUgPbwzlC+1gNTUhE5lzIrXsRGbECKIe112FLKQZqGy2dC6Hn2KLR3H9H1pKirdCHext6O4XIySVDR6jHTwuA6dDYKQxw4FMIxYUjGx9Hfpsx5H/hRMXSarpvwR/h2jRPz6eG4Pr5l4QCLow2iV9KDRLToDeEOIIcHIiKjG5fu/THZNnaDxfY03MykA8tRF7BYLGGido5pM8eabb+Lhw28igmaMgcCLyYaXDi8hvA3IBgBYaK1w//7n+Nkf/gvcvElCekpKUAuwHafYcQ9XHYPUEsc3L509SRACocL1UgqmRzXI2WDtBWsNhDHwlhVCBbWazxTyogACSgIv4bjywdmBoxGJiDvKm9NnmM5bJojSeKSOdc87Sjc0Phevo8vzvV+76bWlm2GR5zCGSKFCSuTB4ci1BvXdsfCCnGTPxJcQ8MLTnBZCkFYPBKyjjtjHt27iF//qX6I1LT756HdwnYXSXAZN6BuUQF4VmM8OgNDfxAsN61sgohoiOho+YZpGJySZH/099z/3rw+d1fEz2TV2L3cQYjq2scDQzvORpm6His6vz+F4LWSjaUj6uixLHB0doaoqCNGnPqQkpUvhe16Ht7RpViEiz/M85vs3gciYGugoVpJE0xRJC4jQKrfrOmRZhqalEtSvvvoKn376Cf7wZz8bEC97w+gvDSoPHrkYjsqTRO+iCulRTQqU1S0cHOzh7Owc+kTiYrFEbQA4SUGTo5JPeAkNj2dPHuHpk6ewxqDxFDHytaQSsHxvjFQwagFPJbxt22KxWEBrjfl8DmMM1psNXKgQmU6nFNnaIVcgD6RczoPWdR0dj0pVWCwXWC4WaNoWeZbHqiETGNbM99BZBo0ehWFODRsibvJmDDkDgIhOjTUEweuQP+bvikucJX2JhK+RGqmyrGL1jnAIhGIdWerjjWCMGvDr6XPmOZEuNDZsPPfYWUsRp/FmyxvDwAiPovnU+WBiMP8udQzHC5bVGPm96WYzdlbGKYsxNJ1u/kKIRDvBA+E8RZFjU9e0umNVQTA2QgQFy6GxS6Pe8X3xdaffLzn8QOgmDAAizI8JunaKrtngrbfexv0H9/E8NC1k5PHlj/EfU6ozKzROnj/D559/hmvXbg4qNHYd6fPcdR9Xvoev4iWuuXfAAgqcjJlzCIiCHTgb1hpY10GYDnCW3qsBnVNrBKqUC5V/XgT7ADg7lJ/mzblHEfpnRimU1JEn29k2ZrBWd0W86Vikr/McGc+TNDhK7Rj/O9MZ2rZD13bQSmNvbx9lqdG1DdqugTOsfioA+JgechBorYNxJAipdQ4FDTgPIxx0nuOd772PP2uoWvLB3c/hGgMlqJokLwvk8ymqvRkOZwfAPbqXzhoY5SF1sgHveNhSyrjmdMJpyfMCHC/1cwy4PG+HKdpx0HTVfLr8+6FN5L/Z5ciMydzps0ydx6tSpFcdryVXnud57E6aXjSLcEXuQbhxgkvJsE9nM5w8J47ApKrQtC2yPI9RJEfrAKIWRQqn8WBKSSzzcj6H8w7nFwsoqfDhbz/E977//YCC6KB/MRwMKammvs+UsSFB6G3ERCbK8/Xw8xRSBnEdpXFysQEMkUNhw2TzAqbd4tmzpzg7P4OSgOk6ZJkCfIiiBAnBSBGakYUx45JV2hR6hMh70ifhe2fDxOmAzXaLIq9iOsJ7HwmeHKFXoZLFGINm0+D05ASb9QZSSMxmM8xnc0xDhYvWmiKJoPFhvEXbdfDOYbVahVJLH4XCRCC7Ou+AEC1vtzVFlMGzZ8MhlAxGlVtmq8Dl6D1ovub5fE6OF2jTm0wnEH5Y65+iEuOoaizgljoY/D6uqBpH7WmjuYjADDz7HkJmR4MRqnSe8VeKSoyRgHSx07+5GmRYWcKOUNpIiX/H700NACM8qeEQECDFcAchaD7qLCORK++DqmWfU6a1MkyfvMjZ2BWxpsZtsGnzvwVtJlmm4ewcbbvBoT3E22+9jbPTM7T1FlU1DRvvZXu0+0iuI3nVtB2sEbj3xef4+c/+BNNJqF7jWgQh0rfuPN/ls2IwFjQ2ASlASItdceG98yf6zSpsOt57QgmDs+E8oxEW3pPT4R0hqZLF8nQW0rwkOEVlsCJeTT9HuOzx8hUB4VJY+Mz5qPvjnYFtO4gsA3R//Xwu73ku8Ln6tBmdl5SGU86VlDKuVeaMpU41ry+qwiHxORFsZ1GU0FrRM3Shr1QnYa2EdR7GATqOrSB58DCmxgJaKRjv8eOf/iGc9VicLXHx/JQCBCEx259jergPVRbQ6FN5MqPO4UIE6XfhhzmTcPe85oQguXA+iqKATfzcPqC4PE/SfS8NHnYdKYI4+k0/pzDUGnpRQDN+LXUGUxHBlzleK40ymUxid9K0GiEdEJF4eumE0XkG4yzOFxc4ODqkidl2USOC0g6kKHh6ehrLH1kzQAoJ5SVM3WEymaKrO5jGotAFJsUEX91/gAef38NPf/rTwLDvekY9AIvQpdBRftOHB6CUojbGQf/dOaqS0SqD0hndn5SYlApFXkHJHN49w3K1JufKtaimBZrtBo1t8OjRV8hyTmdYZMggA/wpnEfOJVGgCDQrAhKh+v4ybRA/81JiUxMhtCyohwhNLBe6OQp0hoilWZYhU4ru1Vi0gTCah1SM9x7rxQKb8wvAGEzKCrev38B8MkFbNyiLArnWsF2HrmlRNw3aro2Rvi4JxajrhiTZlYZDH9FqAXR1DW87CA8olSHXGbRQUFDQQiOTGbTIoBDy0zqIfCnqkisDcfHw4ABVTInRJhDh1eAA8MZrrY1ReJyrQkRH1hoDwxU/AbXpQqUUhAgpNNUjA97DG+KJmASF4PMKIZBJKidsuwR1A0sxk+MqQj5Xs4pm3HCDNH+oXIrRo6TGfl3C0keIlHVw5gH0xDcAXUeqo94TKsIOcb+x08ql3AiVEnadidLEMvAmMpnBKQ/riVipdUY56wSRS52KFGLnn8eoYfosUidJSo6iKAqFAiazGbJCo+kaNG2Ht959H1/cf4CTpiH+FKjX0eVoKkWceFX54a88CYhJqSG8w8Ovv8HDr7/EBx/8BLatoYspSI+Zoz1KpTpP6VQvEqcqzEfeWPn1XVE+ZaJIzp/HIUXQOLAQoOvjgIXvwRlHcuLeAt4CvoNzHazt4L2BlQ4OCjrTQJbRl9TwLC4IAeGJ/EsOS98zxQcZaqoGGzqwEAKNJUE0YSzMtoZyBrar4YyBzahUWmi6N2MdshCEWIvwnGjudZ0F+axcPSWhdYa2beI4pMgYBx2MzHrvURQ5lKI2A03dwDsJKTIUVQbnKI0ueU3pDsY5IvG3BsJYuM5AawFvSURReEAoDYgck7JCZyy+98Mf4fT0Ar/8h3+A9x7Xjq5DaeKZeQig68dHeg/hLAWmMVgQsYCCpx47GjwX4rwIfWWGqZUgEYBhgDRGDNP9dLzRj536dI30fLC+DUKf3rfJOfry9HHaZYhs7CYXX3W8urMhJabTGYBe+TONdPhIyXVpyiPLMpRVie12i9b0UqtVVWG9XsfzLJdLALg00N57tHUDCUFaDnWNTCoILXF+doa6rvHhb36LH37/B1BCUq+NEVeCUA0y9IAAFOXoOusA25d2KalgOpZ71tBKQsBCSY+92T7sMVXXNN5CeAlrWpRljl/9l0/w/OQZjOkATxtVZwwKIQCpoEIUaT0ZMa0V6Y34oBjqHTk4zmMbdCw40m/bFk0QO+OoW2vy8o2zaLo2lFjRked5JIBFJGS1xna9wXw6w62btzCtJhAeKHQGCYF6s41dYFnfwgHYhM/VWiPLM2zrGl23wnw+jwvMeR8arzkISffFOhpSUHmaFPS6kNRoTUgJERq5cUplOp3i8OgoQQYMlFRwAoNNK1186eYnhACCeJqUEk6SLDGTdMeprHTT5MO50PsgGMT0K40MuHLlkkSzJyga4L4TaVoB4JJfvo8UUuZrCqeJayrCqQmKMdzse+G1McEvHp5TUioo2jpUpcF2W8N0gT0fromdozFycRUMezmiwuD+BgiJ8PDSk/6ulMjyHGWZo2lreO9Q11vcvHUL52dncN6DOtdfgRCMPjZYHoq8YwWLRFN3KIoSXWdw95NP8YPvfR9S5Rz4JRt9OG+4TsT73l0Rkz6vdAz6exaj8RFXfPG98HUwYZcRKxd4FxbOO3heR1pDZhmkzonzISWEpy6uRGGw8Jb7XhhCYz1vhn3qJiIVAqEJXAaIltIOTYOuqWE7Kkf2ZU+Y9GKctvOBV0djQgTgFBkcpgbob/rNrbdt7DQ7KJUB3mOz2WKxWFIauZpAaJIAgKNgVSoNrXwUqLPWQviOAi/Voe8wrqG0RJHlADpke/v46b/4OYrpFGdn55CSxRcd6m0D3fTzIs8yaDVaE4PZQCOZIpfO9X9hjYVNkIY+heEH9iW1a+M1uGstXI1spFfIc2s41/tzUBWh92awvvkZDa/35QXxXiON4mHtUN/gqkFIJxdPLMoRFyE6riM/gWWwGU5jhIPlvCOEE0oCqeoCBMFmGbptjc1mAyElvvzyS3z77bd44403UJRlov2PeD3Ok3ohCedQmauxBiKB53nz994PeALOOZRliRsZNTpbrZZo6war9RLr9QpffvUAputosnmCqjtmSAe1QhK1UhBKRAXNfvKQ4WE9EYCg/+12G2XCU8GuLKhw+q6Nn8MRk/GOovMwhqvVCqvVClmW4/DgELPZLD67PM+xXC5xcXERuRJt26DtOuSBPMopsqZpMJlMKIcbWtcLQaqvXdfBWY8slLpGfkZMl8iYOkm/lOKW88RPOdjfB4BwbvpuXf8sUk4Eb/rpYktlzMfkTR671DkYz2k+duUp04ijz38Py/ZSR4J1VcZGIOVejJ2N8dpK74EPWld9KTBzba4icHK0Ob6/vKBAoBZN6BtCvSkI5Lls6HYduyL78TUM/s0+mQfapkPTtJhOShzsHwDeot6u8c477+Dbr7/GdrMZnGPsGL7c4YOmCDV+vH//Pp48eYI7b7wFaugleijcE7LAKFR/Dz6mOdLruOq+qdlg/7sXbwb9ddLfuviZPXTtYEN5MjmzfdoxyzJopaBEQE05veZtFAIjYiltauOodXCNAsQfiXMHaI1B1xk4a5DxPQcnCm44N/h6U4d0uLb6+cQw/Tjtx+tUCAFnya45T7ZvvV5hOp2g6zoUJaHCsaTX9z2amFzvHaXouTs0k8yj3RUC1lgcHBzg/fffxzffPETbdgG9N1BSQ6t+TeVFjkwM+SfDZ9zzdmLQnfyZsQYWl9dLdI5E74wBl6vQ0vNemj0vuS6+az1f9TfpnL8Kydx1vIZcOYmsqB256DSSYueB4de0qVqeUzkbIxlaqEg0ZCVS5mvUdT2IXI3pkCneaESM1ruAKnRdh/PzM/zyl7/E7du3A6FqKEstBEOhnoR9PJXzWmMgw7VzLp8/m9NFfJ9ZlkEqhTfeeAOb1QrbeovFxRn+0//nf8JyuQgLx8M2DlmuIZxErhRMECJTmUZRltTXxPfyLi5EL8vVEl1Hgmm8gRhjYplpSsptthsIRbn3qqyQJeqk0pMX3nUdFosFnj17hrppsB/SYIvFIj6Px48fx018tVqFTSiPTgRPNDYKbdvGFJpzoTGb92iNgxeA1CrKkVPr+Axa55AqC10se30NNgBsOA8ODih6cjYaDebapBDjLlJmutmnjgDPP/557GywQ8BzOP0ODBEHPlcamaUGlsfquxbkGMUYr6Xx7/i86fnj2KCXKE91Qob3wzCtGpQ85nmGosixVpQ2MnFToy7JY7g03Tx2OWhXXe/wWhBVd4nE3GA2rXB4eAilBNqmxjtvv4N7t77A/Xv3Lm3UL96wdx95kaNtG0gpUTdrfHr3Y9y6c6evWgnXJUI6pt84kmuOf7P7vujfCfImAk8mcUpe5JT5KKTWE0IjbB1EyATIaRcyg9YFEWxVHivJOKBiu2EMBW2dteicpfXJYnoBUYRHSBuFa+FurgCEkgS9g/qC6CKHCnIApBRwmSO16xg79ikqN3ZQOKXS235iuXLJvncuVMSFBnFR5E9CSkCGEl2yKSwC2I8zX0/bkcS4dQZSKly/fg3OOTx58hSbTQ1jOigtoLJ+HStJVXtjzlX6HMfP1SWImDUW3UhLJ0W3ds2R8fi8jLNw1di/TODwMud6lTX4WnLleZZFoag0Ih9Dwjz5eJBYaZS98PPzc3jvMSkqwPf5Xp6sqXBUHGgAcMGIe8rhdl0LKQTyssTFYoHlaol7977A48ePcefNNxDlyj2rn/IkTtTsErEoPsYbGV+b972KalkUkACm0wrCWzx8+JBU/JyLk50mfCBGBpKQDBuz4A8WAs4Tj6DtWljT5zLTiJo3ehYGy7IMe3v7aE1LXRLbhiSYJZUJM5JircVisYAxBteOjnDzxnUoqdA0TewGyx41IwRKKdRtAxHGlkuSU6SAHY5ePIyeOUmSZ9A6C+JdrKnBPwclUZkgHEoFkpvG9evXqXdFUYTxU6Glel8JM44o0rmTzrt0UaWEpjFCMO4bk5Kg2MkaR2gpmpHmUflrHIGnjgl/5hB5uOywpGsqPU8/L4cCcel1pZ8VphmAoIliPVyIjpVxqCp6xma7jcq/gLrkbFyFYFz1+q7In+6TImjS0KDnkmU5prM5AIeuPcZ6s8L3vvc9PHr4EPVmOzjH1U5OChMPD2sNrO2gdQFrDR48uIefnf4ch9dvww9Ka/kclyPUMfK86xnx7aZ/ms6Jq5GZtKuqg3XcDZpInfRMiGMhAxFU6QxaBYfTp1VJoWol+XKRACzBYnqD6wkl3QAgRUgDgPL3DgJeBM2cTEd+EUDOSvqcU4c5DRbTMaPnPkQ30vemkgjsQAuhQoXeEmfTc+JhUBMcCJ/yuSSMIZtkjU3WsoMxNt630hnKsoLiyr22g7UORZFjf38P1lrU9ZYcnW5kR9RlOzJe6y/6XRpQkA25XMyQ2pcUsXwdZ+FVHJN0ro7P96pODh+vmUbpH166aNIIzhgTUyFc9gf0BD+W1uaLL0LKhD3RpqHoIw8EP+5+qpWCMRZlWUBKESoeSDFPACiKHM5aXCwu8Mtf/gMOjw7j4vHhurynfGQWHnDnQtlUuBbexDlFwAacqxj43rLgdLVtgzzTWC0XePjoW2ilAG8hBWCkoLRTqMxQDHnmGSAoirTBMHTGYFtvsd1sMZ3OkBeE8tR1HfVHeIy4vBQA8rLApJrAsuqjsajrGs5aFBk1juP7uHnzJm7fvAlvDFbLZYQZq9AHhZ0JTrvkqiB4NvRbYcSjLIl3w6mV2WwWkJcaLLVMAkWKurxKCSRlrrHiQiasc0H5Y601rl27FucJoSoCpjPQWV+GOy4fHUdUuzZIdqJ2RVW7nI0UmRg7nfxa+tnj8/KRCuWkBmOsnZG+bwxzj2HpPr3TXzuvk3F6pj+/AEXOVE2jWe9E2tiNeFs3RNoUtOG+CmLxskbIex/ngpICxjh0TUfOqicHZD6f49rRDXzvez/AJ7/7GF+vv7rS+I1fC1c4/lRCVgvqJl1vN3j27CkefHkP+9eOe85G+C6ECK7Gd9/TVY7Wrmt9UTToPeBDnWq/4SaN+BwAwUJaGkLq0MhOAqDOyly5wc6GcxSYkH5KX7JNKU4NiJ5fQC3kEYI/uk4FASclnAAsPFzomWOZ9xGuh7qg9fM43R/SeQygn3eilzHY5ZTwuQB2okh/6ezsFEIAWpGoo9YSZZ5hOp2SwnPX9sgjej0d57rEdkhIRf2qFCgYzjKNpumiuKExFqvVCsvlCl3dOwfGGFjYS+vrhXMkvafRvdF5uIrn8n2n3I1dY/MyCMOrIiJju8bn2BU8vczxemmUoO7GR13XcM7FsiVWlqyC1HY62di4RsO23SKTVBaa5uKFEFEsiiW4pZSQmQKcw3pDvAMhe6i+MyamBE5OnuHTu5/ggz/4A7yBaRw8GiyESNxRp9hQ3mraDpnsS7EYPeAB5U04bvZ1DSmA7ZaEsf7mb/4a6+UKzpogyGUgQM2eENI91aRCFnqLKKXQWZrMm3qLpmlwsVxQiiRMrtlsFjkam80mWazkfHjvsd1u0RkDnWdhwQRl1q4DLKm5rlZE5Hzrrbfgug4qz6JuBzt+nD7ijqvL5RJSKXSmg/W9ZgpPfBYB49LaSPAVCllO4wpB/VGUzqF0Bhmelc4C6iFkUG111P/FGBwfH2N/f586yAZSah10IFK0bLwxszO4SwFvjGKMnQleVPx8U50XTqNxmiUtyU6/+Jz8bFPHhI3qGI1JHQO+L37/GJVJ+Rip0ZCy5/WkvI70mngMtFZwDpRKUBo6U2gbA2sMlBLIMkUdYEPKygStlF1jOO7NkhIEByZjh4ESgqF76uYZGKno2g6mM5hUE2gl0bYNTo6O8KMPPsDDb7+NY6a1Rl3XsWT+8rGL/OaR5xmaJgRBRY622+J3H3+En/zsj0KaT8N74quUZYmuG6NngdCMy6mxwb2Hj5aSRNfGxLrxWPZfNA7GkEJo+rz7K5AQIIJjlgfxruBA+DAvrDNwxsJaqlxxvoNz1IQxtT+D9cHzx/fcHna4VJZhMptjuwGKMgeUhgWQCVrLQgJNs4VUPcKXIhuczknTIvQZPtr68XikCJ2QGsYEZzRItC+XS5ye5lQVp6vYs6lum0FJO60F4rwtlysI0e9NeejcTZ/DHc0tyor2psPDfQjh0TQNlucn8RqNMdRldmSDdt3D7uPye6x1cczHdmv8Ga+LLozRpfFrfIxTv6lTxO/9Lsd5fLyWzsZ4MnDEba2Nhpij7vQCGa3gyZdGYyIwc8sA17PWxqVIT5J0rbUWQhqUwdj4MAGt81TS6oGLi3N89tln+NObPwfAEtO99xhRDt0TT+nvevicPzct++N/Z1qhqbfouhZffP4ZPvztb9A2NawlZVSEsjIhQkoDkjgNbQskTs16u8HFxQWarh2SJcPmAiA6YszZGJArfUAMtIqpIl7sbV1DK4X1eo233347lmKZ4JjxNfDmyp/Dz1JnGSpRoQ2OFyMg/HyYxLtarej5Kg0hVNigKNpKNysB6k/gBfUbQJhHOsiZ5zmhGlmeAY5KNGN0F9n5Q+XPFF1II6qxHsV4gY4XdKqtkSIX7FxzB1p+/rui2fS5jOcLf3aqijtWuE2dH/788VzwYQ5xmpGvna8py7LoOMaoMxkDEci2EIJy+F0H6ww8SHtDSgGpiMkvVZ9rviqqGX/fdYwNL/0bANc/CAXnPJqmxTaUVedZgfl8juvXbuDO7TdwcHCA8/NzCCGifdnl3MTP2nE5NGYsT06I4snJMzx5+hh37rwF50jFVEoZ7RXdHHoHwwvKMez43PE4eN61rxiT8UFEVdbpuIyqcA8SliJXkvq7MNfEuz7tSsTQ3hbQs1cQou9HlPZekZIdDIqyhaf0svHEbdNZRjwq6WMvEOKFUEWR1pqbbQ+cjXQs+tc8EHgnw+i+X8epIy8+N4TYAAEAAElEQVTATlefcmA0hv+W2zO0XYfWdLEJmzEWXdslKDkFLFmWQUgJrQkRMiHdYgyRla0l5+jg4AC3bt2EW9TxXpz/bsSP7yne33c8fyEQn0eK4L2KY/GyCEf6/WUQudf9rPR4bWdjzLQXQsQqExaUGg9YCgcBwGQywXq9hrUOsqANbrPZoCzLGCGmAy0l5eeMoY2OSE+0ualMI8s0lBdQSkcy5aeffoJH9ga+DwTCkyVyXJzMtKjSyQv0/T/SAR177NZSlH94eIBHjx/i/PwMWaZhTAPnDJTkHhtEKOKcsAcA76nyY7mAcw5122C1WqGaTHAUdEXato0LiCPVyWQC732sCPGeSmirSQUviLxLEQ1BsXme4+T586hdkucZWu9gwmbFmzI7GGxkN5sN9vf3SR44bI7Ui6ZFURTUoh59g73FYoHz83OsV1vsHxyF9EmQ0hYypFLoC7HUjowmgqGC9yjyAoeHh+haisSc5dJjiois62vxGdnhKCZFG3iD3QUF7tKL4L/liA8YKnKyAzB2QtM1kRrLsef/ogU9zm3zGknXGTt4qaHor3UorJciDClqwnl8VoU0IdqMnx0dHUIFnLOQgpySXRvHru8vOsZGGEIEGF4CgtqIb7d15AgIOEipMJ3OcPPmTbz77nv4zW9+HZ8HpzR3HsGRGb0A73meEA9CKoHl6gJ3P/0Ex8e3kOUZXCAK0vpm5ESMzvfi+4ufusMZuvQ36RgK4h/QJjquPuLUh4p8KKWy0PArkNxtz3WwJlShWNLpEIK4VEr35GyRbuyWliZVqzoIKBifpHGUgi5KWMsiftSjRVhBlRbKIchEXHK4+JnRPCKnh1N04xQBz2UOHOjOae5y+kUpFR8HE105tWxj+qlvNsfVj23bhKZuGkpJ4txJiTbsKVnWiwRWkwqmIxt/7doR2uvrwXNNkZOXesYvsUZeRCZ/lbX2T3mO1z1ey9kAhl48S22nXvRV7+GomjeLoihg6jYaTzaqXMmSDg63Q6YImOEvkDqnpHK9TLN4FV3HyckJ7rq7+FfYB4BQ9SIjdOa9g3DUq4EiAzeIKlNiJl8fV9Q426EsMqxXK3zx+ee0ecNDC1I4lZIEX6QSQayLSmz5vIvlEs9PnkfW+Gw+x+HREWlabLchxZANSji5KoRFb4QQsKH7LUdbEXkKf7dYLHDjxg1y5AoSyWKODFeA8D3xhsbqsLyi07/JsgxlWWK5XOLevXto2gaz6QxlVUGqnNQMpSZ4X6ogxhQ2TknolICIiEeqwskqqnQdFOXxdXAagO8v5Q7xkc6ZNE2SogkpMpc6HjzWPEdTCJu5LWkjvXFkkEZk6c+pQ8F/n/JM0vJZdpTS/i+cvkvvj1Nl7DCnKqcp52aXUXHeUTvyIIue5RoqAAE8/nXTwPuOxn3EkB9H8N9lwMZORv8cZKI9QlVZpjOx3N07ija1znB4eIi3334bn3/+GS4uLgb5/hcZ6OGFAOTdUDmohyNROg/cu/8F/uCnP8Xt27fRdQ3JWquXPO/o8D4hlX4H3+MSGuJJxCvlaYwDHnIyiFwtBHWIZu2NlARJkubEz6G5oaiKRKlYbt/PTUIaRBwjCpDgAWupmZnzHsFVIN5GTIGR3SNi+nA9AH1vIX4tnSYp2pEGpen7yOklR5FSJjo+Gyal9+kSR03qrIULJeGmowB4vV5ju63RBQeiaRrUTQPtJFqTakr4yBejgBeYC4n68ABCdDQ8sn9uL3I2XoRs7JgNgzWbfn8d5358HeOfvwvZ2HmFr4hmpMdr9EYZCpUAiFE4kyYjX2D8YQHWThGL+XyOk+0zLBYLTCaTqLUxJuCxoZdCwYea6yIYRQDQeQ7jPKQLKEW4vrre4vnJCYB9eHB5I7OnyeAJR+V98DQgnF9MFwFvCOx4AB5FlqMsM/zmN7/Glw++hEBYGCqoAnpAqDCBPaUKTOtwenqKxWKB1WaNtutQViVmsxn2Dw5iWsFaCyWolwmTMAFKRTFHgpGGuq5hnI0RiwjXDE98DhtSVpvNBnvzOZy10FLEMlPe1DitwgRQ5xyyPKNIIUzM/f19tG2L7XaLx48f4+T0FPDkABZBATXCnMyFkH3ETM8moBvgCL036rP5LKnQ6BcIM/KVzqNRYUQjfUbsWPC5+StNY6QcDf6s1GikTmbqIPPnpI4Ev8avM69jAAEnBiRFGnYZ5dRZGuuGpIhJPyakF8PXxPM2XTfD60SMfiHk4F74WtmxlpKkob3zl67jMrH10nLfeUTEJ6xBujQ/UFpcLlcoyxx5RtdRliX29vZw584d3LlzB4vForcHklMiIvl+9cFzgf0Taw2kynB2doqvv/4SN28e03jYpAtwujnyfVxx7vT7yxzjv6WKk15fg4Ykle/u9WqEEEEviNBM58hJIZQiLfkGpKL2DTrLg2yBAgvOQQgSLgupESGolUKvnZFsVOhTKBzQ0T8cnDDR2UgdGUYv4utIkbYhqpeOCz8rawGtuOqEUU66diLoU/o5z2nvsL5HUXxAX3gtOdengJ1zOD8/R15q0kNSrFLNpf2ky0HOmwnPgp0RBSF6m/Bdz/zlkI3deja7/v26xz8GsvG6DsfvnUbx3mO1WsVoC7jMnk2dE14oTUNStWVZoppMcPr8BJPpFEprmIBuROMP8qp5cRnrYGwLnRcABDoTOv6FP1aauQcK220Lp0Pk60ndkjaZLEbW3nI1ioBXpD/gvA8TUA2iRa0UdJbBOwvrDbrO4dNPP8F2u4HSEsZ2yJgrIDwgJEUDzqNuatR1jbOLC2w2G0wmFW7cOKZqkgkJ1CyWS2qWVk3grMVytYLpOkglURQl5ntztG1HCqsCEQolcpGB7QysCfLZCEI2AJFZlcJyuYSCgA3ORrrBbTabGFVbaylVIoDVdgvbtZhMpxCKIMdvHj7EN48eApCYzmaA1OgcoLWEEMyVSDgRbCwFbwqOjFvsS0HzajabR3hcClbgDIi7H2r681e6CbOz0c+5fsPtIzgSTFOhlTd/PtsDetbcVZjK89qWHNw0BcfXzN/HDkaKZqSGlNGYsQOSOkpMTubfpy0BgN7RkPHZ92gOvyd1XPpr9XGDIPRJomkNyZZLEvealCWlRr3Atu4gQpGB9z4ovUpQqaqAT1QRESS+r7AaNPZJekN4AZk4MQoSgAq2wUFXJYQAnLEoygkOr1/Du++9i6+//grrzQrGmYAw9j0+hKeJwrNscIR903vqNeQBWNuFdEGNB/c/x89//nMomdNzdiEFGLgasTJlZGzHEeLQGF/O3+9MtwyiWKBXKe3XEM+P6CwDcLaDsI56fliWkLZU8u7IiZNByVeHEtmo3BvPDwgoCDA46uHh0LkOzrVAlEr3EJ7IqTTOFPU7pOust9MyWacc/IDtrPe904u+uyjf63iNWyHIFgiB4NHEz+N2AnlREPm1bYn/JkgN1xpLHY41dYjt2hpS7CPPMjRNjc2aSOh5nqPIFHRB/WWY/9I2baAKJF1RhUju6YoNfOQkvMxBJc7hGXgffw6nC68nsytBGndew+Dcr+Zo7EI+/lmRDQGaGFz26ZwbdLRM89mpR8b/Zg8z3SDKsoT1Dp3p0K3YGdDobB/ZkUaDhHUAhIZUCnVjoLMM1jis11vkeY6qygEHWGeQZTlWZhvaqNOh4OGthcgoiofgLpsEjZlQ9pqHiJcfps4ylOF6ifUsYNsNzk+f47PPPoUHNSsTUqILnIJMaXgpg35Gh8ePn2C92cAag9l8D4eHh7H9OwBsNzVyncO0Bm2zRF4WUJmGF7S5nF2cD+ByVvgTzqGpaxKaQV8tlGlNEY6hrpBKSKwWS0zLCgYuiWCH7aAZ4Viv18gD7Dqv9iCEwNPnz3Dy/BRPnz1HVlBljdQZrBDwEJCemy4xB4C7uwY+giCyFwIRTipqosQOCs8l50gYzPteIpc2/Z5Eywc7t2MEiol+HBGRQeS5KILzMtTEAFgEyYTUCSEB/F7a2DmFchkNGacQxxyMFG3YhT6k/Jm00mLswKdpIB1ShwDie9hZSY2RtTZA7oLG2wt4GzZ9SEB45FqjqgpstxobR8x/+m2QLndB4MoGRITHTYSOoTukvHs7MPqd8+HvfUQ7vLWAA0xrAmJDOhJZUWIym+KNd97G0fF1LO5fAMKiMzVJVUOFhE9g9AOD9E/8bH5eoSdMrvOwWVp8+eAenj97its334IUGTrjiIApZXSkHGzYlC/rpwy5Osknj+bILk4P/Z5SYol7SHcRuwvLS5uyD6rH0of0QUu9TxDEuVRoJpllCiI4GkQS5c0S4e/IsbeeekNZ7yG8hUAHCdImgvOBz6HC2EqApdGFpAoYH5AOeED6HuGNX3QO7xy8GK6fdL7yffKeASGhswIQAsZRHyTrPMRmg2JdYLFcIctzTKdTqnrbKjS+oceW5xDewzuLIsuwcqRO62yHItfY1lt0bQPXtShybkooUOY5mqZFkVHHWZcWEViLtMx3vJHv3tCHm7aUu0pKUySJm9tdPj+d43LX3ctI2eXrGDsML3p/6vylfztGW17meG1kg6MznvgpisEG1jk3qG4YE+vYWdFaY39/H5vNBgcHB/FzmGjKGyJrCBRZHjcKa/ookaH19DOUklit1sCU/HWpGJEh6V+GJclrpUg2Jb/yhOdcOhuKpt6iKnN8/Mnv8PjJI2zrLbTWmEwmaNs2Vmis12usViviWoRxYz7Ker1G0zRxc99ut70BkgLL5RJ5nmO9XmNvbw9FUcQqhPQeeax0KCFmZ6MLBNM8aGR0XYcyL1CLGt4RqsTn42uYTCZRclxKiW1TYxL4G+fn53j4zbdYrTdEzgyCXDSeIIkC1TPdpVJQqjeQKQGSXut1IthY64gsAQI+4aHQZuXRczXSjZxTKMPF4AD0c5FfT/8uRei47JefezrP04PGd9hAbYyypOeleThERMbrZpfjx/eZGt80fcROuZQy5Oj7v+fPSNciADLQojfk1hgA4XoThyg+M+6tIT0kgoy5JWVLn0S0rx/wBIMVPARm+XedQVM3UJqcvCzLMJ3McHzjGMc3b+Lrrx4E54m5SvSs6WCn8kWfm/6SIu6ua/GrX/0Kx391CwoUADhPpEdOh4qw0e4yyruMrxR9NVDqiF5lqOnZ9Q7yeDPh9/bPs2+IZawNXJRw88EBlJmCzDIomcFDh00q3LfgNSBCGoZLX5mg2m9+lEUQV16XC00IWSHROcEzhOY5ET+oZDScdzwKPKfTtUccvxyms2hkC4BE/iSAjTUoco2LxZSaSOY5Mp0NFKhTR18IEe3zdruhVHTTBHSH0F1jHPKsgHMk62DMMGW467lf+T2O3uh9L0j3XXUuYEwglYO9apej8V0pntR+7Xp9/DOf93XSMa+lIJqqHqb8ijQ/lxq41LlIDTm/bozBdDrFZrOJZa8kQ6sGvUGEENSi3fWlXAwv88/8ef3mkWFvPgccNU178uQJ3n33PYjQYEcphSwvwOptmc4HDzYtn+TryrQmRCIH/v7v/x6LxSIS+tq2pTLWIMbF4zObzYJhoC+q+V7GCJbJp6xxIZSMXUpZX2O5XMZuu+kYsPHpmja2hc+zDDoofpaJgJoAjQNAfA52onj8VqtVLIVVSkFqhc1mg4vFAs9PnkMphUk1QWdJ0rqPtNVgw2TkJeXP9HOonxPOWlgp0HUCVajCMdZCSy7n4zRcQFDDhsvOa+o48LNP55u1Q2JmKlHOBo3nC49Ryn8YOxPpufrmWMPFN3Y4+O/TNEl6sOPEJNQU9Ug5FWMCdhzDkexxmsrha2IekjUmQOs9wVUrIlibkEpRSb+NTnt0xhHCEXoaet+z8NlJD9b6irx0Gq0N7jz+ns7leuJd+B+nEZTSyLICZTnBu+++hy8+u4unTx+FbsZJOWVEtV/B+/HkVEAK3P3kE/zlL/4lDg6r/jwCEF4O5u1VbL8xWsEaG+xQpmv2Kkiax3XsGKdzO86JEFj06VAAIqRGAqqRZxltzjKD8yo5RyizFYKebUSZhrZlDKfvvB4wbyj4Gj5JAbDjICxgPKSX5Bcm45k66/zvlIPlPVXaoaXry7SC1tQComk7rFdrrKdTTGdT6jId2mNw8Mk8tMlkAmstHj16hOVyiYODA0wmVb8xCwpmGtfA1S2Moe6xdUPcOPikonDHcxs7Cc4P12byxzFYuWoOpd9Tp6I/xVCckNf+rnNcdaTPMv3bsf1Kr+11HA3g99TZYGVPvrCUeJdyAVLDlh6xCsH2URoTIPM8jwbPGIOmacJGXMTonaFijsLTFANARrwoSRodDbBarfGrX/0Sd964gzLLQt6eNwbywWUwqOn5iEQmMZtOUJUFfabpcP/el/j07l1CDEIFxWa7JYMuRBTY4gfDGyWPYbqIWeEzEkHbFjqjzZ9TVXmex5QL6yow2mOMoQ6riWgOOzyTsopVJLbtsF6vkIUSMr4+VnvlXjRaaypLdhZZ0NvYrjeAFGiCpK9nvQFBKpBKKehUflwKDNfXLpGa3iEp8gJlRdUyY66f97T52IR4PD7XZVi6N+p8T2NjNobCgWHvFX4vo0XsLFMkeFnnoXeORlGf66tMUuchXbyMWKSRGL83RXMu30ePlvDBznnqjALcALBv/GethVAKjBALISCVDN1gC3Stp3bkjF4IjnpFiNoIUaD+Ph46EA2Hxw5nI8lF944kzRkuZUzXspIKVTVBUZS4fesO3n7rHZw8fQJGViB8TOH0SMurwS1SSmzXS3z77TeYzvYhRQbWnEBE1hBgvH68vsuYX3ZSv9vZSM89/gKGJHaaM4GfIxCc/NBJN+MyWSo7l55LpekZOueBBB1hRIO6y16NvozvW0BQGa6zlJZylCr14dF7eKrEQ2jRQGZjkFJKgwheZ1yxCICkC4wDQJVKzkqILEPTNGjaFiboZ0D0peK7qsoODg5wdnaG5XKJyWSC+XwWx88JAWctjLOAIMS7a7sYOIIl7Ud2Y+yIJb9MBi4dw7HjkM7dq9GS1Olg28nve9F7d17bjtd2/e0uG/nPgmxwtMmRcGoYxyVLrIPAk4iNJL8WDSto7R4eHmK9XqMsyzgJ06iAJ5AeRYdsgBnN4H/Tewxa28Trun//a3z78Fv88EcfQCkikfoAJaoQTUNyx9Xw2Ul5KHEztnj8+An+3//u3xE64KkVfNM0sQFadMCSyoi0e22KTgDUWI07sBpjUE4qvPf++/joo4/AImlaa5yeng4md7pY+bDWRn0KdvwuFheYz+aYFCWaRkOEBUmwoaFyx6AEy6kb6o/hkIXP2W630JmGsy4ELIReKKUofRIiqYiKKNYEuJwi6BGQ3sPnDY7Hy/mUFxEmN4aiV2xExs4BQOqX6ebMBjo1bjxGaY54jBilRMv+OSJe0zA11FdapQuXzzGG0nlue++j43jVkY4b37sN5OYU3UjXBH9uFEEjVm5co1KqkLpAPxZBMp5UNg2atg1pI4bmmadBDjq1Owe8t6Qf/TKHoLw9P3ulZUDGxKBpI4mMhR4gUmM6nWMymeKHP/wR7t79BKv1grIowRntfZpXcDREYKUIASM8PvnkI7z9zruYzQ4go6PhwzgzAH5ZBTT9Hj/fX+byvMhA0/j3t3GVwxGfPYj7YD1xnESopOA0JTVA1IGrIamaDx7UXdQEVMeHZ2hCcz5H58WL1TFHVw6tcyq1NR1xWzw5oy6kY7wjUjHNHcQGu3w/VyHjAFCWk7jmrHVw1sEIAkhkA9Q1BVZN3SJTGazpYgCX2h3nSKvoxo0bePLkSdAyqmMaue0M4AW0LuAh0LYGdVNfEt8bjwn/Ox2vF/19pOdeCr5e7GgM54EavD8tMd6FbLzIKd51jWMUY1cw9yrHa5W+8uTgAeCoCxhqAnDejA0fgKgTweWyRVHACzrXwcFBjNjTDYIj8Pi66JGVXeJbg0EJRg0g27her/Dlgwf48R/8BEVB3A+VESkIAvDWIg/GjjZeSnFsNht8+eWX+N3vfoff/ObX+Pjjj+GcRV4U8KslNttNSF/kgKAISCYP3qPXQkjTFkKIeM9pHt7BY39/Hzdv3iQ58uDATKfTwXjz2KzXa6K5hZpyoFf3XK6WMMZgtVphVk1x4/o1lEUenYqzs7PBJsvN2bynCqPtZoP1eg3vHCbVBAChG94TWYvr9pkEGjd90fdBiZvdpQUq43PNwnNgQR5ihIfzKzlYQLtQiNRBYGPLcLRJ4ObxJpwahtRRSL/4ufHz8t5BazUgR48N5Njh2OVsjLkdKWzOyEfqQKSITP8eBSmHGiOMxvD5I/kOiI2p4sYFEfL9w2oWEunzaFoTek0Q7E7XLeJmJISA4koBpP1owgJE6jT2h/MWWojgzJNTmmU6jGl/bwAjQzmqcorpdI7j45t455338OGHvwIka8oI4gRYh1fVyJBSEZ8FwLNnT3By8gzz+R48004dldRLqdC1LbS6jD6kz4Sv3+145lcbbE5j+JhiGG8w6Rwfz8/0eth+pnoc5GyEuY+QIgw8C2cDwTR2mTWDz+Bzp0d6fQjpNKUyCAh0HaN0hEgwWZRTXVIKcHv6XZtyui5iB2tJ3VxFoIY4wY6HR72tUdcN2rZDl7ewQcQLQExP8ppQilRBNxuy2Xzu2I7e03uatiN0JKCp5NzhhdyVscORpiJk+ndXoL7jsUhtRBpMieDo75pHYyRtPLbjY5eDtOt8L3OuFx2vlUbh3CNveqkKYarcCAy1A5xzMXLdbDaYzWbYbDaxnps3OG4xz84Eb8xaa3IE0MtF8/lTtCAVSdIy9GORBOW1bYPPP/8cf/M3f4PpdIpf/OIX8eEVmYY1As4azOczmK7Dg+Bg/Mf/+B/x8e9+h812i7Ztce3aEXSucXZ+gW1dwwSyrHEWOs8ujYuWGbq6iR485yNZmCtNf/ADfv78OQ4PD2OKgxcdP4N0Y5rNZlhekBppWZZo6jqWspquixu/lBLXr1/HpKK0z/7+Pvb393FxcTF4XrwAiQxI43vn9m3SMzEWQtYoigpN20JpFTd1lTKkBTkTWutQdRIMS5jH5BRoOEcLiDVFvPeUEpISDj5GvORw9QhCOgYpwtY7HL0o1i6YMSWB8oYw5kvw36dpNTKA3QA9SKs/xuRPfp5pmpFf4+9p5MU/p/Mhva/0Nbr+/jx8DVEhMgkMwpsGr3ddBxMqIAid8BBSJB1+PZq2pa+gzhhOE8bNA5AQIQXC0SobbY5GkTgm8UshIBk6OBmkilmWOXRwOojD1QKQyDJSKJ5Wc5TlBLdv38Hdux8HFI/Pn24Ao1zcCw4hJKyharLVeo0v7n+Od997LzguhBh47yB8XyEwdgTSZxoPRlzimLwI0u4zNCL5m/H5x0ibD2mJNH3C6yOVJRdCAj5s4o7SgD5IkjufNH2LCqbDNOMLnQ0p4SGgVQigTEBKPKPhAImpAUKQBL5wu9NFu8aVhLhETziXCE4g6cy0bYe27VvMAyCNoVDCz44Ez3tOpyyXSwhB8vdN00DoDFpTkEb9kChF4zxrNE0vXfMubgM/GyVZLXlI7uT5OV7Ll+fEbqeGzh+cuVFgtOu9u1CIXa/vmsev6lRcdbw6suFJV0OpPqpLPa/UEwN62W/vfezgKSURJpdBU6LIC3hHpEnmDaQqil3X9VCzMciUHmwK6XWwgWZHRFiWXwbggcVygV//5lf48OPf4a/+6r/Bn//FX8C5DvP5HLYjYuLzk+f46//wH/Dv//2/x4cffojlcomu6zCdTnHjxg3aYLzHydkJTs9OYa2NzcxYQlxrHZVVmYvBjeV4HPnga+Z7JOdE4NGjR7hx40Z0phip4PezQeHUQJZRqet2u0UTWNjOORwdHuHG9evQWocyrhbWdLi4uOgbEoUmRmnJZZ4TWdaEEmQdODrW+ZAHzuN9OxDRl9VCAYYKg1F0Di46Vb1TYJ2LjP2qqnpnQAqCZD07ooa66xa9IWW0jOdez7EJ/T7s0Gngg40NO81AjxClSNmu9AgjI5QaGla18Lwff08NUrrA2enk36evjzem1LG+vGH1aRW+F04rpj1T+Bykx5A2kAOk1gEVsNBKQykExxVo2w51SBFCIIjWUWWQBxk95x3gJFTMHgwNX+pocGpNyxxCeGilUFZFdLyzPBuQpr0nZWCAOz5PMJ/t4ebNm7h58xYePfw23puSEjrjXkcvbySj3RICbdvgs88+wS9+8QtU5QQAV/yQU5lpTXc/2hCHG0LyGtVj7Ex5Do+wLnagQLuQNwCxv5AAb3yKUpuaUsRS6dhyXUCGcfFhk2YxMBLM6xENA9bBoXTp7nRR+jOEAmQGL6iTM6Wdqd0ANa7zIC3zUIcyIjKm62h8jyKk7qwlB1YFpXKp+vE0ncV2W2Oz2aIsCpiut8OpGi+nw7XWODw8hFIKjx8/jOs/U5QmbpsNlqsNlssVzs8XJGq4MQAO49Md25Vdz4rGhu9tlKLAZVRnF0o1eM8ggKErSUmh4/FMx/Wq6/znOl6dsyFEVJds23YQkY+Z1uMNlTfNtN+HEAKb9RpCiOiICNFLmqebStu2aJsWRnTRgeGNIDW0fJ0A0DYNfOGi3ZEC6KzFX/zij/GXf/kL3Lp1jMVigf/wH/5HrBYL3P3kY/z93/0dvv7qKyitMZ1Osbc/j+kb5y2E1Hj2+AnOlxewngSCIGgZZXkWulkibNIAQqTZK/JdrYEfJ5Ojny8uLqJKKKuGptwDNsjGGCyXK7R1HcsHtdY4ODjAnVu3YwSe6UC4NYRqOOdQ1zX29/djXxshBKqqig7WZrMh1dBQFeMhUWQ5hNLIQwTs0YvsAKT6mBcFpO7Rhx6N6Hks1lhqhBecUUI+HJwgyD7L2FC4AecnRRH432lJcD//htEH/y0wlP5mnkCKzrHzws9rKEAU4Gc3rA4Z5+fZCUmfW4q88ZpIHY3U+Rivp/Fr9Hqfakzn/rh01loL03VRrKifi2GDyngt9Z1VhZAoywJFXdC6NQRXmC7Mbf68JCKiiMsiWf7hWqkUvShCd2Il4VwHKQXyPEOeZxACl6Ta6R6I2CgFVY9NJlPcuHGMmzdv4eG338TUGd2PQGf8wLi/8AgOtcpztG0DnWucn5/g/v3P8bOf/VGM+JXS6Fruo/SSfTEioNTPw3S+7H7Ddzsa9FrPZyJwgZAM4twEZ0OqoIjZBwCxjNwPm51FZMN7gIXJxTAtwN9TR1xKCS96wqKQAkoXUElPFjJoyT0ld7nr/lLn3DkPKbNBGgKM4og+CF2tVjg/v4CSAtZQGmc6nQ6QPCbKp40onz9/iuVyidlshqyssFwt0TYdzi+WWK3WWCxXFGDV6cdf7rm065ld1bDNO08N7V6w4V+FmPXjhLjGrkI0dn1/GSfjHwvNSI/XSqOwLgM7CGOjnBpcNoocgXvvMZ1OUdc1yrKkFvMB6iuKIkadm80GrOPB/I6u65BnWdww+zzesBU4p2vKssSmXtMmoQkqpJ4PwBf3vsA//MN/wd/+7d/iq6+/xl//9d9gUhZwHWktHB4dRjQhy6hK5saNYwDAvXv3sK03hC4EQlwbrqUoilGuPdkckiZibEzTTYwXPwB01iAviqiTUQcCKiMmTKJlZ2FxcYF6u4ULNeHVZIKbx8c4Pj6mUsdk8y3LEtuNjUgLS8yzEek6Uihl0ii3jvfeIy8LmI6krvPQNZHSXyG1IyipKqWED5uxd2bQ8Ek4G6XM002WkRQhRZCmB7RmqXaPoiihs3xgnPh7qoWRzoe0i+J40fEGxZsb53iHzgodY/ImG+Yxr2K8oNMxZWeDf8dzPnWWxg702HEZn1sIga6zl97D6M7YcVFKQec6Oj3ee+oamm6GPhUY8yjKIq5VE/LWVH3C40TX18Pvl69bhHQKORY5JpMJcUk9OUhUgZaFNVeAm2hFVMmJ0O5dBB2FEgcHh3jzzbfw+Wef4fz8JIrYcfT+Kof3qZYB9TD63e8+xPe//0MUxRTGGhR5CYD6xfBueSmK7c8YXr+cckmP8Xt8RBIu58wvk4xFQAxELLGlElcNrTOa+0GgyjN3wiHwMohkSd/tYD7Dmx33019vGtHHexIklCc89YHKcsC5HN6aULGUjgulFzjtkwaqu4jUzgFZ5oiEntgNa0FKv+HeVqs1zs7OMZ2UkMLH9DPbTN6HsoDucsr5hz/8IX7zm9/g6bNn2Gs7NI3BxcUCnXGo6wbWGLTGwnf9eJAjNyyrHz8v/pm/rBM7Xx+P7y5EcPweGqNLj+fS9Yy/p9e36/P/KY/XqkYRsiedpRc7nCA9YTS+V4iYBqiqCmdnZ2TopYypGXZemqaJxrksS6zXa0gpMb1xAxIiRnGp18oRKvMhIkeEG0N6kFIcPB4/eoT/+7/9tzg9O4fz1G20yHMcHl8HN/9i9EBKgYODfTTNFg8fPsTz58+Q5RnKsoLx1F2RNy0BkscVIVUggGA4LTT6nDwwdMRSkmuKALGDwSkGHr+2bSPisFouYVqSNGei5dtvvYX333sfFxcXIQIQyLMMbd2QRHxZxHNzt94U5uXnwNU9bDBN20FnObIsh/MOzjjU2xoQCNeo4LxDU2/ha0AoiTwrAa7ftxmy4JgoqahJXYhAs0yHiEHEcmgPBIl56oXD84jHqWkaCNET4nhceQ6kizMlKztHGxd1nUUgxTYxzy0EkgXdy5XTe4fkrtS5SQWJ+n4MvRDX2FFIuU98H0Df7j5dO2MjkToI3vvoQKT8kz4V4eP1eTd8r1CUFuzC+5XWKIoczlH6SiuFPA8OsvdwnlEEEXgeRNLzLOvk3aXrTo0mkfE0ci0gJZOGZZyLgETXNRHuFkLEVuYCAlplyHSBqpzi5s1bOD6+ifPzU0ip0AZ9nt64vkQUB2rw13UtdX21JFX/+PEj0uV57wcwJnAj0KMKfOqrHY7LEWfqyF7ezHdwTXzyzQcBPFK86zd5Sc4GlARU6K6sucRV0Dp1Ht44eBs6wZoWxnQk6uYNfMLZoBSKvzR0vbMkYrpUQMaUmoMnhVAhAUkl1kapkA4Ndi/ciFISWvW6MsDl/aQfV+r0TZ/NFWOWUhvOQmcKea7RtkAdUimIiAodHMzwZxVFgc2GAkatM7zz9rv48KMP8dWXX6EsJ9jWDXy4tzzP4dBBdkOkXkQFUZDjxvMCfZokVSh29rudjbHNStf5+FmkDyj9/fjvxwHQ+LOvQjH+sdGN16pGycOGnsLT8ffJ5GGoiqs5Uq+YNwkyxB2Ms8jLAqUoIYSkMi4AddPg5Ow0Og4X5+dQUsXz8mad5tXTLy0VtEjajXuS8PVNA+88bl87QpaXmE2nWK6WmBYVNus1OktkxKzIUZQFus7g6bOnODu/AIRC11kYu4HOc5R5HtvXd7aFEgJt06IoSzTbGnlRQEkdWc1lWQ6cMK6UUEpFvY62awB4HN+4hu12i3qzplLETKOpN1itVlitVrQpOQfpADgLqRQO5jMcXzvC2ckzFGGc2qaBzjNMD/YghcB6tYaWCt5YnC1PMJ/P4Z2DtQbSAwfzPYLKrYuddPn5zqYTtG2Hw/09rNcbtDoQbDVVpbCS4Ga7JRKYElgtVtAq5JClxNHREYxS0FkOMZng6GgP870pyjKH9xab1kAqjc4SzC6kwmqzgdY5sjyDd8H5cexUCOTcBdO7IP9B+h+psJjnEkFFE8wLDwcLSAeh6TWhfGgS5kiR0VNKGhDwwsFBwFsXtQV4DRCqQK0bKKJlZAsAZMiJ904PvYd+xzovpH3gYMyQqEotz4dpEVaCZOeKnRleYyla0kdDLqIGQtBW4a0FBJVcQgRJf2dhO0NpF+ughESeKWRawbXULdVYUlKFo5oG53zYpLiiggv8+u3TcVm2BzmtmsuCEdFPMtAu3JsN5wXJZ3sPBYlcV9CywsHeMd55+3v46stv0JkGQilYTw6Tt33fHb4Cz7v24KDnrqQH9QBxcE5gs9ngwYP7eOft96CkRtjtodVu3SBeHwNDD/Ql3JIqbzyon0coaxidQQI7JN/5kgUEuByDBdWEEKElgI79bliFlNEK54KAl+sAa+FtA9gW3nVwtoG1LeA7UGTm4kd68mrAlTh9EBUcOk6hgBVnZSCjK1iZQ4ouImVSyqAhJqOzwk07uTiA9w5OaxKqaWC7juaYRuzv4r1DZy1a0wKiwnyvQmssTk7PMJsUSVQPNM0WWcbpSup90wVdDm8dqqLCu2+/h5Nn/wXffPk1Dg6PIKSCVhpVWSHTLWzXJE9JoGtDY1AIUhkV5HDTIyX7bi2AgGgM+giFKqfxk3a+H3OA7FOcaYGjwf/mqpz0eBGCMRC/2zW5hme64vXXP14rjWKMRdPUA4+JkYg01zaZTNA0TYyoUqJnKg3NlRbr9Tqw4GlDfvjwIdbrNQBE5beLxQJF6GvCURundZigSW3kqbTTG0PksgBnzipiJk8mE5ydnaEsS4rYbIeb165hvdliPpvj2fPnKKoMZVFis9niYnGBr7/+hpCWqiJj6DyUtNRuOcDXUhFfQ3igzHJkkqDtzWYTUReGu1PPkqNghvTnszk608a+LsfHN7DdbvH06VPUdU2Lk5Gk4EBlWmM+m+O9t9/B4R5VmOzN5hBCYANEdGg2nRKXxXtMJpM4tlw9w+jI9uKCyLdKkjy199jb2wuOX47tZoN6u0HXkBJp19YoyhLVZAYPjyJ07XSuQ71ZDiqGnKnJGcgKlFWFervCr3+1jztvvIFrR0eYz+fIg6w7AKhMQwckwgZuSZ7TXCFItncm4LnygyHeEVkRPvl7GzdfYzpUZRXSHu2AWJk6+d5bkO5D7zSkVTwcubJDGTJmoBJgDNAPYMjfSVMsYxQkdVL4dfpsE987TmGmpGm6H8rns7PB1+G9J+JjQpJVkhR7oQWqokRbTYgz1Vl0LKrnLEQQOhIYGrtB6iq5P55r1mholQUkqU839XwtGe/PGgtnfIyQlcqgVYGymOHO7Xdw/foxvn34JXTGUt+7DOXu9Ion4xCMdx8EOGvx4MED/NG/WGA6PYCzHbKMnMZ0PnxnLlwkqEZAIYRz5P6MdxsvLr8WD46mk2hXKEAoKCGghIYUqtcdcdR63jsKSOAchDPwzgDOkHPhOjjHKbURciOCLQvOBjsdQoQ+NJELIkibSIR7C+tRKSKRW9PBhw40QHCUZS+0x/sGo4GEfPVOPKeirDMwHaG0WityRuHRdh38hvSQlFbAykEJgaqi9HNRZFBawNiW+B+NRJ6XkFJhu6nDeACZLnDn9pv44rP72K5rXD++gdl0itmkwsHeHDVW8Ul0XQuRkf/W2V7wz0ddFkc+hiM0R6BPNwKACKJ4AwArcDBGiRWkr3jfv2lsl646ehRjnLK5+j2EVf3/GNkAEImEnA8b56dZfZInz3q9JvJN4q02TYPZbIau63B+fh5LYpVSpOngqf38uH+IG23QaW8PPgcv/q7r0Gy2ODfnwD7JMldZhclkgu12i729veiwzGYznJycoJrMwvXkkSR5fnGOJ0+eRCjeWQsnQJLaI5hYyR5dYfSGNyI2suyYMZoRiZEgOB8A2q7BbDbF4eEhTk5O8PDhQ2w3G2y2297JoJulRec8tNJ4880347iWZRmdGK6MqesaAn3FQtr4K60AMsZgPg+OSlPH62SoniuLeKxTRde2M5ChuiTlJPBmycqmQgrIjt63XCywXq0wm81wdHSEd999Fz/60Y/w/vvvRxn19WaDqiS59jKnTrnpxsoymALkgIDhzUQJkRUqnUhq/R2lAaRXEF7CWw/buUBME4H1Tu/n4MB6C4teLp2fORNseVwYfWNngY+UmJdWsqQOyJgj0j/yoRFI38Pv25VmSR2MOGYYopH8/pSAC+GhnU+qRBq0xlDVBNIcvo+O3dhRSj+L10CeUXqGm/BdlevmuaVFnyoj9V+FPMtw8+Yxbt++jW8ffgkBCecDAoQh6vriwzMDgkxsMPqPvv0Wjx8/wg++fwgi4lIKbozovghy3gWBvxii3vW73ekYrsigJox0x8ID3pkwr7n5HqVQENAo60jKPyX1x+cWdkEhZOwl1SNsAU3BsFzVB6cjfY16QFFlCFe0jdsXsF0BehvCfDyuSErTpn03cErF0JwmW79er5HlGjAdykxjb28aAzghfeT4USq6L0RwIeUKARxdO0Je5Hjw4B6yTCGTgKtKzGbXsHe0H59M17UQuSIHyBhw6T85GyGNKQAZN+2rnN/0iff9VC79pQ9l3clvXzyHdjkW/zjOw+umV17D2eg1BmQgB/JGwl5p0zSYTqc4PT1Fnuc4ODiIiMN2u8V2u8Xx8XHcfKuqgjEG+/v7WCwWODw8xNnZGY6OjrDZbGJDsrIsiQDpEY06G2uu2GCvmA15VZbYk3t05b7vT1BVVewNkuc5ttstjo6OcHqxgNQqaj48fvoEX3/9NUxwaCBDeS96g5hGiByVMSEJQPw8ntzMBeGqnvPzc0wmE8xmM2y320CunGCzWePp06fYbrdYLBaBvDWatJ5gNqkUZrPZoJHafD7HdruNGz5HEQAw3Zv30XXYeIMeIcH98NibzVA3DUpBhNTlchnPwU3jePIxGgIpsdluASHi82ZHkf9OCBGRrbYz6LoWXWdgTIeTk+d4+PBb3Lv3Bf7zf/573LhxjHfeeRs/+tGP8M4774BbvFtLKQ4RAitvR4qHHpBCA1AQIpR3hpQKdRP1iGqGoCg6z3WYN7aHjQUQdApBC5jTED03IjWwl1bLaOPlzTPd3K/KqaY/p+mR1MHiv2OkLz0Xp1BSvRcWUUudF3ZCUlJpRNsElZu2XR2cYxqnpusgnYRXnhXrB1EXH2NYlzcMUnfMo2MDIBKneQMcS01rpUDKlzbyPoqiwHQ6xe3btzGdzlDXFH0676HwKscQkxbhFdt1eHDvHr73/o+CVoMD/FC7ZOwojY/UGU1txqse6XsiAVr21V7Ehaa0HQUZfRrFOgtYC2daSpFZQjT6eUxuFiEY9LOUuk/ZkJEABLWYp52vRzxkQDWkVCENRMhikRfo2hzGNmFEee72hNde7Zkc3IuLC2y3WwDoHQ5Q1RXPUcDDudDPKqAgPHekyqOuxnq9xnw+xWRahqC1iEGXC6XxQmpY56CzAsac43vfex8f/+5DPLj3Obx5E7n0mFcae6rqn4W0MNbAGg8uPSeELKRD418miIJIg8TL7E6/0yFJ7QJVEgk2elemOfzo53+8dMjvw+N4dWcjQFopqZAX3mQyiYgGPeR5KMlcxuh5MplgOp1itVpFjQZWEn3+/HkU+srzHBcBxj88PIyTDpoi2DQNwd+5MoM3vqIoUJUV7JqqUfgaGW2RkoSkVqsVqqrCxXJBZVHWojUdzp8/x9dff00lvlpjuV6hKEpMphMirHVD+JoXC3NVeCFwlQN761x6xY4Jq4KuVitst1uSbd9s8eTxYyAYKhfy6oMHHwyOEhKZkLh2jfgdVUWNhdiTr6oKm80GdV1Hh4SdM4BgfXbUiA/pqRtieD+A6CDVdR3viZVKBxUZgvg4JjiSXLXEFTXMvWEkSsgWHqKPvgCYzuDZs2c4PTnFs6dP8dWXD/Dhb3+LN996C3/405/h+PgYe3t7lFv3bHg5CifYUkoJ0xGHIjoD4X+auT0u9GoQBAkrqQgJsSHlwSSG5L/eE3mVpdjTninphn8Vj2KweQYjy6/xGI6d2NSh4HOkpbMpOTbOjcTRHfKretLa2HCkzgv/29q+vwSVrVIF07Zp4RDu0TvA9mmb8cY7dp4oyOgdjvQerzJmaXRIJEaPPM8wnU7RtBvcunkbb77xJr64dxcCGt56cMfglz68iNuEFz6QAzXu3b+HPzp5huPjO+SOewXeYF7G+I4RpLED+jIHj1GKVtF3TmQEroyjcXIhLUIIBjkV3ho40wUHhEuwXdjkGAFDyIoICNWL9bEj0vfj6KtQ+lbnQbEXCERjStnleY6mkeAyWB+4Pdb6gUhhylnbbrcRAZ7P5pBCRTIyOafkbBC6ngVBOBJ9nEwmmE1n0Erh/OIcUgJvvHkbQgg0TQ14CWtJP0YKFZ0Nnpu3b9/C+++/i88+/QSTXGKSS1QZgHwOFvXKc4ULs4b3ElLmcf74GJwAHJxcCShcSqFdyqHE1/uUW59+Ga/X8XzZdbKXdha+w3l+neO10iicKuEonA1MWhmQ8jjquo4qbtvtNkJs7Hyw0huzhYuiiBLd/FpPcvLo6jY6PIxAMHufnQzmYpRFAbHpB4eREOYp8GTfbrew3kHLoAhpLR4/eYzziwtKQTiLMnyWdRY6y1BkGbV1x7DRFkeJ7PhwCS0biK7r4pgwEsSO17Nnz7BYLIiN74YaDARXIk6EGCnBo5pUqKpq4IRxn5nlkvgSk8kE3pN2BzP9I/8DHkr25cesPiqC88COHzsy6ebKz7ppGuRliflsjk29jbogfKQbc4zuhcJsNoUPDhBH4bmm8rT1ao3NeoOz0zM8e/oMX3z2BfE58hxHR0e4efMm7ty5g/39fUyn01gWrPICmVbBGPTaGXzt9Oxd4iiACF9SQityDEVAPJyjjqAiODJk1BkFGvZXSZEBXivsaPOGwegbNzJM52FaIpl+pQgA/90YYk4rUVIEJE2jEDLTrwN+f3rdfE0AYIJjrxSRfwFq/14UhPJ1nYicl7FTwccupMY5h7Zro0PK9wAgIhdpiop6HFl4hwD/0/ydTCZYrjIcHV3D7dt38ODBPQAOxnaXDPHVjgx6uywEkfw84OEgpcDF6TM8fvIQR0dHULqEj7yORIp6h5M1vv/03nkeXPX3Vx2DFIqUgSdDRFjvgCic5cgJJM4GNVXzjoW7eieYy1K5RDwMQUTB+gCHkzS9ozF04pOmYOGzpJOQmQxluAred2E/JdTJo1eNTqsKJ5MJlFI4OTmBMQZ7e3tU4eJZW6LvBE3XiWhj8zwPwm4a129ch3UW6/Uaq9UK0+mUmksaD6Vy1HUDIRTygoLHrmtCy/kaP/7xB3j2+CGWyws8eSyRSSDbswDeAQASjjM07iK0CsAoRfTdz5PJ48PXwlMYPvfki/99lYbH7+1ovOD4Z0U2fIhmGAbn1AFDs2xYeeOYTqcx5962LcqyjCiFUgqnp6c4PDykJl9B3e3s7Ayz2QzOuding9EArdQAMeH0CkfPXKVSFAVt9AzvO0SthzTi5MEzxqDpOmQQyPIc3379NU7PzigCr0p0nKNW1FzNGAMTWPpchsv8CHY6yrLE+fk5AMRFlHZV3dvbiyWRJycnWK/XcdNh+MuGzVfsgNtTg3ywvx/IUEUsia2qKiIYqUiSDakTijgaqhQCkXK3DaEdSinoMGGLosD169fjZsDRx/7+fkxncSptMplA6RwH6J1PRr/YkVmv1xHp0HmGtiO1UxvamCul4WGRiwxVRWXP680SHi6iUEIIfP11HnlAPB6z2Qx37tzBn/3Zn+O9997H6ckSjx8/JsdlvcazZ88gpcD169fxxhtv4o033sD+/j7yXGOzqaN8MRs8ntupoqVzpHrK+XIhRCxVTiui0tRan8N2cWPiCq2UiMpzJXUyUuRkFxeCx54dcyZZphwOduJ8IKFxQMDXxnNjHHELgdBDyIeGhUHlVQrI9RrWGnRdmhbS8f1jByO9p6ZpkWc68n5Sbgv/Tfpz13XIlUTTtvBeRJKrsQbT6QyL5QXu3LmDW7fv4MsHX6DIc1hjB/fyAqN2xT/6DfqzTz/FD3/wAZyrIVURnNihBsJ3njr5uyuvKdknxghI6mSkTiltWixURw6E873eSe9gGFhHHIXe4UnQOyHA/BmKnAWcIFIrIQChUWVUCU4213gtlE7RSoMdIEY3tts6pDlAjeNccGiNid1def8oyxJFUeD8/Bzn5+e4ce0YcB4yNvrrET1Oo7DtlZI6iZdlhQ8++ABPnz3Ber0gRzrKmrcoipIar3UtIETo7EoB7vHxMX72s5/h7scfYbVZ48mzp3CrFh4/hwCV6ctGBM0hB3jJfFoMUhc+TWOkyZXLr/EzT52F1C6kP1NvJkKRLqFlsl+7NKWYcHaFsy12pAFFzw5Jiz7GfLBXOV4D2RADI8yREJMp67qOUHtKSqyqClmWRUXK9XodKyF4I+oNIuXaWEqbo7bNZoMiz1GvicMghMB8PkdRFGjbFtPpFEVRxDQBVxVIOQ2CeD1sxwTXrut6WXSGFpsGy9WK0JaigPM+ssh94DUorSE14DsbURXnXHSKGPXhqE1rjcVigdlsFitzmI+x2WzIAPBOACA2mQhHNNxumOtj+NI5HwmzjO5sNpuopZGmVYSUyPIMFxcXuH37NgBgb28vbpap85DnOWwg9E2n03ifLLTmvY8CY3zFy+UywLc29thwzlF5bUCf2Bmqmxpd0LcwXYcs09isl6iqCfIsw3azRlWWmE4qtK1B11KTJebQTKoq6m9Ya9E0DU6eP8cXn3+BLCux3dRhQ5NQmuSai6JEXW8xnU3x7rvvoSxKrNZLaKVj9dPRtWu4cf069vb2UFUVqmqC2WyKoixwcHAIpRWaMMdEMFQcraYOAj87Rrb6Z9aXjfPmwWPPzkKPRmCAzIyjZHb6mT/FxoBF21LEAOi1RXhd7UIA4rUpcqqsdbRBKA+pSPGzaXRMYRHcPkwZpNc7nsvs6HDQko4Dj48JzbTYQaP5S1wC0vzQ8N6hbTNMJ1Ps7x/i6PAaHj16GDeyVz4iP5J+aNsGRVHi6dNHOHn+FNev34DKKtgrBJW+ywC/muMz3Ah2v9dHD5I4Sy4gb9wm3sJZQ2mCkH4QImxEI9Jg6tBAIKiCAkL0HI3I6+A0CmR6hv6SQO91nkrEWWTMWLpGpXpnmeexMSbOBe89ZrMZ6rrGyckp9mb7mE4ngRvkoVT/qWkau+06dJlGZzpsNhtUVYmD/X00DckFECEUqGtqLFhNptjWWzhP5HxrDKT3UDrD937wQwAe97/4DMZ5pDOK9xHu++RCn5l+LH1wOa4mfEZTL/px6zl0fTVddOKS50UpMn7maYn8VWhZSF/tOHY5DmL0+qXfX/H6i47X6I3isF5vUBQ5FotFNMZfffUVDg4OIqpgrcXJCek38ESYTCZ4/Phx5GBcXFxEmWytSaVzu93ixo0bUfBruVxivV5H1GO5XKFrGnRth+vXrw84Ht77CPOTImEOWIfcZoABrHMxpcAISx9p0Wa6bQ22TU0aFm0LLwW8BMpQWdF0LeqmwXw2I8RSuIEQU7o58MYjpYxVJc45nJ6e4uLiAl0q9MQLXcreoRCidz78ZfoQt5GXWmK9WaMLHAp26pgrk+d5dK4ODw+DA0WL+9q1a9FJPD8/JySnLNGFjZShWkaiUq4AV7u0bYvVakWojVIwjpp3MRrA48BO52KxwLVr1wIylcF0HTbrNZ3fkOPW1JRu00rBWQOtchR5FoyxgAoG1VqLpq5Ji6SuI9LlvYc1CzRNG3L8/Wa2XJ4RyrT1+M2v/4FgWK3x/NkzMNueo0KpFKqyRJ4XODg4wBtvvoGf/OQn+PGPf4ppmNu80acpRXY80lRHqpORbiB9/r3/zgf/O+V3jKub+DMZXUxTOoycsXLiLvJliiKMr8XEqIkjGiLa5rmGzjRkaMDm3NARoinbf0+NEp+v7VroViLPTUw/ps7uMC0EEE+DcvSkIyHgUSBrSFF0f+8Qd+68gQcP7uHi/HQob/0Sh2B+H80ASg9o6rVyfn6Kz+5+jKPDI1DvkOzVzi2Gm3rqSA7+bvSedCPZtSlE58ITusFkTxfSJ8zXsMYC3hINVngISfyAYfqENxDu5BrGgzkZDOQHZ4P+n3JXQpoxmi3aUAUE8iyHVhkat4ZzNqRdfFxnKULHc6EsS+zt7WG5XFIfp0lJIIL3cT9I1wRA7SlqKdA0JVarFSaTCrMZ8QQZ4cyzMvL2ICQ649B0LSnktg2UFNBKopzO8bM//lPoosDDb75GY+JQoa5b9A4Xjx/dMw0TEae983HcZDLWWitAjtKm4fmz3ZCB/Dt+9t57OO+pIi6xB+P1N5x/uMLt2e04jP8yRY/Hr73s8VrIhvcEZ5clMXzPzs6wt7cXI3yOrlnumqtRHj9+jNmMSkun0ymOjo6wXC4xmUywWBA5c29vD1988UXcwLn0lXkZbdPAtgbvv/9+LPHc29uLyAinKQ4ODkiVFNSciAcwzd8zwZHzxk4AWZGj6ajnC0J5XVmSA3OxosZx+7MZnAks7xCFRgIr+vJBIQSuXbsWOQ8XFxdU9hkrThD6qPhoMMCvoc+nDoc/RASJU1OVJa4dXYMKjoUxJqah2MFgh4IRjk29RVlV+PbRI0IiwsZVty18aDw3n88xm88jl4F72jARmKteODrWWkNqDVO3cUz4GgGKAk5PT1EUBdahH461BKGy0eCDUa6qqlDXNWmG7O0RfCklvCcIfrE4j2RbundgtWqxXi8xmRCZy8OF8xusVzW0VvAbG1NtbduhWV0gy6mskRACSi9okWFbb7BYnuPZ88e4/+BzfPTRb3Hnzpv4i7/8r/DHf/wnAyQodSjYQeODDWJK7GQjy6+zsUiJpvTYRXxGPE78O46yhOgVSPn1tBKF3oPRJj5sEscHnzt1jqQAIDWyzME4QGsJrSVaIRDFtyAG79+FatB5qS8O3w87Z0wYZyeJqwqcMyjLApnWUCqD94DpQsFlqBwqyxK3bt3G4eERzs9OL1vMFxxiR9DnvYOSEvVmAyk07n52F3/8x3+KrJgA4uWdjdRpGGwYO5wN74eXnaJfO6PJQJpk4iQ7hYSUcmBg4YNYGYQDF/jujGgFtxwgON6J8HkJBC8lCY+lrQDoWvjeRIi46QKl8EHCPINuNLqOneJ+vvPcFoJSmBwEMsF9vV6jqRvkRRb+vpc1T6hMaFoH4R3WeYb1eoLlskSWEQlfCEE9UKYCWZbDWofVcgWpFep6i81mTel8pTCbzjDfm6CqCrzz/Q+wNUB7tumH3QmoTMP7vhQ7AD0QwgPSwQsBnedgAbOJ6G3B/v4erBoGGxxcpShFv26H5HHnHDpj0Nm+XJieP3GadszCqPy96xigWmEivog7lL7vZY/X6vrKMq8c1XK7eCFE5CjMZrPIGXj27Fk0vkwUZWKiUgrPnz/HwcEBjDE4OTlBWZaxQqNvdU1pFNsZvPXGm5jP57GSg4/pdIqmaTCfz6N2h6kbtKaJA8O6AJzuaJoGVVUR8lJNcBpKTLM8h1952NC+2VkXPW424NaaeD8Mv9++fTvez3a7xfn5eYz6uW2xFCKSP5mTkTw9GmeGR5PXB5NBkBM1m81wuH+AalIh18TI5vtiB+3p06dYLBYxUm/aBpCU/2ajPplMUJZlfJ58NG0L6TyM76XVVdDQSMt4eWwE0+PR18VLKTGfzyPHhjdmyqE2UIIg/zZwfrabDTVxEwJNXUdYuK0bCCHRhWqKOpCIhQi9X6yDcZRzLYsC/1/2/rRJly07D8OePWTmO9d06kz33p5udwO3GwABNAgQczdBQAQpiDYhk6YiJIUYDjscjvAH/wh98z+wFXI4YJNhi1aQ4gAKIISJBECA3QDZA/rijqfPfKrqnd8c9uAPa6+dO7PeqlPnAJAt2nnj3Kp6hxx27txrrWc961m2qVFV1Jguz3OKdF0D0xg428DZhoiOALQEjKkhABSZhNcZpc9AC3mRBWTAO6yWF/igqvHsxTl2uxJf+cpXIKXspAK75EYbjSY/Q+mD3E+L8DgzYsHPWcp9YKTDex/LBHmOp5we5nG0hq3rDPRTO6kR9N63xNjwXV4IlRLQmUaW5dCaFzoSO0sXxn2LUTQwIfJO0TJ2tBipjJGUd8i1CNF4OF/pothcUeQxWLl//008efwYVbXt+RtpnryDIVz6LdjJwEmxGI0HuDg/w6PHj/D2Z4+w57Ku3a4ah72fDf/vOxeX9xHSJo7VQdv0iXMG8CQfLjyghODwNuzHh2to73uUIBfE0yAZ9LanUjyzS/tKyNNh3FLugg8eVJYF+QJn4F3Tvgd05n6qh8FptqYyKKsSWd4S8GXooeSciKlEYTy8abDWCmU5jevZaDyIWkqE8ipKPTcWu80KdRI0WevgpUQ+HKG0BnowxuGtu9jYeRz5wWAAV7BjxSkPAJJQIyE9vJDIRAYJOmeyVLReHcymsLqLdgGA4OAimZPOUaUeI0bOU18b0zRRUCx1Zq+aV10F0+T13uf7TnH6s4/Q/bk6GwBBQwzDO+dx7949nJ+fAxCRBFhXNdarNSbTCTKd4fCIUizPnj3DcDhCkRd4/Pgxwbt5Hnuj3Lt3D0VR4OmTJ6QIJyWaukG528HUDQ4PDnF8fIyjgwPUYTJOxmN6sAAM8hzr5RJFUaCpKmLtunagWHQLQmBX7ujY2w01PTNNVKEbj0c4Pz+LPTqyLIMMi/t2s4WUAgOdo6wop3x0dBTTPs65SGxKdSWsNZSS0Do2fKMIui2V8t63jaSS+5hOJCmIdzEejXB4cICDgwNqRhQcQS6j5QWcDRd794DH4fExpKCooW6I78IRsmkaWiacR11XsTyYo+aqqiJPg1EcrqjwAZrl/jVKa+RKAx4Yjyi1k+VZTFtlWqGpazRmi+FgGIxZ6MmSGLlBQSRd4QV2gVQoBDAckhKgd2x4EJ06Ug5UcHWNcreNBDcpJbabLYy1mE4mGI3HEAIkSx+ayrHgmRDEx6jqKsDG5Gw2Zg1rPX77t34Di4sL/MzP/hUURd5JVxAJlqqKZKJhAbTVS6khSUtb04gvJV+n3wfaiCdFK/rpmD4cb0yXdJqmUVKnx3sPJTNCIawLGSwH0xhoqVBkOYZ5gUbXMHUNK9q8cupwdNaO1LhYB2tdK9qldcxT03mR9orWCnmRAd7DGRuk6qlfirEGHpTmzDYDDEdT3L//Jv7kvXfx7Nk2eg1C+DY47xDlro72pCIeilJ03XW1wx//8Tfw1iffRpFnkKCUp+R+M7JNI7SbuzQmL9+63Vz5HhLxjI1AqEDxFh6hRbwn7RmH0OPEA46Pz9UcIJlv8tiS9Ef6U3ABMPUGaa8ncTrDZ+P3IVokVoR5SScKE74hVQGdTyBrC9d4SDQxuKKrprWvrgKPJ6xpWilYX6HZbWGHA+JIBKfUOgvpiHCqLamnOgnslIq8DGMcTONxfHQLy8UGi8UC2+0G7H9fXJwDAIpiiCLLQ9pIYrsrMR5P0BQe+WAIO2riuQ6HE8hRK2YW7wk7G2FsvZOAY04WQI38AKk0fDL14nNnKch0AaGC56oTF+YtOem03rFXR5CKCP1sVCz5TpDGML6XXve+fT3e/m7KJz2/OBOudICv3l5DZ8PTzQsMYgGHsxcXETLLNClLOu+RZQWcBWazQ2zWO9LTyIcwjcV6tUGekbdpPFWZ6BCJZ1qTGEzTYLveotzu0NQ1cqUxG40wHY3hjIVwHuPhMBgl6vFgGoNhqJbIVNstFoJuWl4U2O62WDx7GuXMiwDbGWuxLXcwzkGHFIBWCk1Vh0V6h8lkgsmQSkiFc5geHMJ7j/V6jaqqYjoo5hAT0h7r5jeGDFdV78JzmhKL4jAjjSRaz5eY0N55HB8eQQmJs2fPMR1PsAkVP0dHR5F4y/wFRiSKosDMz+DhMRwQqXc2ISRoOBhgMBzAKB10PQATuAicMmMDmMrTp6WcVVVDeAE1lm2zNmtRBicoU6RnIYSIgl9CaUghsNpsMZvNIJSGNwYITofWGg6CHi4Q2pRnpM8gA5KjtYawiHNIShn4BgRninD97IjoPIdvGqw2GzSBbJplBawN5EXnUdZNpwy0qik9JZWGNRZNtcPzZ0/xu6sVPve5tzEZj5DpAsIjVABl2O5KDAJyxuXGqepuigxxGiZNlfC1cD8dRj04XZk2bEuRJ5qvJvKIWkeGPsuf42PGOZqgJ+QsIEDW1OlSCAGZUcXAMCtg8hpbKaAFAK1hvYBx3U64/UWKHUWEbqRNw9VtCloT2dl70n/QmUae09hsNyW8c7SowqGuKxjvkBUFqqqEzguMxlMcHN3C7Tv3cXb+Ak1TQUsJB8v2FQIKwrORCMRmQeTJ1rBKOEcOB4KIm1LAgwcfYH7xDHdOBxCKBOIyrVE1BlmWg/P17QXTusg7Tp1EHvsOgoOQruqlUGk8krWBnTZhAFg4/i+kJqwPZHt4IPbXEBBSh3Ho8Q2QpkP4e6GHSfdiwuW091bwNfaumwIWEvYVoAZxMpPICgljHXxNc7fl/ZBCq1CBEwIPLTNI5eGkh6tLVLsN8uEYXihaD0QgLzsDqyxyJeEtYKxDXVmsljsMBxNUJaXkTm/dwcXFIooSOudIf8R5NEKgGIxIOiEvoISCbWxAhjRkIhOndEZORXJPJae/HZNDCU2gNdOgaX0VVFUNq+g58D7t6GtDMM/IdhAzc4Gbgz7a0LqF4ARZvGFtKgvhPrXf4VQaOo6FAMnTsIMcX+8FOelrN91eqxEbPyBp63HOTTPJk8tQN5sNzs7OAFB/E4CixslkEo2UAkWmkdQJEctAt5sNTEPNfIpihMPDIxKcCdHPZDyJlStCCFhhY9TIC3V78j4eH0JgW5Y4nU4AAaw3awilYIJ8NpM5006yd+/ejSWt6/Uatm5iqa5SKgpqpZUE7SS6gr5+3bbvZgoBa0wUJ2vqGqZpcHxwiOl0GvU7OKXE2hhcYiglddg9OTnBfD7H3bt3MZ/PIQUp97FMuVckG8+8izRSZS4AG0ignYSZ1pBB9z8EZ+AcMu+rMRTRsLE8ODiIpc+LxQIApcTSCg9ueb/b7eJ1suLq4eFh/CyjLJSCa5UEUxlk/h4jFzTXDIrCRTItVwwxH4nv6zpUKWmpIdAAUsCYBr/6q7+Cw6MjvP3229hsdhiNRlgsLqB0BmsNvDUdvhCTPrnUj50MdjQiLCy6LeKBlnPBedq0bJTf5/fSqhh2mqTUHUeENz6/NIfubei2KtoSXwCxtF0IgUFBiFCzq2MpXvvI+c7c6aAd3LwwVCEBAlrnIJVExBI+PnfShakA2PgM8zNGjc0EsrzAZHaA+2/cx0cfvYflqgZzDjhSTPUdu89W7++wuEfehFZYrZZ48NGHuHv7rVBRNYZp6hsvvP30Uj99JtCiDp1TaXMT7d+BCAqENJRPSiAZEYkMDfpfP22W3qcODO89qOdN3NGV1/OSC6YUZzCcUmYoiiGUG8P4Bk1To20nELgi8aQcREBmilxjuZhTV1uVw/oGqiio2sN7eGFBo0frhTUuqBJbLJcrDIeGeBVS4ODgIK7vzHORgTtH1YkZdHDEfUTwXWfWMCqXrvPpWLYOQdsTpa5oIL0HIdDq8hzol59flc7gdbFffdK9HWEBJpcocQzFpX23x9xvdnhLOSQ34XSk22shG5zn5+oCPgFrbexrwlA+E/cODg5iRNdf1KQi8ZhIsLM06Ofn55HjIAQRh8aTMaSSWK3XJGs+n+P09BTLxQIZ6wyYBlmWowxkTK+ngACUVlCZhnJBXt1a7EIFhVIK1nsYZ2MKJM9z+OC4vPnmmzGKZLJnpnQkZXI1Dfc2SfPQPKHpbr7CWDtaeHxwfwVAPRCEwGw6Q5ZleOP+fZimic3pdrsdlFKRPMscE3YMttstDg4OUFUVZrMZ5TMD4ZMl3NOeJlzm3F+MUvJeWgKbZzl85kOqwcC6Ol52yjdwYR6wgBs/rMPhMKajWJiN5wpfF6vTeu9x69YtPHv2LAqW8cPqnAtObxbzv3xPeP4KISI5lQm0aQojyzIcHx9HHgxAC8Dh4SGm4ykuzi9wcXGBo6NjvPvtb+NXf/VXMB6PcXBwEMruhlA6Qxn0RmJ/nx5zPK0w6VeO8JaWmvMiwc46OxH9FAjzktghaSuDWqOfRtZpCofHh54pH4/N58mEXnZmq6rCZldxe5q4EKXOTvo620NjLISooZSEMcMY3QHsbLTjZJp2gUvLg3lusE7DeDTCvXtv4Pj4GOv1MnxHQlApw82fvySF4ZyHzjJst1t8+9vfxvd97w9hMJ6BCZlZlmNPDoWuFV3kYF8qrH/MS/tIPpMu9GQEXTwPDohTQnA3kpXR4PC5tM82wNEuY0DiJQvWvnubbnwePA84VablFLX0MJs1mqYGjANgkQEQ0gXEwAQlVCrZrkMQKHSOfDRGXdNzJbyFFB7eUPUQQlk+azSt1zReWisY20QZBg6CrTVhzRsEXaY8ksfLsorqy03dQhN1U6MEISIupG9pDFy4BzwWrbNRVgLAAIDHbldFgmgajKbj2alU2eOkXuXo9V+nz1KDQtpXt7rFdcrE04ZxV99P3u+rOB2vhWwwcYcNa5ojZkEWjoIODg7iwplGwWkuGhYYDOjmzudzrFcrXFxckCMiJFRwTobB+JRVhcl0gl25w8HhAS7mVCZbhoZhxlrkhYB1BPdXtgKGrTKhDYvT4RGlQISSgJI4f/ECT54+j6TRe/fv4/DwMF7bxx9+iEHQ8BgMBhAeWASnhBfjNCpMoem44vTvy77XLg16kmNzDkcnpP9QZBmKnLqvKiFjczQW22KCLhvaoihwdHQUNUpYuTSN5J0j9dCU4MiTKeUY8GscnfPkt9Yi12RUbXLPhRBoQplmPihgXSvylaposrYKzx2uYBqPx/GcOOovigLPnj2Ljl5qCOmzbeSsNfXR4B49jLIURRHJq2VZR8TDex/7brB2DPeZAQAJibwoINaEbOzKHX7v934Xt2/fxl//6/8hrKMx3ZU7ZEUO6RHL9digczVUSgrtRJdh3FKuRvqA74uA+G+gTdGkokfkNLXldCn6kTo9vB9nCTXoR248fvw9Poaw3cm8b+FL57XzAlbSYk1dcSnXztEmiViSOBTfR3YY2Yni4IU5RVpT9+N7997A48ePUNdVTLWKkL5JTgJXWXg2tM654PgoZFmOFy+e4/GTx/iud45RlTW0zoOzxN1gb2ag0+ql9j5e/b00qmU4nJcWH9NCfSOUwuc0xv3z4H1GBdBgLAlO3+M8JfNu389915vOYyEElBhCALBOApJKTo2pAeshbKiccZb0UjyV8RZFgYv5Eio7x62sgANVgTjvYEHNMb2T8NZBBnR8vR5iOByE8wDW6xVmB5NIFqV52/Ys0vkAg0FB6X3r0TQ1qrKMji1vVdWgtE18lvk6LxvedkycuzzvXmasrxv/l239z7XVQzwHeN/cKblNi7EqbX9LHeT02m+yvVY1ynqziS3KOZ/Mpa4sLwu0+eZo5BO4mF9j5jlAKZj5fI7VctU6MkLChPLIUag8YUGp6XSKpmk6KYOiKKJaKZMRizx0lJXkiCitMByTQuRyvcJuucN6vcZytcJ4PMGnPvUpWEty4w8ePMDh4SEpZYZr5UEX3kconhnDu+2WUh22zVsLRif2DuhlyBQID2hYaAUQNIYI3Tk5PkaRZZhOp9huNhAekU9x69YtbIJmBfd/4aiW+80IQWJoZ2dnERFYLpfxHjE6ArQlqClUyA8Ia5rwPAAIXncmRL7exT41jTGQYXI2TQOZGAlOj3BNPX+H9VUYgeC5M5vNMJ/PAwm0iChCaizJEIl4jrvdLpbjslFKuQ8E8cp4jPF4HIm+L168iOkbJsc6a0MaoMFySdFzVVX41V/9Fbz92c/i85//LpTlFrygcAM0ntfp8wG0GiA8hoxGcbqDHaA+1Jo6hTxv+Pq4NQD/nSInKYqRooy8D95S5yitkOG5zcfn+WXKtustH2PfGhLnuBDwTqBpDMqywmazBUAdPVPNDedcFA5kWDtNS/G4cAXOeDzBZz79Gbz77rdxcf4C3lMuXO8t/7t6wWxTT21n5Kou8a1vfR2f/PSnIJBByNAFNClt7G5dRzB1NvrRq2T+w54x2+dspPtNf+4zAn3Hte/ApvfdORdy+TdHNq57v1/GCZVBFRJDmSEbjFHtNqjKDWxTwlmurnEQjlNfApkuAA+8eP4MgMDRyTGEzENjOQMLDyMFrDRAeHaFAI6ODkOpPaCUwHq9jufhnIsVjZz6FyI09qwaLBZL0nZqmg6V2FkLK7rNDPl6038xSPRdeXopVYcgus9wpwhjHLfkvasckf7nwm+XXuvPp+482F9psn/fN9teqxoFnkhROsswHA4xnU47kSOX2/HPFO7kxY4jEaUUhBZYLZdYLZeYX1zEOmE2tFKQDPV0MiEUIeS0LeetGZZOcrek+kl58eFoBOxI1Ms5hyrA6NuShKDqhqpQjo6OcP+Nt/Dtb3+7s5AppbBerTAMfVxiCWsg9lRVFcWVRCDm7Vtk+4vRdV6wDB6GlJLEhkKk/clPfAJFXqDIM1hDxktJFRuesaOx2+3iQ8TaI5vNJt4j5iKwY5FGi0BXXTJVr0xhd06lpQ3mvCcmtXPUXyLLs/i9tPKBHzxOQY3H4+jYMMqyXq9x69atSHbkNA+TcBm14QgxFQQip4I6MPD5cTqFyZasHcJiYGl6gK/ZWkuk1TC2re6DgxKspmtBnVEbfPzxx/iN3/h1vP322/DeYzQeYVuW0FkR5wlvnC5hPoIQ4lJvFTbYqWYGv9ZfwPsLAY8LC47xIpKmcdhRYIOeVhg55yBVy8tJzysVBUuvRdYGopceuMoAcp7cWoumNthtyTkaDgeBSJsB8HF8rW3nH8tZM0KXplW0JpGv27fv4c6d+5ifXwQlS0rX8lPW2uvrF8123CykpMjwww/ew2J5gdNbd+G9hXWAVnLP7kSHjNlfwHm8u6mM7k6uXuA51cG6PP1zTvcTnEOhAi9CxJ9ehLkQkBHiqSQiXpeO2z/G/r+v27xXgFTQuYbWhGrneY5yu4Kpd6hLIpZLCMCzVhIR3jfn5zh/8QxFkWE8mYBVND2fp3PUxWWzASnOsm4FMJtNo45LFtJiWUY9dgbDYViHGsznc+zKGsvlkgQTjUPWQcS6xpjuIXMe2KnrphxSZ6OPYvW5F9eNNc+V/jO/L6XV/UwKr6cKpped2fRnus/+M/0q2ys7GwLAdDqNDa84786LTqoEyI5Gn2VfFEU02E3TwAlS9lwul8S6TS7UeodBMYg9ViBIKAXeow4cipgdEwKbkAKoQqfWYWjOhR3l01brFWrTYBXQD6UUHIAiz3FxcRG8YYG7d+/i6dOnUXrcA7Eigx0MnlSsCcBGlQxte8O4Oyv3jdg/EdLoBIhFVZ5SJ1ppUlttGoyGQ5iGKiNsGF82BGwMY++RQGhlldX1eh01UTi1wpwJjqT5nqUIVHp+bGQ4SmclVmuJpMWGW4QcIYuGDYMmidSaFn8hcH5+jufPn0deTFEUWCwWUErFcuI8z/Hw4UMMh0OsVqvOhGcHg4mdLNVOxofSFJz6YKOeGlug5T5I2dbwM1udFUl5nnNKRScdUKlSQWCzLWGMxR/+4ddwfnGGg4OjUBrd8kg4pcjpxhRG5znRR5VShCCNmnif/UUsjYhSQ0bXTM9Bn1y2Lw0jhAimp3vfeX/8Nx2nrW4xCW+mv790857KX8lBIF4FPw5NYxKkBcjzDNQTRce5yr8PBoO47sT0bNOgKIZ4681P4cP338dm00DnGRA6xtIJ0P+8R0QRO+cHxPJrvk7vCGaeL+f4znce4PjoJOwjdDWF7oIBgrQqUoejH0UyahJLUpOx6i/83bFs26yDyz96jhMfl++j9+xohM8LPjck+2HHY39q4HWh/fR5815S3xWQeKIOCFyR52iqLTZSY7dbwVmDptpBKzrd4XCI4YCew/nZc0h46CyHUAoOPgpXNZ64fipUuhBPQ+NiPkdRUGB09+5dPHv2jBDwLEduiCNijEVdN1itt1TxZAyMcVC2j1y1Y9QfEuZFpOj2dQb6qvf6a0N/rPv2Y98c48/0n8frHYf9SEh6D191e2VnQ0qJ2WwWF3nuXEllj1XMS/ODn8LsbBAARGi3LEuczc+w225hwnvdyI60ICaTCeXIwyKnMw1TWxhrMMgGwfiVgGibYunQdrhKcuPnywt4BLlX57AMjb0gBA6Pj1CWJFV+cXER+61wimK1WkVD7MMKxQ4TkyRZQpw3RlfIeF/ua7Lvb/aOlQScsVBS4fT0FMeHhyiyHKYmbsN2tcYsOA6L9arDZWAhKSbtCtGWmtZ1Hcl0TdPE62NYlz1/oIWR03vIomF8v1OY3juPRjTB6UFEfEbjMYbDIRFvBwNUdYVHjx7BOYe33norOnKMJJRRS0ME2eFRFBtjR4rnEfMylFIxHcTR6GBAjga3rOYInBEEdlSEEFHgi/fNSAMbNG6st1qtsHIWmT5ElulION3u1nAO+OD99/HVr34VX/nKV+C9hdYqXlsUPwv7rqoqOgT83HDKpF9ezHM/5SqwUe+TTvl+Xl50ROf1dGOnlXk4AGATNn36PKflsuTk0jjqqolBQMdp6S2K/eNbS+iNrjXEmJyOprEQglrJK5V1EMO0+SGPBafIWLtHQOH27du4c+ce3nuPUl1UnRmeu1Cq+TISZH+zjkjv7777x3j77c/i8OAWXB2CJFBTrnat9kj8tc7WN0LetznzdLvakPP4qvi91jCEjqThOZCybxgvnxB/P/3JiMj153H9eV52MsO6GM4bHoSuiBxZoVEUQwwGY5TlDLvtFqvVBerdArAOUioM8gLldovtao3hYIBiOEI2GMALCdt4QDooiIjqlSWr8ebwcDCG+GxHoXrs61//d1itSB2aG/2tVitsd9WVUf6+60vn+VUOdjIKuGqX+5zyfchD//c0uLjK2Uj3vQ99T/eVXk/6s/8838TRBK5TtLnmJLIsjwsOL3YpopGSI9np4AWZjRdH4MvlEpv1OjoadPLh5KSEDjl97uaa9jPhxmCsRroN/TF2u12sitnutjFH57zHdrdD3VDpZRa4IlJJLFe0GJ2fn8d8PUVcOqYh2GDxe1VVYrMhiVsbvOL0ZqpgyFID011gmBm85x9EbJwzm05x+/Q0KlQOBwM4YyMxsp8GYEPNRos1NzjVkXITUoMLtGkNhqT5s2knUd4PI1fMMeDPp7wIPv50OsV2u8ViscBqtcKDBw+wWCzwuc99Lva4OTo6iudxdHQUJzGXnHL3WkYFOJXCzg/f55TzwOfO18bzJ0VjUgPKLHSeq3yv2FkoiiIqrS6XCxKcyjUuLs6D41nj+Yvn+OpX/02ScqujcS7LsgP7F0XR6dbKc4vPmZ16Tm3wazw2qWPAz2J6b/l1fnbTf+yk8CKUoiJ9bkj6MyX18jkMBoOoQpvOd/5OGsnHcwHJjEupgmNK511XJANVFEWUleax5PPiMeTzSc/bGAMigUrMpge4c/supFRo6pDOjWtZSETsp01dsQACDEM/evgAz58/R9NUUErCw7aIJn/+GoPCxqGbDtsflV55Oj2j1q4/l9eb1mmVl97btx8OetLzvS4632fk0vvTuabgZEhBAlJSKhK6ggRUhnw4wfTwFCd33sDte5+AlFx1FfrjKAlTV6h3OzjTQHhEmXXWROzzIOq6JhG2sJZzqvmtt95CWZbYBjSTmvvVUbSSr7lbiQHAcwqL1nGE3+GJ0Mzl1vvu4VVjtW/c+lw0/nnV7+lz3X2dytidpX/EwfX7/znf2U//36vMUd5ei7NBcKmMEQUbJABR7yCFW/i9pmnigv/ixYuIHlz2sCgUcM5hOBpiNptR9QeId+FBKprr9TouzOlCBCAuOrvdDjsxBYZoJ6Dxkduhs4ygRCECm5wcpvPzc0hJMttpmoQjzrIsI5ci9SYhKE7i1vZsJOi8+oqO7RX3YWwRGiwNBgMcHR1hGCJ/hgnzYOyFIL0KXeTxPBnZ4OZr3rddR9lgAq2XStdOxomrQdgg83f4/NJeFmyUOy3NhYTwtB8lFYxoDfaTJ0+opLUmIjDzMdhZ5aZ7h4eHWCxIeIdLTwHS3uCKkNRR4vnjw3hFlMkR1MwOAjslKak3JcBaa2NreY7y+WFnh467Cpe7DV68eIaLi4vo9DL/RQiJb3zjGzg/P8fp7dswTQPp2z4oMqBdaSqg/xBzxJ7OoVTVNOUJseFng8LnnvI82u/Sgpje09TR4OcnpjCCwk/faKRzldEEB4myNthst9FZ2hcRpQZRCn52bCDDmuQ80igdMffOpNl0TvOY8aIKCOT5AFmW487du5jNDnB29gxa6rhfITidIHClV7BnE0LAeYvtbosPP3wft2/fxWw2RNPYkBJPor4b7Ct99qNuBNo14frFvAvh8/j2iaf9Y/X3uf/+0Bmlr193LlcZVT52es3eCyjZOjRCSHgkEulBL0MXCjrLsTk8xvnzEqapISGgpYJx1DHaGu5mG4y+JxEtwKNpWg7dcFgEpKOMHb9fvHiBO3fu4Nmz55hfzKGzAqPRmFpqVA2sNTBNa8DTced/Iiitek8GvB1PQroikudaZ8VZt6/zVW+MWqejP55XoRwdW4Sew+VlGNeXV8HAeXhxNZKSoiR/rs6GEIg5Wl6UttttjCR5Yef3mKnO/IDFYoEXL16gDryHvlqeQNsb4ujoCKenp8jzHNvdDta7qNHAKAZH42yE2KB673FxcYHt4AgYhqjMO9jaIisK1HWF8WSCpm5weHCAdWhAJgRVfXB5FLeLZ0PRNA3JxRobPGUV3jeAB4qQ4yeDRlLPzrU3+fJ4pgsCjwC1ZT46PMQ0aGYoIQERavqDocyzFtFgpyE1ammUzJUU/DPtD8P8FeZs8Pn3dRrS6DFd2NjrZy6HtZZkhdFW7HCV0K4ih3QaOCc+y1FXNTWPshaPHj2K6MzFBXVo1Vrj8PAQADrqf6zjwvecEQ2WgmdEjM+XkQs20KmwFqeQmIwqpYwiXgzbl2WJwaDAweEhvLdYrtdYr1ewzqBpKhijMBgO8eDBA1xcnOPNt95EXTewxkenie81C+AxGsRIS4o08MYLSRqtsOPL76ffSdMuaYREef4gP+5cSDvSveNFuc3XB0OenAPP38jLES3nQCnZQTYA4hv5xJlJHQ1CGWh/JJDUxHultYLKVcIXIqeDRfc4DVjXNWnp+Fa4TYDWp+l0is1midNbt3F6ehvzxTnvqM2kBP7CjZZLz89rm3L48MMP8IM/8BdhLJUUX0qZdEiF3a1/r2JAI9hnuVzifHkfgA/OUvo+z9f+xmtCPL1k3yFWCr7SZU2HlzkcVzkbqWGK1wxACCIge8W9RSSso8o95z1IG0UBQuPO3XvYrudYzXfwxlAPkbC2maYhRWnpIEUIgH1bpcTOaVHkrZF2VOLf1A1GoxHe+sQn8G/+4A/QWIu3P/NZjEZDVFWNsqRgWArZex6797GPRMRrDWq39Cy237HOoptw7+4vHbt9Y7zP2egb/9TRIDQJcU1IP7dvXtF7+1M3+z/78u21nA0pZVSlTJUE2ailXiAbAybtPX/+HPP5PHICCAlQQPDmVZCqpd8zTKYzGOfRbHeoGypRdI7q3htjSQ56MITOiIswv5gH/QyBzWaLxtjO4De1QV4UgAMG2QC2sSi3O0hQv4zRaET6HGWFuqmw2awxmYwB51HVDnWAb6npEXm1Yc2GVjnyIodSGgiODbyDDCx470KeLix2Mixy9OCJwDsIkSk8Dg8OcXp8AgGBpm4wDGW3xoYmS0qitgZZwspPO63yPZhMJlgul9HIwgO51mgsNcLKdYbKl9TIrG7QVDVsY5ApDVM3MM5eSi2kk4wXIa01tKIpVdc14AkOr2sJrD2KPIOzBuv5EscnJziYTGDqCjY4loMsg5pOoKTAsKDI4/ziAtstQ/c1jk5OACGw2awJmQrly0eHR1hvN1BSBQ2WEgcHVBrMfKKDg4NIkmWHiq+BUj/E5ZhOJ/DeYbvdQSmBPC8ACFRVGeZ8BcCjGI4w8gLL5TLwC0K7a2MwvzjHfH4O4R2caSBFHp+fNHWTlj/yPWMDzlygVEOCETx2/qh8VtGcQ9rxkTrqOkfVGUJQmsIGR0MIGe6pRd3YEK0D1gMIJEhnLZTOYMJ58Lzia0hRTecckfWkxyCT2FhyjpVWaIwLHHgyaI6S9BBSgFpBsGomaeBsdzuK8KVEnmUQQNsrwnooSGQyg7BAta1QlRVFlvCQkCh0jto3sNJD5xkmsynu3LmHDz/6CNZUobLBh0qMsJ7sSaXEjEn4nRMkXG1lncCLZy/w4KPv4C8c3UVtHYRSENFda5/tfVvqTLSO4mWUpe8gpM9eOCXGamg/CGtq5Fxwj5N0Hy4sQz5eV+vw2NDrpQ1+gK5D0p4H3b+I1MZ1j0/Nh9fiGQZAwAGhWkN6CQFCBJUOJExP/C/jLeAFhuNDTGYnmM+XcLYBlEZVN1BZDeo43EA6CaGIq+Lg4Z1HBgGlQo+j3Q5KkQS7bSx2my38YIDVZovhaIjBcIgXz5/hcDbBnTt3MB5maKoKUpDqrnAtQZQRPwiaz957+gla2z3fo7DWC48oeAeAKquSwYwzJowhzwUhiRnLgTIhJz5ygaNvGz7vPECgeCCDx/MI9zh8Q8SDxb11t/CdxJVJ3gzzIN7jm22vJerFpXSMZvCix7AvgPg6w/IXFxd49uwZ1qGagKO09vdQsmrp5gyHQ4qSsgybUEmRhX4pdZC4zvMCk8kUm80GT548jVoI3gNPnj6J5Ug2acQWHDYsFguMRqSDPx6O44Jd1SUMQ9LB467KkrxnRjOsDQ8ZQX8sOsYpIo7YRHiYISRBozz5kltH6qj0d55pSEULxqgY4ygIolEOuhWBYvSFjU4eqyJaHQX+ncs7GaUAAK10hK+VVCjGBeCJ++Kdi91Wl3xvBGJ0z/tJ7x/QVnTwXIBo+2+QFDVpJ2y3VI72ybfegtaK+lY0DYyjhlaZUhiG/jXeO8ymE2zLElKSg+HQEjj5nmZZhov5RRRgY7LX8+fPMZ1M8Pz5cxwcHODi4iIu3OwsTyYTLBaLIGEenM2QgsoyjSxr+SsAIgqw3ZUQUqIoBjg8VNhsttiF86JjOHz04YfYfulLgJeApInHTgUbaubdpNUvPrnXnBbhz6UVKgACcmUiQpOmEtl4tLlmKlnP8nBNAOrQ7psaDWYQMiggoi0l3Afj8rml1S5SSmQKGA0yLBU5CEIqxCZuoCic9y98KLt0XJZJz39Vk66INRZOaXI2LIk8MVeo2pWRpNyX1LcKKKRA4wzGkzHgLU5v38Hh4RHOXjxH7DMiEMuXSaWy3RhZ2OcmSABCUk+Opqrwwfvv453v+l6obABAQPjL+hSX0whd1CI6FL63rF8ZdfIfqeIjaK1JDFhXLZJRCUfcCFa7RGLsfOAcwHcMUnJAsFPTRr8p+tFTaeUFlwOT6OQ5qh6BICcdkfGAfmpIqgyNs7h195NYb0o8ffghvMwwmkwBUP8cDw9nTfBZqQTZOWrDbrjs3jtI5+GNiz1vTNNguSCRw6PDQzx/+ggff/ge6nKN0WhK3WkDaqZcytnwoZxaAEnwkN6fiBwEByu9Tca62Emb7g0/A6nya3pfiQfSsR4iuW9AvA/x+HE/rSfNzolH12nsb/udjO5r13/m8vZapa9MPExJoZwLBxDFk5RSgUi3xNnZGSlWhpy64wnAUZFSUGGS5HkeW9SzkA8bWFa85IVmMplEqJvr7jmKZ6g1NiMMC+JoNEKe55EkxOkfaw072xAQsA3BbzZgi01VJ4sEO7YyllumIkR7xy6BkKn/Qwth83ga25CuyHiMQTGIDkMa9aa5vL6BYaeDjVKElmMER84Rk+t4sqeRMztOLDrlBbD1Pup2pGW/6blwyoU5E2zkUuElYw1un94OEPcGWVEgzyjq97ItXdyExm15nsdqGUBAqBKDwYDKpBMSspQS5+fnUErFHjyDYhBl2fk8ttstBoNBzNsyz6IMKoE8Z9l54vHg64mLg0CHeDqbzVBVJG3M1T4fffQRfV9qmKaElLqDUqTQNM8dNuBsQHlc2dHgz6RQrRBdYm6KnKQy5z5EmDZwOfi41PabUSsZEBEX+RE8dn1YnffZEklbCXpKe5Yx5eBaexMXV4oG2bA7hCwPmqaGMVkHkbTGwJqmo6fB1VFpVQ6Pj5IKriEOz26zxvHxMW7fvo3F/ALWcr8Ul6QMX7bypUsqcyI8vHP4+MFHePb8Kd76xGcIWRKX0Ykr99lzQpy/6dLNX/K9YxFiQOtYiKolGzPEiFWEnHxUjuTdSTJf8hoeSz8lQmPZYiQ329ggW0KGIagUVnBUz6rU1J4BIsdkmuPe/bdg6grnLx5TH6jhAFkxgVAazgMKOo6/lFQUUNUNjLHIwzNVGwNlg76Mc5A6g28azCZjTMcjrJYLrJYLNHUDoQpYJ2Csg/YtsmGthZVdpz5eWWLw+6nQ9vdW1jx9llIU66q0FG9dwup+DsZVqNpVr99ku2napL+9nqgXcEnhkHO4ZVlGAiI7BBcXF3HxIpgPIaqmXnW8SNhA2pzNZrh79240PKwYyhUmq9UqNnLbbDYoyzJWSLCUuHMu5sN91i7MaR4+1aFgXkJVh94mnhZprRQcV9MEgy4FVckMhxM0plUYvG4L/kqysPne+21+fXowxSjoivC4sDFhQ54SGLmnB6di0gnM1RiMSkgpoTN9idyaNpzjMdlsNmScx5f7jjBPInU00rmRlnMaY7DdbvHs+TMoRWW83ntMJhNoSTL0Qghsyl3kUrCAFxt75xzqpoEMCBMby9jDJqAVPCeMMTBNjTfu38duR916z8/Po6HPsiz2geF29whzkUmmrMDJTggb5izL4AEsV+uIsrCc+sXFRXSEnj59GhbEcUhltP1J+H6zk54q07ZExy4DPEVF0sWJ0njt/OH52K8K896H3LOMAUN6TN6uyrPz78zV4gUuLY/muZllGfx2R45LlErcH93zq9Tp0sEYjyZRTpXBY+EGiDwnUp5Qem4KCtaT/omUElLJuKZ89OEHWK9LKEVRpLVNOOfrKy2SJzUeU0oJB4HF/AKPHj3E/Tc+AQgSn7rplhqay0T519/4nqe/v8xI9O/3dQbsEj8ADnA3dbFaaD+9ZiE8tGKuiQNAjdC8kPCQMF7i4OQuBqMJFuf3ML94gVvHhxiOh1hvN1isVqgbA2caaEkdoD08qqbGcr3GdDyBFIAxhFZkOel6ZEpht1JQEhjlOUopIJ2DNQ0UFJwjscb0tlpnOyllHperHAUay24qgtGM9Pspn6KfYuuO1cvn6p/Gobhqe11HA3hNZ4MXyVFoze6c63AF0tIijnJY7VGIQMYSglj6IYoejceYTqex8yunI9brNbIswyj0JNlsNpjNZjH6ZCdhPB5ju91GhGG5XOLo6IgMY9BPcMGLr6oKJycnkWTK+hnFgHth7GDqBnVVUcvyAGnnWRZFiIQQmB3MsN2W2G63najqqo0njUwaTDnHWvT03mw2w907dzDIc0ilIIA4dsw9YCSCj8VOGTsLKfGRUx08TkIIYm/7tmsgoyqjILqVGqjdbgcEByXVn0h1FtKNnaK0wRkb7sY0OD05jaXFeZ5jmLc6GJvthh5gKaLSaTqumrkdwRlIxeEGg0EUA5tOpyReNh7h+fPnODo6wmKxiA4xO8mxlDhpJsjN37jSaTqddjRHYjVOggjxGI7DHH7+/DnW6zWePXuGjz76CF9453vC/ltDxQuHc66jhJpyIlLjzY5nCrvz98mR6Zat8j1KnYZ0HjIRM0XiUiQqXeD2GXXgsjEiAjR9r21OSH1OfFC5BBtX2kMMPhhn9qBF2QQNEqUU8kT9VQhBTqpue/n0F2ypJHzjkeU5jLUYDUcwTYO7d+/i6OgI6/UCxlhkoSswba9g6AULxA3is/Xhh+/j89/1DmYHRwD6RuUlu0uM9yWC6Us33/vZri0IY0nrDadRXECYfG+9SqPu8Lfvvp5eEn8mTQ3f3NUIu3cOkCIiWkJ4uJgGorQawrMlVU6pD6+QeYHb94e49+anoBXd72y9gB6ssS1LNOUK3u5oXfUeHg67XQVjHQZ5DgGqRsyMhfASW7uGsg7DYYbJoEBZ5GjqEuPpFLoYwlYGtfVwCaWT+HddZ2Cfo5E+P76TjnRo01q49L3OUCWOB9B9/jq3Zc/r+xzI647157m9urORRFf8wHtP7ea5tXnqWHBkzRyO3XYbO6nmeY6joyOcnJzECgI2TmVZYj6f4+TkpG3rHfQgrLWd4zFKsVwu8cYbb2CxWODg4ADOkTIpKGiEdz6iGNzPIi0XzbIMm3KDMsgmF0HsqSpLaKXhQ+3xcDjEvXv3MRxOUJZPw7DcoJwIvLBIpIublIxekNOkFI0Dyz4zbJyynfvRJIAkHWRj5JqSd9kolhWV7aYS42xgWG2UZHxJjn6722KiJtGhSR2S9JzY6UylpNNGcFLI2KTv4OAgomLccVWEXHC5K1EMB5Hzsw36GkJKbEPaI9WtYJEvvobdjlq8W2PgA7eInQhOdfA84uqclBdhrY1IBTs8AOJcJoPWynhzqoorX+7cuYPJZALnHB48eIB3vvsL4Dx3Og/SVBP/naIa7AzuT1nQRga3gtattgnQMtHT1ExcGGWbuuN9p8hIiorxPeW5xdeazr8WdWn5AjpjwT8DZ7umMCwjEKBeIPRaeCY8PQ/shGVZRq0RtKYcf3Dw2OlLS4djlB2eCZ4XPF/zPMe9e/dwfv4cy+UCzrU8mptufM9q2yDLBLy3kFrh8eOHWC4vMDs4QJsV735v35aOf/hksPHXQ+jdv9PXyVtxzib3dX/JaxehSPfJxs0FQqHvHCWlt6RrwMu2Fm1JeBwegHdUtCM8TFNDBN0NoQAlQjm9UDCWKvEG4xzO1vDOwknACyArpjjQI4yaGnU1hKlXaOoqGHVP5HfTwAuJPM9gdjtsdqT4KwY5lHMwNSGow8EQtakxHA4wnE5RzdfYrkto35K8r0sZ9W1B/Jl8xjkPi64qcDpG+1DF/jhefS/3OyHpuf1/Ynt1gqijkiE2JCx6xTAwtfSl9u/z+TwaLa01FosFtNa4fedO1CtgyPXs7Azj8Ti2OmfeRYyuAWw2mwhjswH9zne+g4ODgxjxcOrm5OQEL168iAYEACDQgebZwHCTLmMMBsMcRUBiyqqCt4EV7RrkWY57d+/i7t27aBqDxraRJxMzgavhR34/3YRoF7BiQHoQzjuYuoaT1PGWPteqWaZlrmyUvPdxnLi8k1MuaVkwlTYCRdb2reFmZUVRRGlxjnwPDw9RPn8W95WiJEBLVk3LoAFEQ8CI03w+hxQSb775ZnTwttstxsNRFE2r6gqHh4eU2mjq6KjMZjNyELIMu5J4OqzPws4mGzyeMyRt3z54nCbgc+S+CGxMWbLdORc5PSwSxoaYlXMvLi5QNw10ELfj76WR9iT08fnggw8IBdSD+Kzw8Rmd4f2zMee5ki7k/I+5UCkXh/Rh5KXvpshFi1ZZCNV1WPsLVV+zg5HM9HMsvsZzqG1FkEWUjFC/MnQPlYCgigMuvRWSqyf4WZABWvdoXAMdnk9GNuBlR2ckJS3z71GDxQFO0LNprIkpsJOTEwghAqLRRoo3WX/btJNHnhfhWSSS+HqzxB9/+5v41GfeRlkZtB1USZIdojvO6bhH5E4rGO/grEFaObIvat7vaLTGP+VTpcfitaZvxNK0S/y8DNwOJtR2UIz2yDKgHNTUtOVy9ceNf6fUGVXqedtev5AKHoCUodeOIgI5ZHCQAxogdQals9h+3toGXmSw3kPKDINiBKMd8kFBSLQjiQLvSAfFC4HhaAwHUJ8lP4SpSwwGGQZDQtatAPVuyXIMBiMstw1ss6/fVTuu/XU/HVMhRHfseghlf+unwfrby1DG/njv+86rONl/FttrIRssWb1arWKnPN7W6zUGgwEuLi5iT4ntdgulqPeF1tTjY7fbxVbmFxcXOD09jVGu98RDOD09xXK57Og+bDabUGpIkt28v8ViAYAcEgDgjqCUSggPHESMcNiQAYiQfpZRNUrbUhiA85DBeN29cwd37txBVZaoqwbj6SzuK40i07xbO2zX32Be2AEQC9+RnogNi3jqqKSyzby/1HCkhiutpIgLTfidDRePQRTmCqkQjta5coMjfj4GL2zs/LDzlqYoouCTa9VNOSWkQoqKeT7M3Vgul/ACGI1GOL+4QBl4DVx58OTJk+jkMa+CkTZ2PDabDTKtMBoOY/fbyWQSxxpAdLJSLgYb1dQpYceO55XWmqosXFv9wyk9Jkd7TxUlL168wEcff4zv+74fxHa7jWNmjIlE1T7y0IdnO1F7D0mie9oen/+xswe0TdJo7liY8DykSqQ8bzkFwsEEEzDTdEX/HFqeSKKnARHXhqpuepFzskjHygNPIapojRuPZxMQKnjXebbSseK0nbUWjTFUVeZMW+od5vHh4SFu376Djz/+kCL3ayK9qxb7mGXwFoAI6VmHh48e4MXZUxwenoKJlwKcwmifwasX+ZZ8/GrbPn5Aet5tKoWqU9rvdY0kr1HhPAMqEHYKXGHQ4tlfEUHvG2PvPRBTOqRHJCVVx3kh4B01YrMAuAzDhzQbbDDQjsnDFtZQUChAZGQbhN18UBUVSkIqDcBBBcdOKAUtFcrNCk4CMlMYSELRcqlwfjFH2QhsGovGOCh3+cbsc6qucjj6Y8Uv98fqqv3/ababnNNNtj+Ng/LqzoZvy/J4AeMokVEJXlQPDw9RVRWOj49jnn21WsWqAYbBGfl49OhRTMOw8WDeBy+6AGKVCkPcZ2dnka8hhIiVAcwr4VzZG3qKv3//bwSUwMRog/Ok3hO73DkXYTLhEVJHEoOCDFIjGvgBpS2qu3UQ9EFiHBiKBLoLQf9GdZ0RpdrIrV2d6QGLN9lTvo/Xhj78BgQSKgR8FoyUaHOzgZ5LD7X3kF5CGepcqq2O6RZrLcSITsPcMpSS8IDSgZgXzsuNA6dChIVMkp6IUqSdIi2p1pVvfi+sdRhnY3jvoNbUjM1ZCycdtNdQXkOVCnVB2i1wAn7qYEZJrtRTvpVKxNooHIKqbFpDLSnqdI5UYr2PP30YB4brRYCZZSMJ2vSANAJOeyhBhtY4A+WCAFhuIrjsbD8PC4gw/oBHfpHj9P/1ACe/sYMxLRdGiNYx7CAL/L9oczgHz/f48msI4+99ew7ee8hwDwiWDo6C9+iuXwHKDnPOI+GD2LYJH48a79uz8UHqQLTXROiFpTSK4/nazv/Etu2xrcEBEgI6OyNnTiSpCX85SovnGZwgUhp2MfXpnIWxAnV9G6uDL2P96TWdxKuuncl5+/Q1AFle4PbXLAaDJf7dWxbzIfAj763wleVz9G5q3AQPnO8b/quNTHvc6wx/+zmRvBiPF3fkL30uohi9Y7zU8CXXln6UHYouQVICntVc24lAz4KDQA0hmvhst58JaWiKmBKnhcaMXhZwfnzF+LRl1jRXjmCbmqosFXHTpCCdDmMsNXjzgHOAEhoiUHz+zjfHMLBIHse+y9cZFAEgT5wVKQRcsn73xzc67S8x7q/jjFyHmPx5bq+ts8EREEPDu90udum8c+cOIpQNYLVaoaoqnJ+f4/j4GMPhsBNxc7mk1hrHx8d4/PgxJpMJ5vN5RDBSuPv8/By3b9/GZrPB8fExzs7OIorBkSJHy6PRCGerEk+aNe5mE3x5+Am6kMGfYtTy5PfRn2I//9+yUYBGPxnVSzM+Ct1rftnG3xXJz2HyfprSVsnnbfgHtDNTAdgvhvh6W//ZTVHMFCX1vdd08nf6nZd1F3IAnlrg6dNXOcv//xa38uUfeaUtB8QpMD39M95v2JYAljUG92gCna4avP3sz/oa/qe49R+8l3l51ztc12/cp+Sm282MgRcSNkybzyw0hHuVY7Tb47Gl1NAeZyNF7K5DPPjzr7K9KmryZ51meXWdDSFiFQDzBLTWuHXrVkxpMKrAsDeXHh4eHiLLMpyfn8Na6kPRNE3kWjDsvFwuIyrC0ucMXzM/JOUNcIkrgIiSMBR+cXGB36oq/B/Ofw3fnZ+gqRvSVtAELXM+1RgDZx2EoMhvOBziYDYj9VAI1FUVo1iKkiwgJJYrIq8q2eoQkMRz6trHwUNU0GPILXjaeZ5jNBwGhIWEtZQQsJZz66kAkAJLnzvXRkKcyuBJq5WGdS2kzogHR9JKEULBx6/rOjqCUknUFRH0yrqCUiT/vV6vqf48QJFSSJIlD5RypXRoB+6Dch+wmC9QNzUyneHg8ABCyCgH3NQVtKIUyWA0pPOTAo0xWC6XpLNiDKqKlGLLUILMTZLquopQP0CoQlM3yDIdxdZ4ru12O8xmU1RVDaUovcaVKJHvoBVM0wQ0QEZ+BBF4BYbDIPrFwmqeuBFNXYN76+R5FlJILZ9ASpqXb7/9WbzzzndjOBx10nhpRQilF9o23/wjlUxO5eKzLCc1TmNjmTTvi59Z3hzPGd5tmJOXFyIHa0N5ZxRqEhEBFJz+6MxpQASehHUO1jhUVY31ZouyquFcUJJMUDnP0XbAyfl3H0JFSulpIokqBSVJGTPKzDNfxPvYuJAKWzykkjHXb5oGZbnDbrfFcrnA0yeP8fjxo8BhEuiqa+7ZIqgST749Tz6oUMiyAl/4wvdiMaQr+cb9EUa3DiFI4a+9p9ccyDsH60xM/9J9bPV92nvkab0Cpxm6MH66BonkPsX71bs2TuHw8iRAwoR8L+LPfUYqhPgEYiRXySmRgBp7z4KHRD6NOGNE93g+9uTBYSEU8X48BBBSj0pIaCkh4JApAdPU2Oy2MD6gzckYSEZOaJA6CJIH8ToEHLQmnRZjLJFrVQbvBaTT+CtEi8OvfKJEJdpy8fSedIaFryuBjf7oVg2nQoLtihTTTZGNV9n2cX/+x9xeq/RVB8IWC/iw2ud6vcYHH3wQmfxFURABJ+S9y7LEcDjEdDqNYko+LNbr9RpCUJUCG4jVahWJp7w/Ln199uwZ8jzHZrPBdDql5lihnwYTPllTwhiDf/ziW/hHAR2RUkI0AmZloqKpkALOEOFoOBjgzTffwr3JPRRZFomCxhmcn51hMBxACAXjgMdnz2IlRNoAC9g38RQYFeSJzjyK2XSKQ0niU9ZaFHkGHcaMkSTeZ78PSkr4YuY9kfWKDo+AJ5uSCuPhEKYmGDDPc9iNw2BQYCCH0CONuqqAgo638Ttor2C9w1n5AsswZpyT55JS70mhUltyNpi78GL1Iqp3fir7FMbjMU5Hp5jXc1hpcHx0hOViidoYbDYbFEWByWyKnd+h3JXUkRdAuaxgrI+SxsvlEuv1GuPxOJZHSymxXC4xm82oM2TgjzTnDawxkBuJ8Xgcq1AmGem11E1D0thWYrGax3GmjrUzeO9I0wMFlJIw3sEYi7qq2tRDRj2CBnKAXaho0pmGsx5aFxCNwq0nL/CTn8vxl774ozg9PUVd16irKjovmc4oFeV9MKgipiT4/nIZKABonZFhECKSZrPk+eTngDk4jbEQUkeHlD+Xckb4vrGqKZNLU30Q5sl0hYVI9pv5NXVtsCtLnJ8vsFiSBoJxLLkMSvPIYARZpMEDEC4aA61U5POMRwNkOoPzjsZJgEjcjrsTm7bsO9PQmQIgYZsa290aFxfnWK8MHj+p8MHuHL/3ra9hV24hQFUP9IxeHUG2RhxkuYLhdHCAV8jzAawR+Lm/cIp1LgAHvH97BDucRmdmH3crNSoCRBBtTNtELw0g0nOh7zkylGzMXeuQ+JiT4xSXT1IVgrM3POiUCuX76QHJzkYvxcNOUDx/PkpY3NK0IJ0Hk5QRgyMBD4mWZ5ZqxwgBSNE2quRRV1oAUsCCAhypNDIV2hwIoNAC243F+byCQRO+R/MqJBEhJQVxcfwQ9F0EEVaFt5CSU9GkYaM00Bggqw1+5gPa1+/cK7HSLTqfjkY67syn6s8nicsk3eu2l/Jf9mxXcUVehb9xHbLyqttrKYiOhsNIigQQ2z1fXFzEGngmFDJysVgsIjt+t9vF8tPBYEAqf2Fhe/r0aSwv5TQNk9C4QqWqKJplXYjlchlTOSz2BVDEuNltiIegJIYDMr67cgNnbMtU9g5wVIZ3MDnAJ956CwcHB8ikAsJCz8ZUFzk9Is5iW9ad3DGX6jEhMn1ACUlIxjHx/pUUKDIF4QMKIQQkPKqqjggOcxPYEPQjYWtZMbKKRqDmltpeoKqa+LpSArVtSaawZJAhg1pouYv3YLfbYTaeYLVaQWuNyWgMUzdEuvRAJhVcwzLoKl5T0zQYj8d48uQJFosFyqrE8dExTk5OUJYlzs/Po1jWfLmEzjTywFmRUmK1WMbKmVxnqOoag7zArq5jPx42LFxtxL/zHFRK4eDwiMjCgyEODg5Q1zXG4zEePnyIk5OTSGrN8gGGQZl0MplFlIjLN7lD8WRCDqExFSQEJmMqcWVdGe+ov0zGzd4a6sVT1xWaxqCudvjv/tE/xHt/8i5+8Rd/EW/cfwvIcsADxjiak9bCw8Ha9p5x3xX+XWta0KuyQpZnsRIm1VbRWmMYnlWuGhJotXDS6peU6MlzLn32GNFkByY1epHA6j0kHMqmhgeglECmJUajAtvtGmVZQQqSv2ehrmCl0EbubfTMfBTlHExoXJVrCW88GmdiZY/3AKwP9zyDUhpZnoMrdJyX0HqIwXCKzbZEMRzj5PQUByeH2D5ewToLgZx6GN1oC0n8CDwxomlgLPDR++9j9EYJZICUrUpnHx6/HGmS86KUgtIq3re+Qeg4HQF08kRdoL427GAweuDJaXDCx15xiChGa+hp3FtniIBcJpSHvjbOQwjVORcis7uYuUjLtflfv8Tbu66TwftSuhU99L4lRkuZw3sB4QAlPIS1dH1CwzQOQkusS4PtrqQS6Vi2y/cotKD37XgBbcM3vk4IIpg6ausUkD0BKQGt2nvA07cNHHk8WkoM/e1grb80HnHtTbY+msGf5TFOq3zY+ef30n2k303ny5Woyyts6TVctd+rttfibHC0zXLOg8EgibS6csmpDDbQVoswEnFwcICzs7NYusb9KniRLcuSBJqCfDlLTLPDsd1uo0gUoyRdiDmL7P8ynJe1BJnxTyEFcp1hPBrh7U99GtPxhNQqQ6WM0kG7PyGhaZ3BNNu4yPP1MoydeoTpTRUiJSxQaJEphSxT4XcaL+4XwUaTSbn7PFve0uP0xY7SyIGjdo6QudlXWnUghIhjXO7KeL8ARKOdKlTyeItkUTHGxM/B0z1nlGg2m0VnlMetP3f4nOq6hgn9UyBbWW8+Ty615KqiyWQSnTJOUTBBmcnMd+7ciWjZdrvFyfExXjx/EZGAVHqeH2YuwY2GW7Qt7r33kaDM4873bbNeI8sHMfVVVTt84xtfR103+Ikf/3F8//f/YPi8gBAKu7KEygQyxYqjCgw113UDKYNol+EePd2S2HQh4uofRt48uimY/uKU6njwM5jKmfNznCIivDnbkE5CQFpcGAOtVUi5kdIknZtDEFdAx9HozecYTfvQUwMkzidDl7BURp2r4uiecEUMNdEzUaenwHg8wXo8xvGtYzx+8iA4NZefpavOh40SEDNCETEAHF48f4bT7RbyAHDepp/qbP0Ik3ZDEu5I1g9+//pF3SdpiVCZ4UOKBT3nJNkvBFXT9I0hyYXLaJTZqPYNZepsEnKyf9zS57WrvNkfF3Yyw7UIH+aJR+xuyyPvBGzTAKF5p7UWjQ3yAHts6NWIAKNr6UnzLyzG16Zc2uuKt6mzb04H7bu/fSezv3WRwstoVueZSKrU+LiX72O7pTbhJo7Gvvv4p9leW0EUQIy4udSQF2lOkbBnztUl4/E4Vjs0TYPz83M4R7odrGHAC/l8PsdoNMLh4SEGA1Lq49dYZpoHnnulAIhVLGzAtpsNnCdpdK0UTNMKZPGWaY2T42O8+cYbmAzIqB4dH+HZixfUwyOU7kYdhXD+2+02ojV8M/oe63U3n8+XBMVy+CCvzIt6fyGNeiFXbH1ng73h1CiwHoSUbWfRtHyTUyJ1XePw8JCMYzBmUT5ayqiFkvYOMcZQrt67mFpjcavVehW5NlxyypVILLC1Xq/jOU2n09hnxHtK2SjvUZlWAyKNlniOAIgiYoyYTSaTOKY811gwjt9fh+6wrDXCUfxisUBRFLG9/cXFRXRomqaJJdxlWcJ7H0uD2REbDoc4Pj7GxXwZzq2OTvUf//G38PTpE7z3/vv42Z/9OUwnU+x2JfIsg5cuwNWMYOmoyMn5bGMtdBCASxVbeV7xM8BOEb8upOqUOfNnmAPFcyjV2+jP3bSNfFRWDd2IudtskziTw1CC3Fgbmph1S7XT4/LG95PLG5umgdIyOqKsNMzzjxFFAMgzQja4p0ymNdRkGu7tAMPhCPfu3ceHH7yH7XrdtyNXno8QrfopwGYomD/noLXC2fkZpmWJ0QG9doWv0dlvimxIcEpKxPvTHxMOWohHwSWqlA4g58ySaxb5NgTvO/pywtdpfwrZisgFmghSomV/+Wr9Ffa8eGTCBXvi5CglA9cmpODg4QQ5Q+1QkrPiHDkYIt2XpxRRSzWhkml4R711hIQ3oauxZefu+mi7a8D3f6bv6LF2Cp1Bd1/70hFkny6ny/r2J/18Gqim53mV85C+d52dSfeVOn5XbTdFK15ley2CqFQKmWjr/1uDmcXy1qOjo2j4Wa+BlT/H43FcgPI8x2KxiJLWHB0Oh0OMx+PYC4E1NfhmjEYjLJfLiG6wkBX3CWHjl2kS7zGGYFfTGCrpg4B1FpPxBG+98QY16wqLM7VkX+HWrVuYz+ekM1GVsdRWK4X1eoNdSWyhtInWdZ7mVeMZvX20E4EdOVbsTFUvX+Ve8ZZGsuxwpAaInUGewKzwqZSCzpjwqKOMOMm6l9FRAYJx8g4q01HcDUAUbyuKIkT2rUAUP3ip8QMIAROCoHsWlep78ryxI8GfZV0Xvpfs1DDywUTY1PHlLRWOc85FR4XTB7PZLKIh3LyNS8A3mw2ePn2Kw8NDzGaz6HBsNhtkGc1dMn4NmsbAWoOLC49/+S9/G9vtFj/1kz+NT37yk5RC8QbW2PYeaI4ibYBqRdAhELDOdJ4NHlvWY+lqhXQdNXZKUwG4VCiLnQVOq/C4MjrCDg3NS4dcKXhJjcBk2JcJCMxwOITd7oDowJAgVjpPeX6mC71z1MCvqiroTEW1YQ5uAMTzaxEC6srKc0gIge2O+ECNKTAoRjiYHeLw6Bib9RrXeQMR0eggG5cjcussiiJHVTbJl4FQP3/lflunykdDHJ2ZZBz636WjMt/AwwkXDXdofA5yhZiYCUDIFusPP70jXRPhQypMykDkbdGK9jI9ZMo/EQLcgs0FpwbJDyll6H5NvWikBISSoQV8W7LK1+u9C44FoUTtONkW5JBcWO4hPKES3no40wDeXXkn07FM7+nLtr2Gdw/ilO63mza6wf6u2S4hiL20ST8gSNfV64510+v/s9pePY3iPUxjSAArwOy8MPHDz2Je3GSKo//pdBqj5/l8DgBYhn4WLEXOPAGWoWYCIMPAHEGy+iOT33jRZAPCC1LdVJRLNbR4SwhopWCNxcF0hjfu38ft27fhrEO53cJKKsM9Pj7G2cV5NKpAu6DxgsjHB9ooMHUsbjKplApEvoYqKHgc2bAzcsTjwqmOq+4NT6B+2oTf7xv5NKLd7XYRil6tVm1fkOC4AYjIh1IKBwcHEd3gceEqDkYXeNy49Pnk5CQKq6Xnk1ZRAFRefXBwACZ8WmuR5RnKza5zPWxM2VCmfAWlFM7Pz6MEO88jYwwODg7iXDLGRNVQnrc8LozStferjf6ZI8LjOB6PY4dZAFHvZT6fYzgeAcJDZwoCAsYQgrfdrlHXNb761X+DZ8+e4cs//WW888V3qGunb+8VdzslBc5Wr4P4KK3wVh+m5bnIjofSrTw9jx+nStI5xJ1m2dkFWsSI738aoQlBi35ZlsQ70BpKZxFJGYY02q6qYB0fn7VBfGcu9DdO4dhkvqb5auaYpPeGGsD5eO583qPRCFVFwcmgGOHO7ft48ugJYPY/U5ccjXh+wdyJ1o1g3Zau+ufe3V7a2ueUdVJcx4DsNwwxocCZBnh2VBj5F0hoMbz/5M2IAATkw3mwWJkAEWzpPLrnSecS/vGxvU/2x58HAJ6zjNYICC9hw76oIo/GyloSSGN/iH0i2q8NL6T7F+Gfg/OBf3fFlhpjvpb2HPd//qo1XCTfR+/3bqqC0jDpOnzddpUjka7n/Ln0vT6fo5+C4c/2z/V/zO210ii0UCJqWnAvDACXUigMuU+nU1xcXGC322E6ncIYg1u3bhGxc7vFbrtFWVURNmQjz4vdYrGIJZwcrbLzwU4GlzFyxE5RZA0IIgcR6c7AOYHjo2Pcv3sXB4E7sN1sMCyGMEEe++zsDMWQ8vxVTdUCQNAECWTUlJAH3Ayeoq19yLWmNEJIdEf+BPeJ4QhuvV5HQ8nHusrpSM8lRULSc+PcPEPP1tro5E2n0xi9j0Yj7JoNBEQkV7Ljw1LkTO4lxxPRAWADwMaAESk+P66e4GsyxkSHlIm//LuUMojF4dL1cEqGf+dSae89bt26FdN4/D47Pywax4YWQKyYAhDH3DkXq1fm83nkMPhgzHj8+NhKUSv7Fy9eIM9z6v2T6+DcAKaxofRaY7slsS9jGsznczx5/AQ/+EM/gK/85S/j/r034yJR1yxP3jLcfeivwOmp1OFN7y0vOn2eSx9NSktwYy+j4ODyYsbpi7RLLN9PeOrWqrVCUzfUlltrMJrCAYBrgox6kC1PHd/OU5Isrt77IOx1GRFIeSbppjUJxzV1A2sdMp2HtUtBK5KhPj29g8l4itV8TlF64vhebWwSI02QQBwDaxnxYSeM/rle1Nu/3mgcYhqlC3nvG5M++kEVMgLwAb3wlEYhRU5aX4RPvoe2vDqOM2xyadQl2PvQgIQRGj5XEfbi21Jldmr4MA6h+kiS0aXSdqpCko4xEc9uS0BhXHt1PgwiiwB55u4wg4eqtZwLMu/eQFzRVK8fCPLvLqng2fedfXMgnZf9/Xfvl7w0j69Ko6T7432k/LH0OCmKmc4RDoJTZ6PvZO07Xvr+TZyR13FYXtnZkEJEsiBf8IsXL2J0OZ/Pce/ePTjnYk6cZcmVUlGgiyFabhFurY2pGM6zcgUEt4LnlAlHpAAiUgKQc8ELPjfFsobgZroJFkVe4NatW3jrjTeQaWqupgSpg1ZVidGAEYQ2okSAerMsgzYGy9WKZLJBHjV3ugS6k7N/k7uLjQ2VAW2FCEDkN3YqUmcmzZHzPtiQx/0lkz1dkNlwMOTtHOc1aePJmZIzt9ttVGkVQsb+FOyAsIHibrwMw6tMwwHxu1waO5vNcH5+jvl8Hgmm7EhwGkMIEREtALGpG6djuCU4RNtNMeX59BeSPM9jBRNzXg4ODrBareI5DIdDLBYL3Lp1KxqApmmQ53l0kNnRYPQCaCs62GmK3WDDnBFCRCdms9mgcHlc1DwcigTZsdYAgQD3/MUz/OZv/iYefOdj/O2/9Xfwmc98Jly/jPcwy+h+VmUVU1SMOrCjysdlJCoSXyGghIppRS6VTtMifF+01phOpxDBCeb3Ojwa1fYDqqoKmdYYjoZYbzYdJ5MdHEpj0LNP1Q7topreu7jepI5QSPf0uSW8pd/laxJCoKlN1EBpaoOiGCDLcozHM4yGExweHmNxMYfwLpYIv3zhZfPIRoMRgVDeHhRbA48VzrZoUH9j48N8Bi/adaCfHkoRHe/5OMEIO+4f4uECJOCtbQ2pdzGl0hpx1p1wfBnx+uL4clrDx3foeqORDo6fFAnC0QIpxjgopUnXR8hAXgXgbTgnHxU9aRdhXQ16MHHXghwhL1vtCgkNbw2cMxCwCMP+0oCvb7xpuPajD1cZ6X2ciX2fT9dj3lK0lPeXIub8Nzsafeem73CnWxr8vmws9jm17fzye7/fR0xeHlzT9noSaPzlJFLiDqEcES8Wi+hk8MIEtJB6+pMiexFJgryoDYdDTCZUdsmseoZ2eUG11nZKH9k4c8UMQP1FMp3h/r37+NxnP4tPvvUWJqNxcBZo4m9WaxwfHccILM8L1HUdqxgYxob3MSK/jvT1so0nUiyVDYsET7gUmWidBBe/k15r2jumv0j20yl96C+FojmFwPom7DW7EO2y88DjnZJApZSBE9NEpIl5OEz8ZINmjMF4PI77Ya4FL65MvHXOYb1eR60MpWRM2/G84QWcj8WGkHkeHPFzimiz2cTePMYY7HY76va72WCxWMQOtKxqy+XV6T1jfgv3jGEOC1fEAIjkRSbAkhNS4/z8jKpico3GVCHy5ftDTaU2mxXeffdd/NIv/RL+7b/9t9GhIMNDInnz+RwQiCW36fxnB5zHOk33iTAnWESP51Wq48GcDV740oUnRXTSMfHewxoLHXhbUsp43uzw0ljmVy5i123ee5ShCo2/X1VVpyM0rwn0TDSo6zKW5TeNCZU8NIZZliPPC0wmM5zeuos8a7Vi9hFi9zzBe19y3iLPszje5W5LNM4EvWH0a/91OlhnO2PEwQJfW2vkQCgGuZAQUgNSQwgFJTNImUGojH5XGaTUxHEgggVxJiz9i7SJ+M8D3sI7Iv4628A5A+8IPfDOBgeFuDpCeOrC6kiriH6SE2BMjaYpUdclmqai/TA3g0tUvQe1ByZyqAR3BCYHBN7G96k5Jn0Xno4nvIPwoZ/LFQ5iP73Qrof7jfa10bvoOhn7Asvr9pOmSFI78DKkor+PNPXcP+5Ntr7N6Dsa+7bL43ez7bVKX20wcLzIc0kh62ek0DN3iH3+/HnUxmCy4GaziQs+gEg+5CiJKx34exGtiEhFWxXD0C4bKr5xk8kEo+EIx0dHmIbKCB8MEbzHeDjCYj7H8dER1qu2YqJuGgglY6daFlpiI2SdvXSjb7Klk4EXSGstjCXGvEwcg9TZYD4CH5PTTSlaEu/RnsnAixU5f4h5/xhRhf3wOC6Xy0gSlcFgsGZDirbwfWFUi0V72JjneR5TbMxn2G63WK/XmE6ncUy4ORsjWd772MyNDehmt8V4PMI2pLDS606vleclcyqYPMrlw1VI1zG3iBGbIstjRMzf5/fTyN97j81mA601ZrMZ1ut1PJ/hcNhJqQgh4rym5msFAI/1OuhOSAkpSXWV4WA2SB999BF+6Zd+Cb/4i7+IH/qhHw7nrdoFDgJ5kcP5Vi+Dz5XRlTQFQtGg6KQ40/nE8zF1UtL9posjzx0WnCOuVkE9HxygfBshsZhYSjJ2zsFb/wqkhratQTpX2PFhdIc5NM6xc64DUsOogoewAllWINOUSjk6PsZ4PMa8KqPTlUaXN934mSDuAM3Fh48e4nMzxPPjFBw7c/uMn/CuRUZEq62TOoVCMLISpLlFUHWNhFEXKjoo5SBBpcZeEEnYc3Oza0plWoeHuBFChMRFBxVo709EeTj/0eZBCE0NyIVQMqAibaO3dC0CfEjZtOki7jdESJEITnpAkzztyyOtWNm/7XcqEMdgXxTPr+9Lj+zbug5HuAdXGOir0iN9JOOq47xK6uO6/fCWzsmXpV2ue23f9lqN2ADEhSOF+hhiZ84Gn/Tx8XE02hw5cnTFTHE+6VQwaDKZxIUMABaLRYTd2YjxAsTCXt45jIM0+mg0wng4oLI3PqdAtmyqGpPxGGXgkHBlC1+X1hq7ivL32902GiuuQLjuhly3pRORjJlC09SQilXraONIn28+V1GkUGwKszFI1ScYpTBc6skjOQ4vYOzUAOT4zedzDAeDUEbYdvvl6D4tq2QezXa3A+o2R8/3OcuyDteGBLImEUVgpyJFP1rSaUCB8jw29kodTX5A02oJ5myk5GF2JNmQFkWBsiyjAul0Oo06MDz+zO1gxyZNOQGIjvAmpA3Se8tztapKqEzF89lsNpSyC6iJNazkiegQKK0gBT0v//gf/2OUZY0f/uEfjlG61jqigRDtc8OOXVvF0iKAfF1VTQ4Ec2FSVIkdHU5tsSPJY8zOB7cN4PH2nmS/tVLwSkJIC8tqkZIk5J1zyIKzsdvtLhmum2yMmnHate3s7GLXaJoXMqQoNaRQcI71RQABCR3Ev7TSmI5nODo6wnq56Dw/r/p8e+egcomqamLzx48//ggXd2Y4uXU3Inn9qLezWIf0RopUcjDVdzboe1zRE1ITEhBCkcaGdxBCgmjxHgI1PFQICFJo/npSpffscFwmH9N7ZFTZ/Qm0jvaPsMngCDgbHB+fRtA9vQ50DTJ3FG7/sRMTdERCBU77vZsZSnqdnYL9iMS+oDJ1DNLP9pENHx2u/efCjue+1MtV590/Rn/Ovsr2OnbsOofpuu2VnQ3nHOqKohluka2Uiq3gx+MxVqsV7t69G8ll3CcFaCs6lFaQSkFnpB2ABL5hiJa/Y4yJnV6HgwFWoRx2u90mwlwSh4eHOD09xWQyiQZ6VFDevq4qjII2h6lJ3XKz2WBYDGKJbKY1dJZBSAkXtB5Wa6rLh6SFfbVawzkf1eheJ5XCDy6NhYK3EoNBTqqTdasYyNE3R5Dp2KSqprQwXd2inLf29S63hCNx1rfgsS2KAmVVIQ+6EEzuZYeLkQc2PAcHByirsnN8XiC5EuDWrVt4/vx5LI0VIdIeDocdrgobSUY9hBAYDYdYbrbRKKbwOX8mNZSMcKQOAZ+zUgqLxaKDRKS9eKSUsYsxOz5StmWyPA7L5TKOMXM0mKzK6YimqVFVZUBaynCuQFXROKrQN4WcJBMc9wrTyQyb9Rrr9Rq//Mv/DMvlEj/2Yz+G4+NbkFKiyHOsVus4l3i8GJZ1jsqAtdYYDIZomhrb3Q5KZyGHrgJ/h3PKDk1jY3olRRLThRVAx/Fih8+YGmXZRAfDJ/OP0UylG5R1jSLP4aom7PMlD1EIkp0jnkDTNKjKKl4nO6yR2Bm+RFQDD6EklACsJS2GNh2ZI88HmE6nOD09xfOnTyKyetNcdGumiD9BDnh7SRdnZ/j2t5/gx07vIss0XEJmTcfT+zbS5+eTXidCMPUmatcBRhngqWpEAOF7hGXoIBLonIVSFs55wAo40UDYFC4H9hnDvde6J4qOYyREJPBy1Yn3qcFuy+6JmyKAThdYQimkVBCydSb4mlISpxDMk+MxS52Mq7ernY3LCEPfCDOakn7mJshGOr/TgK+PRKc/96ErVzklvL/rigVetqVp+33Hf9n254ZseJAwEXMY2CEYjUYRNnfWoipLbNcbDEfDmLcWUqKsKwgpsatrOAmUTQPTVJiMJyB+hcWuLFGVJW7dugUPYDweoalrOGuwWMzRVFUU58qyDCd3bgeF0VHoyyIo0qwrbE2DIsswKgZx/wCVdt46uYXHjx+RcyIFdJEDSmBXlnDeo64soBQJLQ0K7Koau6oO8rUqEqR4ceB//UWZPX/vLFRQCCUxGvLipaaGUdZ7WKJHxUg15WfwJE2j0RYmR1zo+B/lTtvJTvO7JZilkFkayTOK4ZwL99NFY8FlwOwEMZlQCNJGmc0OcLGYx4iYe5ZsNptoqNPeG4yQ8OdTkmOqLuq9R5bnUFKhdhQ5KqngVYs4MAoBEPs/1RJhB4Odn1Q/Y7PZQCsFl7lY3dSvruJz4HHZp6bK/I9+BKq0xm5bwjkPYx2EVMgkjXVZ1hgORhgUA4yGIwACjaE0AYu8aZ1htZzjV3/1l7FYnOMv/+W/gtM7t7FcLyClxGx2AO+pIqdKOCtZliMvCjjnsd5s4D2gFbX1lgLwjnRAGE5Xiua0NZQW1UrGdBgLnnEVC2umdKNdip99MDTsAFAJKrUeaOoGuVIYFgXqxqIxJhondnoQ6jW5wsEni3VjPQoPQCo467EuNyh3O+JJKBnQdwcv2bA1wVgrSCXgaxdJxnk+QFGMkOdDHB4e4+DgEI8fPUKWhxJ0RdxI0JmF56iTN4hGk6pIZJDhlrHKQ8Ljg/ffxV/8ob+ITGuYuoHUWWiVQERQGjsHL6i3jJCkZUQpMwXvJXFNsgJK1aibMjpUEgrCBRQkdF4Xku6zB7VhgJVwwgJCQ/oCxgt4JSjdYg2NLxu6SNoIO+Kr3eNgdAx0+B7PAu8DDyNUtNAnGUGNX6L/Ubc3COWCoxFejnsDnDfxLlBJOI2uVAIeMiJJLaSSrsNdR2Hf9ey9pt56ftmmis7rqQ3gY7RO5P7tKsfzOi5GGsilx0nf23eMq1LO+4LTfft8VdSkv71W6SsfnFUaOcXAC16WZSjyHA3zKDYbbDYbTGYzQAgIKWC8xWgyoftlG1TlLop6TSdjHMymUWDp7MXz1tA5j2GeoxgOcfv2Ke7fu49duQuLKCC9h3AemZCwwbkwroYUba7Ze1J6fP7iOW7fuYOzszMq8axL5MMCqshgqhpNXQNCIBsUsM6jbhyo7lwRkiBu7k0SPO6DV+6RZxpaU0dNpVXgZJHn4oUgff+AaLDRZx5BfzK1BNHW0WBYMkKcMdzqQpTp5OT8OpcUc5UQa1Rst9voKLDyKBk1QlvyPMfBwQzr7SZGvEzgdc7h4uICWZbh/v37ePjwIYQQODw87DgazAnhvPxoNIL3xJHw3iNXGlZnqBsfnRweE+qBE8ZSCoquvY8cDFbZVEphPp9jOp1isVi0DdHCWPPx+LzSrrLc5TgdJx5D4i0MkOd5dMaNMXQvpUZtLVxwdpWUGBRDDAcK49EIw8EQQkhY08B6j8aS455nGt47lGUFnWf4zd/6Dbz77rfxs3/1P8BP/uRPwjmPzXYTEccsKGduNxtMdQbnRXByaN5nWkJLBQHqygpQd16t2yaCeZZBawVrasjgeLJDx2kodjbS19JxIEeDNB1UIBmXTQPvHYo8Q9NkyJSCsa0cfFxg2U6xcU9y6s46GEMdaZvGwDuP4WAIknoXkFpAaQljLKooPU/y6NYaSld6ASF1RGeLYoDZ7Ai3bp3i6dOndBxvIDzLaPLCHxbjzqLbjwK77wsl8fzRQzx/+hj333gTraOHEKwk3AURrRYhAVIFg6/IrZAZpNJAI6IBk15CearyEACkEhBKxioVckI8lZlagLgcAtJLKkv1AnBcLtrjSfSuLDVa3SUofC804gseQdxHTIvw5SVpD0JoyFGSEBDCdvYax1EG4yfahE0UHOt8sO8UtvclNaT9dFDf0PLr6bV3jG3UiEn3LzsG/fJV8Cm+3HD3zyE958tp8atTLdcd96oUyqVr7e3/pqhff3stZwNAlIfmqJTTKQxn77ZE+hwNR9hsqQJAao28yFGbBuV2CyFr4k4MBpBoF7XNZhP1D7js0TlSc7x1dIzJaITDg8NY+TIcDKOh4MUvksiUokUnk5ErIKWMOhFcGrlcLnF69zaqpoLzbTfN+XxJZa5CYLstAQgopS9N2Ks8yzR1kWdZXCS4moHPhz9LEGPorJt0ouSUge0tznzcFGbrkyfTc+HtqsnSJ61ZazEI95fTZv0GX4xuEPoxwGw2w4sXLyLXgYmZg8EgKnfyeTJngomGzHWQksi5bNwBYLPeQOkMeZFjF5rFNUmnzyYhRiqtqTMouuRGrXWsMuGeO5w+WS9XlJ4IqAajLpyaYW4HK4myI2WMwWQy6Tgr6VzIlCKZbiFgXBgPpSA0ibkZY7DZbih9UTfI8wxFJH4GAqYW2G23yIsC33n4AH/v7/3f8fDhQ/zIj/wIPvWJz2C1XMFbCwuSMz86OKCSz9AmfpDlIKjaJedG8LQxDaw1Mf3DCr9UcdXlcjAaxM4Hz6WUX7MP1uVghDlag6LAYGDQJPwb5hik0DMR8dq5yQ7RZrOBH1DzvExreG8poJDkWHgPQr7gO+qzKcEVQBASHGEyHuPWrduYzQ6wWFwk53GzjVUfLm8ey+UC7777bdy+cxdacxXP/v1EE9WPloMxY54Xpw68cPBCkUOhg9OoRQhaAIkM1ntI7wDbkMqnC1RS52ClgDOEggrvQtDD6Zwrrl+wMFjvzMVlQ3QVxE/3yCVBUrf0snO4PYhxut999+kmzkQ/4k/LrFODvm/z2G/cb/Ld9POX9rvHeUhJ/Pu+2//OVc5M30G5ybH/LLfXFPVqIWnWXGBNBJIUzgDnkeVZq4qpFNarJXSAoSUERoMhGqngTIPdrozcDGb5c5rm/v370Frj7t271GlUaVhjYhnjcrmMkD6AzsKSKpvyxsaMOnxOYhTunIcHafmvVhucnZ0HhUxqJGZtVzUUuOz9pq/1J4UMXrzWGuPhMJADDXVLlTJyT6QguJCdNzbI/eqTdFKlkSeAjoFIt30wYbqxg8EPsnMO0gNq2KppcnqDu/ICiK8VBemYpCqwfBxrLc7Pz2OqIU1PAMTR4b4paYqIlT+tXdLrou0ZkXrnkSwr2uvQAcngdBQbRkYutttt1N7gMWexr9QwsXNNaYtZPMf+fU8dQT5H67oVP8450kEANV+zzoBum8dkMsZoNIDzFpvNFnVVIi9yFKEUeb3eoBgMYY3Bv/iVX8G3vvlN/NX/4Ofx2bc/F5wHgclkjPU6IDPOQ0qFosgAEH/EmCYahvT8+dqFEC1iowSsbStOmJCZSs6n18VIUnpfefx5PKuqggraJyqkYWluy5jqC09QZ86yE5JWyfA8EUJE3Zyyog67DoAJgQejGHxveM4MBgPYyQSrxRCz6QEODg4xn18kzwj+1Ju1Fg8efIT1Zo3jo1toGotQz8lHSX56BE1uUCqAX2dnOQ9BR0PvCQEnPJQUEEpAaAmhNKV1AkqqwW3UFSFrWkBAwksDYUNyw9WAF3Cex1nG4+7drnpZtCWdQLdUN/0yzZnu/U0j9/7G96xPhty/5u5ff6+Lxvvr4kuRByR9ZgLaEtFpz1yYa0fw+v1fgWBc93n+eZ3zdZ1D0d/H66AX122v7GyosNgKIaKuAesvMKKQ53ksQ9qGPLZSCuPRmBb4khQnd2tCMAol4UIEpkJ+Nc9zaKWR5Rlmsxlm0ymWqxWODw9R7yqKaIKyKDdl4xJcLrlNe3ewk8CfraoKh4eHWC6XsQ/LarNGbS0WywUWiyWqKpCxIILB6Mo8A/tzafx6asylAOA8lJKxv4b3HnmiV+CEgAQtoIoX0KSlPCMzfC1p5M2VOd63FSX7mPX8c99ESh2NiJQAELmIeXvWq0g7bAJtV19GBlgOnFNj1tqoHmqtxfHxcdSo4H2mTiE7nixzLqXEcDRCXRvUdUscdmjHPJYI+iBdH+rx2cFIm85xb52DgwOaQ8FRVkpFWfXnz5/j3r17kZfEVTU8hqwfwlow7EQx2hFRNmNgk86abHiFAKSiBoEsde28gbE1skxiMNCwTkEqDe+osdZsOoXSGRpjUJY7fPjB+/i//Nf/Nf7SX/pRfPnLX8bp6R1sNxsUBelIuJDKIAfAwTpSIWUDzBUdfM/ZaU3HtG1whc41pAsYp8A4nZI6LjxPUh6OkhJZnsX0IO0/OM5XlBUS5N5bTCOaZ+l5tw7GUZDiRIuWphVK/esYjUY4PDhCtdvh7p37ePLkCapqm6QD/nSblMCz50/x8Dsf4+T4hDrBXmpxxO5V2ruGlDuprTugFKF1SmZhvCy88JRi4H8JEoJ0HD2ZQyVzkuaQgPcyvu6lo3RKMJTtEF9lcPrjkqKmyVUJCt76m/OtImxagn3V1k8hXO9ItCb+qvWuj5L037uJs9H6iFcjOQqiOyAv2X/q6KTITT+A7aPq/evZd703IZFGdP3P2NEA/hTIBpeZsfQ4lw1ydFmbBgcHB1FG/OLigqpSnIOpG+RaUxlqlqOpK+gQNR0dHWE0GmE6nXaqA9arNYoshzOkvsiL5eHhYZSV5lLDFNngxSZ1RLi5GosxsZhY1dR48uwpNluK6gh5cDCGGPu0Ty4l5bzp/txW6uELQQI11tTQWR5FsLhSgqM00Xn42lJJAPGz/LkUyuZokrkbzBlgPYmrJk7/IeR9pVE4RCvfzGOYRvSMcjFxUgjKWR8dHcF7j4cPHwJoOwTzeaf3abVaRUl71mXh1IhSKo4XpS2aSM7kc4g9UVJipqQyTBXGiFM5PC+qqoodhCeTCWxIjXBn4eVyiaOjo5hmY9SGx42PmyqgMqfGOReRETaQpHHQRvlhKaSoyFtIqalvigOEcCH/Ts4IvIf1DlII7MotjHUoimGcw3VV4Td+/dfx8Ucf4Wd+5mfwhXe+CC0pim1Ti61w22A0iMafy43Z0WBtEBZdI46LjmXf1tpYOdRHwdJSbUYcUhSCy1PZucl0i47RfQvoFFJiYhd58YmGhQlEdOQ58lzDCYG6qlHVZSBUtnM1JQczShMR2TwHLHHLbt++E9J6JaTw8Je8gi7n6UabcNisl3j06AG+53u/D62U+WVhrxYVaI0lORseWSZJN0QpCEPpIghQ4zbh4UDzBJ5IyADRQLz3QBDu4nSFkILSKVKQ0JdInRtCWMLj3736a1MDAMX7EqSmys/bHscRCsxR2WdA+1v6erpuXZ2OwKX3+1H9dce6KZKQnkd//QxvvPR6eLsqAOy/v++abrL1z3nf+/vQoj+r7bUasQEEP3L5KEP9nNeG97G3yXa7jZA15+u1UmgqIuQNBwNMj45wOJvh5OQEy9UKk8kEu+0Ww8EAJmhLzEJLb+8s6lACNhgMsFxS627mjTCZEmilzOfzOW7duoWqqqIMdwp3M0rz+NHjSCrzHrCG4TByLIgZDhBoJkMDxcuNc9L9tjdOQiqF48Mj5DqDdQ6Zor4RSkgYa0N7FEqnGOeCPHe7OLLDwYs5G2kmI3LUzTA2gGgU+GHgiDMVa+L7mr7GsCXzCFiMCUArRGZMTJ0x8dIYg9rQ5w8PDyP/hp0NADH65xQLn+92u+20oWcuBDtRz5+/gHNUlaI9VbNAtE3G+tCjkN226Yz88GvMN2LUhRoMZhH5YkSE5xeXzq7X64iQsQGfTqfRyUi/xxUZ1gHOenipkGWC0BdrUBQ5lJYYjmjOusZgOMxRlhuS0pcaXkpoCBjrkWdULi4EMBwUcIbKBefzBd57709wdnaGd955B7/wC/8RTo5PUdcVlKLPF0UOIUUcdwAxVcnOFN9DvqdSSNTBMRyG1F96z7z3bRv3JFXCDho7jdyGIHKPHBGjWaE3nbPc2Za2NOIN4k4ikJmbBiak1UjdMpQVhrJWn1RwCSE6842vV2tN1W1Vjcl4hsPDY9y5czc0/6sh+Pm4jsMQn39yQ7qQPF2PyoBvfuvr+Kmf/gqkyqGkhjHEW6C568KxOJBBdPbTijMpJbTSqEL07oCgqcEllR5SAqTeSYRaH9AtAQdvSjjXwNg6qII28L4BfFAGDc6cj07DZcN8mQTJIxRSrz4cL3I42D1LPu/bUtZ9BrW/dcXMLn+26yBcb0z5u30npx/596+9874Q8Z8QoQNzqLziKxXh/T7qwHMy3V6W4nkZ8tPfR98JeZmDso//ctV9uanT1t9ey9lwzqJpSJSJ5Y2LouhIVA9DfjTq+nuPpq6p86oHxsMR7pyeYlAMMBzmMZqcTibY7Xa4e+dOUKSkQdhutzg8PISSkvYhJc7OznB0dITNZhOdmpSAyDDuvXv3KCcfbhornXL55na7xXvvv4csJyY/vA9wbXvd9F3R6QfQ5h79pYeAF2tu6mVNg3unp5hMxgHpEJDBaFOqBmEhbVtsp8RGfhj4xnLVDxsKXpBSUbQ+p4B/9klyQJdgytfSTsB0DGSEvZVS2Gw2UUVzu93i8OgQkCI6dWlDNT4mR8g8bmlKiK+fX1utWtImOaNr1OsGDZdZBwIgn1+MXjWVcTrhOkRadqBGo1GM3pumwbyqMBwMo9Ac67ow9L5cLqOjMZvNYvqNHR3uMZKmD9J74+ChBRtG0gagCJMMxC6Ubx4eTjGdjiBxAJ1lWC5XmF8s4YXApBiiagy8l6iNRR2M/GZD6SB44OL8HH/4ta/ho48+wl/7q38dP/ilL5GhzQbw8MFR6UqRM8KxTzDOoU2J8DimfVjYieT5MxqNomHoS4inTpgApWgcRETLuCmb99dHVPwsxNLagKZyy/I8y1AMBvCC0p98fH6eBgNCdpgLtNtsUa53mExmODo8we3Te3j86BEWy3NEHgXaZ77zUm/bH517ON9guVrg4cMH+NSnPgsiWfZlqBlhCGkA3/4uogHlajj6LD1DlN5WEvDOwaEhsrC1MI0JqTQA3sLZEs4aWEef8aBKFGKTtTofKbJC19VeDSMVPqZbWoJCa8ATAyUQF5GXGSaeO9eNbSegEJfTCRG92WPA96EDfUPKf/cj/X1bdER8Qhnt76/32atQmX3Gu78mX3X8m6BDV238XO9zitLz4M/2X7spAvLqaZSwYHCnTyFEJzKJsuKaBGxYIEp40uKYTCY4nM4of+896qYmToS1cfEfjUaYz+cxCmL4vixLFHkBG4Sk8jxv5cRFW3LHUDYvgqn0dFVVuH37Ns7Pz6M2wkcffQStNJrGQOgc9KCniEWrldFOJA9EcZl0eOgPRle45PLw4ADHJ8eQoiXYAm1rek4/9SdL3xtnJ4mvrc+kTj3nVD2078n3nQ2gJZWmcCBFVy3RljkjTBacTCbYbDZg6H293mA8nSDLcux2uyh5vguVDpwaYdSJq3FIC0FGVcrNZhteFxHRic5UuE5qWV7G8fZonY10fPmag6kI0bvFar3GeDQihyLcq0mQtOeUDoCIsLCOBkmtzzoNstJxTdVmAdI8cHAhRQDSeYCHVkTE1EpiMhnhE594Cz/1Ez+BcruCtw2lcVZrfPjRA3z88UMslxs06wpOKMALNIb2eXgww3AwCERmD2ctzp6/wD/8h/8tnj59gp//+b+GJginlWVFDkeYHyzcxc9Jin6Rw9TqVKQoBo8tp0YYOeAUWepI8hh63+qUaK0hVA4XqtBStC01dmFkEWNjT2kMay1MmA95RiJlDgLOW2ShL41xLqnuCKW/QfOHHUoAaKoao/EEs+kR6rrC8fEJprMpFssLQhwSw+nBKMFNIWYPySRg5/Hun3wbn/zkp4Oj4Do+S4sESEJOBTsdApziIGdAQUla44Qn7oMSEtIDsAa2caHCqIGpqdLIhz4m3jckp+7Y2Q8pO0HdZhmJIIQ1PbcuWhOfKU9PFS0Tlxt/XYk+XGM89xnLNGBItzQAS8f8ulRX30he5ZT099v/u8+J4yMD7ex13rV05z3Hu26t558vM+Z/mrTHTR2Zfed+E7Ql3V7Z2Ui9NI4sGFplY75cLiPrvKoqSCFw/+493L19B9YYUg+0FuVmi9FkDKUJGtxut5iMxjEqLo3FcrHELPA3Mq2RaY3Neh0bhfFx2GhztAkgqlveuXMHL168iBoIFxcXEEJgPp/H6ojtdovpwQF2dbcjKqMXQjiKNKKUblDQQVsGlnrE/BCwDPatk2PSN/Au1JUHiW1BHV8JdgvRgpCxgoH3ld5sNqhcussR5j7D159MaYokZeWn95Sdmv49T6tdADLau92OWs7f+19g++bfhnMepWQYmM576hzGrhsxASBIP4U+BbAUpG3gnIcT7UO/CmXAyntMmJwrBabO41boeMvX4C/lmoNpEHw/23ekkMiT6yQWv8QuLLrWOigpsPWegWgIADupsKtfIPs3/6vITQBILE4pFcTlCJnZlTsoXYTzC0RMAQAeh4cHgHf41Kc+iV/4hb+OP/zqV/F7v/Pb0NLj9PQ2vvCFL+I//pv/c3z84BH+1e/+a3z9330Tm00JEyJKFaJcYw1G4yFMk6MsK4xGlN76rd/6LSyXK/zNv/mLEBIYjccw1kZ4l9VgGV1gRzA6FtZDqe6iznONnT9GNplAnDrNHIRwn6O0KsxLAa10NP5MYu0iGyL52YNvXVe2XikFb1UkXTvXOt3s5DIhNj2XLMsxm87QlDWWqzkm4wmmk0NI+RDO+U7EzijtVVD9vk0pCW/Isfjgg/exWC5weHgrcnkAQAgVjyOlDOJWvcgXNK+ZR2NsAx80M+B9EGRr4GyDpt7B2gbW1EQK9h5CWDhpg8oFd4mWAXgIglyCW8GHfiuJY5H+5LGIwQyLcSWG3nMqqLOetu9dte0zfvvg/asj+Kudjasi/xTF2IeW9DfqxOIvXVl0bsXLu5z2j7Ev9fEyVOVlyEt/fy/bTxqsvgzFuIkjlG6vlUbZbrvVA3VdY7VadeBT1lpw1hKcGdjqWYBWhaMox1sHXVAJ4mQywXw+x/HxMc7OzgAA40Diy/Mc1rSdOJn9v91u8cYbb4CbsKXGFKAeH48fP8bBwUFs/pbnOZ48fYLz8/N4TdPplIim+ZCHsnPdguX54qLXeuh9D5ARgMFggHv37gWIO4gKIUC6fANCBNkS7VgIZ3/ejY1AurBzJM/HTp2TFPFIJ0d6zpf5Jb1oxLZOD99j79tmZHVdQ9wt4PJTAG3TbSACz9jf4/Lykt2PDHzvJ9B9iNU1+77pts+08fFk7/XoeAFA0IWIBFXvIzLCTvhkMkFhDXYVpVsEPJSWkALQGTe4K/D5z38Ojx8/xh/90dfwnQcf42BG8uLr9RrL5Rqf/+538LnPvo2qrPHkyXM8P5ujrjdwzkBCoMhzmJoQhpPjIwwGAzSNhXfAe+++i//q//x/wi/8h7+Az37+8zDWQiVoIICOw8pOQl3X0NmgU6nC84ydTHY4+PlmB1uIltfB39VJ2tBaC+upBJidFQoa6uB3du/KvgW1H3FlOgM0cRYgJLJMQLN6sWhl3BnNieRpB/iGyN8AMBiO4nqx3ZoY8QOJUX6F+eW9BQSlHy7Oz/Cd7zzAwcExOQidq6S2A0IwcpKSu9uffK/4c955OOvgnCHnwlZo6i28a+BdA+kdjYlygLTkMHsW0QLgPO95zxjT/ySPteg6nj7oa6RPaGoA96UEANA5X2Ekr0ov9Pe97zvXGb99yEH6Xr/6Y19qgTfnXTx/HpfLJxXmsX85mpEa+f7n0oDwuu0mCMe+6+6PC9tQ2UOqrtrvn1sahXdsjMXz5y+iqBOnOhj6I1SjFaxaLBaYjMYYHx+jLHcwtcEsVLCUdYnRmCStj4+PI+mTeSBpg6zpdIqzszOMx2M456IgFIuKAYjGN8syzOfzWHq5XC4xGAzwnYcPsd1swdk0ITXqxqIYjmBs+nDwDQxLn0R8MIE2H8cRuxBU4ppphdn0BEdHhzg8PIT3QF3WyHPuVxCUN3UWGm7JzkQHKOL2AUUV6Fa2sMCW9x4ydlD0lyZIus/0n0tQkz5c1yd/ERHPJJGP6MAG3hPRzip1uZrv3/NNANBaRYfLOwcdSLp8P4QQcMZCS0VS5SCjSL0iLJwxGI8OcefOHRweTPH222/j/MVjCBhYZzAYFvjoow/w+OlTfPbt78bhwQGaxmKxWEMEcrEQAk3VpprqqqQUZVXT+TiPp48f45//8j/DdrfB59/5AoWWUsQUiRCBj4QWSRsMBvCQaBJipxBtkzpCRnZJJ2AfSaLssPC+WOeEHZKqrmGch9J5rAqJZN497h8t/uE9Qek1IUnmnyNynWkIAMaaS84F/z0YDCIqyikgqq7jVAMwHAwwmYYy/e0KUbbbC4BbtF+1vvbsoADguNJGAE1d48njx/iu7/oifG8nMW2SGPa9804E3kZosOZ9UIN1DaypYF0NZ2rE9u+SSu6FlmhAnLnOyUoB4Tzg0UFb6GAB3RCIaIsNHBB2lVrjGbBB3/LaqF1Cq2BMy4eER1vFdHkM9gyr7/992bC2zsx+ZKRv5NO17ypk48rNUsmxkKKlpETUi8ZCIBQKuB4i51sJhX3n1v9s/zrT673Ogep/9rr3ea3al77p3jtx6bg3BFZe3dmwzmGx2sAF6HowICRglBcABKw1aOoa69VZ2+ZaCBhDE2tX7mCdwcFshtVmhdF4BIZzp9MpHj9+jJOTE0ynU1xcXFDX1e02LqTL5TKWxXLdPjsRaftp5xzm8znGgwHquiLvXgg8+M5DrFZrQEp4qckRcIAXiiYQELUZVGCAR+0AKamW3VM5lxQKw8EYg0ERb0imNYajEYoiJyb/bgvAI1MKrjEQAEZhzJxz1MPAU57d1OS45VkOJzwaazEctUqdg6CUWgwHMM6iGA5QLhY0AVzbp4TTW/0JxIs5V1pwVMrGpq+lwJNQZlkQNCORJ+okKVA2BhkEhLEQN6jh/vdxs3WD9YLE4XKd0b0zO2gpoSDQ+IrKUBuHgc4xGg2R5wplVaJpdsikwna1RqEz/MD3fz9Obx3jjTdu4atf+x0s5ivs6g2UzDBQYzhvMBjkgHfQUiBTAibwIwaDAUbDIhrVuqoxHg3hnIXMiJPx+NHH+Cf/3T/Exfk5fvynfgpFnkFKFZyEHMZYNNaAuqEKVIZ60EgpoDW3cW8b5ZXlBk1jkGUaeZ4hywponXU4UlxJxFvaQ6lqDKlbSgUphmjqCqamrrbRUXOp8SIjKyVVhzkniJchBaAUrGdytYbSMqZMAERtFUaheMGs6xplXWJTrlHZCvkwh8wkJtMRDg9n2G4W9HwaB61yWOOQFzmMNeh7FikGwb/LgBcopWNfpj/+5jfwYz/6EyiKMZ2/kGisxbSYomlqeEEtTQQcnACcsDDeQzoVAzqhMkhVwLo1nKsghId3JapmAwkHKQP5FEREFzqDVICy5KCgQ4AnfQ7WMCEeR7gCRj0E4jPurI+8qdToaK3AHVRjKiwap5CmDRU43REDUl6cc71xTVElT9/b3+K91STpv9U33um5p4geH29f4CUTTFUKcvVkSDk5T12OhU/GCxRoxHlxhXOTHjOmpZL1t++MpEEll5anwWZKyu7vq38e6c90cw5hLGk2t88jcZiIpMy8lZt5G6+RRkGMZIRAp/JDKQkhMjjjAF8FcR76nrUWT58+w6c/9QmCTMsq6gR473Hnzh08f/6cWj2v13DORVLeeDyOaRKGqdn5yPM8CkPx32w8R6MRvLPQmYaxFs9fnAcRsBHKJhANeSKzV+5suA6eEBZSAlJTQywWtFJKotAqSCX7uKiyhoA1DalEhkZLFh5a6mQcW5TBew+tNNSg1S7wAjHK5M9E5y1MGlbcdI7K2/g+pOJM7FikkyrNV6eVL3xe6fnRJi6dc/q39x6ZMS/NUf77tnnvUTU18qIApECW51TCLMOyJAGpFTJBSqEIxMaqskC450JRxcTX/vAP8aM//qP46S9/BZ/+9Jv44hc/j69//ZtYLteAVxDQ4bkhUbO6rjEoCuxcFTVLGEFgFIFKoXVEHne7EvP5BX7t134FtWnwEz/xE5TCGIxi63oviKciQG3uacq0qT4hgOFwkDTsyyIq4ZzFek2VQUye5dRLmn6LJchStuq5nvRzJpMJFovlpbnXooe9BTKUibqA1GRZHnozUX+XdAHmec9Vc0wQJxS2xHa7wWa7RmNqDIoBjo+PcX7+HOvVGloRQqRVlgSvIjnDdOshFh6A89E0lbstvvPgY7z9uXdgjYXOFbSkVgbxuuIufEQVlG4rhrTWUFkGY6jPFDWapxSS9ACUQEzDKAXIoPMS9C18dDha9OGqtAEjvNHoJ++l94Jfajk33dcvJyn3IRCXXornsi/65/NKK/e6594VyeqjAPsMburcpK+lnwmqJJSOEuwscdlvuETPDl/3OH3jfhW63L+OeOwe7y4VGuyfe+rE7LvGqxCPFMXo/+NnuL+vl22vIerVNThMxuRFTggiq6WTwFquyac8V13XQVOCTvzo6AiPHz8OeeaW2b7b7XB8fIztdhvr/FkzwxgTFRzZk+Pz4YZcSkpIIbFYLrFar7DblXBBz0Fokm8OJwL+TypaYI0xsIlg1Wg0wnQyjZNpNp2i3GxgTEt8Y4cgLeOMk9856Fx3Hlr+yehCarytsyiCpoazDgezGcog0sXIBWtEAIjRZh10SXiysbx0usjz/UsnNyMiffU4ukcsp41LkyxW0zj//3POBhA4KYrg/G1JaqlSk/HY7XYoQnn1Yk4lvPCkpWGtgdIes9EUVVXit/7lv8TxrWP83b/7d/HWJz6LO3fu4gd/4C9hPl/h+bMzfP3r38Biscbjx0+xWW+R5xnm8xXyPI8VPBy550UBZ20s8QYQHBLSr9hsNvgXv/qrePToEX7u534O9994C3XdQAgq0YUX1EEVvjNH+gt7KgyW8nlSjZG0GgVo03supJysd3ANfS8vcljrkGU6Iii8iLMB47RmhObDXE1LawnRyCLPIEVZmFuSdq2O/+oKjWkgpMR4MglNGl9guaRUijEWmc5g3asmDFmnh8Z0t9viW9/6Bt7+3HdRhkYIKEmlv1cv/t1nkte9WsrgcJEujxQaUliKwqWHkIALZHbvXRC5ax0/NsBdWPxyf6erzqW/9RGEfZ9PHYCXwftX7T8dh6ve3/fd6yL9/vlecmT2rHD7DHmH09JDJPZdb98mpM7EPn2RvlRAyrnb50x1UYmXoxp0DE6dXP58Ol9epSLlNZyNrg5DWjHB6oNMKEw370lLYL1e4+joAOVuh+l0CpaHZoLY0dERttstqqrCZDLBxcUFBkGavGkanNw6gXGWFvQ86ywiQgiKbkKzo6qqMD+/CP1NGkitkA8KwAs0wZvnPgzU7l1Aek/Ql/MYhqZiBwcHUZWTb1y1a7UiOA/NE4RRgxTu4jHqczNSpy0+POFnXVHZbJHnMI2hvL8xFBFmpCOhhIR1Ji743CyNF1mG2NhB2QcRpkS+fR4v5fV9x7Hhn/yguFdegP+nvznv4QLkT/P6KI7HbrfrECuPjo+itL8QCqPRAHmuUVZbSKlw+84d/O7v/j4WiyV+6EtfQpHngAeWyxVevDjDe3/yHprGYLlcwwuB8XSC4XgEKTUyTaW2Rbj3u1BhwpVKjLZRRYhG09SwzuH3f/9f4+HDh/hP//P/DG/cfzPcTxBaEVCadMFjDlXTNK1eRhLpEK8jj2lMnj8pSZSRDqUZcakCmTaPasEs5d80bb6fxjWNWltHKF38+G9nHYRqiW4suMaLNKMb6/Uaq9UKm/UKTUNN7PK8ALzD7PAI9+7dx9Onz1BXNbwHrLNUzqhubiBlqM6i4fBw3uKjjz/EajXHZHpIWiCCOkBrHVorREJ6u3akzr0PwZpWGiYgQ0JQuwfhSbsFwoXUiAU9si7wC7qIad8w7ovs+0aTt31OyT5Dy5/dZ9j3pQr621Xf6wdp/Qj/qn31Df8+FCOds0IIiITLsg8xuOr6+v/SAoa+o/GyffbfZ3vTdzbSMUuP29/X1ZtAiypePv5Vf1+3vXaLed744U0jZZ9MYj4Pfo9K7cY4mB1EB2Q8HkfxJtbvuH37Ns7OzjCdTgEgqpNudztonaEqa9RB2TLLC2gVemJYi3JXYbVaYbVewxoDqTQyIVHVNQCKqBDr5cPkBADv0DQ1tJIYT6gT5HgyQZ5TikhngyAL3iDPNUZDWuQ3m03HWUiFkngysZZB36CnsCi/prVG3dSEzgQImqt++HM8yViSnIWleLFmcl6fj8HnwRUt/MACl3N8vKUy1OlDkubj+3nW6zYRF9FrPoObZgKBoOiNm5xCQOP/TI4thICDC2Wn1N14MBjAOgetFJx3GE1ISXe3JQdwMBxCaQFnDerGYDyZAsJjudpgPB7h0aOn+CdP/jmc8bDO0fwN0Sg5AgWcAzabdeiKvIEQJcpdGVMCjCJweiWNkqRUGAwKrLc7zGYzPH/+FP/sn/0z/K2/9bdxcnIC68i5pHRPFQWwUgPDi1YqIMe52zRa5lRKuminC63zxAeRMov7HwwGqIY1rDWhTQAvdq6zwMYpmiB2abUMO+xA6+zwd1nxeLvd0jqxIkfDgbotDzBElmkc1BXu3q9w+OFHePLkCWl5OBf5ojfdpNSwjpBdQCLLNFbLBT786EN8z/d+P7ic3vtQoeEdSPSL4Hkp21RnmtqQQiLLcjSNhrPcjE1RHx1B66FxhnghQQ8o7fp7lXHq/506cfz3vs+n7/UdlX3RPI3N1d1e950L/77P6KbnuG9Ly677hrd/rBRh6HM6AETS/svONXVqrnJG+scF2oCuPzZXITP7nJirEKmXoRr0fYBXwVQlG1wIIVtn5LoxT7fXTqOk3jav3O3fnKvqNizz3keFxu12G9tNP3v2DN/93d+NBw8eRAP5+PFjvPHGG7H7JIsp5XmB1WpNXSOLAeA9iXEFcupms8VyuYgiUoCM5MY8yyEUSYPzpqJDQA/wcEJlb9PplM4PiOmhzWZLfA5ksfSW32eDzyJeMcIKCy18O9nZyeBSwFSvhJESISWcM9CCcu+r1Yry24J6fnghsFqukBd5HH/uQ8NiUil8xsaGJ1jau4Ih8P7k5QXcubarbH/RiZP6BhNuMgB+9i8Af+GTwMUG+If/GvjweferUgA/9l3AdAj88teudyCUBH7ks8BPfhEwhj7/je/s/44UwPd8Avjx7wJGBfC73wZ+/32gbNrPCAH88GeBuwfAP/qDlzsvzrkoGY9wT+ehMWBd15FrxIRI4gk0UDoPkus66Eo4DIY5NpsdFvMlMj2AN9QkjRC1HXa7LbJMxbLLqq6wWCzQGIPxaAZjDaq6RlVXsIZKW2cHB9huNtiF+ZBpDSFZQG8UEYo/+ZN38Wu/9i/wV372Z3F0dAKAIOPhaEht24OzmQpzMdeqn44DEI0//86pvRTZc96jaSqoIOhFqQ0DrTUGA0I5ZVUnBFEfAoPuguoS54arT5RSobldN32otY78rs1mQ5VwocUBcSI0tM4hBkVECrxzOLl1G4+fPIXONKqyRCZ1R2Hh5YstkQjDigitBcqywvvvv4t33vkChCwASDgv4CzJovtYMuLimtjZo2AuSgatcpggPiaVBKecnKOWAtbbkCqWcVL3jddVEe9NUQpeZ64bj/RYNzF46b776Ad/L0VrgZYrtM/o7jvuvuNfhyq0f1y+tvRzqUNwk+g/HZc+QnOVQ9h3ZFLSaJ9Xl34+3c++e3X5tZZMTI5G6iDuE1Xbv70WstH3uqRqZbGdJfKbAHnefIIusNq5B8YoqPeVZYnj42M8ffo0KpNyO/mLi4uoxGmtJbno7RZZMYAMi0k4ISyXS1xcXGC320WUoe/1SqVjR1A22ghRaNM0mEzHuHVygqOjI5IbD8qZu21oNx483bJuAh9ERESB2PllHBeWEqcqkkHgeqhI1pvNZlEro08IyrIMHh7KSehQFns4ndHYCAkJGsdbx8fUm8ZaqKxVs0w7xbJoExPkmBPDY5pOVlZpTdEOeg97Jz4vAMaYlhh1xTbMgF/8EWA2Bn73XWAyBP7WjwP/j98G3n/Wfu57PwH8r38W+J1vX48uSAn85DvAz3wv8K/+GMg08L/8ceC/+V3gax9c/u4X3gT+k58Afv89YNcAP/4OMN8B/+7j9jPvvAH8b36WHBb/B9deTtxc4nhzxMwcmNVqBSDwXLxEYyhirxtyuAeDAqPRODidBsVkCEDANB7eEsO9biycFyiGY2SZCs5LjbygOSXqCrUxyBjNAqBySiOWdQULD5XpiEBK5zDIB2isaZEz5/Dbv/3bGAwG+Ks///OQwZhmRYGqbDul9g1ev8yVkQh2nplEyg63EKQGe3h4SKiYorQncbpMTMWRyFeOqirj8fuLKqUGXGff/Qgv7UDrnIv9m7gb8Xq9juuNUAJaUnuBPM9Rlzt4Ry0W3nzrU/jjb38bAGBsg7zI4gS70rAmP2OpqCAb1TQVhBR49OhjLFdzHBzdAZBwEMRlI9hHIjhggVeU8jI1vLfIdA7jDUxTU5BlDbzgMmxceobTbZ+RTfkHaVp437n195NyCVJk9Kpo/yrD/zIEpYNo9cYqPe6+ffXn1lXIQBzvsPVT5OkY7TvP9Pr4vPi19Pz7zlO69UUa+7/3j9V3zPhYffRkf1onQQ97nlXI9MfvaH0zqO+1nI2XbUIkIjCgEwvDTERJreEsPfzj8TiiHMy/OD09xcOHD3F6eorNZhO5CMvVEpPpASrjYKxFvdths15jtV6j3O0iYqGkDMgAq3vSv1aERSFTEkJ46FyjqRvcv3cXWaZxfHwEANjtthgMitBe2yDLcjhHUuFFkYXFrpsnZLSA+SVchqu1RlPX0IWOERbQpiK4syvJaIfW5MZiNBgS4hHUVQd5AeuoRDbLMzR1Q7l9ANa30vFSyg7jns8vPW66SAOtOmj6EHHTN25/zt9LPWfeXubdjogqg//bbwJnK/r7P/8y8M6brbNxMiGHwdyA/nFrAvzl7wH+we8AX/uQ5ph1wE99AfjWQ2BXt5/NFPBXfwD4g/eBf/o1Kuv6nW8DlWk/Mx0Cf+fHCQG5oaMekTquACqDc2kSufQsI6JiXTeom7ptmAcyRJvtFk1jQvqLZLfhBPJ8CID6EDFSZp2htuxqgKou4Z1HMRxBqwwqlIHrpgG8Dx1RK2itsC1JZn04GAAOaJoau7qEEBJFcNyd8/j1X/813Ll7Fz/6oz8K51vHN5XX53Jznu+pUad53EagnLrj9KgQVCG2Xq8BIVAMctSWHDBG+lzoPcR9aRiVlELB+csOL3zb8ThFVNi4ppyoqqL06na7jf15+HkVqq2sGQ3GGA5H8BCYGYO7d+/j+PgEz549gcozGGehXjWXQicLdkMEBFbrJT766EN86fYbMIbWKNKg4HLCLsLgnEt6/QRDG6TLCYUJnai9p3HzhJp5tLLZvcf2Ujqhb5T3ORjpmgdc7cDse61vKF/G/7jq76si876R7iMi+7Q9+sFe/7js0KQRDJfe3jSq729XoSc3+d4+xGXfPtI0fv+Y/Po+p4qdDb8ngEznA9+/tEDjuu3PxdngLb0gvghjDObzOU6OT3B4eIiyLDGbzXB+fo7xeIzj42NcXFzg3r17IW2SR9nxyXiCi4sFdnWN9ZqarxGfoVv21HZPDPyA4O04xyJc5AxZa2DhcefOKYoiw+mtW7GsUElqV039XkgpsSwNnCUnwxoD7sUBdB+4tBU7G+aiGMSqFUZfGNXoG31GSxgVMcbg4OAgpmm0ovRLHj5DJYSSOsWGCZbmyxkdYticHYd+miWdnKy2ymOaTip2TF4Gm6bb2Rr4v/56a8hPJsCtKfA/fJ3+VhL4n/0w8HQBPFm8nDMxG5HD8ugiLOEeeHgO/MjngEHWdTYGOaVG1iXwv/s5QEjgl78K/NuAaigB/Edfovd/70/o+zfZvHNRbI7vV1olxQRo6wlA53vMPUiICF2jachB5NbtVVlFVJDTMR4Ijkce7gPtL8+Lzr2JxjM4nDJUUzVNg11ZItMadW2wKVv12bwYxPvyT//pP4GUEl/44heh8xxKtkrB7Fh57+O8THlB3KacHSqucEolzZVSVNruHepGE+qiJExDSMtkMoYxLiAx9NxXVQ3nBSDaRY6e7e4zk0Zq9Jl2nqapE37++DnJ8gxSCYzHI2idYTY9oLJkUDfP23fu4v79N/DkySPkRYamqqGy16y94s6x0qOuS7z3/rv4wS/9KITQwYEI3BeaYfT/NEqXeyJuGXrDuDoJCizxfBD26SScsBBufzkjHyc1SKlhTg3T5Sj4auPfRxWui8qvMrr7jtPnEO0d6p5B3udo9M+5nzbq7qP9Tp9rcpXBT9OM6fvsqO97b991sH27Cl3qj0+KSPHr/fPsj2v3PBy8p9YR6aYUyep7R5WlAhFJeOn25+psAC2Zy3sSmOFBy7IMZ2dnODg4iPoadR3azocSV25hz7LIH370EZTOcXaxiLXLqZfvPS88PoHVAuYjQjQvRCj/cvDO4xOf+gSyTCFTGrvNhoxDYzAdTyiFstshU1TV4YyBYeNsHYTSHSeDb15a98yL867cIUuUQtOumamwFoBIyNNaY7PZ7G3jzpUmUkoIJ6jsTSJRehQx+mSODPen2OcZp5wMAJF42jQNAHnpoek/HDdx8PkzQgB/4y8Cjy+A95/Saz/6OeBLnwH+y38A/PwPAvolGuSDnByKFJ1Y7mjfec9ZKDQ5J2+dEK9jVAA/9/20j999F/jS24SI/Jf/APipL5KzIW6AcHggGq40yjdNg9F4HHkai8Uidqaledc24DINGUOlNZRa0fzwDlnWCsqt1gsAojNHJDvUziPLddSXGY1GGCQdlwFgMplEbsJwMETldlRWHe4FSesTkvDw0Xfw9//+38P3/YXvxw/+0A/hE299CoeHR9Fp5XvPCIf3Pr5O5ao2jkfaQ4VVO7n78mwyhVBAHcrki0GRcJjoGckyHTszW0ORQwvxdhfNvsNBFSd1RPe22y22222naSSfm5QyVuAMB0NMJlNkipzHzXaD8XiC+2+8iW9889/Ce9M6DDfeBDqJFUGLtJIez54+wcX8HNPpKeAlrHGQChDCdxyqfXC8EALwDkppZDpHY8puIMBN5DrWoLvfPqTOW58Qnm774Pl97++PmK/e0oCnbyzTrb8Gpcb3VQKgdH/7EJL0n/ddeXXRS3VddW39lFF6bvvGcd9++s5G/5j980idiH0Oxb7fuz8B7wWE7KJr9GYAEAQCgmZwxaVf2v7cnI30xAFSXJuMR6gqKgmsqwonJ7dwcXGO2cFBhFmzjMhn9+7dw3w+B4TA8+fP8ez5c+RZjov5Ek50vcI0N8h/x8XfujB6ZDw4wpyMJ3jzzfvItMbBZIz54gJ13aAxFUbjEYwlcloxyKC0gPcCOpN0A7xDlmsYi9bgJ+fCCxmnUDgC5AoQRjfS5lAAOpEi64yMRqMoT85ORloiaIyB0gp1gLaLoqCGTGHRB8hx4EqWtLtmOtm56iX12DmN4n2CGvUWp/ZBvdnDPS6IF5Fr4L/6F0DVAG+eAH/jR4i79l/8ZeC77lM6Y1cD/89/RYhDf6sbSo9kqrtv54HGdD87yOlz//0fAb/xTdq3VsBPfwH4zhkhKtYB/9mXgc/eJWfjv/gK8N/8DjDfXH891jvYkk8wQGnOozEGi9UKZbnDdrMh8bjOgpZEBILSYLamFIiQHraqYtdNY0gDI33wpVCQMjwHZYtSMamUU4/suLKDYOoawlOppdYa8JQy5L5Cw/EYD77zAM9fvMDX/ugP8T1f/D58/vPfDe89vvd7vweTyRRas0hXlyjODj8729yKXggR9W9c6IlUFAW8oGoJL0iMTwqJsqlgbZuW4bYEm82us6jFxRTsWJhOWa6zBmW5Q1mWseQ4kkHDWHBgMBoNMRwNoXONyXSK0WgM7z3GkymV4m+WeOsTb+H45Bgvnj+Dkq/bjcfHfx4k5nZ+foYHDz7G5z9/BKWymPbgqbIPGaBrFxRcOEJydZbBNgqNBRpjO307pAApffn2u/GMEtQkHdvUGPX5BXsNeTK/O+/2naTwuT6BMXVsUgO/b0vPLy37TMt5r/redfvj89n3ee+JAnCT76XbVc5G+u8qxyndx750V/8c+O996FL3M2hRf1wWEaP3gqPRc6yda21EWpFyk+21nY30Yi95smFS0cmElyCwLWtIIWGtQFYMUdUGw+EEZWUghEaW51httphOZ/j4O4/gPXB+QaqfeZZjU1aUSwZ58ynbPPX8eKGjhYUWP9sY4oM7UvJ88603kAWOxXq9hpIa00lB3Vath7NUZlhVNXbbMvS8kGg4EpUa1jVRw4A3bg43GAxiB1puCy8doiFgsiaXtPLfxpgOksGLZ1mWUS2UG9Nxd1xYGt9cKTjvMRwMsNqsg+GSEcqWwaFgAi3fM+9bEp1zbdkuX1eW6c5nychIEBfYxzTWy7ZBBvxvfw4oMuD/+I/aSpCqAf7xHwCHY5o6RxNKbXz47Gr+xnxDjsWtGfB8SVP+7iGw2ABl3f3stgJerIBNFeZuOKZWgHHAP/8acDAm4tNkAEwHhLjUPaelvwkEGWrXQEQtBQkvLJEb6ypYA0BIRetup2+3TKxK6DYccsGO2mkEXQT6CM9va6mxl7FN4DmFQfKehN+EiHMsRcKyPEeeaUxGI9hgzLMsw3qzxvxigfF4An/2HOPxGINBhsePHuDDD9/H3d+/h6Io8Cd/8i189rOfxWc+/RlMZ9OgUhqIhyBuj1IKOstR7qhnitIamSay7GAwhjE7jMczKKWx2i6gdAapqK9KYypkmUaWaWy2WwjhkWUCSnlI5UEt0kndlEpEacjI4aCUC6VqJKypsdtto4AX9XCpooMvJTkaw+EQw+GAkJUswyCnVJY1lloPDIfI8wKHR8c4uXUbT548jpwzujdXGLb0p0BUK/agwMUJQYUhzuHDD97D5z/3RThXgQS6RFA07lYnoHM8NgY0r4RSkDqDbYCGLYmQAEuPC5BOROcx9b1nupsqgBBBYZnmNqQg+XQwyhQ4TmFfQnJ/nfbaWaEZUlCuFIB39H0PESu+6HbyddOzQc9UYlN893v0/IWyVLTf9yGyfNmalDpTbHhTxKJdI6+6v12kI303XnZCIuV98jPcOn4i+f5VyEZ7jDS44/faecEoGjt0XcIn/WM+EzkVUvrQGM+F3QaeCqhKS4ZiCAiSg9ealH8RrkWrP0fOxj4vLfwRX3PCx7wzTwbnqQ+C9UDdOGRaozHkQBSDAelfKIVnZ2dYrdbY7bZhkitUgSMhlIbq3cBURCs9R6UkqKWjQZ4prNYrvHn/DRwfHaJpahwf3saLFy+QK5YyzpFlMkDeIop4ZaHzJXwN7wSU1AAEvAOGY+rdwk4PQPA1w9qUhkDkiPA+uRzSGBNLJDkXzg4Glwkz0ZTFw6bTaXQ0uFNuVVUYFAXqusIwL2DqBqPhELsgmjQYDABJEaaQMuo3CCE6zloaLXAUaG1a3cPOhQ4VBEw0vX7O5Br43/814P4x8Eu/SWiGscTleL4k7gYvzCcTcgR+45u4RGjj7WwN/Ms/Bv7jvwT8t79HjsxPvgP806+SA/FT7xBK8RvfJMfhf/gG8PM/QLZ+VNBn//s/Ap7OgSfz9tjjghyYX//G1ceOc0xKzCYTLBaL0GwL8Gk7urgDWijDI48weelkRPI3fQnOMnwp4nI2GI5w//59GGPw8OHDmMYAEoefo8awL2stCUYBqJsGddOg0gp1SC9475EXOZq6hrEWZmWQaQ1ra1Q1kUoPZoewpkTla/zWb/4afudf/SZunZzi/htv4PT0Nu7fu4/T09vI8wLGe0ynhyFCp/PQwehl+QDvvf8+Pv3pT2OxXEFJBS8JxfGeHCNjbSjdpMXy/03evzXblmTnYdiXmfO2rnvt2zmnqrqqGkA3GiBAEGKQgiRLlB8shSkLphmW7FA49KDwL7L97AhHyA5RoTBN0qGwxBeLussiAQIkmhABdHd1VZ3bPmdf1n1eMtMPI7+cOedeu24EIhzW7D519ll7rbnmzJmZ4xvf+MYYJtMolEE1yeG8w+FYw1sVy8HL8KkwR4U53O+30Ea80LZtYpYL6V5riSANjJGaF9wwJ+VE2gYoDZNr2E7WqslylNUEz198iB//+A+eDC/wWYwP6d8WDKk3QZEhTfCgDT7//OfY79eYz8+CDiwLxrzXVEWvXdOIBE84y9C1DtAZdFHA1xlakNFQknRL+4PUKKbXP+wnEgkILgqdtKH3HirN/Aivg6GZE7ZBKSVgSMu9s4iZivM7CZEp6gSCAU7B1YnvhEqAGKgbArwfZnWMn1nKnnhvQWCnQpO/dF3FcRlSNnEMxywDAQv31GFGTM8KnGIrxiH54ev9HtwDRYR77vcPEfRL6fqIO4NDgAAolGJ9Ig/vOngvNool8TMD5DpUCTZZaF0QshYDYPdAKDD5zURu3wlspEa9r2jXb3Z8FDxUmPTcIJ2VNMHDfo/pdArSmj/77DPM53N8+fJLVIlo7ZtSNeM4LD9p2w4WHX74gx9AK1HEl3kRK5cypT3Lsqht4IPkeXifsbNmUk+Dk4KCOHZkZTv72Wwm2g/VswwMgRRFgc1mE8/rvY9alaqqogaD7EeWZbGqalmW0WhUZRlTEbfbLRT6BnKszgpP71ghC1UaU/qRwCO9l9SopZQfwz/8/q/zIv65XwjMBYB/51+W13ZH4O/+HvBf/BP0c8YD/80fCbPxVcbeOgEWiwr43/5LwnL85z+WLBOtw0KC/Ow88J/8rnzfv/mXZIr+nb8v2SmpnwgvqbHT8uuBBiBjOV8sRPBo7WD+x7+/AePz6FCJVxueS1mWuLi4QNM0eP/+vbB3TTOgy8dr8NTB1Fm+v+vauNHTMLddi2MtKbz1sYa1DmVZYrU6R9sa/Pzzz/D6zWtkJkdRlCFzpMNmt8N0tsDl1RV+6Zd+gE8++RhnZysoaOx2e/yDf/C7uLt7j88++wy//du/jc1mjdX5EmVZ9op25ft0cefQtgrz+RJK7XGs28SIaCjDUugWzluZ15mGyUSXxUqhaUE7snhFUcQ016IoBj1leC38uSgLVNUEn3zyKa6fPcerLz5Hbr69QFT5BGwCMEqjaTs8PNzjs5/+BL/5F/8SmobhKT5KH7zQHnBImFjEuB7SwwbOQDsjZQhUKLLnpWYH54MK//u6Q2thFaAMuAxSIzhOM+1DF1rK3Ku0f0bfzMuTIZH22QmU7nd4zW+kt/6V09nBJYXfopcPACNtGveoFHCkYfcUHKSfS/c17ZNnroYl/MchkXHWxvh84+9JD14jx/Wp96XvYVhwnAreX6+HD89DBxCRznfaljjnM4Vca2SZgQnO+PjaeW3jlPinju9YZ8OfQH+PN7vBgwqIk/Fc5xyK0Pr9Yb3Gdr+DtRZ3d3exJTwwpCn78z2effx+GUgTgYd30pXygw8+QGYMZrMZFKSc9HQywWF/wGw6BbzHbrtFO8rNZ/0Ehh7SPgsuoEuCgZTmZslmPnzvPKCTwmfoU10JNPja8XiMGSS8Dt5f0zSxJ8rhcACAGI5Jixt5eJRVBbRNzG7xKvSoUH31R1LtadiEWS+cRE+VBE7v9+vAxt//E+CffCEMR5xHXgDA+PiDnz9+7dRhHfAf/tfAagpYDzzsw3kt8P/+AwB/MHzv3/sD4Hd+Cljbh1TGxx9++c2+G5C52dQSszEhhCWgpQca43E5FVM9ceIBSPHe47Df4+XLlygDqCRrkdK0gzX4VQc9UEQyPp4jBZ9aa+nS3NkIOKtqGrUgXddi/W4dCpOJTkXdvsfDwy3u7t7hH/+j3xOj4xzKosLt+zu8ffMSZ2dn+L1/+A9g4fCX//m/LIXpABgvzdyoFWKKLcFMlmXoWhv3BgUFp6TYmPaAMTqmETulowaKokkAMStmMplEwC6brjAdWofoAzR02IDz0PH24uISV5fXePn5N5yg6ZCj37UUwj+0h1YeXdvi8y9+jl/79T8PKC4QP3imp/QINOJGG3hIun+e5zDahPCjAI00evLUOuV5YzxeaYDt0+ElvBNOKcym/CxhEGF5vRc2RYceO145OB/2fq/CmwML4gFgWK+JYIHXk4Ktp66Z3ccBFRp/PhZBynn4mk72MT4Ik7z3sQYi2jiXvj4EEamuZXye1DiPx/vU/jB+z1NHes5UQpBmZQ2uN4DUyWSC6XQaxeS0P7QDWitkSsFoKRJnEgaG4cv+/v9Me6MAEg96nGd9arNL3xNjx0Ek2bUtHh4esNluZUEoFTfSx4P11Zs0JxDBgIQiDBw0Pv30U2nBXVXY7/dACHPc393jk48/xvv371FkeVTcU1AJID6IFDGyhoUyBh5t/D1RIeuGUI8hgCKHsj0SlAyAKgrnzs7OopCNYZX0etJUWOo5uIlygrVti/l8jvV6jWo6iZu1hLGEwpNCQIBFHz5JN2MCG6ZLpuCQz4ETOy2f/nWHdZIt8qd9OA/cfo2Ik4cHsN7/6X239x77/R7GmNjB2LlQadP1JaZdAgr4uccx+EcnF0CgpYplF1gmtk1XSsWiccCJNfjEIVQ14vVhDJDkTfHHw2EvRsU53N93mExqGHMZmbfpbBoAQAdoH2jyBu/fvZG6I00L74H5fIm2bbHZ3mE+W+L165f43icf46OPP8L3zPcGWRQpA1GWVQzjVVWFtunQtvT+pfy6pOO5UK20xn7vURYiuk5DhQAGHtyQpSuQ5xmyzEi3WGXQdZJSWoQ+NWVZ4YMPPsIf/9H/gK7+lpPZj3/28NaFgogKr159iZubN3jxwSfoQgt3GtvIDng8NpSBjkcngCLPc2lo1+4DoOyDFU+RGqcNdB/iIOBgVMU7Owz/BR2S5jVSMxFCOJrANs57hi5GmRJReRGuNTAbp5zL/tr7P/1nhywFcMppfVz0Kv25d16Tqps2eR+GY8bvGAONFKykf3iM1+wA3Jx4/atYFM5l7jcEELLmPTJtUBSiQ5rNZphOpzHcnzZV1FpDw0MrOrkAK4VmSsM6G9eqc11cW193fKdGbKkieTwwpzY7DgprPLAb5W67hfceeVFI98cROhxPBkU4feLQXBxeqpgqAIv5HLNJhUloZrZer3Fxfo7D/gAFh+eh/0qZFwPvPPXwyFhw8yM4AGRhN20zADrW2liuOk3/M0Z6FlB7QWPB0Aerj1ZVFTNV0lAGa3fwu7TWmM1muL+/j2NLWsxai+PhIOPKmH3TIAu/R1jDaTrruPZGqi1h0TECG27eUj+kfJSS9T+WQ+byPmQ0TFGWZezt07lh0TTOAx58jicXKkGAc1IzRkm9h4eHB7Akt7VWar34rwD9J44UWCitA7Xaf2e4uMF88N6FCpU6snxta7FYLLBcnknYEA718QCnHNpOgLqsKY3pZIbJpMB8PkVdH3F5tcLr169x93CLH/zoB/jgg+cwpo/7CmtiY1v3pm5R5CVmM6CuWzhXwzmEP2yNIOJRYxS6TiPTw15E6WbKDZbzVlrRq0c9T5RSyEyOPC+htcSuP/zoI1xfXePVl9+c3WDoQnkNFwt2SdaJVgrOW7y/ucHrV1/i44+/j7aT3iaPwpPJjxGEhOt0wRjkeY6iKHDUUnJeKR9aTQ6vZXyf44MhjFOvp/t0fy0I4Zth6mlqeKORDO9VnjLYAFQgOtLw5iEddOJQ8sGRcQ/fmRjgU2vi1D0/9Rr3tsEWd4K9OBXySNdmykyNs1RSAPHUtfD19D7SHly0M3Tm007sSgNGiY6RrDn7KHFt8HNKKTBIx+fNqsDe90X0AGaCtacu9dHxrcEGPQwWJhp4xmQ1RoOeTjZmVhwOh9jrwzmpdsf0S9L3pzZMpTSUd+hCISSpYwE426EM7Z93+wN+6Zd+EbPZDFqLBuLh/gGL2Ry7zRZVWWExn+Pm7Vs8u36G7WYTvXStNabTaaw4CPTt25lZwroCkpKoYsro4XCI9QTGsbTOWmjf94Yh08MNnWiUbELaUwLow08pgFFKYbFYDPrHUDOitEZrO+Sl1Hqw1oaMmlAVEhhM0BR48OD3jIFIGvKJIOtrKL//fz2Y+kzgxfFhwTlmPKSLFeg3baXUMKVutMnwd16pWK+DoSvrXG9sko3s0Ub16Nn0MeFT38nPMAQi75G3WetC00SD7RYxe0o+4lBNi8DKecBbHA8t1vf3qI97KGi8f/8eu+1Gsk+sxZ/8yR/jt37rLwNwmM9nOB5rlEWJtpXGc7KRKVTVBHXbIs8y1KoBveIYXoAL71fIC4POdnC2X4Nc26SNuY4kXi19S5zr4LWBc13suSKN66pQKM1gNp3j+fMX+PLzn8W+SmQg0yyv9FAuePsKA7NPtsAooOsafP75Z/jnf+tfCuuwb3BZFNng2Y7/eC9rsW0cjAkC9byAdw1YUTTOOf94nY898uiAeIc0e4qKDxsygpIzBN1h1zMb/IQS/Qy8pHd7H9pZJGwE4OMUTWl5ec8QsKfaAWER2xjGE8Zdrtdo07MiBG4UupJB4fgNlt8QQKXgyieaDYXH6+wUsMKJ942f4/iz4/fFUX6CiRkDEAKNIvQdkmsh8EasZ8Xn3mdo9UXDjNFBN+eCzlCKxLGWTq8hklDWNzm+A9gAiuDNphuoCsyCGoGNMZr0pNeCx0Z6LWUPTiHEMNywXQflLKqy75kCsI2zQ1kW+P6nn+B4rDGdTKCUx363wy/94i/i5ZdfYrVaochy3Nzc4OL8Avf39/DOSRt3a6PQjzoHghCGJCjodM7BK4UszyL7APS1MviQWXWxqip0TR2vOTX0fI3GPGUx0vANKfoUjKW9TwBEgCLxfBVT/z766CNsd7uQEizfT20MNSLps+zRvH7Ua4aolsI6dgf9HyPc4HNh0SjOlbIscXl5ielUGp6xgiWBIQDAe2gjTfUk28k/BgajNXA89iIX8egBnWxsqTc3pmxPnvOpn/tvSb6vz4JwtkPTiH5LmDrROxyOG9igCwIU6oPMP3EOZGzu3r9HXhTw2uAP/uAf4R//41/Hr//6b6Bt25DSfUDbdiFEkkHrHN6rmOWVZU0ABMMuxakH1rYdTMJicDPluNFRERBiAh0M5HkQVSoPbUQDIWnsM5S7HapygqurK0wnUxwO+0cZBScGux/DxKsXVgOQlGfA2w5vXn+Jt2/fYjq/hFK9Tot7w+lnqiAdcXUQREtmjTY6lHcPmTv0nN1pI5mOTdTsmMQYJnOBLARoxDj3Ak2hEvDgHeCtGHqtZGyVkZ+hPIyWLBWT6dD0L0NMoc7ymC0E8DUDZl/wOpumlcrPbYOmbtF2NgIMP7o/uZcx03L6GT5ibkY73NcxJeP3jN93iv35NudJwycpg5Oy9L2tcdAKaNve0UidyDHTIg1HfQQT0kbAgY0jZZ74eO5vcnwnzYbRBrpQUSfAC4yiztHAaa2hfILmfA9KfDKZxxM+PUf8bqOhjdQYAFJdh0eWazx/fo2izPH8xTOJoVtJwf3ss8/w6cef4N3NDY7+gElZYbvZBPZDY7fbQQFo2w4efoCiU4PPngqTyQQ6kyZIm80mGm96q6wsSaV927TIwjkBRIakLEscj8cYAuHnUzDH+yTYIDWWKu1TcNC2raQqeWk2N5lMsNvtI7jJjEHj+74p494s6ZEuglR1zGshhda27Z99Odr/Xzu8hDo659AFQ2itxXw+x9nZGc7OzuKYcp6ltOSYjXiknfiaYywOZYwW6EE4f/+ndkhKhXxHANZty3lh+zQ6Lamd1sqbm7qGQhdrWJSlgso0Dsc9/pP/9P+F+XyOH/7wRzHEKtqNAASshXUWWZaHBnYdvK9hbc9w9PitN0JFAArciMkypmI47mFQLZTKw/l0ACB9pVYBJjmyPMfZ2Qrn5+fYbjeD85w2FGKBI4+hXAgbeEDroH0DlPLYrB/w889+hh/9uQsAvQPGNW+tg9U2fKcAv2hCA5CROieyElUAfGmpAOVS3cfpcHcErsDJMEY01hyrwCCwEBS/FyqkU5oshKoYtspgQmHnNPzLPXesIVCKIDptuCbGztoOdd1Ep6puatRNi7pxUS+XhtM4Duk9f5fj1Ir6KsAydrzHTPJTzMb4etP3pgCar/O8LHDXZ8QAJjjkKSg/9d2nrjmdL991P/nOAlFAJgCFkKnXGymrdCB5I+gVx/zhEX9BxHli8KX4iI0KcgSqdTqb4YMXL7BcLlEUBd68eQOTGcxnc3RtixfXz/D5z3+OPM+xOlvh/c0NVqsVdrsdDBSmVYVj2wBaow359cfQpr6ua1xdXcF7jy+++EIKaQHY7/c4C54T41/czBhqIcrMjIG3PjIT6UbH1wgemPbHcU2FO2n8kZMprTNCZqjtWjh4mEDpzxcLbLYbCQV1Hbqg7mfMjR74GHmPhaFj8EHmxjY7mOY+zA01MJqpEfXj501AqoS2NaEqJgIYTT06R8//q2K5KmyG6dxKPP3BXArK+G+yeE55ObZ5QBEAZuodnJ+f4/z8PH4nm4/RS6YWKAVr4/E4BTq+ipbl6+PNiwzctwExyTeefln5IFxFKL1OxoOMJABIcSqlJBuBX5/nvSBtulhgt93i9vYWf/Nv/k38O//O/w7n55cwOg8gvUBTC0uR5fJ9eV5gMrGi17AeLWS/6cWTvfaLVDLXCjCsxsjXuw7Icgf2nNG636NEGxMqrAlMwGw6x+XlJb788ouvABnjoVR4VObcSehHKQedGTTNEV988Tl++Ct/AVnWC+XpOdKjHMxXsjoJyxOraipAY3i/ZATG7PE4lCJGykOFZ8tbVGoY/jWmZyM8ugAIdEyXpEYgz4uQ8WPkZyMgRScAw2hJnRVGK9Th8BL6idqDZPdw3qFrpTmhc1VwgCyapsOxkRL1h8MBdV2HsVSQcvoSouM8tN23Xxv6ibE7dZxiLb4L4EnPk+rkTjouo/MrDXTJ+kjnUarB/LrrPvX7b3p8J7CRXhgNXJqVMG6Tm4INmhulks6wYWF8k01fa43ClNBaScMqrfHixQvMZjNMJhMoJf0Xrq+vJS7lHKqyxKtXrzCbzWA7i65tcXV1hePxiOlkAm8TTxP9gp3NZqjrGvNQuCnLMpydnSUAoa/LcXFxAaUUbm9vo0Fh2IUAIA8hiTHYSDvepiEbXgffR6MmTMUuTpi0sys3lrIsUQeDNp1O0YT7OBwklbEodAQrHLdUowEMWxDz36R1AURmpq5rFD//92F//n9F11loJVUtPaQyXd3USeyvTyEmXWeMxmI+x+F4jM+N8caiKNC1LeqmwevXr6VeSSadSPmsuCkRaGR5hul0Cm0yTKcz5FUZO362nRS3AhCN/W6/R13XQR8RUuXCfFOAVMHMc8B7tG0H62ycz87KM7u4uMCzZ88Gz4DsFEvxs9Eav5chOWqBguV5GkslngXXDZ9PBGSJ/iM1Hn+q7EY4N8MBSDa5tMBQ/509CS+evDReu7u7xfL8HOv1GuuHLf7G3/gb+O3f/l/ixfOPYK1H13nUocxsWc7Qdi3yPIP3E3SdR9dKzPi0QG04HinLOgbNHEqlfLwvoY/7uDTLwxutMZlO8OKDD/Czn/0U6/U67n1Pbr5exkDx+SlAeenMK+Zcxs174Msvv8Dt7S2ePfsIXdcG1lEl54lPIO6h1kmXV2stnGd9oaeN33g80p/53Dx8ZKDTWL5SKmp0yFIURYEs19A6AJDMhEJQGTKjkReFdCY2ZDZyGN07Gf1zGP5MNqNnVcfetQJKH/buXnDdtPKH+zfBBrv9EjAJ8PAAzEnh7FcdIkAdGfRTzvHIaT4VOvm2azNd06lYk+cai/WVkmgCQhfgU4kYp64h8fmevDc5zze77u+cjcKLZEwo9a6ZNsqNMw6qc4PXBHEFPUKCuIH05mRSyUOTG+NEWSwWuLi4wHQ6BZuWsUvm4XCQHHptIhjw3gO5PPx3797hxYsXMRvl7OwMdw/32O530RPmxCxDAaxdaNRGUeBsNoV1TLlroriV5cpT0dhsOkV7bGASgMD7JCAYG3oWHaKgJxWRclKRMkuLjUn8XwUvIoupulI6ug/pAMPugzw/r2P8LMbxPaZeSm5/ACRKqE1jtGyAroPRIffednA2CCptuPfWYjabYruVwmabtWRcTCcV2qaGs+KhLJdLwEshoK5r4rhysaWA19oWCh7GSCv3qfLQSgo+1Y2FVsDd/X2g2IHz8xW6rsO7m5vgPabTXcHZDirPUE0qTKZA23Rg/44sm+Ls7AzPnj0bxD1TVX5Kb/Jnpss653A8HnE8HCJz4wert+eCtBnWA0iNQ9exWmgvGiQFDXDXgATRn2QsvgOlzDkSsgLk3wFw+FAlk6dHDzbazsLC4uHhDkppzGdL/PQnf4L/8j//z/HX//q/BW89atfAeyAzGaQng4LJxPhmmQnZIw7e22TDFPbBOwQquW8Kl4Xy4/SS+8/4mL2gg5jROdFvRV0ayJwAWV7g8uoay9UKD5t16H7JdfKIu0ueYzLUITQj5R9E+6+0wfruFm/fvsH19XM4b2GyiWjJvJf7HYDZHvB572BdaPLnCFrVgLnzzg+ubOwhD7QtCsi0gjGA1iYWd9JaifiUwD4LTEWukWXiQUdwEkqOK8Xy1vIZYTEyGDwGGmOPPBUuDgB1BCZasm1MH2rOC4eic6i6KsyBBm3bYTqRcgBt16I+1lLOvm7RWf/o+XzdwQqgTx1j48z5lr4+BiFPsfnj86T7CB0XPkuOT+r08NxaMY21LxqndR+iSr5ltJ4Q/z71nJz7ZmP3HcCGh4MPtHcvNjFaw4dByPMcrXVwStLmFMR7lZhe0AIrDZVlMFqha1s4L2lyeS66hc7aKCQtqwq77RZFWUJ5h7PFHEVR4MXz55EZONZHTEIb9+YgbesPhwOgHZaLBd7e3ODF8+d49/4d6mON6+trvHz1Cs+ePUPXdWi6Fg5StKQM1CuAQaiBIIY9T47HGnVTYzKZxPoarE7ovdRgWK1WaJoG+8MBhclgnWwc9OwBoGs7bHZbYSCOvZd2bGq0wTibPINvW0xmU9jOQmcGXRB6FpWAoWMtPVzqVsDe9fU1DocD2mONaVWha1spy1wUyLM8Vk6t6xomy9BZh1wbuM5COY8ibMpO9cJXikq5MGjgqTsRYWuDrmuCV6bRdSIsAiQ10doOWnOSahwOdQgVORSFQZYVsNbDe4X9/oDJZAZA48WLD/D+/Tvs93tst1sAiGCLhc3obVnnpJfDfo3JbhIb20VDX5UwRrIcCCbrwy5kWkhA2XZSVtk5j84Dk9CYKzMZ2qaGQv8cCSDTVLQ0+6Su67hBkPnjXFFKoQ7CTwHfYY3YEJc3dC8cqmoCKIW2bQAlPXqcMjDKQqVxaefQUqWvxJB55wHXAd6etoePjqfjVZFB0SMjqwy3CWEIvIhgNRQ62yHTQOdCbRANuLbBdDJFkWkYePyD//6/wy988n38xb/4l5DrHE0r5fW7poYuFIyRvjFlmWM2qwRowMXaM4BC21hoGLSNxVE1KMoSk0mJoqgGQmjWCKiqChkKZCihvUGmDQyAxjfwkLXWdh32hxoWGnk1wfziCs8++h5+/uUXgFZo60OYRxy3MAwKcNoHVqPfvH1QWygPUV4o0XW0rsXnn/0xfuVXfxkm0zi2BxhToHUdnFIw3sJ6B4Mg2PMtnBJQX+Q54IGuaQHnw3lFLO5DB1iN3mBRL6F1L4Rl+mNmDPJcITfo0yHD65zjciMC1EymQQHJI0BjTAxnAkkIgs0F47+lFLZ3LmZBKR0qxWolDQQhlTx9YnuUUeE0Uk116nN4F9gpKzVgrJOQSxdaRtTHGofjAU3bYXc8oj7WONY1XGCb4HvjKusZyHuFzMDoyzAMCx6mn02dj0cr7CsYg/Hvx47GOHPzVGgsdRi7mNlGp0hAJXOLxB8JmUWBzfAxhBbGmM6D97HN/DclZr4TsxFvcISgtJIGQ0AfIvFKxU3H6JDxnUwUADJRrQuqV7nJzBgUhdDl64d7nJ2dQWuNq/MVJkUBHzIAKMp01qEqpbw36TPnHMq8wMPDAy4vLvD69WsYY2I/kfl8HtNbvZcKorP5LL5GHQUzAGhAaNSsd9HYUsSVgg0+ZCJzay3y0IiNE4HCKKVUFI3SIDJzgeXP82AweV0AYlplmqVCY7fdbiPz4JyTDT+gYHb5JIPivXTjPB6PIVXNx4wY2wmTwuyc9Ht479TuEGVPp9NYhp2FxmLcdUTfpRtH2qUTQExDNkbap2t9jZcvX0bgR/YpZYXquoYKTaO8UthutzHc1zQNlstlFKUBiLUxqqrCbrcbqLm10XAQQHP/8ADnpWV7bjRyhlcwbMnNn7uui0zTdrvFbreLoIOeNsfc0dUIh/ceOhPaPi+KOAe41haLOQBgtzsATsGppNKi94HMCHH3uBa91Hn4hqlqXO/f/l1q8IL3HipkGCjS5zpU64RD2xxx2GoURQmlNP7O3/pbmJQlfuu3/kWUbQ7nZI9obAsb9C4Sx88wmVSgloG3Lpu7gFWh7A20poDXJbRzoP21QZEVKIsSmc4gzdBooIcbt4KCMgXKyRQffe9j/OynP8X97U0szjUGZ57/Heg1ZI9MY3X9vmhxc/MKh/0as8VKugHDQqtc2F/vgz5DvHtRzITU3xBm8GGtQ2kwDVWYCEKcoVHiLDXwCgABAABJREFU2ijCPBNWNkeeAUWWCsOTtPcAyBGerTY6aHdG8yL5nsczJvGWEwMNraNZ77V/fZg0fSbpfsI/RhlkysQMij7E0gkDaLuQwTJF23XYHRscmzp2Bj7sjzgeaxA9yfeM+pi4IbgY72WDOZD87hQoOPXeU+M4fl/KPqdjPWYfhp8dRhZkvoSxVTqSoONnFcQPyTpLEpy/ISP67cGG6k8utGlPEcWL8FR0hwYVPiAmDONJMmDM/fZRsSzncKhDf4YXL55jPpvh7OxMihCFgkaz2QwAYkGlu7u7qEtIwzxnZ2d49+5d7DXinMNisYiGgCEQaidIQ1Wh4ugk0G/eS8YJ2753TR2NDVNkaWRENV9hGwqXzedzNHUTvQmGedLcfAIOTkbqOHa7XbwGAgVeK/uvkHVgwTCei5Utmd4aRVHBoG42G1xcXMTQELUhk8kkdtF0wcilFUX5vNM6C2nNiZQBYpfaWFdisPAQx4znYHiEGgeOQ9PUKIoc3/ve9/Czn/0shqvSkEWMR2qpX5EFgNQ0DRaLRQw3cXyoW+GzGy5UPbjX/WaD47HGbrfF+dkK2aKv9EpxL70+ay222y222y2apolZTD4AyfliESvF1nU9WD+AMGqr1Qrz+TymGKdULMf84X4NC4226WJ8+ng8wiVi3yGdqiGlm/90NRxy7fGnOJ95EGClQFW2Bxdy+I/wXqp0Omfxn/1nfw+ffvoLeHb9HLPZFIemge0srGvRNK3oJzJxSJwTRoGsETD0AIuiQBme+/F4gHM2XEvIMsmzKCbN82xw3dyLUv2SNqJXev78A1xfP8Pb16+RKRXDxN/mGMy34Ki9f/8O93e3WJ6dw4d6JDrLxJsMc1xK44e5Ga7RewtvA9jgdSgFDyMZI07Ko8MNjR3XAecyQa0xwliQ/eD1eu8fedTaaCTJal8xRwK749NQ35AJSMclMgsQG8HXhutUBVFveOZSzgxyqr6YnnNZ1OFUlUXXSYiqrGu0oV/X8XjEdrvHfrdH29oYprC2nwMAQ1d+tLb6P2mIc/x3+vv0d+nPvL9UgJzed68nelwmncf4Gsbjyt/RuR2HcZ4CTl/1+686vj3YSC5OGwPbdpEm8j4gb9tBZQY6IHrJJ+ei1bF+frhtlGUJhAXtrCyUoihwtjzDdDrF9bNnsqlYh7vbW3jbYbVaRcN8d3cHANHbXS6XkVY1WYZXr17h+fPn2G630QCzSif1Dk3ToO06GOeiAbsPcf39fo+u63B2dobj8YjNZgMAkX7kQc2EMSbqO0iT73c7aKjIQoxTXmlgUzEWQcV8Psdut4PWOta0oFaBYILgg8dsNoNzLpYdp7B1vV5jPp/H4mrPnj3Dw8NDBDOcdGmLewURSRKI8Hmzr8t+vx8Yk7TBDw0tx4fvSdOuOCZkh8bN34A+s4Cg5Pnz5+i6DtvtNoZ2+DvZgGUOHZo6Clmbpom1Lzjeh8MhhmE2m83gujwgdVe0QREo8q5tsb67x3G7w31VoiiLwQYZWS9rsdvtsNvt0CUCxtl8jmfPnkWg8fLly9iBl2nSRZljOp3g7Eyqc3I+xCwD3xeqmlRTWGg0tWyU/E6yPumGGDcuLYwHDdWf5jH22tKfOTa8h5bhU4i2xDsR4Falw5dffo7/4D/4v+Hf+/f+9zgc9qhmswh8+6aFCkfdOxVpP6U8p37HxrkjQOwQx5F9Uoa1OEyk9Qmc6aAAAgLLKsNUV8iNwccff4I//qf/A9C1cg/fAsSd8la1Apr6iC9+/nN8+NHH8CoXw+wcvE6KmPn++XHf9NbBwsLZNmAehih8IBKU1NnQ/fem52KYUZjFI8rCYFLlUedC0JHORY5NChS+2b3ryFIMWIknEIvSBmNDOR7LuA5FdJMMrPxljIb2CgJAMlibScfx6TSCjbZtsZg3qOsGdbKm9vsDlOvXcZrV8VX3PQYbvNYx+5A6Neka4e/GnxkzKWPGeAw8xqBkfE3f9HiKefkmx3cKo6RfnIp3dLjRxnso1w+cJur3IlBirXw5h8PxuA9ZCQbT2QTz2VyyS6YTGG2w266hF0vc3t1iUpZQzsSYPbM15vN5QKwV3r9/j+vrawDAbrvD5dUV3t7cYLlcIMtzvL+9xWq1ks0OPhTA8bi6vsJ6vY6GjkAhFWkSYDRNIzTmaKFliVGmaLUoikRg1rME9KZT8WC6YdJLXq/XEQSQDaFh6roOi8Ui9nOhp85wz/F4jKCmbVssFovB9TrnsFwuoZSEG8h8cPMxxsB5xBDRbrcTcIg+hMOKspzkZFk2m00saMaCV2n9kshspftCGA/WHCEIIfuQZX1lRT5jZgrFsJwRr7exFmfh3owxuL66FjCTS8n2tm2hIZU5t7vtIAtIKQUXmk9lwVgppVBrjSaMddc10PukdD8QhYYAYpox0Ge0XF1dxUyo9+/fR+aryHOcn59jsVhgPp9hOpuJgaG3oaRkufVWaE+vYLTMj6btRdpMy6ahHG8M3kuxp++6YXz1MQxlpOwCr6dnlbqQPWGhwDLjQm+XZYW2a/Dzn/8M/9F/9B/ir/yVfxU/+tU/B+vYgE1q/TjnYbRCWeTo2hxd0AB455GZbHANXWdD5lgTs6/IemRZFlMwtVbokuw0ghiu0TzPUJQlisKgqWt8+MFHODtb4e7mJgo4v+nxaNMP4EEr4LOf/gS/9ut/HuV0CZMbYS287sGGc4APlUW9VGCGtUG/EUJAcIPwjRpGtwZMIICYjn08HnE45iiLDMcqx7FuUFUlqqrvkqtCZo7JFHQ0eE/PqXQuAIBWJv77FDgdj402p8c13Tvjn7Cnx9T29G+EcAA8MmdgPVCqDK3t95qqlHlorRSs2+122G53cEXfvbHICxjTxOfx1D2cDmUMj1NAJNV9nXp/mr48Pk+6zvj6GLgMxnbEWo2v6alr/bbHd6ogqk3fdyAP+dReeMxH1I0GBlqOLMvYKjBUGgTmsynOz8+wWCxQlRW06Tfr3X6LqqrwsL5HWUoapIbCbDbD7e0tPvzww1jRM89zHEP6JEMAz54/w+dffIGL83Pc3t1hPpthebbE7rDH1aU0lDrWNapJhe1uF/UcAKK3T2M3Rp/WuygK5QNMvShOGoICWBeRe8ziCGNZFAV2ux3YbIv1K8gi1XUdN0mGQShIPB6PAzBCzyPLMmy3W5ydncX39yGJJtbWABDDL9PpFACwXq+jXgKheiPZoH4u9Fk7vC8+B4aJeP2z2Sx+F8GMjIONmxQXEWnd5XIZx4aVUlerJQAJnRH4zOfzyFAx7lyWJVYX8syzPMfl5SVu379HURQxzZZMTp7nKItSUhGTDVhqB+g4ZtH7yjI470J2Tb8ZsNfIYKNRfRGp6+trnJ+f4+7uDu/evcN6vQa8RzWZYDIRJuP8/DwWkGLGi3MO9VEKWPVMjyjIre1wPNSDqrSpIR1Tu0o5dF4Eb5LqjSG7cWoz+QYG1FP86IeeM+dJupEBrJgrheekp4ncj3MddrsttDIwK4P/7v/z3+Lm5i3+F7/92/iVX/u1XswGoMiz0AdJoShyMPvG2x70pWtF1mQ/PmziprXob3pvvRuEFVIK3ZgMZVFhNp/geDjiww+/hxcvPsTm7h7ed8LgDtiNEEf+uvHjJu86GGXw7s1LbDZr5MVU0tTd0AOOpFT4QYXS4hJmdiIW1iHEghCpH3mlYyOU7m1N06DJNZo6k/2xqjCZNFHTwYaAnNsStnmc6aQoLAz1N3p932mwkc6ZdFyyfBi2ib8L0y49h3R/leJpfM+jZ+IBqL7yNZlC7z26Qmp1dJ2N9zqZTGGLA5Q6At5jeXaGzu9jfaXUiJ8KaaT3dGo9jN+XvvepcAZ/99iheFpPkjIf6Wvp94zT59O/02fyVQDq1PHdinqFixTlcCiprRQsvXR45EZ6mNAj8wGcTMoC+3qP+XSGQ9vgfLXCRx9+gMVihqqqsNlsYJR480VRSIaJNpgtptKISmtMJ2Iknz17Fr1+xs3TRmZt26LpOhRViYftBoszMVTHpsFsMcebdzcibMwzdKFwzMPDQzR2RIhp1c40BbVphd2IXm9IBU0/R4rfWovCZJGRoVGnN82wS+pN0VvledKaHGQPaIzv7u5i6CTVABD4CLWcxxAGQRG9NoIpY4zUsghlyLkZENiwWy3PQ2YjrWSqlMJ8Po+FrHjt3vtYip3MjlImGgJAwBoXb6pHIXV+G1ipyWQSr5lME1+Pz6Np8MMf/AA3NzfQAKaTCWaTCbZBuJppDdd1yEIIQxuNLtTFEPAFmLyvyKl08JzDBo7RQjwVz+RCfvHiRSw29+7du5juPJ/P8SIUo6PIVgRt0oekaeoItAgY5Dl0qOs2sgEEebxWgiiyZQSpwBSH/RbH4yE+Dx+uc9Cj5cRxivaPr4Vbp6BvTIczbNGD8gJ9kSqNrmPYTOF4PKAoSmy2Et67efcG//e/+R/h36hr/OZv/nPCfLQNlJf8gDLLYaZKKkkqYQ2t63sO7XY7uUAFFEUZAX1VlTHUyb42NqHTmabZNHW8V2MMqmqKLCswmUzhuw6/+Au/hJ/90R/heAzhi0T7KV97WiNz2th4lIVB3bR48/JLXF0+R1MfYYop4Pu0UoSQDdkhOA9tFJr6KELNODflnJIOD2gMjddYO0Bm0jmLpraoM4X8mMceP9THCfiYxBT/PM8BR9D42KgKQNTQIVuJYxnv58R4DOabpwFHL4T10ruGnxXc5eFgA5Do16u1fcE5fo2IPiXbLAXyWmtUVQnJpOsi+O+sAXAEIALt1pu4d3ONpfeSstanGJz0GaTvT8ci/TvVb6TPbBxOGX93+t4USKS/H4OWFISk70nPT+b9qUyb8fHPVmFa9cIcblgxT5tvQQSfMAExF5l4JL/2a7+Grm1weXkOpYD1+j4YP4PJpIqAwXuH3W4LQKoxHvbS8IwZJcfjMW7Cx+Mx0vZlWeJh/TAwzMwA2G5DqmnQWHRdF2OINMrMXgAQ9QJpJcKqmqBpm5hFkhbr4uRieIGbP40s9QU0xHyYPKhdqOs6ClJ5j6TQ1us1VqtVFGNSpMr7SQWW/I5eRIdoVFMK3nsfdRg04uW0L5Y2n88HRb0Iqngwc4ShDWpTUkRNFkbu18bfpQuNFGJaaVNy+iU0RaaBnlbXdZjP54NwVh0M9Ww2w8PDQ5wzy+UyhpSY6mq0hi5KuLrvPaKC1xZDYM6BqvToNaE3IzTYiiGqkH00nU5hrcXNzQ122y2gFK6vr3F9fY0PPvggGjpAgEJdH9F1Nm78vP809DXQJ2RZZGUISHRi9NPQXp6XUHAoijwWOjrs96cN3wnP5UlqOLGnpzbEdL5Th3I47KU9QLJheq/i/R6PBxyPoqnprMV/9V/+F/jRj36E6XSC/b6VyrjzRbjfPIAzYYCg+nRkFfYpk/V6Awq1yYal+xbZkN7T8xGU87POAQoGs/kC3/voY8xmc+z3OxjTFzVLx6YPHJ8+OGZGayjnANfhi59/hh/88FdRTnPAOxjutUqDLWqVUvL+kBYqnVSl/4hSUpvDgwJSeVtKsY9Dbf3PHtY7+A6wzqNuWjRth8OxwXQyQTURTUM1aYIAN0cZdB1ZlidzMNEHgex2DlZpHQtEnxidAXARVi7wNYphzL4AG5j9owhmQ2E26uGUivNDhq3ff2KBMCfAl8CzaVrYqL3yOOwP2LldZIQju58cKdBI73M4zqeZglO/H4ODU/MnzokTzMr4Gk5931PMV/pv7jF87c8UbKTZDN66+IWP42fhxuHhleRQO2txeXmF58+l2uLZ8gL73Q7OdVLroW1RTaZ4/fpVKNYlKV9lUaBtGljLPgEW0+kU+/0+Uufr9RqLxQK73Q5VVYlATitMplMcjwJQmBJ7eXWF+5C9YrIMd3e3KANCp5FLK1lyUaYpi4f6iNVqhbqusd1usVgsYk8Uajt4PkBYjNVqhYeHh0HopKqqGKZIPXZmyDDLIX3wrPvB++fGSkAF9LUdCCjS4ldcAGRtuJEWRRGFsWQhVPg+alfIHPAeGEoiM0PAR2NGkMHrJKATAKVgTB7Zk3H8k+PQT3QX2ZfeW0cEWRS4SZiqwHq9hg+anjoAts1mg7IocXd7h+fPn+PNmzdi5Ls2ftd4E5SNySdtyFOvy/eeZBpuU70Q8tWrV8iMwWK5xNXVFVarVcyOYYM2gEXW0FeEdMzg6ane1FB0nYXJcyjXl0DnNXP+TadT3N/fo65r5HmFIi/AZlesMXI8HIaL/FtSpPzMVxlVrh+l0r4+glJSzzQNydVNDb0HvHf46c9+ir/xN/4GfuM3fgO/+qt/DrPZPJivmOAJrSWk4ryCdWlcOkNR5IMQQJb1GT78vlQwaR1F6zYySwJOqgAGDRQ8VqsLzBdLvLt5e2JMvs0Ail7D2RaZNnj98gscdhvMluyVkrAFMR2xH1vvXUh7ld4rnKtSt0XSZAmg0z0mBVbpYUwGgKE26RvFyqpNMMCHEK4uigJlZkLIYRLBHPcFYzhvOd6PBcS8j/Rv+dnB+8fGU9ZJF59dNHwKgPKhtUUPQpRyAeRIan8bOsb24TJhtG2oC2Qty9l3sNZB7VrAy9zc7fc4omcceS88xpqKU+DhFGB4CkyMs1KA06wUXx+fK2UlhmPoH11PymqMfz/Wg6TC7K87vkPqa4LiPKT41uiihK4LCFtJDFMpj7Y54ld/5VcxS8Rvu90WRaZRH47Isgyz6RRd0+D59TPsdju0IdOirWtcnp/j7dsbnJ9fRI+Phnqz2WC5XOL+/n5ghOuuxe3dLZbLJTYhc2Eym2Kz3aCaTrA/imr/4uJCCofpLNag4Eacxuu54QO9YSE7wc8xPMHNnhkP+/0eQF+pD0D8DmoU2IjKe0mXZaZHWZbRqJPBYBYKN0myL1SNPzw8RL3EbreLaav8PIAIkDiBtttt3CxSwOPC5ygK5bikIR4uCIJRgovj8RizZgg6mIp7PDbR8KWKf3oMvbEloAW22+0AuDDFlnQmx3W/2wGAZBd10uNiGsDcbrfDbDrF7bv3OOz2oKKf3y9zPDT4erQRC5AYL17OEWttKGs9jc93Pp/Hnim8191uF/VGQN/jQOpNGNR1EzwjAjkfGQ8x2r3hoPHg9RPsclyYUdV1Gazts18YduTzk3XtBwDq8RbwhAUNHxmPS6+B6ZsJMmyWZUyllng/1wIBlnMt9nupBDqdL/GH/+THePXyJa6vrlCVFYyS0Ffbihg3Y6q0A1TnIuPKcB6F6MI0ZnE9p3RwOp5d13eX5diK1qlDUx9w3LeAUlidrZDnBawbl06nZuObog4Pby2yPEdbH/H+3Vs8/+hTOEarfF8uoHOA0S6EtSX1layKD+Fs8e7JbiCyI3yO9Lwfg40ewAHDPYshUWHhmFYvzEYVsr4iAAnAjuxRCgqiM3rCSPNeUyYjDUfwOLUGrSNYCCFpJ6Lq9FnazqFpa3RtB+vaAYNoO9bmIMCSMcxrD48VFCQrzZn0XtSj64ojecKYP3Wk8/AUMBiff7wW+71h+P2n/ozH76uub/w5oN+vvunxHVJfH198jFWllArZDfkHPDxmszkO+z0+ePECt7e3YVPX8K5DUcpmsNttsDo/x83bt3Be4vHOdyEkch8ZAGOkONfd3R0uLi5wfn6Ot2/f4vz8HPf391itVri9v0M1meBidoH1eo2Li4u4qVZVhVevXuHq6irqGqqqwu5hE3UR+/0+Gk0OLgfYORcLRpH5OBwOWCwWg0wAouaiKFDlRTSGqT6DE5X/9r4vMJUyEmQgaNDOzs6iVoMIHOhbwJOpoNdMISc3DaZnsjMm04KZHks9Rp4X2AcdR1oqneEphqI4cTmWvCalVNR/UKxHI8fFyklM4xlL3iP1EoCuE20Cs1tms1nU0XBj67ou1uBgBtF6vcbz58/x7t27mDZNo3Z9fY13t+/ReQe0iZfkZd5y2VL4KJSsglJZrJ0Rl0cYm6IssVqtsFqtYphkMpkiz7Oo7WHxMnoLnCfiPbbxtTRkwvf22TkZmlGtlrSqK3Ugs9kM6/Ua2+0GZ8s5rq+v4jimPSQGtDr/fgp0hJFJw0ipx8r9gXsC9URp2K3fqMMZaVB0EBxahpJavH37NoZN/u7f/bv4q3/138BHH34UCjVZUITYdU7K4WtJr5exMmG/kTEr8iKGUFi6v9/P+mtLxX+8tslkAoUGRudg3H+xWCIvcthj+89UwaRnKiy8V/jJT36CX/5zvwmdZ8laIYsMGCUhBDippCogkefo70UcPhVDfKmxOQ02INVPg+ZEGSNdaq0wB5316FwHNB2MaVHmBkejsQ+sL+sRUdtBTRGBX6qT4HPqGQ//aO6wwFbKPHEf5nOS/dmhsy6pkSGtLehkyX7cF/hyzsL5Dt73pemtDayI6xuLam1QdRrACgAEwCS9UcbsxqmwRvq+U8BhMPaJbU3tQ/rMTjEV/XPvv28M4NJ/PwWKToGVFFSlLGDKsHzV8d3KlVsXKqi5GO9GoJi986GGhgK8TtTuYsw++fQT3Ly7wSQpxiS6i4OU9C4r3D+ssTo/R54XeHhYw2Qam+0eq7MVnPM4HmucrVbYbDa4ur7Gev2Atu2wPDvD/cM9Li4vcX9/L2g6y6CVxvlqhe1mC6UVppMpbm5ucHV5hYf7e2R5jklVoakbmDzDfn+Q+gmZQWcFDWcmg20timBcdWaQZbk09gpeONuIc/KnEyTPMln4TsIFRVmgMAW2WwEUeWZwOB5DN02LY2AtttstqqpEZztIy24bgR3TeTfbrYSZknRa73s6msxG1FcohSKEd6rpBG3TBmNYYX84YL5YABAa2cPD2L4sbjqJWYdjPp/HGhUp1Z8idOpICIDW63VYNAr9vJZFrRRQlkVwsIcesjE6hAPyEPfvM2SYusu4PIDoZZ2dnUVxKYEuAKxWK7x7905Sp3dCTwu1KllPPnhK9MKip6oUlJYy3JYqfKVlXcDjWDd49+4W+8MRk6rC1dU1tJaaIw8P61Dsqw7zf4H5fBKMCFDXTWTIyB7x/jmeLEQHAE0AtM5aAQbeR4W9VjLfjNaYTac4HvdhTsxDeEBi1HleRHHkY+V+YgRkFgQAwiAGQjohPxKMRfg5blDeo26aWLclQLf4PWl4SOxmv5kpreFsi+Nhi7Iw+L1/+A9wf/8e/9b/+t/Gs2cfIDO5dJd1Yii8dYCR68q0kv48kO7O06pCWeTItQk1fxTakFkkLIlFE3QizoVeI170FHmWh5Ld0utDejoBWTVBUU1xpEAzGYtvRWwoDWQZms5CGYMvvvwSm80Dzi5KeG9h4OCdAFxlFJRy8LYBVAflLLRy0EoyvKS+hsxVqShqYn+M+HWJ8Xhk9LSC9knFUMha7Qt6hXblHqidw9F1sZNrWRSYHo6YTieojkccjkcUZSlC06qSEJbWyDMtbRNU0JMoacoppcY9bKjU2QUnkX+s7eT5WIuu7VCH0KmzNjAb4qS1If3cpQDF2r4cOoCuayLj0QMc3bfk8AL+UieeiRFjFiIFFtEJ7yFkYGiY0joWrPKKUsCePqe04JlCOqn672R4aVzoUASzDIN5T2HqYPLF6+xfTzKfkLK53z59/jtpNphdAu9hlMBf1hNw0VNPxEGQG7u+vpb6895iMhHPfT5f4P5eGIvJdB5Awwr39w+YzQxMLmLO+XyOphNKf1GWuL2/w2QywWa3RV6WyIoCdw+hCNfxgGoq9QaMMbEuwvn5uVR13GxwfraS6qCVhAy6totVMwVkBEFYnqNuW5g8h8lzdM4CWqFgee5ODDU9SO99DAP0SuZMNtngdRpk6JyT7B0qyuGTrI6wwJyAAeek94wN+fRaGzjrUE4q7I9HFFUJ19koBGX4hp47jfPxeBRNR55Lf4VcrjMrRAhaty2qqXSUnU6n6JxFbnI47yJjkNbxoJ6FKbtkPdL+EwxJkDVhHj+Bymw2jR61GHQfQYV4FWk7ZA3nbGRHKKJNq5/yZ4ZZKHLNsiw+37OzMzjXVwxcrVY4HEWUKa2xMzHCPrAKmkI08eoIqh00lM6gvA2t1vuSzR4addehWW+w3mxR1y3Oz8+htcbd3T0Oh30Mg0hqpRj8uOxV37AtzWhKf0dDbMO4G3o7rq8I6J2D4t8Q0HvY13jz+m1kV9qmQ5GXsrl3oWaDfBHgGY+lRUBoFKdDK4Kw6SU4bLh/hSwX52IdHunb0qHIMig19GDHsWJ645Ja2aFrLY7HDGUxxZef/xz/z7/zt/Gv/2t/FT/60a9it90jzwsoH7qhWml5rlWO3BgUmUaZ5yiyDJmW9xioyKRZ59B0HY51EzJabKiVIh15y6LEpKpgjMZ0WqEsc6zXDo3tkBUllueX2Ow2cG3PypFo+CZYw0PBekDpHFZ10ErjUNd4e/MWq9UlvG/gtYZCBnjRjBhlUXcHaHRQqoXWUl9DUd9hwtxVSuarfRyCSD3ZAeDwPXsl09rDhMZn8hwBJe26YUPvlaa18G2HtrNorUPTdpg0LfaHI6qyRFGW2BdHZFmOoqhQVaU8M8X2710If3SRrZC1ykqesq9IenIXgYc8L8m4cc7G36V/0tAYDaU4hzYYUwLk8LNCn/njH0Hw8HyHHv+A6YdohdL1KgMpi6UHJqlmiSEjM/ocMCyZLkAk7bLMI22MxvMSHMh3qHg+viedD6GDTgIyerDhHNlbBaVMeBbfDHR8pzAK6Sd62PKAhwhP62HciAZKKGWp+slaCZeh3oWItizu7u7x4sULrNdrdF2Hi4sLbLfbGCqpqirqM6Rfhg7K9Hk0MKmAlFqD169f4+LiIoZimI2y2Wzw7NmzKIgEEDd2GivGtReLRTSY7FfBSUNDl4YUUjEWDexisYC1NhbbAvo4e6p7SCm0cSt6gok0ZS/dtCkEpTi0CFkRZDbaIKwiHc/PclyYxcG02bQUewqqNptNzP7heBA8pH1ZOLbUnjBk0LZtDIul1wz0GUC8B86vNAxEOpGq8TQbZ7lc4ng8YjoVQMN/53mOu7s7dF2HDz/8EPf39zjWUmn0EKpuZlkG17Yhu4SlfGXB0fAq9JuKRUI/UpkXmBkLj7vb21iVleEjAlSCQ4ayOB/SfjOHIOBMn3GaMsd5wLHjeuNzIBNCAe/NzU3UFRG0kHXiZ+lAfLOj96we/0o9AiBKq2AchvVBxvfFdeW9h8kUHIDDfo+ulcygzz77Gf7W3/p/4K//dY1f/uUfYbPeANCxqWJWFtDaI89N7A7dixbNMDshXl5flVQAbF8fhh2OrXNgJ1QJDRS4uLjEu5vXaLs2jgc7s36bcbTOwZgs9MsBvvjic/zCL/wARSHsqOhxZOsWrUsIMwLCZHhEHZRhJVV4eEvD2NPeqVCUx9dR/E8dLrB6nHPUdOz2+aBaq6TKlihDYzyyjJybfTijD1unwINrYFw1dhxeSV9L59dj+r9f0z2L91hPMgRijzM1CGiG7xc2Y8wCPCXiTDUQp0JcvI90H0xB4/hZPrruE6+NdRdfpTcZvz4Iu37N8Z16o2gtnk1mjDT28o+/PP03r10rjfu7ezjfweie4n/z5g2WyyW22200Qj/5yU9weXkZ01RXqxVev36NZ8+ewXuPzWYThaCM1dPg7HY7zGYz3N/fw3uPs7Mz/OQnP8EPf/jDqC9gZsV0Oo1Glv1V2EeDTABFNwQ29OAPh0M0sAQAzGKhQR57DEr1TdBomPm7Pu7YLyBOuDSPW2sda1g0TYNJNYELvxv3d0ljdPweY0xkUqhpSHu/sBcLa3+ki5vPFED8bB0MNcuXpxkRXFQEePP5fACwCF5SoWOqOaEnky6osZaBPxM4MVtmt9thuVxGzcKbN28i4GKNgPv7+zCGFequGwCZcQwzej8+hArDZsExsl0nsW2MFqn3QPCenXNSmC6pU5JuVARczJpIxztdV2m4jj9z/Aju6BlxXvGZCEPVREaOc5H3wnlirR07TV9zpPRr8qq4YPH7lQqNu2zfiwPex67R4/kv9x2YIw/YzsO50L7ee9zcvMXf/tt/C3/tr/2v8Avf/0UR1sKjLPKg1ZBU+qLIg0C0F9aqADJ0cn18nUZCLr8fGz6DPA/1JZRCURa4urrEF1/McDjuBx7oN0UbkcQONTPgPOA8vvz8C+x3W1TVLHjtNfK8gFY+dt6El5Cn8hhcI+8phpdkYAeOTLo3jOf8qeOkgNGrSN0zHZUiza6zaJo2Fio0JkORlyiKMo5pCixSwMB/j9fjKRAxfu2UEUydw3S9fNsjXYvjkHH6OkMlPAhGUjbk1JGyI08JMU8BrRRspOcYX1sKbMYAZ3yMAUUKgNJ9+OuO7xRGGRRjaYfq61NITSnAaw2TGaxWZ3hY30saoVKinbi6wvv372OhK7IZzL6YTCa4u5M0xdvb22hACCoOh0PUS9CTBhBrPNzd3eEHP/gB1ut1bI5Gmv2LL75AURQR7KSgIPWWd7vdgGUA5GHPZrPoAVEo2rZtDBmkoRSeO+1lQoNNDzY1Pnyw4jn1PViYecMqn+vNGlVRwGgzSN0de7c0PAWAtmujMeN1kakg3U/QREOWbsT0yJnJQvaEYlQauHFmzvF4xOFwiKEMnpPjw2fIcE3K8qTahXSyn5p3NNrMenDOxYqwl5eXsUEaN6VjfQziQRuZEa21VMulkC2Jr/JIjTT8iGodeSQEdOl7OGeOx2PMdJjP5xHEplk+ZCE4LxjWIrhIsyg4fulG3W8k/TUzcyhd09z46e9904OG7NQx9hDl2gzYEymlpdP389/WejhvoZWB9Q5aZ9DaYb1ZYz5b4u7uPf723/5b+K3f+hfw5//8n0dRVhFkiEixCkxEDzSEFvaAF60G1yvXMwEZxzsV5fF5kJEqixI+tFl4eLhLnnvs1/2Nx5HtHZTWsF2L7eZBhM3nV4AHWtfAli20zuGp4YBNUoBpBACvRDtmSc/jsVgxBR3p66eOscEfP1vG9flSf24Rd3ddA6VaHCDrLZ2z6R/ew6nvORVyS68v3T/T/XxsVMdMwql7PXW/gLBmX/WZ3vY9ZkdOnTMFWU9991exDONzAT0o4DWM7zW9znSMU4djzBCN7+HPHGzwQmNKKIYTLp1AnHh87ec//zmev3gGOPHqz8/PYy+T9+/fx9zs9XqNs7MzHA6HmMnw7t07XF1dxZbh9Ko/+OADvHnzJlJyrKjJ2hdd1+Hzzz/Hxx9/PCgvvtvt8Pz5czw8PABANNRZluH29hZt20bmgyGX4/EYS6R77yPtx/j/YrGIGSn39/fReALAfr+PtL4xJqZ/0sNMDQQBCA0nDSUZnYeHB5yfn2Oz2fSei+oNCj19boZkL6QCYolubwcGkGN5eXkZs2pSTy6dlLwm/p4K/YeHh2jcaMB473mex1AZmRkW40oXA9mZdAxoHBhKSMFPKsblfTvnIvgk60IWS2uNV69eYbVaDdifoihgoNHZrg/FWIv9YQ8XQk8+Mq0+yUzpGQkC0Ueb9Wiz4ZpxzsU5x7DcZDLBfD6P84XhuzTE1Neo6EExqei0Tkjq+fTeUQgBqWG2BXUwqSH13qOpD19pfAa3ObrX9P7HGy5blDvVX9tTdC6ZDwUNr0UXxtCatRbbzRYfffQx7u7e4z/+j/8O/viP/yl++Ms/wm/8hb+A58+foShKSc0sC7AbNcGGtVaaRya0PK+FmWTeJz13TF8ZlamzHK+uNZhNpwPHwH6FMTt1ePgA9FvkZYXWiXD11csv8b3vfYr58gzea5iQeePh4RmKQuiHAq5XD995QHm4oKHT+nRa8qPr8E8zG2PDKw+rB86poR8DAb5urQOadmAr+LtT3zMGJel7+e8+pbkPScbaGclaoLc/Zka+6h5lPNP3PTbA6d/cW2J4ZnSkoOJU2Cddv+kz+irQMR7nMdghOz5+X/odYyYkvcb0WaSv/5mCDQ5OpGm8h3JDSo4bgVDhrPY4wbPrS9zevUeRSfW+w+EgNS5CmidFfhcXFzgcDri+vkbbtnj37l0MqSiloi6AOg6mqbL3BFNjWfyKWgHWfGBp8/V6HQ0TdSQMs8zn8xhj76tYZtGbJxggm0KgpJSKdQ2Y/nU4HGK3WIYHuoS2p3iR47tYLOKGmo5pnuex0ylrYrBbYxqCYIgk1ZV47yONSRCV9gTg5xlW4j2lBmiz2UTD9/79+3gPrLfx8uXLKMZkSInaD46HUmqgo0jZEX4/dSM8Lw0hM19opMeUO0WxbEjG8czzPDJb8/k8ahsoXN0fD7H2C0ukZ3mONijafRCKYuDdPtZQsLaFDQAlbkKjxdu5vtIoAS51NZyXm81mIMrl+BDQ8NypcUvnVBpi4bPw3oXy230PG+o5OD/osTvn0DYa3vdjLIcHtDBOovJPvCiPR8Zm7N31e4eCd8PwSjpXoxHiuMlFCEgJor62bWBMhi9ffoHr62tMqgn+/t//7/HqzSt4ZfHppx9DmxJt22A6nYDlrXtjgCB27/c3XoMJfZ+yLA9t7XvmR5u+4qgx8twPAPIiHzwPimJ5j8NxfExbSz6UCy3hpWpo2zZ4+eUXIoRsGhSFZC51TYMs6+C8aOgURNwrlUN5bzJeXj1mV04Z2q8zZE8dfZED+Z+Anz6U0H9BeITy4yOv+qmD9iS9tlQjwX2SZdXJFNNOpDaLx2AOJPN0bGRPHX2I7bQeJGV0lHqszxiDjVPsxfh+07E49fr4PekaGt87x/sUa5HeR/qH4z1+7ZvOle8ENlJqUXlJhU0ffIr+ZXEi6ir+8A//ED/85R/g/vYO1lpcXEgNDAIAenFp2GQ6neKTTz7Bj3/8Y3z88cexf8lqtYqZBovFAgBiUSxuDBQv0nCvVquoRWiaJtaTIItBFEyP5RgadpHOJ/hQqk91TQ354XCI+g+WqSaIODs7ixU12aWVYZ3JZBJLhJM5YJnv9AHT6C4WCzjnYkorFzj/vVqt4j2yFgjz3/f7PdoAAAnuUu/57u4uNoNbLpexBoNS0vPkcDhEcS6BAAHEp59+GkGm9z6Gxo7HY+wuWxRFrI/BEArZjIeHB+R5jtlsFpvIkYVarVZRMMraIql+g4a+91z7RUsWyTkXNyICUs6HQzOseUFWTmkN33USQx8hf7Ir/Hlc4ZPvG4cJuI5irYdg5He7XaxIy2eZbhTpgu/Xl42ACkCczwxHHQ6HuAYQPGGEObbf79E2DXQA2JwDsUqwVqFZ2nBDMQljx0okzrk+U2G0YXOM+KyhEAooDSsweuceGcV0vPvrEFW/7Tp0bYsu63B/f4d21kBpjZevvsB/+p/+J3jz5g3+3X/338UPfvBDKCVsBA0FHU/rHDrb66XSGLnMz15QOgRESR2G0EiOIVmTUbynT/q2T3nU8jsXGAgLoyXj7fb9e+y2G5TlBD538LaDh5ZmgM7C+77Ohg9PxAer7r3wHRqPAccpAMTjq8IAp97vfZ/5IP9VEcR9lYGkUUzn9ZhVGF9D+rvh9/dMWc9MPR0GSD+X/o73/qS2YjQG6XUPAbaGMakOyMX9avzdp+7t6wDFV/0uBU8piB8fpwDnKRA0cJa67muvb3z8MzEbOmU2Am01vkgab/FEO3z00Ud4+/YtPvrgQzRNE0MYd3d3uLy8jOGJq6urWHCK1UBZfGs2m8H7vqkXr4cGBOgBD0VJvAZmrbC0OSfmdDqN/VJSURLvlywHe34AiMWj6PVzQjG1M1X2U+eReulkONI0VT5IFn4CZMM7Ho+xAmld15EZ2Ww2YoTrJjISBCgEDAQtvN6mbVAFupfGiMCAGhMKYgkC6e0SwDEdkxVclVJRC0PGhHoCjinjgUBf/tw5F8edc4ghs67rIivCCqhph1ka61TXwjmYandoKLjg2FuFQLPrOljvYuGn1HMSz0SFdM8E/Yc1Ftm9ZG0w7JOm4uJEiMBaG4EptQLM1OHGm2aXpLqKdFNNGZ6U2SDQ7BtFxW+HyXrhbx4zBPry0gSnWmlpbNVfeNw0gdDBNwEYCv0zTkFGeAFaa5ydnaFuamxHzB2P1CPjd8I/Lh7kvYKU/FDw3mGzkaJlWilM5zMoDfzO7/x9GKPwr//r/3P88i//Cp4/exH0HmSVHLq2i2Wth4DDRoOVOhupsFDeG5qcaWHUXrx4gV1eSCbwt9iM4xD7BJyE+9vtdnj55Ze4vHoGeI+uazHJK1jbwbpO1Boa0K7PgoBXAMMnkgv7CMeNjWT6WspQjQH82NCkwsfxPY/DADznKbA1ZrdOGfQx+5CeK2X90uf5FLhIrzv93diLH8zHJ64//Ww/LsNeYVy3X5X981XA7NT3nXqd5+qv43ThtvT7UuA5Bm4pcBmLdVNy4auO76zZGMSmgpdDOnYcX6M3U9c19vsO19dSdIsGYbvdYrlcxmyGm5ubeG7e1N3dHT788EO8efMGs9ksGi56umkWBMMBLNV8fn6O5XKJly9f4vLyMtadYMEnajEo6uR30wAwbEPjRk+eng4NGdkTMhpN0+Ds7AwAIuOxXC4fxYbTMITWOhpQerys2UEA4VyfIjabzSQctd1FIzGdTiNoARANeZz0YePksyErRABxcXERx8Bai8ViEYED9RkEUSlAIDvUNE0ERvzeq6srfP755xFEUnQ7m80iQ/T27duoXaGnT4+dTAg3krTyJkFQX+1PR/FnmsXDyqY0GgRbxhgUeYluf4zVVI/HIzx6oOKSzIwx2EiP9Pu4CLXWaINQNV3czjnc393FcBHXSVmWkbniPZ8ydATY6VrkRtd1HbbbLY6B6ZNrMkAohkGAppQKVWLzAaDh75Qa3aO8ABOuJ/1eYUKSLI/EEOR5Dqv7RmdFUcDbDof9UDdEAE5hMsdMXsuC5yzZKSoR7GotfTK8d8izAsf6iO6uw3K5wH/1X/+X+MEPfoBf+7VfR5qS75yDdaHAU7zHYew9BUNMT+8NYVLHwUtK6Xw2l9oxeYZWrhRPxe0fHz78X1gbFeqXaCXpsO/evoFCqKcCSPpwywq2gf1KhJl8VkppeG1C7GJoVMfG7ZRxf+p36b/lWaUFrABA8xLiZ5T6eiM6Bhpj5iH9exzmoHP7FPhJDSnfM2YA0pDLU8Dn1DWnR7/Ge10D5/FT2SXpvY/DS6eA2VPXw/tPHeanznHqnONxSIHZeCxSEPp1x3duxMajaxpk2kAHyp6bJi9WKcSiLbPZHFVZYLtb42x5hvXDQ9xgsiyL4smyLGO2BdC3Sb+/vx9kMaRlquu6juma9IabpsGHH36Iw+GAh4cHfPLJJ1GLACCyJtR1kDGgEUu1DGy5TsBBQ8D88XSDTEtzMyyQZRmWy2UMtfA9ZAXo6fM8vLc0NEBDyJgku1ayJgYnAbUtBAaMXSolQtTcy+ZKxoP3o7U0KWM4KW3wRqPL6+IkI9uQsj18PychQ1sUn2otdVEo3p1MJlGHQXHkZrOJaczs1bJeryPYopFNdSocp3TBpl7+ZDIZpJOy5DnHZXes4dEbXOeleI0xBp2Wyq5xY1J9nY3xxsgFzmtJ18yY+WtCMSKyRfP5XMphq76oF5kiMoWphwkgMmB8PmSC4nvCjk+hI/cGnpOAhuPM75bz95u7MBdymATwON/rVSZlFcEznwvDMwSD8iwqTCZTONvXT0gFfpz3vC/pE5PGi3n/TA8XytoDMLlCVRXI8gJ1fURVTfDf/Df/NRaLM/y1v/bXUeQVpC4N+nuK4KrflPv12XeLJfvjIfWGCMIZVjq/OIe1Hd4YARtajQ3w1x3BwCD0loKCUQo6N3j95nVge+dSOoBzDq5Pm/UezotmQ8AKNRMqhFaGoPTRt58wcGPWKf1dOu8l9DMKsz/h/bMXzvgYU/2p8UvPlX5Hut64/lIgzDV3ik2go3gKTKVsh1JqkIHiRr8/ZXDlcz07cIr5GI81rznNIHvKmD8FHtJ5zO9MM0zGx5h5Go/H+HmPX/8zBRv8UqDvUsmHrJQKlQyllK9SEvOE93i4v8Nay0bAGPJisYgFiYwxuL+/j2mtBAE0BjTw3Iy58Cn25EPnplZVFR4eHmK5alLSjDWzwBPpbBpWa230MOklp2wNDTSzI+iB87XxBE4nMe+L7AXHkg88NSbjBZICmhTZey81Hsg4UJBKASCZmFiDw3pUiUHj9xLAkckgCGJ4JfXIySalqZe8JopWOdlTgeNsNhs0ZsvzHA8PD4Nz8X13d3cRqKWpxam3zOdIb5n6DHqi6XUz5biua8zn88iKSR+XDtOJFIHLsxzL5RINNURKs+YfBlUVw5FukHz2aTgjBQvppsPxMsbgxYsXsfU6U7YBYZsI1njuNCbN+XoMxcioCUIwOikTwt4h3stcPT8/h1IK9/f3keGoqirOB67n1MOjUTaBedJaGs6dLc9QVRWMlloYu90W220fviGg0Vqjbmq0bYM8M9GgpyFLimQJosjqcE8URqEvBuacg8n6VN4YMoOHsxZt0+If/eN/jF/91V+TTTzvm/oBgDYaNopgU0+YbEZv2IwxMJlUfW3bBnV9hLMWWV6g9BZ5PsXhsIsCTZOZb1fTCxjYYBlyGbe79+/wcHePs+WFaJysiEJVVM30htx3Gko5KK/itaggOk0NMOfvKZo99fxlbIY1Ksbe9/jvMSju72lYMn18jAFHHJYT36WUGqzxsUFP11zKVoy/Z7wmx+8Lb4rXkq5joM8CG78u4M4OXhtf//g70/M8Ff5IPz8+uA7IpESw9ATAPDXOYzaDR1pDidf7Z5iNIl/Mza8HF72C3GjAW4si9L1YLWaYTUo4Z7GYz6JxZGVQtoWniI8hiLQyZVmWWK/XMYyhtRaDEMSCt7e38N5HUMINezabRaNTVVWs08FNnJtgiia5YVHvQWCQNhxj2IMPh5U204nBjBZ67SklnhbN4oTiNab0O0WD9PyUUoNOrfTOTZFLM2itcKhrFJMKOjMozQTtZoPL6yu0TYNjuKfb29uY3srCaABiyXTG8MkQkZGhoDWtA8HrzvMczjopn91Z7A9HQEkfDuVCRca6gYZCUVbY2z029w+4vLoSVslkOGx3WCyX2G23KPMc3jrYRs6nIUaOY0FKMk0LTeOJTHtNFxB1QGl9E6VEmFjkGVyR4/5+i67tAO+QKYXWWSjvAO/gQxlzk/Xn5eLj3+kmHTd03YunHTDoY2KdQ1YUqKht0RrQGjrMQ9U0kvWRbBZd1+FwkI7Fx+NRhJbc/FMvCULDa1ak1QrTaoLZTNKAmbHF8BnDW1zLzovcxHtEz955j8VsGgG8NgaL+Qzz6RRZnqM+1vCuQ5lnyLIcJjPYbjZYbzbYbjZoDo30LEI+ANCz2SzOv7T+B3U6ZZmjKPIBKCXLVhQ5tDaBQQrh29ygay0ur8+R6TUuzlewXQOtpoDRaK2MqzYKbSfFsax36Jw8Y6Wl4JcDkBU5TJ5BGXGkOttgf9zhUO8Bo6CRodATCX0WFUydAx6oawvnFXIzpLWfMsTp4b0HrJUy5l0LwODzn/8Ev/SLvwBnGyiTAbZBriVc4zsbi3xpFUA5ELQyAShiaFjHBm8wn08Z3+SzmTHwpi+Ln867J8+JVJMz9KhTgJ6OC41meh1jQWm6f6fjewpcpPcsnyEzphIQqpPvDH1FUrBhLTo1FEmOrxnoNSTpa3SsU90T74XzOXUqx+zB2AEg8OPv6ITHa3VDoSfHJw3/p+fWOqSlBxDreI7QbZg8mQuZTk8xJuPjOzVi82GA8ixDfTyCJXLTG55OJ9huN1gsFnh+fY3tdgvv/cALZYrqdruNdDobe5E2J4vx8PAQjex8PsfDw0PMlnj9+nXUfFhrMZ/PY7aEUiqGWBgioGedeptpq22iuTRmztfSjZFhIxpaALGvCDdEpuTyHKlWYrVa4Xg8JpX1es+Mnvx+v49aEl4rWYeqqmIJbOccDqFWg8kMlJPN5bDfoyhLPDw8YLlcYhqyaarQCC8tIV6GRkm8d1ZQ5TPl32m2Az1x6lO2mw3augdlgFDuUSjpg7cZqGfWTfHe43y1QlEUuL+/j6Gp5WKJu7s7MSjOwcHHUB1ZLJaTHyN6ev6kEQlk02qvk8kkGgHWLClDZcPdbieAwxgYpQEltQs0pLGV9UAfmuiLno1pRaX6Uth8Vl14TWlpMpayP9vdLoLJNMWXoJmiX4IrmxbWM0PNBDekPM+RF9ICfDGbRKDIRnYUG3NeWGtjWJFGJMtzLM/OIlMIIFQQ9vC2Q5YZTCcV6uMBTS1My4sXz1EUBSZViSwzUPDxWTErieB9GkTL7969G1QUZmYSHQ3GpLk3AIihQmYYbdYP6BrRERwOB+Qmw/Nnz7A6X2G3OwDeBPZL+o/UdQ0Xa5DI2nG+z2hIvTgPh7o5om1DCnGWAxmgzTSCJXNrgA7QWREFtE8xCI+OxJNmoMR7AUCvX32J/X6DZa7RdRauaaB8F5ksn8w356QvjsyHbDAnxoAjva4IFNSYw8PgPtI17r10SU7j/Kfo+f4cp0MY47/Ta07PM2Yvxp8ZH2Mmh/+WZ2vAfiHpudOMEaUUWj883ykmIwUC8r5EZJ6AtzRcP2Y7x2OchiFTwWuaIZXef5qFw5/T6yZbzPmcfj7+4bzj665v6ObTcn8j5+arjm8WbBkdrP4Zx973KXlirHTMMGCqaVmWuLy8hDEmGvZ0w6AokYPPrA+mZZ6dnUWmgh1D6c0yJRJANPQELKTq67qOtR244ZOpSMs5S3+WLD5kPoi0ZgEfDCcBNyOCKIpBaQjTUBEN+Xa7Rdu20dASjTLNlGNBEStjkzTC46qkBDD8mcCIFU4BRBaC30WgQ20Gf8/JzEqoBB4pK0PgxNCGMQZv376Nxjb1PCiA5OJIBYgEPvP5HPv9Huv1On4/geHV1dUgXg4gjjdfZ+psKuoleEq/jywUQxsEbkVR4CwYUp4LQAwrmKxf2OMNlXMijRlzsxp7FRw3nXhw3kvK73q9jtcWi2oFQMHvjWmxmw2awGiw/Tf04+XM0ueLxQLnq3Msl4s4fmTGCMa11pEtiUAjrnEf5+lyuRwInYHes2TY8vr6OrKKPFc6L7mW0nlEkEhwwWcMAIvFIs51sm5ArwcC+gw09h+Kht8YTGcz/M7v/A7evHkD5/ygTUET1lvczOIx3Pj5DATEWnSdgJksK1AUFcrwpyonYP+RdA9Jz/PNjmE2gVIqFCtchxRei871LA+/Y8xWcIy5X6Vg+OuM5pihGH8XAX6W5XHNp2stGt3R55V+fP70etKfxwCDcy0V2Y8ZC15fet70vr7JWh2fZ2C0nxi7qGOKr/VPM90XT/07vYf0uaWgLM6M0Rwaj00KTGKo/QSw6EFjfy7npDOuty6WzFeef0QZpXz/OpzHNzm+Y52NPpffKAVnXSLmEo1GYSZRXU8qGwDOz88jaDgej3FA379/j+fPn+NwOGC73Q5KmGst1TjJaHBTId3PjAKGX2i4rLWxsuWHH36Ily9f4sWLF7E3CTcy1rhgTQk+IAKU+/v72MQLkH4um80mhiG4kfLhpQaOwCNt/MYU37ZtsVqt4L2PxbJ4b0zNnE6n2Gw2MfVX6OQyil7TewV6gOK9j6GkNC6+WCywXq+jQQOAm5ubWL2Sxi5lL9KwA4AI8gBEg87x2KzXUB4x9MTNyHsfq7fyNWttFJgyg4cAgPqdxWKBu7u70CTtEIEANzoCMIZ5UlRPYMtnybHgWFFwy3FlTRUW16rrGscg5OUclrBSGyjE0x7ZqU0h9VjSQmoIBvfu9hZd2+L84iLe1xjQMGTS1PWAth7TqtxMCcLYB0bmuwuNvnRkFPiMCXT5bE7dG0E4x1EpFYW3BBCcOxSqbrdbbDYb7Ha7qO3huHO8yTby8xQ5V1WF2WyGd+/ewRiDq6urWJyP84bXQAMiwuINFKSQoNTzsPjxj3+Mf/pP/yl+5Vf+HPKsr1I7nc2k42vbDJgMGmY+r8j6jTzfVNjKDDKulbOzM6zzHN42g+fztewGxsZEMlQOxx1u3r3FL/3gl9A0zEQ5bWjT++CaS+dLChzGTMJXHbz3IbCAdMr2Pmj1ACj2ngmesffBL1ZipHwfAhmDilNrasiMDMXZp1iNMQBJmcfhuSRrhM8yZUHS6zj5lNQwjDE+UsbzFBORMh1jMMfzp9qs9HcpKCKwSJ87x7Z/bh2yTMPaFm1bR9Detg7Wipi1nxfsTovwd//7/ujZm29yfOfeKPQitdawzsYsBUCjPtbIjcLV1VVMw6TokKDBORcpbOdc1DZwo2E4ggN+HUIxrJxJb5hGLh3429tbzGYzGCPFwWazGW5ubrBcLqNRZ90Gpr2enZ1hu93GEAY3orTJGI2zMSYaRxpMejzp38yuYGgHQIyR60Cds04Hr5fCyul0Go0nx4GT6CFk8aQZK/RO034yfI3UOw07xxRADH845yKo4SY6nU5jpgqZCT4fGhsuAGpQptMpbNtnhQC9vofeKzc0fpbsC6t+klrn9fL6tDFobZ/txGfE+5nP51BKxdLx3BDJPo1pVJ4b6DM6FosF2q7FcSdsjA7gQPlesCX31VPW6f2ksVIAj8aBBjvLMjhrJckxLPD9fo9p0C3QSNBg77dbWG5E3oumw/SpsLwObmhpVgfnrQiFfQDDcs1VVUU2kDVvzs7OInBPXbP0XOwVxFRrhtLIjjG0xcqlLNgH9N1TUxCltY7rm5/nXGWqdFmWeP/+vQCE4ISwTglBBp/FdDJFlhnkeYmu7eC1wfv37/H+/XvMpuLoTGczySpxDj5JIeYc0cH7Zv2VaCg8hX80UPydiGOrahLnwcXFJd5VFQ77dmAEvu3hnGg3uq7FZz/7GX7zN38TgIU2GvBDISfw2NDKOdzgtTHwSY12ulbiWUeMRXSygKB3GetB+mtJWTCZ78FTVsPwwikAlP4+XtMToO0pduYU49Kfvx+bVDMyNvzpkYIdYFjIcuhgACLM7ucQ9yzaidSp8MmY0MYSTAwZk8eMG+9hDDbSPWIMpPtxHQK49B4UAK8UvNf9v/l8/DcPo3wnsKGNialvRil4OxSyONtheX4eW7yTsSiKIuoyJpMJ7u/vMZvNsFwuo9CRBiYFFSzGhXCDNEaMN/NvPpDJZIL1eh1L16ZahK7rohaBAILeNA0zPT0OOCcFvejNZhPbf4+pNJ6PWoGiKPDw8BCNMY01gMjCsIDXeLFfXl7i9evX0Vhy8tHwU+xIQEIxLccwLUdNMR+/P70HeqLM/kkrppJt4EG2g2AgLaddVRXaUaEmTnRuNAzZcGy4GJgKnIbjyJ7w/GVZwjdDcV1aGpqLgwCDxsoYE2n4NHRFY07gRrbtYb2G0ioKl7vDQapU2h5Ua0Xvrd/M07BDumB5PalnIlkNGWzQ/SgtaZucm20rbeHrAJp8WHdxDSYUa8ocjr03ejt9jQgdqttOBpu/tTZWGk09JZNlgLVw4TysXZNSspyvDw8PkdGgI5ICgPQPgSBDcEr1tVPY5ZlrgnN6vV5juVzGNcl5wnvgJirsg8Xh0ADQgBd907Fp8Lu/87v4K3/lfwqFTLQyjYhV27YPV3G++kgP95s6r73rQjEvSIYP2cwsyzGbzcGy6Ofn56iqCY6H7Unv+/GhMGQ1+BnEv1+/eYmmOaCaVFDewHvzyONNgQWvmQDimzAaA2CU/K20jmDXAxEAW++h9DA0yPNyr01DaRoAvBsYPM679Lr4d+pUpHN8HP5JxyBmJY3ACffydC6m85GfT8GE1hrGJYAiuSb+PgV2/Z7Qs7BpuJDfk4Y70jpR/F6CjVMhnrHzNAYg/J18twHQ26i0WznvlwDbORX7ncXz8PmrJAwTfvEVxM/g+NZgQ5BNX+NCFrYfpH1a2w1i6Tc3N3j+/Dk2m00EFPf393FDubu7w3K5jDUyyGzQ8LGMN8Whacyd18GQBxmBPM8xnU4jGKHnM2YCKDZMHyw3b2PMoFAZi0B57xMmp08H4pFSrARCAGL8muI3GgDeBzUs1JO8efMmAgeGXAgsUh0LJ+fl5WXsqpqCtjQjh6CNzck4rmmsnAuVAGS1WsUJRgNNoMHX0thnkfcdXmmgojfv+mJUZIfS5ngcz5SWJptThhg8F1dqALjZs84EQSfnLDUQAGIFWT4Tgqyu66TAmRJKmDQ9tIbJswiQNpuNbLIuhA6zvthT6n2kTA5BG8eI+hOOE9+/3W5jC3oEz2EynWKxWMTPc9y5sRD8MZ08zdhKtS4cM637Z8JrJnOQAp0UIKmwuZdlGQEu15D3Hvf396jrOq61FOjwD59BCgzIiFBT4Jz0BarrGmdnZ9E4sN4KwS61Vgxx8Z57YyGMw+FwQJ6VMQ34x//kx3j58iW+/+kvxQwyWIsiL8Q7txZaB+2PozHsa1M459DUTazXw/Hhenj+/HnQocle8OzZM3z6/U/x9s2Xcf8ge/PNDhGteu8BLbVS7u7f4937G3z00YcwmYZ3vTPC+Q4gjtMpaj4CKj/UEnGudl0HrxS00TA6acgYrgjewY6MDO2BR8/i8XVmyfQXwRokQ2DBuQgg7rHjlPc0VJ1me4zDDPzsmG0cMjkSBui1CyoC+NQYK6Vg2iG7krIDHEOeI4L1sI/StnDctdYDsXNq2NM6Ren+kQIhoK/dQ2eRz5zOxTjdXinp3VMUOZSWjJLCyJrUpgc0zluwRItSw+rFHK90jPndX3d8a7AhDyCUhA2vCZvRC8WyPMMnn36CJsTJqRNgCIEGjN41dRHf+973cHt7C6VUzJBI0SmrS3Jhc5Pqum5QaIvshHMuMhwEFaR1+X5u8qlQkg+cGwNZGf6b8W1uulrrgR6B3nm6aLgREiBwc6cegefnvRJ5EhxxwdEAkpo+Pz8fKPEJZjiJ03shDU4amo2+ZrNZNFTUKvC5ppM/DZ9xLvB+yUSkcft0YaQhE475WCiVxh3JdnDxlGUJBJCXZdmghwoXNRdEylbxWgisOE4EMXwfQRtDVM5JhtLt3Z2ECjITx6FpWuwPfbpYuja4Bvg3nyF/P/bCCMK4LqKh7jpkAaxTYDweK4KCaBy8HxQtoxYlBRyiqRpmqxCs393dRaYn1b7wSF/j2AHCxjB1feC9Jmsg/RydEBoLzmteD+tskEXkRs1nSHBNMS9BdCqQLooCh/0OWVZAa2G0rq6v8er1W7x58wbf//SXolYESqHt2oGxopdHtoKGuOukwV5VTZAZSbdVUIBXMNpgOplhuTiLBs4Yg2fPnkWglBqOIY09nENyEf2P2uiQPi37783NG3zwwTPAdfBuWCWSY5xq27iu0jDBqfmbGicPD4b80/ny1OF8HwJInzcwlN3y5njr6XnT9ZLeE39O30NAO/78qfF8+voFzKXX8dQ1sN4KAEmLDhVkadj5XjoEsiZV3C9j9lgCQlKnKWV205R9njfVZKSf476XZiymQvr4GQyBQ3oefh+/v6kbaKUxmVQoijIwHh7WdhICU4nItvgzrLNhsgw+IE1Ju0tKsgJ4/sELOCsG6OzsLDZTY1YKgNjGnKzFYrHAzc1NNKpsP08jyPDH9fV1DL8AiCmi1ILQ2yJlfnFxgZubm0EmCsVni8UCx+Mxdn4lIEn7r9zc3ODZs2fxOrnhppkwTBkk8MiyLOpPqLdgdg4FcmwV/+LFi5j6e3V1BWttrP5INE+B5nq9jl1pvfcRxJENur+/x7NnzyKwI6jiubiRs5z4dDrFw8ND/Llt23g+hnb4PFLPnROWBpKbNtmjLPWEfF9oLQWGvZfdi7woWKIHmQpLF4sFXr1+jcXZEg8PD/F5vn//PoZ70iqq9DaZCeO9j7H/1AugWJiLM8syWCfnOhwOOFsuYb3kl69jx1tRb4uH16+MU2BiEPtOxo/voYg1DSNogrqmieuMwItjlHo1NLZcW5yHKSigkTaGm/dwYyUjRrCRsh6y6hHrePD5UCux2WxiTxcaUm6CBJYcA64P3geB7t3dXXyGfC+9ptS745imwJxzgfPPWov9bov5fAbvFbQxOB4OuLu7A5TC7/zO7+Cf+82/FPrdIM4RWSP9huychzEipuV48B5MCBmoJMRijGR/SRPELD7fTz7+FJeXl3j79m1cF1EgfOpIX44RDIY5PKyz+Oyzn+JXfvVHMLBAkn7NP5zPKSPz1PelLFT6GWgVs5B8eP4uerUjkAQPZ4Pj6R2cdcJeMOExzZbkv9VpDj4Fq7yvFMTyGvneMWvD19Pz8TNjYMIxTUHScLzTow+blGWFoxanjOLrdP7366T/NJmM9HmkWo702smCcV9Nj5QZTPdPficdYjKJAnBaGM/P9GGoLDMoyyqOT9PUADyM0ijzIur2AI+2k6aHzoXKylkGrYb1Ur7q+PZhFBmNuKiLTBoxdQjdNsPmqY3EQ9+9exf7YUwmEic+Ho9YrVYxTY6Db4yJm9b5+XmMo3MTJhPA9uuHwyGCBL6foIYq9vV6jbOzs6ibYDEkAo6yLGM7e3ZlTetafPrpp7FmB6+NGzg9L7YEJ6VMo6a1jqCDNUL2+z3Oz8+xWq1grY2N55SStDamWtJgdJ30uAB62ozpsEqp2En1eDzi/PwcDw8PmM1m8W8yHARavC8aKIIvxtkBRPEs2R4uvFSHQrBF0NEzP1XMsODC4FhwQyNDxHAC51LqPTIWzwXEOiE20OwsiMYxj8Wtgq7m4uIiAhofGBFuwlz0DPOk3qZzDnmR9ynCWSaVRJu+tXuW58jzDk1nBylw4w0hvf6Ubh1veGk1WepUOB7T+TzOiRRskMXjvaehKqa7knGiZknuzwZ6tN+003AYAQIZq3gvYQPkeqWgl6wGn2Ua5krBQqr74VwikE51PNwj6Fyw6msqUKaGh0XAGKrkvC3LEq4swDb093d3mE4F1Fw/e4Hf+Z3fxb/xV19hdXERwY7zLuoPnGOaOGPpFgxlCFjtYmhz7Jkyk8loFnHLcHZ2hqurK7x79y4C3RRwnthhk8PHPz1b6fDy1Zd4eLjF+XIBJIwC/6RFBlNDNNYVpSzBaAIDSsELaQNAskzSMt3jw3kFF0Sijn1emOHgeR70hcWSu+V85F7BPXEMLlIAzCMFWON7Se/x1HXLft5rK9JwTeq9y3v7Z9O2LVrdtwng95C54Hmok+CflMlK2dixzoKMLud7+tz4Pu4Z/B0BLPfndE4oJcU3tZaGgWWZRxuSOnZKyVwrsgxVWcW9yXuPwlp4Xw2uMV3XX3d8+zAK+loGaUVD3rDRGnlRYP2wxnK5GGR+bDYbTCYTXF5KI7arq6uoF2CRr/Pzc6zX67i5sKeH0Qab7QbPnj3D+/fvY3VO0qdsR86wANX119fXePnyZaQxjTHSdTJ4cLx2evnPnj3Dw8NDpO7fvn0br5esBzc6sjNkA1KDmsbYUuorLQVOfQknBJEs49ha6xiySdNux5QZgMisEHRdXl5GipqTmuNM4MVQFQFb13VxDK2VipI8Bzcqekw0xhxTalBs16HI8oEXkTIVDCF1XRc9Yy5WxmhT4JHSlHVdIyslW4bhKAoq02JkbdvizZs30fhyE6D3wWeSsiFkgah3IdCq61rSIoNh77oORocmbp2Dj+7aaRU8j37zeSx+47NM75lA6uzsLAK0+XwejT1TtK21MezFcUizl9JwlbAZGGQV0KinKal8bgPxGIBqMokZT2T5CDRSA5ECzdRrTqlixrEBxPWUMjK8xzQcxN+nabZkzMhUvnv3LqyZI7q2wWQykxBf26I9HLBYrnCsG/zJn/wJ/icffhjXOVsPSOMsH8O0Td2hbZvBc5IU4SaAEA0pCgVIN1mpOcGKsXmWoywrvHjxAj/96U9xPNZgJtCp4MJjsIF+LJ2DMhpaKdzf3+Hm5i0uzpZgzxg+87GHnRrDVIOQGkgCYj4PpUPFTP/YYD8JNqChn2AaxkcE3ImBTedf+rnUYA7CAqPvGf/u1HWP1yV/P77OMUB2zqFLWYq2hS98XJucG6kjIeMuGoenmAw6VwTfNOKp48DQfwpk0usfM5HjzBjZGzMo7ZHn2aD+EEPwZBwnYY0bpVEETVW/t7JImKxnATX5k894fHy3MIrRMJlsel3dwFuhXzrboSwlRnp+topaATZV+/jjj2ONh6urK7x9+1aYi2ONrmmlOdu9eLAewPZhg7PVmRgva1FmBd6+eRtrXmwaSdVUkNTR3XYXKWeTGRR5gZubd5hOxaDMZnMohWikJHwj+obtdoMXLz7AmzevURRlNEas90EAw4mwXm8wmVS4v78XGro+YjadwbrAJDQ14GXCtYFFICVFcR03z/v7++gRkRmZz+fw3sdS56nqPoasVC+O3G0l7fTu9g6L5QJGa+zqGqvVOWyYHLPZDNvAxDRNg6oscXlxiZt3N9BKdBz78N35dIq3NzdSHRHDmDsNARcNvU/nnJSrrod6BussjDaoqenw8j7rXOgrkUtnSyvVMCfTCRQUdvsd8izHNAhXp7MZ9ocDjvUR8/kcWuvIENnOoq6PUkLZSX3ttG5EGiPlRkBWJHoUWqOaTHCoBfDtApCNjEcASbbrYit17cRoSEjFRyOjgmcYn9nIs0nHM/WEuMG1tpUsh0Iqf87ULBhZhaZpA3Xp4sKXr/dxgyIgSI2JbO4AjAGMgeta1LbD8RgqkrbULTh0nYK1HQDJMvDOoZqIp7MnM7jbYRcExwibrlIaUH2hIhXADQ2XDiXArfOYTPqMLgqWX79+jevr6zhHuXlzM+RGynsjQJ9MJhFw3N7eBuBVoG66YBA6TCYzvHz5Cs+ev8Dv//7v4a/8lX8Fx5A62+YZlHPQ2qHrWNmRRdUcjHERgNRNC2tdMNAqhpi0ArJMIwntI8ty5GaOqw8+xvL8j7HeHsLvH4ONWJlReUg6q4tvMSpUPNXSCaU91rh5/Ra/8oMfhDEf9qjgnAMQx94lhlAFpoYhD+ssDIZZFd5JfQzvZT1ZKx1ynzItSgHKhVoaXkp8q3D9irerAJ0wH1qH8JooFuUNqmc+vPcSkgEGwDnVePHfKVBJmdixrmMcMmGVzx7oyYWKEZd5YK0dgo0EoKVAnYafjEXbWnRdi67jXl0k5QU8+s7BEpoo8gIqijIVtMphDJBlCmz8J/fF/UMjM2wj4NA2LcpSGAdtjLQq0BraKCDsu5EhrBt0tpPPm75SaWYyONtCA5hUJcqqgjEa3nl0UbMhQDrLU2fmq4/vkI0CZLls3M528jDgYTIlG8i0wmq1RH3s23Wv12usVivc39/HfiebzSaGLaqihILGcXfAfDLHfrPHfD7H6uwcx/0BeVagPh7hOofZZIb62ITCMJLW5iwHuYKzFqYy2B32KAwwmUyxXq+jl+69R1lO4BziJiSbpACI5XKV1ARQaFuLyWSGrnOoKgnRvH8v5bM7Z1FVJeqDiDWL0MEyba/ubAdtNIrAItC40EOiIp8bJxtk0UhSh0Ijst1u40ZLqny/36PMc3RNg0lZYlKE8E5RAs6hMBlgHY67PYzS6LoWZZbjuD9gUlaYT6ZSOj7Q5et7KZx2dX4hzdCKfOAJEXWT6UizGLSW+ZB6uV4peN33k5HXEFkEb2kQWujMoA5Us8lzHJsGXitU0wnqusHZYgHXdbBNC1gH7WVD3x5rzCbi0aOaBDBZAAqxmFSqP0kZGhcMqTzPCvZ4xCboi1hK3FsHow2KLMexs6jKEpNqisPxgMP+ACBoMbhdeR+BpzYa2g5ZLtLpqadFo8rNFhmQVxnmwet3roPrgLreozke4LoWzfEQNx2OYaq7IFCNmy48OgcYDTSdQ9N06LxH6xy88uh8BzgH69jcKgjjlMbZ+TlM6BFi4XFsalgv3raDh9caxkgopWtFSJmZDHlQvDvnkGsDaKr++5LzAGIo7u7uLgJBsp+p8JrrJU3hTmtylGUlBrlzARR0UDCo2w4GGtoDv/8PfxevXn6BTz75FLv9HuJkU38Rn2IwcCaOr1JSqt51FrZroUIpca0NtAZm0wrOdYA3ABSKskCmFlhcfoCrDz/B51++gvUtlGcDtcfhCyUt5AAW9AAAb2HgoUmhZxlu3rxFXTfIypDW7/qQnYAWskSBSUPaudTH31knBZyMNtBZFtNaU0Gk8w7eAd56SYfGULwY32elsJcCoBIb5AMoIBj3zqPzHhps2knWIawJraNGxKHXMZDRSkNCqUA8vR7OeQADTcRYN9GvQwIRuWatpUilUg5ta+GS9BudsChpRgnnMfVT4uSIg869U4ZAbA+fV56bMP+AzGgoWLSNjfNXHFMgMwJKsqxEWQioYMiu7TrYLhN7UxRR2Gk7Csg1FDxs28B5h7LIMDElrO2Q5xkmZSFZZ0pBFxWMUTC5gdcOTgHQYe9Xo5o+f1ZgA0BAai26IAZsmjrGms+WIvpcLRYx9DCfz3F7exszFqi/YAhEK4O2aTGZTLHbSyzeK6BualTTSYipeuRlgc5awEj2i/UOvutiOKcJnrAPCE5lBrv9HtVkAuclHvzm7VtMppOA1gLCYzzYObx9+RJVWUbvLaW6ma653mxiuKLtJCNAPO4a3UDRLuldTI00eYa67QtxKa2xO4gA9uLiAm3TYL1Z4+LiEpPpBJv1JorOdrvdQJV/dnYWW67P53O0xzqmDDKUxLAV+8qMq5ReXV1FTQl1LSzo1LYt3r59i9VqheliHoW6Kc3NjB4u2vl8HossjVO1GMJhtgxZojQm34uWsqhnub6+jmXMJ1UVi0lxDNmkizoepk2vVis0XYf9YR+pRdKRLFWd6jiatsV0NsN6s5GOsOH6GS9NjeJkMhXqPPTdsKGroxYufVDGn2OVmWEthHFMmBtRURRwcJgWU2gj2TF58Oi7to39e6xj75IO3inkVSrmkvNPJpNIgUZWJXi8x/0ebZgrbdcF48IaFUmlS2hY57BcLnF+fh6ZPZbb53fxhsVo62ioGKIC0IuVrUNWSKMyGsI0xsxMK7KU/B2ZDeqebm5uBqnDZEKMyeB8qGacZ2J3Q2GlaTXB8Shzeb/boz4e4eFR5CVa20UxujgECM8kw7DCZPOoZ5L3LojyREzH8NpkWmGq51guV/jgw4/wu0qa25ng2T+mCfjiEIRE3U9gJIw2WK+lxP3ZxWowt9JwJz+bhhRSgEujAQzr16Tn45GGx9JjHB5EEh4ZMwoKwxb3aYZFD/YeZ52khenSfSW9xzRsNw73pJ8Zhzt4bSmrAwyLVxJ4xzF2ouXh59J9MdXlcN6mafC8HmqTUkZEgdo8FUPYZEBMliHLTdQGCXuEZH0YOCfjNO5aLmMs2iNlDIwpQp0lqTGTZTmqqgCdC16nDixlZrIgLA3hHy3gNMuG5e+/6vjOLeZppKtpGYV5VVVhvlhAa403b9/ggw8+xP3dHd69e4fFcon7+zucr86xPxwwBTAJQMIqD5NnWO+FKl8/PKCaTdE4i+NWQiVNfYRqLRZnZ9jutmi7VjZFKVsHk2U4HI5oraDAoiyhbIfdYY9uKxU8D4FRmRymcFYo0APFddoIDdW2KItC6EKlYNsuAgSEDay1He7XD4AWQMRQzm6/E2MdcvSVUoHiKpAZAyiFObNoguYhKwp0zuF9yNhZrFY4NjU2N2vMQ/Gy29vbSHHRU727uxtk9uQmw+F4xGw+C9Rvh+l8hrppUE0maNoGSsvm21mLsijw5u1bnJ+fA3WN7XaDq+tr3Ny8RVmWEsrywHr9EFkJLuQ07sjJTHBAcS0UgwtCizrvsNvvMZ/PsNvvUZYCVExmhMrLc5SlZLVkSjrdTqZT1AHITkKIZ7VcBk9UPDK2ij8cj5hMKjRNi2oywWa7RTWdBCarT1dmnJ8HN9vOWXQh5Mfsl8jUuL4AHBmormvhgzrdaBMBxyDe7If6jFNZAgDiOMY01SyHU1I+e7fbomb3YpOhTQSkh/0e3jlkxSR6bvx+Ao3U6JBRaq3oNLq2jS3Hwev2PhoLpaRgXxb6xhyPx1iHZb/fPxI70mjwXsbxcOp7KGDL8iyAsGHxJFLF7G3CP9RpzWYzvHnzJqZv8xlyUxWK3Yl+whhJG1WiQ9jvd3h2/Qz7/RF/7+/9Pbx48QJ5iEt3ri+u5EK4QMZPNmA6J3Wo5cLrpUcsazQY5DDmRVFgXs1RTSa4vr6Wfj/7Fq6Tgojf9Eg1FZwzDw8PUhn5/Czqczg3xhqOFHCMjWrKWqYp62NtQ/rzIxCh1Mn3pOcaz9H0SN87/j4+Uxpy3sMwFNJf+ziFmeNw6rqB3linYIt/DwWj/fXaTrq+cs2m45yWZSAwSHUS3EMY9kz308yQ4VDRmZNsmQJl1YfS8zwHQngrTWdO9xQe8dx5Fue20UZYtyxDWRWBXQl1cBAYKN9nZhEwca9KmY0/U7ARkV/wQrNwY1ILATgcj7i8usLD+gHbvWShbHdbLM/OsN4K7VlNJ2i7DtqY0OvFYbKY41jXWKzOcHMnBjbPMrx/uEfXtijKEs39XWQTEDZHhkPqum9Rr/Y7tMFzffX6Na6uroSerSZQRkoX50UuYYksQ5bnURjqnUeWh4qkIYXLWgutVKQQxXBZlFWB/VEqTOZFgfuHB/F60HtCHCOtNDbbTSy17jqgPUhopSxLNF2Hw/0dJlWFyWwatRFU7FOQCUhlQqb7eu8BrVBUJd6FfjLOuZihYq2FNgZ12+D6+TO8fv0ah+MR0/kM6wDmliE7aBpKyR9Dtg9FuFQej3P2uXiZIXMInmLvVfhYLGk2l/LQRVngGBgOaj6yLMM6dOV13iEvRRMwmVTQmcH+sMdsMcd6u0U5qSKzsgvjZ4zBPtR0adsWk9k0pkEzQ4WLhAJkLpKu6wDdF6ej187iX7PZDHd3d3GRG5PBOuB4bOIiJ/U7kM6pfiOOnukJijf1fJxz0OjZDqV1ZHPm01nMpjpsd+isRTWZICsmvYEMRm82mz3y5uRp4JG6HZBKkM4NiyIBQtcz5ZUgjWHGFEj0xuvpughMec2yDHXTIDM6ZFf2QINhOQpXU8+Wm29d15jP5zHri8+Q4DDLMsCHomuBOlYQ3UBZFliv16iqCn/4h/8ENzc3+OT734+hK+eGzcLgVWC2TNT9tElBQz5oerDJJhl/nEyk9XxVVlgsl2iOm+E8+Q6Hcw5t1+Ht27f4/i/9wmC8OY/4vrGhHXv1p4DG+Pmlzzg93/DZD8Wc6ZG+nq6D9HepkR+DjZQJOMV+0AlKPzsGD+Nzp8zD+PccNxrTLMuQVjFjVk46Jum4kB1jiJkMBg9qxmgfUpsqYVCDySQP3wFkWWDYvIt7SRaAbnrtvOaULSHoUbpnhpgOn4aXGGZWKmhooMK872tzpEBVwEYWAfbXHd8JbEREpns6lTS60gqTcoa3b94hL3IsFyIUzYzGbnfA82cvcHPzDpv1Dk1TY3c4YHm+wl2oKHrz9gZVVcIDONQi5BRPdYP9m9eYLxZoui7Sn1LbQ6FuaqlPYGXTtM6ha/qUyjdv30aK9P7hHh6iKM7zHIfwc1oO+tjUEh/lwuWEDZPGB6+cjbp0CBHZzImwLniH1lo0gRIushxtYFsewoaXF3mg8ZvY6yKzGbQHtFexWBpFf+yEutvt8PHHH8cNl5vws2fP8ObNGywWCyyXy0j3brdbzOdz/Mmf/AnOz8+j1mM6ncZqmimwoKEG8AjJphkeKau12+1QBKOe0uIEBgxDsROuFKXqMJ1MUddHnC1XoDBLqwxlMUFnO+x3e1xdXePNmzdYnS0GMXz2vTHG4Pz8HIfDIVZo5UKfz+exuNzhcIhjxHFt2xZFlsMDsb09r5tlzq3ty3kLmDQhXKDFKDlEcBCP6BFJ2hk9mv7XvdcVMzHg4VsPr/sNm+G87XaL4/GI/W4H5YHVaiVhhLqLm0waOkkPfkfnLI5NHb+fm2bHomIJ9SweZJ/mzXASU4bHm7msl9FrI2qe9VtUKLSl4AdzSxyHNs7n1WoV/wb6VvLUO/FavPex3PxmsxZNzaREpiWdj/H3rutweXUN2zl88cXnohUwfREzoDeIEjoRbQnngPc+0hapkY3UttKD/YIs02IxDyHPGd68DC0A3DcrhsTzc06mWW9v376Jxc5o5Hit6XM4dXwdm5A+N5XM5fFxigFJjXrq9ac1V1JGJX3vGMhordGGQpI8B/ekNAw5BhFj0DK+5pSBG18/P5+Cm5Qt4MHrJbhLnxPDObQ71FKlGVVpZgrfSwDEUKTW4uQUZZ9xpzUrmPhHz4XMDwEFv8P5HqyRZeEfoA8byfmk505/HSoZG4YlCUIej8up4ztVEKXxSNNHOdBt26LIC1ShUVLTtjgea8znMyht8OWr18hMhn0wmF1ncffZZ5hMp/jyyy+leNVmPVAZ26Aub9sW9+s1fCgwAgCubQEtFGlZlpJf3ok4LS8KZDpHFii46XQaGRIaSKbOqVAILHrqdQ0VHkoqJOLDsl2HztvY00JDBI3OWihj4AObwInhnROdSxCRZlkWwwu8T/6xXYcqL9Ae6kHX20XQwVxeXqJpGnzxxRdYLpf48ssv8ez5MxRFgVevXyMLIIjPq2kaFHmOtzdvMZ8vsN3tsA0MU33Pbq4eN+/eYT6fwXmHoiyDXr4vxcyUynTRsTz4dDqVbrbbDZzzsTAVmZAm1NbY7fehg6vUKehai7aTZ7HdC5Oy3e8xqUSzUlYlprM53r2/xdn5CvvdJhR7O2CxmOPLL79EURbQIdslz3Nsd1uYzOBwOOJsuYT3ffofS6Rz/qaejbXyPJVSkdVYLpex+ReNeVVNsNsd0LQ2AoG6qdF23Yloe59GN1bPp/QnDZlSCk4JkDXawLYyzw+HA9q6BqBQViLqZbrooe7z/ePG4voUYl5D1wnQdfCRFSRrEa8t2Wx5jvOLiwjUAMQQwmnPdqj25yZNA8lmh1Jwy8f1x/Aga7eQRSJTyWfI8VNKRX0QNR58xlppGO3hOtF8hQFHWRa4f9jg7u4Ws9kc+/0Rv//7/wi/+IMfwrbDXi9jdmbwsx9647x/Mfh9yW4+E2Ga5iirEkVRIi9y2bdwQrKRfBfPfcoYeu+hjcbt7e0AbHDMCTo49vxdyjo8ZqUeg4R0rvJcBGZpKHB8neOxS5mT1Ds+Fd4Ygx7vPeD6bK0U4KX3lT6LFITE8RoxKinYfwScdd/P6dT9PMX6pCCcoC9N/eb6JBPD38ewo7WDGkN8vzE6sgwR2AYBcco40KFJWY0I5DUerUn+zPnbz3EyG8M+S2Q307DKNz2+A7MhIjBSigYJ0goXf3d/j9zkUQTqnMPxTkIhHNy2lZ4nh8MBWZHhPjRx6lgEKCAv0qP0uDwAKKCoKompliWyZJM6X61kEMJgZEo/mpxFUWAfjB5j8dZKhsEhlK3m+ej5RkOQ0GXOW3iFAYXNnGkTQEjXtgKMtI4hH++lHPVutxODB4U2aCoUBDWWJkNVlJFCXywWUfh5c3MTJ8f79+8BAG/evhVDG5gmTmyyFv3kvYnPi9lCXddFFuN9KBdfVZUUk2ohXn+49nGTLXaX3QcdReekeZcNY0JR5maziQuAC3J/OKDIKzgn4t1qMsHNOwkDvb15J1kGQaPgnMP9+h6TskDdvIFSCvcP92jbNmo4OAdjbNg6HEMX3f1+Hz1zFoPj/JIxsDB5FsNkLCJ2e3srwsLQ2fTm5gabzRZQojBn6d6+aRfi9XKxnvLATm10NO7wQOcliwlAjAErqBiCm5RVVMRnJkOnbWzsd3FxEcv0U1DJ6qBt20r2SJiDKQF6ygnMsiy2cecGnHpzfL03CsPNlq9Tb8RxqGvpKKuVH9TRYONA1ubx3uP8/BxKSfiLgmCyeb2IDtFjM0ZjUuV4fnWOyXSG7U7KljunMZ2WaBrJ7NFG44//5I8EABVVYlApXnToWgtr/eA7e2MrjElKK4tWZFjngNdVFKLdmk2nuHu/Qab1Y7ShJBslXbNjcJCGcLbbbexsPTbWvKZxdcuxUUyPNITA7x7T8SlrMp7P43+PjX8KTsbnSK97/B6TOGPch08BQs4DajzSMTzFTowB0nhOD/QtSeyL15N+5/i7TjE+aRVRzvkUHFRlGY14nrPSboYs0zG7h/OJ4UF+Nh2bsb5HUmETPZFSsn9oHe7FIC/y4OxKh2F4DJ5dek8EG3JPf4blyoFQMMhkgHMRxdd1HepoeNSqwXqziVkUdV2jaZuQR6zipqK1hray8TAtKwuLnoidtH2e5yhD6CEPHiW9IpbW5r/JJsB5tIGasp2VjWg6xXKxiN4tvNCzk+kEV1dXuLy8FG9WKRSBLcnzHJmRrIXD/iC9FFyHopSN0lkXBaab9Qaz+SyWZ2fr9uYYOozWdYhZG6knst1ishD9QttIpgFrRRCYxaZR6CuIZlmG/WEvlJdCvB++l5OZEzAtbMbzcPOkl596kQQcuZGMovv7+wgSGVtv2zY+Yx8S9lorGQ7ptfNZpzoF2QCBSTXFbdBEzGazAdDjYa1F19TIjEIemqKlFCfvM91wjRYVNd/rvRehLBQ++OCDKHpUSkldlqKImUnccOfzOYBep6C1xnw+w3Z7hLV9b4Esy6C8ltLmkSEYFrI6tZmm4QMglHtGiPE6hUybWOlPK40iGOC6ruGCp1GUJdrAPFHvkOd5LJB3e3uL7Xbbe9+SEgAXNpx+o+pZmaj/KItBOXr+nRqtwQYbNjlumPSIUpApY0Eg6Aft5GkgYr2RMF8JlJbLJe7v7+N+kNabIUtSVSWur5aYVhk+/OAZnj9/gd/9vX+E7e6APMvgvayHalLhD//wD/H69St89Mn3A3iQZ8laBpKuPYnX432faZKmhuqR8UkPDzFOItLLkeeyZ5xEd9/ycM7jpz/9KT766KO4dknTj+fXKS+c99RrrJ5irHoGYQxG0nnwFAvD86W/G7MovPYUrABPsz8pGOL5U0CSfvdTzya9Fr5vbLzT7+Khk/1pvBbSI/1dep9pgS46QbRZZC4I0MtSAIfSw+dUlmUMz6bPazKZDK5d7ofrEeAq9557kAios5CKbjTvQUVnSq5bwVrapBrOHSKr+Au/8OTwxuM7ZqOEDSQzgBVdgbUWDw8PuL+/F+PnFeqmES2EZgpRi7puYLSoxeWGPbwVQWaV58hMBpPJg5xcXqGqSiAYE60FKDjnImXedS3yLMOkrOCchXNS1102ZcC1HWDE0GbGoAgpQfWxhlLAtJpgwm6iwRjWof5EURQ4Hg7QUKiKErbrQr0FjWIyRVEWgBLaSmUyAeu6xvnZSgBBXsBog+uLSzRNC2ulumYeUgDpsbZti6osQ9Edh0k1EXrb9hNzXMaa1RtpDPfHA0xgdLSR7Ig8Cw3o8hz73U5aaYd/H45HILA4Simst1sJHameAs4CBTwpesEeWQIuRmo2oueiAAcvQtFkMxrTn/K6AZkyWajA8VgHXYMfLGAx7A6Z9vB7qdypMDR2RVHIvQdvQXlJEaQBkRBIFTcTbpxa3FMBREEHcH5+jtvbW1xfX0eRLg020Ke+xfBDsNRjD60PjfX0fzoGXAM8nHNpCwb5PK+16ylZ6D5NzivZeK6vr+G9x8PDQxRE393dYbvd9t6oAnQW6Nuug0OSThj3GAmxmCzD2fIsNlBMr2m8iQKAQp82yzFPPUWyfoDoJ5quA7yDMXaQhszQA+c+u8mSiSSITqs2DjZWrfHu7Vvkz84Bb/HpJx/jX/yX/xX8H/8P/ycc11tY69F2DmeTKe7ubvH+/S0+/v4vomv7qrwsV65D+EVrE1kUKXQ19PT6Z32ip4b3vR4ry1BWkplg28fN/L7tYYzG69evB+wknQmCDZ0YpHG4gXNubEzHjAOfReqQpPOBrz/1+VNe/ql/872PxveJ96f3eYpReIr9GB/pPE2BxhgUpfc81nukgGbM4qTMx6nx5/fb4KR1XYu2nYb3O1ibIS/6rDWGWtLv5fzi3xwTCjnlcjSXd7h2ccqgQsaWIpvaom2bKCYnA8Owefpz0zT4rd/6V79yfIF/BoFo27bi6Qev2FqblC42UfskqCjkKSuhCPO8wHI5CUI8h8V8hrLIh8ViPNAFoWXXWWgolHmBqpBMBqM1ppMJnC1QlGVUqmstpY+Zf2/rBvWh77IKALZpcQghjLIsRdnfdbGSJ9uyv3n5CtvtFh9++CF8aXHz5i3W63WIOc+h/BSb3RYP9/coyhLnqxWgFB7u7qUYVqBO57MX2G62aI5HbLqu759gDFxn0dY1lrN5TE3yQbA3m/YN0abTKbquw2q1wna7hdYal5eXOBwOQo9pqYdAZoNeOfUJ6/U6ijIJDPlvjluaOpjS/hmGnTpnISXXWun5wrTXLMswmU1x+/AA5/v+DNQrpKWSZYMDFEz0XpXq9QA8f7qg8zyH0QJadQAw3CiNMTEDIC8KlFUF7T0m1SQuTKafUaTKawOCobRSzZTFoj744IOYYsnnTuAjYZi6z5gI6ZrWOZnnJ6jNlFJON8Z0kxKwF9JkM6E2cyNzVyesoup1inAwWC7P4nmqqsL79+/x7t07HEIYicbeK0AjMClhc2NozPPaA+DMsgyLkMpOdoFGPlW9Jxcfn0XqbdJ7I1sm4bUa3jt4Z+Fcz3aR0UoLOBHopPqgLMtiXRWCXY5x27XoDnv88R89YDadYL2+x7/5F34D/9q/9j/D//n/8u8jy0tYK0JUKOCPf/on+Mv/wr+Ipu3Bi6wJJdVTw35H0EPBt0oMyNijHrMWfN0Y2bcm0wm2D38aYMNgs9nEzDTOqVOhjjGDweMU85C+Pv5c6sGn9z0WpaahjqeOMXNw6lqUUiG8/Pj6xozCmKVIr+ep7+cc5Wd4vjS8+Wh8Rt8zBjqpTmPMeIyBV8p6muDAdSHjsm3bkI2YYTqrYhq/nLfvr5KyTmm5856pyWG0CJgR7pckgTAVLIfuwnfXqJtjaGUgwKNp2lBTS1L/5XMduu7PqMV8GGd0nXjOWpu+LG6skihV+OQmBS3leYaqEoAh9derOEhFlkEjSb9SSqqghU2HIQMP8cwWi2UwElJDobMWm/Ua9VFQVnM8RurXNh32wbNj07Ku67DZbAAAz549k1LMZYksxMystZLt4hxm0yngPd6/ewfbdThbLoWmMgZ1fYDyHov5PMTQgPp4xO27d8I+NA2W8zk2Dw/YrTfYhYyQSVlBeWC73kRauj4e0TY6llLvug7lR2Ic9/t9bKn+5s2b2C/j4eFBPL3M4PzyMlLRAJBnGWbTKXb7fUzVowiPGhTvpSJhNZ3CWYsiz6MHViYsgXI+NppLU0apI6EhY3Mqxs3hPfb7AzpIpVmj5XkzKm1Mhq5zA9ZDqPEuerFSe1/mXJ4btM0Rk6qKQk6tVKQ0GX6LbIo2eBZqGzDUQ1DKeaC1pJpZ7yR1NfRu0VpHXQ+9blKU1krlzTzPUNdMTQibmnNAYCNS+voUhZ2CjbgZKanbkYV4rVHiiWQmE4CjpFy5a0MpcaVh8jKm0e33e+z3e+x2uwgICCQBoCxKIHR9hHNoU6GfDwhGKSjflz5no7P9fh8Nbuo1pwdZrNS7FiBAASyk0BaAPDOwYVNNQReFavxudualqJuASBTyTNUTYiYzOtS0mWByVuD9zRt0bY1/8uM/wA9/+Yco8gxeSR2D4+GAajLF7//e7+Pf/t/YECrru79mRkIe0ia8jUDLxjotvRx47FEnIyL3DYQOvhplWaEqJ9jg4emaXt/k8L3jd3Nzgw8//PCRaDM1dqdCHPyZxjV975h5G/+dPvPxPDj1ntSTH8/71Lk59bnxkDwVmknDMal2IxUWj4/0OtJ7HgOB9MGkqa9jfQfvkecbn4dz+9H1J8+O4W0JmReoqhJtN4ll/MuyRJHnmIVCftJl2EcRe5aFPRjEvQp13QKQtSjMRAAVdY1jsJ0EFV3XoG3l9TYU8OzLpbeD+eH802AuPb5jnQ2DPJcWzM556XDspWSxCv7XZFrGuNOkqrBarST7I+QeH/Z7aCMbS308YLlYIM/z2DGW04vGuLMiHmu7DlohVtWUssYInhKw36xhlEdbH+E9UB+OqKoSWSab33QqdRfOzhaYTISmKoIwZjqt0HUWh8Meq9UKs9kE0+ksTirJCJlHNsBlOZaLJdq2QVVNsH54QJHl+OiDD/tOlZmB7SzOz89xuTqXQc8yVGWJWfj+qipR1yKkvDhb4dbdIg/UNTd30v/e+yi6ZF8I76Xvy2G3x+Gwx4ysiZXCQc5J+anjbo+66bu7Hg9HyfYIYaRXL1/BefHai9UKznvst7uYsZBqQsierFar2JyL1zYpS1jnMJtIc7vdbofcZDAqFJzRGkrlcN6HfG6EmgYyv/JMwkxlkVCFRqFrG2RaIzdGyupqHRvKGWMi8MjzHHmWo22buBkbY6LRJNiqKultY60FWFo8hKjY0ZTgbDKZwDmHN2/eYLlcog4AzqOD8/JH+pV4AFKbhd6YbEQSLxXywIeNQMfXAvGH3IRNQgHoPBor95DnOSaVF7YjL5BVU2SZQVO3MfrRddIhmFkj3BC40RZFgSLPUTfHwOw4KOWhnJUMLi+OApw0FZtO5siyDJvtNhqxNGsm1TEAgLUS4tBGAXDobAdjMhRlBud02C+kZoAxGpkuY5Eyskxj75CUsLUWymRorIU7yiY4n82QKY+7d+8wnRQwxiNHi4v5AsYDBg280viHf/+/xYvrZ3j+wfdQ5Rlgcmz3NbJMWIt3b29wd/se2mTIMoPtdg/vAGNy1LWEgQHAOWnVrTTrG/jkj0VRGHhYCbNw4npAeY+yyIL2q4DSGSbTBfLiAceDZOcoeHhnYUw/5x/vu489e9c56MzgzatXqH/5RxFYRs1MCG1554UNU0OxfM8yDrUTY1biqVCC9326LZSHzjS0Twws2PHFxZ+gZT2LiF6ujfoFbRKjrQDvHZz1cS35J8AHgCiW9G7IRDzF3DxioXyvL9Jax9IH0OI4mVSjoxDfE/U6wSviuBrda9TU6Dp0Ms9T5kl0QDKnxK4dYW0HG4pVHssG1aTBJLSQF62cwny+wGRSBRZXobMdjk2DLvZmcTge2sgU0oY0bYsmVhJuYTspG9E2R3S2TjQakr7b1A2UZsfX4Ag+yr87fXwngWieF1AADvs99vsDnEevD8gyzOdTXFyughcYiojkGiZTaLsOx2MHpYHlUspbT6dCK3rvcTj2GyWbtjknNSGurq6g4KG9wk/+6I9jme6zszOUmXjts5DOSvHixdmZVF8MtCtTOOmd1XUDKfPqYqv46+trvHv3LjZhe/78Od6+fYvpdBK7m+73e5ydnaFtWyzmC7x69SqelxTwZDKJoaXpdArbtNGIpbVJJA7sUITJc3V5he1+F8MVLEPOniksOLXdbnF1dSUKfa1xtlzi+bNnePXqlTTJ0RpOG6gcwlpojTzLsD8cUBYFlvOFCEfLCpvNBh9+8EHMZPHOw4ZwxSwpLz6ZTOI1p1VFl8slVqtVDNMwhDMpSvgrH2uDsG/CbrcTUWam0VoXYvdaGLPYy6MLxljamWuVoTB9FdWiKGJdiXSDzEwm97nbAV7SRhkKiPUsfF94J9l94txzzkV2hTVEFosFvve97+Hh4QFZpuEh12wyBWOlr4GNNKVF26lQBlwM7ZBK1UiF8f3GE4CHA6x3UdtklcNhf0RxdoZJWYRr98hDETKKfVnNlZsXDUGvHG8CuJCNp7M21nLh98OLCLJpGrx//z6KfSn45ZxMw0MyvqSuHbQxKEKfFOf8oP+PjIMDoGML6/Q6x/S1CULqcjKFbKRW2g2EKoqLxQLeNZhkGZRr8dGzS2jUKDKF+4cHVGWBn3/2U5STKS7Pz7A7dmhaJ6wRgM1mjd1ui4urK3SttFJoatszuDk9RAfvWaVSwixQHsYAWZ4jy0WDlFpCrQzKPEfbaHRtC6MNlMpgshJFORFgqBDZPhmXp9MJH3nmAdS+u3mHTQiVaho9F/qKuKe1B6dCDOl7xwY7/TnN9oASAKEUhCEMDKZ3LgFeDHsM02qVVjDKAEnoPX6voDV4L/cU734MHMJrCoAPhn8cnlQjA5/eT/p5HYBC/FzwBAahnSRnKN17IqDg+U4wXqfEqoJpVAI2el2F921kIw6HA/JdHsuR180cMl80mkbCGeziTD2FOKYd2tYO9j2GttNu2/J9oo/z6JMLyOopI85ClhloE/Qm/puVqPv2jdjCQAN+MLDe9ypt0T0I9QOU0TPLskzKY2MYz9tsNjGGztg4jUmeS+nq2WyGh4cH/OL3v4/j/oDvf//7UEpFIRlp1uvr60FzJsbnKbKkgZzNZlHHcHd3h6urK+x2O1xeXsaCUGkPBlaWZKGs1WoV27M/PDzEwlHL5XKQ3cG6Dof9HqvlWeziCiBem1IqquzZvZKTZjqdRjo/7TWz2+3i5l1VFRgr3263uLi4GHRiZfyQMXOGFQhavPcxhZV1PRCeaZnoYRjDp0AVQCxyxb4XpOuZOnp+fi5N4UJmC2uzRJClgGOY7CLELKOnQEahDTU6FADtEcEGPeHoFSU0MDMyWHuFCm+ek/OBXrOjYXbDFs0ptb/dbmODsCzL4LxHlhnkNkPXdtBaDBS3MS5SpRR8spFybFNamtctrJmEH9NNzDkXWQuOD7Mx0o0zZSA4PsO0TRt6KvRN2+I1ysWIFkEpKSAWOuDyXtJeKwASDUbf/+Ty8jJeL8eSn+U1AhJGK8JrLFE+ptN5/zmLrxUFvLPIcwEpm/UWRaZRHxtUpoSzDsuzM0wrhTLXOL+4wnZ/xM8++wwwJZQ26KwwDF0nxdzqpsbt7S0++Ogj1MctyqJEfdwN6HgBixxlXl/PEpDF7eP3/fN23uOwP4b28iJ+tVyH2w2866AzDal66gcNzL7+EGP28CB9UqbT6aBOw7hWBDtAp3MxnYN8/RQLMNYj8HPhKgbvOR1SwsnfPcWy8L1aGylh8BXneHStie4s1Q+l1zz+HoLmNPySHgOAgsdsz/je0/Olr58KPVIsr9Tj6+N6TkNEtAl1XaNru1gigfsa/xAkiLbCBufNPbr28bgDDkr3AIr7yDh7jnvUNzm+fVEveDRNXwxJRHuyoRhtcHV1hWfPrlCUJsaMuUHt9/tBQRgW5enqBgjMwjyk73ETs84JwGAsPVRt/PDDD2McnuEUGgJjjHjOpi9Ewz8SzxJKk4zBZdA7kDKvqipS7/z34XAIxaT2sfjQbDaTrrVVFXs0pKp9MjIAUJQl1ut19DC5OTsnTa6YK//+/Xu8ePECh/qILM/x7t07nJ2dRQN9OBxizQqlFC4vLyNIoa6DsW0KNFODewx6FhYrY2jBOReLRNFw0/ilmwDZAT6PPic8jynCBCZcbHz+BGL8XdM0KKsK+8MeTaixYl0faiGYa7sOVQAbu+1uML6sJJk2auLCJNCjXoU1X8iESKZBKAplu8HmTP0LG7txTlprcXV1hYeHBzR1AzgfPLawuXgAOogHvYIL7IRWw46UvH5uENzsZG1YONdvwATSSqmBhiGtE5MW8OH3KKWiqDcNfzCbIop2vbgJKtDGaQ59nvep5cwS4VwgECUISNdtnuex0R+fY1p5VinR1ACy+bLAHsNzaaxbNrosfj/DA1Lk7g5tCxidwQFQ2mC92+PXf+0v4uc//wlWF+c4djd4f3OL27t7tF0XQjkZtvsjihCa+vnnn+PXf+M3wvx2US/EudW2IYbvQ4dUY6C1gvO9uPVU7B4Q47zZbnA4HEMH6ALWSqGvTfWA42EHhNLQnbXfWLIhG7IYCHbLff78+Ul6vn97z1ikAIO/O/X6+EjnGA+GNhiqkVHq/X+FPnSgtIr7uNLynt5DVpKajV4UqrRCbrKTGSmnDB3BRnov/JPe4zgLJxW7pkaU/z7FAo2vJ72G9JzpQSBzCqiMgcb4efGe0/XLPZ3voQMxFgkbkwfgIsxF+GYMiIOUEfJ9iCQdl/F+9U2Pbx9G8bJ48lyyRyRmhBhDurq6wtnZGbquxm63w2F/iDcynU6wC5kfZVlgPptjPp+jMCZmTVAMqoJnxRsnkwAgFluiEZ3P59H473ZijLIsk9h6yJRhyhzQGxCCHj6g6XQaGQGeg8WFGMJIa3qQGWA3VT4MMhY0BKSJCQTyPMdsNosCWZYZv7m5wQcffIC3b99iEbqwnp+f4+7uDhcXF5Eao2FhXROyIan6mBOCzEgqLKJRSgWl9F45FkqpqKHhRAb6iU5GgMwS9QJAPz845hSWMlSltZaeNHkuBWtamUfn5+d4eHgYMh/exxRcY4wYeAw9rRQgpeAWQHz+HHuq93ntKeujvIdNUr34fo712dlZZI9S6jH1vnWIuXfOoutcsAWPxWfUI4xDEfI+UvaPmywRQB/3ezT/X9r+/Mu27SoPBL+1dnf6JtrbvlbSk0A0AoQQBiwwGAxSImxjyl2WC6cza9Soqv+n8hdn/VB2lrELG7dlmc5ZtgFDGgNCTwjpId333r1xozn9Obtdq35Y+1t7nh0n7mvG8B4jbsSNOGefvddea81vfvObc6YpwjoMIVPdOAdkKIWMntauuSA1P7amiFF/b4s0O/2eHwPO4U6twQJciKrb7fo+N7K0OecQ11NbG5CXzrC6dtixB4Fy3TeAywGhsiywWK4QRU2NHKPg0rqrCpEO8LU//QZ+5If/HKKkh9UmxWaXY7ZYwQbPUBm47st5Wcevc6gwxJ9+7WuuuWHchTENsGoYpPL2Rk0JQg385PrjYayBVroW3VWIow6KMEOmQnS7PfS6fWTpzj1brbyG6f0ecv48e/YMH/3oR/3fOAe4zxm7H+LhIQ2N/C7vQxrfu8IAkt1QdWjCAwx1W0gpAcDedaC5Dp9N0boWvu/Qtch7OPR7CeKttY1moz5k7RZ5rrsAhQQjhz73EOPB88n31VgfDTfaHIeADm2Hr1elm6wgWS+p7eDIHkiHWBb3ecYD6UPXcteYvOj44GBDwVOBpqZsmLpGVfRms0Jcxy/p6Xe7XURhhOlkgtFo5Nujd7tdTOoQAr1oaQDokZJtGE4HWK/W3njS2DGUQE9Va+3rJKxWK181ku3uGUoYDoc+TEPgst1ufWEUGmEaYAoy+XBpYGWBF7IWBBl+6Kz1DAAFpEwd3Ww2/ppOT08xW8y92Is9H3a7HY6Ojnydi8Fg4NkKggqGo6paiCszKYIa1NEAaa19DQkKh7jJ0ogSVNCQK9UU0JKxdRpBWVuBE5KCJElPkolK88wbft4rx4yeM99DvY0cU+mdtDdEgkPWaqBnzbFgiqtSzptiWEGW/KbhY6v7KIown8/3qGprnNA1igIM+q53z3a7RVa5yrcyRVJ+JwNAD0SGKNobuxzTTqeDfr/v53wcxz4djpVCOUdlG3hrDYqiRCXCJ4eoZG6AWmvkWV6LUt21dbtd3L9/3zMR1OuMx2Os1+u6zXrkmTQCTYIbzhUAKLIMTbGhBkwRPMkNn7/PirLOyHH9daI4hlYKZeb65XS6HSznN/jSv/t1vPbay9jscnzzyTvIigp2vkReVMiKCovFCmHkmCFlLb71rW/i7bffxqOHL6EsG2ZPgjhbN8EylYEx8M/V7YfRrY0dqDMMau2HgkKnk8CUXRRZiqrMEScuHdGaCrDO0zfm/W/guu7rorXG1dXVXnp528hYawBRUfkuVsOfW4Dhtqe9d49+TTW/IyvBeSSBQ8PgNeNsW+tYzkkGUORnt4GA/B3uMObyPRJwULPUZjDaYygPJf7+XszHixgkuX9JsCHPzS+um3ZojPv9i8Ag93xfFwgNQ+Xe14QJlYITjQG3n4XYyw4xZy86PlQ2Co0T41Zau0Y59PQ7SYLJeAhjnFAwCkMfvx2fnrpOmt2u01IUBdKtK5x17+wcT58+xfn5uYs/9vvoJIlrc60DRGHoMixqKr89kQlWWLa5qppeDPROaeTyPPffO50Ottstjo+PfaiDaYTSWBljvAaBXi89eHrXk8nEsyEcDxrnIs38A5aeJ8M11CZsNhuXuluzGGQzqA+hboRGmBs/jbFSynvfQON9As6gsRW8FJ3S2PPgxsAUYgr8ZHXP2Wy2l0FAHQVfQ70FaXKCmTAMfVXVyWiMqij3SsjHgyGur6+RxDGGg6EPD+Vlo7NgjJ+fTRAlBYYcV+/Z1YtRAke/mLX7v7G3BVRhGOKqTmdmyEABMGWJQClMJhMYY1FWFXq9AaLCgeB460JexpgapOtbm4w0vlzQbmMJ/fPlc5GGr9fr4fT01LNODO1JjQ7ZNR9yqUrsdluUeQ6lRP8Ha/fGUbIRFawviBYEAc7OzvZSgwmYGG5kZhDXm7UWJycnyLIMb7/9tncMHLPlujrLTZ1aE7mRSRZIKSCKYnTCEEEYoxdG2G03COMEcRhgudng4eOX8Y1vvY2Lq2tYC1xeX6OqLE7O3HuMKVw7hEBDh6664reefAuz2QwPHzzeCxkSZLvnUMBUFYKw7pdkXAimLAskcSJEuCWsdRomawFYheViiSBwHYOTTgfdooeiyDAcjnBzfY2yqKBUgCovod5nF01gPxRXliWurq68E9Ke94EOgGA/xNMOFfBnPzfEwfdxT/ThsHpeBsoV2rPWwsCFFLXSNVhQUMY6XQqo8zOuNHY9/0KtfTiPa1KrhgXhXJDX2AYn1jZiT/m69vriVxjudzWmho66MJ7TAaNm3Nzf99ez1I7J/V2GHdpjKf8vxaHy9W0GiL+XrCfQ7NncLyQ4cfMZcECGjGcDOrR2YUFeb2VKv0fw8ziObdakPU/uOj64QFRpxLErmEUDDOvqAHSSDj7ykddhqwpZusHp6Yk31EwnXCwWfvDZ52G9dAWhWJjGN1jKMhQ19b/b7dDv9fHs2TOcnZ3510hjS8EM48jsEQG4RcXeFhSBMstgOp0iz3Nst1tvnJh9wVAAS6fT8F5fX+8NNF83m832AAMN/WI+R6ibcACFqdZaz2qs6xTDXq+H69kNklojID1djgUnII0uwQjQGFMa+36/74EP9R2r1cp3R6UB5/lIHfPalFK+2Bb1AZzQNPCS0mQohhOXY0cDttls/GZGwSPZGS5aPlt65tY2DYbIWADwoIufLxG8rLnBZ+RV1TVDQ4ZJ1957sRdyaAwNGQTS/UWe151Fu649u7WI48TpLSqzZ8CtdfVM+BzlRsl74xx1i7ipDSA9ORoOAiUKVqk9ouiX5+LGx+fnWI8cGi68IylkbvKy5kmSJIg6iRebvf766xjX4T324GHoU26sBOPdbtcX4LI1qwfAMzEwZu/eaDD5HKWhcMazQhxG0EGIoqx8FeH+YID1comsLGEssNqmyAqL7fXS7T2VQaffQ2U1Qh0iigHoENCuTL1SCiiB5XLpsqlKWwODwLMufu5UFRQCYQiwtyk3860xJmmaIs8KBEGITqcHWFf4sNvtoSqds7Oqa73QSDb77XsoOGzjuOx2O8xmMzx+/HhvPomT3Zp37Tkof759T816bxtOpeD6Ayl354FyaeheRqvUfsaIdcCEw6T59/r1LqU08P07WINCsm5toC7vU7IX7fuSTEEYhjAiFCqZNbn2OR5i2G+NVZt5kXuiHCv5s5zfSgEu2+nFQlv5LF4kYpV/U0qhMkxvd4OsrJjDmiE2pz9zab/7IPSu7+/3+GABQjRrwVpXiAqAF431ej10uz0oAK+8/DKUUohrAemwrhvB0IQ1Fp2k40tuTyYTP7nLesNkO3AO6vX1NR49eoTdbofhcIg0TT04oU6CLIUxxjMMNM7b7RZHR0dYr9cYj8dYLpc+s4PGjbQvPXp6/EdHR35yF0WB4XDodQcEUjRGpDIptNPaFXliqKbb7WI+n3sw1Ov1cH197Xt1kAHguaWolIuM18uQh0SxSjnxXJ7nPrtkPB5jNpthPB7j+vraZ/n0ej2fkSINNg0JG5bRGPDZ856lWMkVh3Hly4fDoS8PTs9XeiLsILtaLl2J+lrUy7ANdRoER51OxwuSWaKd6DoMQz8OzDySYkQ3b5ssFblY2ERutVp5z4Z1RBj+Wa/XWK1WXuyY5zkKEZ5KdzuUdfjKhVMif08EPNzQeC1t+pXjKwGG9CDam1mWZbi6usLz589vXR+vn+/nPex2W1hT1V4Maxk0dQs4bwkGhsMhxuOxryLKNbhYLPwak9U+rbW+oBjXENcxQXHjJbqukvK+fdGs+uc2MLOmQhhqhKHrIbTbuXs1FrBQqIxFGHeQ5RWS7gBhp4/uYIKj0zNMp8cANNIsR5bnyOvUX6UAFbiN9erqql4DjbCW4+fmFcN3tz1MHdw2zAB8KM7vfZ0ESdxFGERIkg76vQEGgyEAoChKvN923TykAc3zHLPZzI+nNJRyHNtf7fNIQ0fAzedMJu0WYDbW93Pi31hoT2tRj0I14RStlE8zVWIeKvHaIAhcD6kD1yevmwfP8V5jJe9Lri0CjrZW6rZhPRxCOAQmZJZS+7X8e/OZh4HGoc869P+2uHr/2i2cgtfu/Wysq+LLLwsDpffT0LmXSgDzQUIowIdsMU9dAAVmSTdBuksxHA5dmmMUOm1DZRAmCRa7hcsUqQwGNILdLgKtkUQxYCy0BZIwws3NjW+h/srjl5Butoh0AKtczYY8zRraraZqpUfODZMhFF/cxto94SdjylIPItNbt9utb6LW7XY9oLm5ucFgMNgTlBLg9Pt9T0OzRTn/NhwOYYqmZgMzT2h0j46OPLMzn8/R7fc8K0KQwfFnvw4AHvjMZjOcnp7i+vra1wth3QvAbaTT6RRPnjzx93d2dobr62vPdJAqZ5qn9LjJ4pDpsNZiVNffAOBBGcERQz/WWi9EJdtD5sdai363h10NOPNdCm2BThRjkzv245XHL2E+nwNwdRGq2sDJUAlZkranxrCCBH0M8wCuMBxLvxtrbr1fsircwGm4y7xwdUyMQV4WGI8n6PciqDBCxQVe9+mx1sJUJXRNzXIsGR5oeyeMr8vwAYEg570xBqvVCsvl0jM0EsBwTRAEFvV8CSKGZyrPbFi4vj6ogc1g4ITbURSBTQoJBiWlys/htREoksUgAybLnAPw8wS1gWqDLq5fAq36IXgRpoKrMKxNAKs0tmmGIIpRFRkMgDTLMRqN0QljJ1rU3NTdcy5St2mWpkCEEEHggMzbb78NAOj2eojCpE4XLD2Idr1SlNNWKOXpaGcQD2+lxlRI08wxIkq7qqRxjKSTAKnLGhuPx7i+vMS23sMq8/4V/jKUrZTrjMu9CdgHtlqpA9LDfSGmnP/yi79T6nZ6qrWuZFekm6w/ee5DP8trO3Q97b/LcHn7mm6d/73YIHF/xrhaMxLcAo3TJjUOZu+eb4egpBbiIOPSOm6Pk219v1t8etfYydfugysFpcM98CRf2w6FcF8FcPD1nAfvybzJ+33frxQ3w02wrC+wKp3Abzgc+lg901HjOPbFryaTiaew6YkOBgPktaK2LEuMx2MfL2P7ZBp9l6K68wacha1YE4ObG8MJDKswA6PT6WA2m93K0GC6JvtcrNfrPa0CK3hKISYBCsVw1Ih0Oh0sFgv/uRwDAD6LhewJY9y73c6PGz1qa+ELk9E7DoIAo9EI19fXPvxBHQezVtg75d69e7i8vPTefJIkePr0KcbjMQD4+5AsBbMNBoOB9+x4z4PBAL26NC5rdVAcS6MuNwLWTgHg6XSOGcfVjXflARV7tTDkQ20HmQo+R4ZRKIqkQeVCYDo0x5KK7XY8lQYtSRL0BwN0a+HlaDTy9L8UK1I/4Tz3pgqfqQyyeu7QE4Ngilyjo9seV5sGlYtY1jLgayR9Le+B9TcaxsA9E4qKWaVTBUFdkCfc2+jqi/HnpZfMzsxlWWI0GvkCdfJa+TMFt9zkyCwFQeBZOHpxhzY8uTFybPYo4Rr8ZanrduvzFpRCWVYIoxhKB4jiBHGnAwOFLC+xy3Ks1ltsdyms0k7bEScedPlrAfDuu++6NR02TA3QNEzkfGmyUfaZjf17ITtlsFyuwGJ1URQjjmJ0O13EsSvMNB6N0ev1veD0gxxSWxHW2rj5fO7HWrIQriKnPTju0tOXhkY6HG0vX55bq/2MKPkMDwEDHm2GRB7SO5ef9yJmA8CdzIZcT3Qc8tw1C+UY8lokK+CvT37WAcbjEJiSWo5Dr5Vj5Tqs3v7bofuQYy8ZVPmaQ78/dI67vg5da3u8Pwjg+FAC0SAMANtkIbBmRVQbhM1mDQ13EXmWY7lcYjQa+cYv49EIqzrmO5vN0Ikc8EjTFA8ePMDFxYX38EejkW8a9u6772IymSAtnI7DVBX6vb5nHeYz9/pduvNggcW2hsMhrq6ucHx8jNVqhdPTU1xeXuL8/Nx792maugZf9T11O84IBtp5dVEYwcJ6RqPb6WK5WnpQwI3/7OzM08az2Qyj0QjWWgyHQ+zSHYIgxHq9wmQ88ZVIKZgsygLHx8cufosmZEFRLouecfNerVZelBrHsWeG2Ejs5ubGgyqCm6IosFqtMJ1OHbKvPU5qPDabjX89DRpDClz4XESduk6GYxwCRIgBCwxHI+hAY7vdQdeAgOxTEARYbdbodnvY7HaYjlyvl+vra5ycnuLm5gZxHCGOYpRVheOTE2SpK9s7Ho+x2+08TW+t3StDTiMtN0dS86T7j46O/P30+31fjc8o1+mWKd15lmG723l9QlW54l+h1q4jL7DXCrrb7SIIAxi43jJRGACIYWFgdikAi6qqK7TaxpsB4NMGXeqj9SWBJbigMI9CaF9fIwpRmRJ5nsFYi81mjV1drbWu1AUt6qF0Oh3kWYDKWBTIAevCCEGg0e31kXS63vBstzv0+wO8/vpH8Ed/9GVoHeD4+BgXF8/hqqCGdVgmgDHlXgiF40+Awc3Ra0+sEwlq6KbXTRD4+QLB1FhrURkLqApJlCAOI1hbYjIaot8fwBqL66sLVGWB3XaLsjQIgwhBqBFGYcPI5tZ1b67ncVkUMMZV+pxdXWK1mGM6OYI1utELWCtCPK5UNZigqehxB4C6XVGxLCvMlwtUJRBFHSi4asFJpwdjKpSBRm84QH/Yx/XNFZrSiPuHFD2injUKrh5NWdRi1SDAbrvD9fU1Xnr8GBAsl+JZbAVr3byjWkcpd56A4lHLT1T+0xSUF3e6/7v3QTv5p0aTLcF9S9Lu0tuW31+kaZBhAQnKJVA9GHJwb/asnfTGZYgBgBeH8hwyfEKg4a/fCKPaMrBtcCaBkvz8Q/fJe5LMxgc9DjEPcu0A0rHh390s8p9oqdu4zZq4ObT/uxeByEPHBwYbWmtEnQ7SelMJtUaHIZE4Qb7bQVmDs/NTLOZzF7qoDPqdLq6vrzGZTJDtUqdMruouk7HyRpdAgywAkbtE29q6r6LOKCnzHJF2dRJWi4UrwrXe7FWZlEivLEssFgsA8HUd6C2nmy3K2hB0ul30a5bGVhVC7TJeFouFqyVSlT70wIczHo9xeXnpdRAsLBXHMbZZCh0EKE2FTq+H2dKdJy1y6ChEWuTo1ECmqipEtWEG4BkYGhqGA2Tdj81m48M0DP1I75yAjoJSskI0BlmWeVaIRZiUct128yyDimIYNOAjjCPkZd0rItCoaoNQVQZVmiNKYhirnFdZT/g4iBBGCaLENeJL6pAbAAwnY2RFjuG4rsJauntdb91cOz0/3ysKB2AvvbUdcmBWDBcDf+YcYLlzvn6z3aBU2vXpSRJ0kwQnx8e4urp2PVTKElnuajukxQ7DnmOAeoM+4iSBNa4XSCeK0UliZHmKcpXVv1eoqhJVYaF14Dd1SQ+rmmg0tZfD0B7DJsyeIXAC2AlXATDI8hTbzQZZ6opHwbiy4S61z6DXH2A4HAEW2KU5irICVOBtS6c7QNLpIYxi38eo2+2h2+nDGoVup4cirxDoCNbA9cFQIbYbd11l1TRoYoiVxsJXKRWeblmnzBsYaAuoQCMKnSaqgnUx5NK91pWgr8FlDWDH/R5UWWAznyHpJOhEEbZ5jkGv78SkkRurXrfnqnfWBjLpJDA2dlqbrEQQAL1BjDRL8cd/9Pu4d3aGMOwgDBLYuhiVa9Dm0lytdXqToioRhq6AVdJJoLRCaahNqTVJqxWqdYYkGUBrwNgSOqwQd3ooqhxWWXT6fZzdv49vvfMERjWiyb1D3TYAFo5VphkI6jDyxdNnMN9hGmaUhlBZhEo1IcM6HBXoGuyxz4typcetZvEp09hWb7Bs/dIma6Rdap7PXQIOfpfGsO2lt5mvdvikDTDahtVU+1V1bwldVVOOvH1O7o0SFDdgpAFTQRA457PFDslztQ3/XayMfI/LCLl973exB+2xlWMl9V/u/XUdH/H5/nOV8vCTTB8ZPMo8rHWh7PqPiIJ9Xdx7HR8qjIKa0oS19YTOfRnroM64WC1X3qNn4SvS4BwMWc+BC4NUOwtQsT8KDTeLWPH3rImx2+1wcnLi6bGiKJw2oTbAFIfSoLLXCutv9Ho9lCyHLDxibvA0UAyprNdrHxel50PqmFoJVh4lYOLiYwhCtouXdCX1JAC8x65roMMwAIEEY4oEKKS9mVXDmLmciAzZsO4GnwPBCD1qXu96tXIhCaEd0XVqcFVVrheCta6pT1GgrCrkpWNIdunONWPSCnGSoKxKbNMdOt0uwjq7ZzgcenaBm9N4PPbhN4bVnj9/7vUr3JQoWpM547L0NfUassqmDKfsid+iGL2610qWZljMF7i5vkFVluh1u5hMJjiaHiEIAtw7v4cwDHFycuJZDepD8jxHFAbo9zpQCoiTCACLQe2r1bmhyS/5rNpCtvbvg8B57rvdDovFHFm6A0RWg7WufPfxyTEGgz7iOIIxtVDWuBohgCsd3u/36zBmDECh1+1hMHCdfZ89e+ZDNcxeYt8ZNtsritK9rxYl8xoZ0vEMRb0WOJcObcLt0IrSypdcZrouLLupVsjT1G2AdUi0qVQL7HZbmDqVjxlQad2sLgyY+lhBK+Cbf/YWsjx1m37N3jHrjimCvFJesgzNOSPVXPsu3dVdgEMEQYgwiF2mSxij0+kh6XbRHwwxPTrCYDhylWw/yIas4Oc0jQsFvNy3/FzRTQaG+2KPC13H9A8bxdq6uPtV/L/72bL6pGr0HNx/KAh+L5pezovqDqBw6JCvu8u7lkBGAhI5vw6d99Df9n9393vl58r1yvHxOioRvpEg4dC1HNon2vdy6LWH7lfaAXlt8jvQnOvQWLRDOO/n+BDlyt3hGhE1D5BhDWstrAEKU3gPmKEWajmYPcDY/G63c2GWekHToFOkCTgPlhVBmcFha9BDMdt8PsdkMsHNzQ1OTk7qOhkunMLz8iEQuAwGA8xmM3cdaYpIB3tpoLwHCTCMcc2fWIeDMe3VauUNIDcAsh4ET8YYn/1SVRX6/b7P7eYklNkHbOxGyl+mkgJN6IPCy/V6vYc0SZ1rrX2qJLUpNLrX19debzOZTLxOhkaBz7DT6WCXO+CiVUPzF3kOq5p4aFlWe5sf36u19nF9gsaiKDzDcnNz44S0xmA2m2E4HPrCW9S6GGP2xkNr7bNqgCajou0BtQWN1lr/+eyVYm2jNdhsNl40C8DrQwDg4cOHSKIYo+HQMXFDN3cePnyId5899RqUZV0wzFXRrdePxa3raKjrejPQjSHmODJ0xoNAsKws1ps1irwuNleHMnu9Xl1Qyvp+RM7IpthsdshrAMoL45qU+iCuA2ZDKeXqt/A7061dxlFYd3l1c0jOezJMLPd+yBOSlLV0QmQGlLYNgyhDe2xNwHlOr9plom09oJZzsr2Bkhn76p/8idNAjU9RGYUyK2/pYRgl4fcoilz4x4sjm3o1aZpBxS48FAQuFGFMBGMiWJtAa6DbTdDtJHjw8BGWywVcM7b3d1hjENbMHp8bdRsnJyd7jk5VAS7ZRXmgZC2rfGo/F6wo8FQTki0vXNchCmHsawB7KHRwl7Hi+YDbaZq3Ac8d97/nue+zHIeAxl2HfP9d4YG9/4sf2/cif3+ImeHclu9rDHydISXuXZYel0c7W4SHZDtexAS1GRj+bIwBrIK1+89EfhaBhjzvex0fXJFk4VOcgiBwBZmCCHEYIY4idDpOFT+dTnB5eenFVTQiNKCLxcIPvCxnzU1DLp49j1GEDYxxqZ/X19d+AAgMmvAJ9gwUGQpZj8CHHGoxGw3sbrfzjAqLaXGDc+cKffM11o7gQ2Tp9NPTU097b7db9Ho9X7zr5ubGT0hm1XQ6HS+opOiuKIq9TrWcWLwnVrmkzoKhAda2MMb46qPUv3ATYj0SluMmAGPNEVZpleCJz43jYCGFVZXXF5B14HOR2R1U+HeSDgD4aq4EJyxFf3x8fGvRkJkBGvEp5wo/l96b3HzobdGwEiQD2PM0gsDVQTk/P8ejR49wcnKC0Wjkwy403lXlGv+laYr79+9jtVq5zsS1kWUqdK/fc5szd27A/3zIy6J3KFNxKVDkRsWvqnTpalEYols3uxuNRjg/P8dwNNqrDssNb71awdSMFOBKfY/HYwwGgz1vh+Jafi7HkYBOMi5pmmGxWPp1TFZws9n4nkgsa97tdg9u7gSjrBzri0UJoZsEG3IdS6PCL85PMk8ypCgr/hJQJUmCxXyO58+fuw2+bFhSea18UvzeZLwBsuEVUFcOVS71XfFe6oJkSdJFt9vHoD/C8ck57t1/hDC8u8X8oYMZEtLTVMrpn6TewVqGF1CHP+qwnSXg0A5EQAFW1aEZXWuJtH+9gkZQa3S0CprzoKn5I8WWt4TIHDvhNUugcQgIvggktD12fg/2wN/+a+9iN6TRvB1CuR3C4u8PgY1DBv0QYyNZdBlyej9gS/79PZnBO/4u99VD5+IhxcP84vje9Yzbx4fq+mrKynlNVYUSBp04cTPWOCCRRC6LgAZTKbXXeZMbMQecAIJZJ8zwYPYKvWFOAIIDbp5BTen3+31cXV3h6OjIhwNWmzV6/b5nS1g5lGzAYrHwOoVutwsY66l6WSOCIs7pdOoFg6WpMByNcHl5ifF47LUSQJOSyhRSXieNHdkVevUEOczg4CbHolwMF/E7F7X0kl1jqrnfWAk+OHmoJVksFn5BMrvl/v37ePLkCR4+fIjdbudDX5PJBKjqgktVibgWjQLwwMnU9+YKveVIko5/Vrznqqo8G0WQqJTCar3C0XTqQZW1LlWW183iYwRnUrdC5oHGlIsCgAcNpHKlkZRzgXOTYldr7V6tDln1lJlFFxcXGPT7flwnk6nPhlrM5yjrLKvVZuPDcDzkAt/bQ9uvMU1KWrusuARMccIwkvJjmGVZnS68n2WwWq2wWCxRlaX3YqEUBoOBH2PJDADwwJNOQVVVWCwWePjwob8+hgI7HRcKnc/n3klgJhTDKUwl5XURyBBg8rm0n51SCjD7oRc6GATO3F/K0vUhKcsm+4tjwdfynEEQoDIsze8qWD6/uKg1JpHPDGuu1QAgte8EdmHgaglZo5BlBcpCeIQUWipnuKEBVRvrSmnoMEachBj0u3j86GUMhyMs55cfYD9uUhD5PMIwxMXFBdI03dMk6VY4jmuRAEzS8NIj59gBDThrvw6AF922je8hsHAIJPD3d62XQ0f7b9LIy884BGLktbXfI5nfgx78C84lj1uMAfYbsR0aK3kevobgWB53MTZtZucQ2JDf22Chua5mjRFg8D7kOd8vs/EhKog2pcGtMYjjDrRSGA2d1x+Hjt3YbVe+Yujx8bFPVWXH0vF4vFcxlBsCvXcCDmutT3ckHaqU8kKeNE1xcnKC+XzuAQ4nyW6326Nk6VFz8ux2O9eHpC67vd3t0O909wadhbsAeM97OBy6kuv9pq0849j8HFK6QFMzgKEhetSs10GBZBAEvneLZG5YnIsbN0MrMv5qjPF1RZgCx8nBMBLHn55lmqa4urrCZDLB22+/jZOTE1xcXKDf78Na65vfKeMmWKfTQVk4QWgURdhlropsUZZIanBA9MvNX+or5BwiMmb/FupFer2ezzghUGW8P4oiDIeuABJDUVLbwt4yfL70jskQ8LWybD0/R5Z85zVHUeTZLC5sphmvFktMak2JsU6I6bKyRoBquvoOBgPczG4ci1CW3iWSG42Pm4KNobC38ZGVkbRpVbkqq4P+AEfHR6iqws8jXivDlwwD7HY7V4iP11AzhqPR6FYBOclOcZMkKN9sNvja176G4+Njn9EUBK7WRJalHnxIZT/Pyeci5wHHiqwG54ZSyjdM1LWx5kYtY80clyAIxPpPYW1DNcvYuPS8ZdZYFG1hjcbz58+dVigO6wwkGTJ2YAPKQNXFkaI4qvfFwIVWrMjk0AGUCmqBp65DDxpQAbQOEYUBBsMBzk6OsEszPHr4Mr48u4TW+3UMDhkUwIXcOJdkyG02m/kUfe4JQRAgSqjHakJ6UnPS9oqdWNHviPX+RvGg8t8VgErZPW1r22jijr/Je3q/rzv0M/9/yLC2z38XWyJfI8+jtYa2ssHe7a6wfN17AYj2ZzRAroILo9y+/rtAFH/3QcJQbeDTBj3u3A3YlF9ce4eu5b2ODx5GqeNJVVl6NW6300G35zzM0+MTFFmOs7MzZFmGk5OTPe+GN8jMCRYIY22E8XjsvTYCA4o6WQeCKa00Pkz7pMaDLbiNMR7MnJycYLPZ+Aqi3FgZgy6KApPx2G+cQJMBIgu8MEbswMx2r4AVtRz0mGnwmbpKNoZgiVUYqd2gUeGmScEkrw+AZwhoHJhdIs8jQRdDQUEQ+FonNEoEgBTPpmnq00LJslBLkyQJojhGUZZY1YJRoC5pXZc2Z9iFDAXvk2EwsghSo8LfW+t6aJCR4d+ttb7+CMEBwQcFx0mSeJGvBCAS1NBYA40Il94LmRdJqfNc7dAeS9s7A990tyUg2aW7ZnFpNrrrIhGdcxtvrSkAJLOt5I7N93Bs5XwoigJZHWahZ8oNgs+DG9FqtcJmvUYd8wLq1/XrmipyvCSTKJkZhkOm0ymOjo586I6b13wx98BxV6cMr9drD7C5JoFG1CifEecoQTYBNcfrkFHkPdIRkCwJw2J0BAiCyYTe3Nz48SQgTZIE3/jGN/weYa1LlZWghnu4Uo3Q3T1X91WWosy84Z6pYZWXWkLpAEEQQQcRkqSHXn+I6fQUj156ybO+8j5fJNTjwXsjO8d9sVuLnh1TGyMMI4Rh7Gp+1HVH+HOSdNDpdP1Xt9tHt9tDknQQhnH9FYF9XrR2qc9KCGfbhrVt+A4ZsUNe+l2e913nlb/nOj80Ti86pBFv1w2RxyGxpgwptP/Gc0tDz7nfFn/L65fvl0a+fc98fZuJkPuKvL67WCX+vn0u7gdtxuuDjO2HqyCapqjqJi5hEGA6mSDdbNHvurLbQajqWgmxZwdcQa7UGyZqBLhZSBGc1to35Vqv194ghqHrn8Ib5+Sk58IeERSiRVGEq6trHB0f4fr62jdRYxaH9KqkEA3AHthha3u+jxtBr9PBzezGn5ffZUdaFggjuOH7Gcbhd4YIyMaw7DdDJpykZDp47dyU1+u1r0p6fn7um5fJyTOsBY0sAHZ8fOwpbW5MrPdBHUiWZejUhbyCIPDluHu9HnZZ6s9POpyUrAQLBI+SdqMRr6oKYf03giDJYDE8IUMl1NBwQ2A/HIpjGZZiNpPWGqPRyIMbzpfZbOY9eF4XDZZcsMvl0hc7W6/XmE6nWC4WUNZd62AwxGbrAGhcg2MpjAyjCFle1L0i6nlmDAxcFgjnna2zGJhO6H9v97M4eJ0O8FkkSQRrux4AtjdCVvB0wi8ACtBh6Lsg83lJbQRBGMeF5yUTwBL+nCdpmmK72yCOI0R1dgzn/ItSIrlxUZxK408QM51OcXl56T14jgHQ9LrhPDLG1MDGbeZR1BSo4nyTYnXqqKqqQtJzoPno+BhvvfWWq0/THeztfZzblWEBJscQOL0Dr8GiKERZZ+VCKFYBphZIWADQrvhbEjkgGyc9HB+f4eWXXsV0MsXl5YWf99LzfL+HMQbPnz/Hxz/+8QboWetqmrTob6Vo7N3PvC+l9vUOnE8EhDJ7xJgSVgfeM5cGtq1DeJGOo+013/U6+UwO/b09ZtK48m/vBd7awMeY934G78WcyOuWmZkNGD9cAKx9vfIZtsf1EKA4WMivdb3SGZKfKcWp0pn5oMcHZzbglMdVUaDMckRhiM16gyTp+EGLwsh756z8SSqXGwQ7QfI9pKvlA6BmgoaIGpDJZLLXv4JGgGI4bp5OoOcMCQ0NafPBYOD1H6xcuqkBDgtbcdOlYE0CGyfcS30ohKWvuQDZnEoKECVQ4f3Se5YeGB+61LIADYvAzZhePA3ydrvFaDTC1dWV9xK5kTPrhVk07AnDDZ56CnqI0+nUe0MER1mWQQdOy2LR6Eo4MR3L0GhxJFJmRUqyBvTOOd78LAJSemh8XSPCs/41DJUxnDYajaC19toCXjs/kz8TtMRx7EMILFgmFx/1BQRazKTa1WmT3HRl+KEoiz2dhTEGZVXeXpyC/uScocEke8jr8O8VHi6vb5emWK83Hpy2QQM3C58uCkd193q9vYJmBHfy2tuiTD5D2TyPoIBMABvEEWzIrBGOF69JCnmZfiznG+CygBgOa3to3PgI4jk3VA2ICeQIHGX4RYJBzjetA5S1GHsvJV2MqRxX9xiblFHrmrTUNTnc3wMdeqNtARh2QIUDKEqHsHAhleFwgvPz+xjVDKu8V7Kt7/eoqgrvvvvu3rwui3JvnkmBpvuS9PyhNOsmTVwKsf1r9G0hb3veH2Iz2oZT/v6QUZW/a59DrpdDrz/0XR6HGBMJ+O86XvT5h14rGQPuczJ8KOe2ZDva19keN8letD9LPstD4Z69c+t9XY/cow4J1d/P8aGyUarSNQyioQ6jEICj7ga9vg9zXF1d7RlOfu90Ori+vsZgMMDf+tt/23vQvDl6TbvdDtPp1BtBWSacnupoNMJ8Pkev18PV1RUAeKNQliVGdQMyViRl9oAxxns2Pvsid2mYBDE0TFxgkk3hxsnf0TNjyihfQ6DA1Duq8qk5YOnu4XDox8Za69Mn+RqGEmTqMDdQZn1QsyC1ITQe1CzQsLdDUhTizmYzBEHgDSoAVMbVViCNXhQFlnU2EeDYLYC0ZWPguIj4s/Re+TeGAJhVQ0qai4IGjbRwGIY+js/51O12MR6PPeij0SUII/tBYMGQHoEMr6dTZ3MQxBFsMETDa12v1x5Qu3tw84mlj7n4IwJnIzeq23n3xpi9QkSs1Hdr49JNsZ4mBFT4UAXDV/LYo2K1hg5DdHs9n13T3kA4t3j/VbVfGIhhFq5DyVIEOvAhFDKGcpNse+myci11RHLTZDqzKzDXhOrkNXFjJXAIgsALpI1pGvNRE3R1deXXFZ8172s0GnnQdn197dlbqY1yz4WFrpRvwAa4OH5ZGux2WePNE4hAwRoFY60Lo9TVV5WOoIMYcdxFp9vDaDT2QL/NUH2QQymF+Xzuu167a7R3Gov2PDiUGSEBlwSJbcr+RUZWnq99SI/6LsAijeet8CPuBgbtsMF7AY5DgOe9Dgnc3svz59pvAxMCDAnEpfZJ3tuh//N7G3xIgHwI6Mn7ln+X5wX295P3AmDt44MX9QINbYUgdJ7mo4cPkW53iMPQ08nz+RxlWaLf73sqm/qBPM8RRhH++//T38EXvvhF/I2/+Tfq8EGEsmRGgmNC2H+D3iM9JNZWkBsb2QTp8d5c36Db7eLm5gZBEGCxWOwZLLIExhhPXVOoRmEljY4UYDnw1FBNsnaFDMEsFgtvNLmxSe+RGzxBCEMC87r6KrNV5vM5+v3+XuhHKbW3YdKgUrtSVU2xL2utByAEHmEYetEo7+P+/fsAgOPjY29M2anRl5TWjehTa42gFTbhQiKrQi9cxpPlgiIAUMoVhCK7Escxzs7OcHR0hOPj472qrHJxkNqlF03GRIpUeX80lvRa2RBOAhBusgSPZOOm0ynSNPVzOssyzGYzWAtf4l0pvefVh6HrfNl4gPsdGXkfSrty0VEc7fXZkPfpwUlZuq/KtbOvRH2DqnJ1Toqi3Nt0osjF7vuDAXr1POJmI+/XG06z39OB16yU8gBvOp3uNSuMa1aLjgXneGOomzLtDsw0Rq8p/AUACt1uFycnJwCA0WjsjEqgXeaItfV4BYiifSaUzCNZPWpZCGzG47Ff89SUjEajuihhUAN4i4cPH/o6EpL94Ni452LrGhVkNgzy3O1NhtSzVXUNGosmYbIegyBs7iOMoWshKUWdvObDtPV7b/KbzQZXV1cwRmY0HRaasmqlfO7cp9rzgGCD+yQZV1cc7LYX3va2bwOB24DKneLAmGnX9bddHbr5zP2UzrsAi/wufy+/JBtw6L7a18fP4Vi+6OCcpCBdPmOllF8z8lrbe0Ib3Mh1ynGX7Mmh8Iwc17uYj0OvaYO+93N8qDAKUW9RFnCq6Qr9QRdWGVSmwHQyhjXA2ek9aB1gMBhivlzBKoXKGpS2xF/5a38VP/YTP4403eLHfuJH8dE3XkPcCZFXGXRgsdutEQZAVeYwVYntZo3RoI+qKp1QsaqQdDq4urnGeDrBertBt9fDNt2h2+8hK3IEUeiErEGIUAeAsQh1AGsMukkHeZphNByiLAp0Ox3EUQQLIOl0XLuIIEBWFKisRWkqVzzHGOgwQBBF6PV73lCxYh8fBNugM/UMANI0RRiGvpYF/0/PnSEhYww6nS6qyiCOE+R5icFgiO12h+FwhDCMUFUG2+2uTvGrPDOxYQfVWs/BhmLX19cA4PvIbDZbxHEHaZqh2+3B1KWYr69n6HZ7uLh4Dq1d1UMdhtimGYqqQhCEyIsSq/XGxafLCkVlEIQRoiSBhQslKK1gFVBWJaAVVKBrr8711mEjrKC+fxoLGh0APm2YzAzDVGxyJ9OoqVFRSvnib+1x52KkRx7HMU5PT/fEtGzRDsAzR1ykLNq2XC5RmQqrzRpxJ0FeNJlI2+0W1lgUeY4iy1EVJWAaISQ3I6Xchqo1N1YDl+EgSkNj31uS4ATeE3L1HbbbFEVRp2Za5zlXpYU1CnHcQa/XRxR1oNXtdvWcp+Px2LNfvF7Wm9lsNtjtdnsAjqE1aoM2621dkVQjDGNoHSLPS5jKQkEjjjuIowROWKlgDZDnBdbrLZbLDbLUzQNrgDjuwFoFhQBVaRBFMZJuB0EcAQGgowBhEkGHAeKO66JaVgW0BtJ0h7JsUpYlUOBaA1yIptnPFNI0R5YVeHD/AR48eOBKgAcaURgijlkwrHJ9SLQGrCvTHYWOhciLAlmRY5umTX8UZQBV1V+uH4yqQZcpTR16qcXnRYrddotO3K3P7bJbGj0FgLqcuK1rSNfmot7KZQluAwuDd5++A2MqFGUOHSjAVrVqtQJsBWtKWFO639V/UzBAzd74tuO2qYCrtaq/XHntMNSul1Hc1NaRdVJoNKUBc//n/FdiPSi4brqc6w7UNYbd+O+8Hr5XKZ63Yc5k5pEHhS2Dexe70QYr8n22HhN+vpf+Kr7m7gqfh4BQGzQcYkjuuhbe3yFBa/szJRiR9ylBhnOCDarKtZ+w7H5Tp2wrHUAHofvS7uv9HB8ijGJR2ar2vgx6/Q6gDfIyxWa7QpJETu+AANYq7HYZ8qLEcDTC8ckxVKDxvZ/+Pvz0F34as8UNrDZIujF+4i/9ONa7FY5PjmBsheFogLzIMRj0sN2scHp8jO1mg8GgD2MtOt0ONrstJtMpKmMQJwnyskC318PF8+cYjceY12mKu+0WnSTBZr1GEsfQUOh2Ouh1u9iuN0iiGEWW10p9hW26gw5c/n0UR8jyDEEYIs0zxJ0EaZZhOBr6UttkH+RDlUWUmEFCo0aNSb/f3yutba3F1dWVSO+tMJ8vak+tRBhGWC5X0DoAoBAEYe3BAuPxxKcx0lgA8KGu4+NjJEmCs7MzbLc7TKdHuLi4QKfTxWKxxHg89t/feuvPcHp6hvl8DmMsFssVev0+ttsdgtAxOsPhCNABDBQqY6C0RhhGjv3QGmHt3Ra1dxaGIYw1WG/WWNNwCbEZQQXvnUaMAj7W3uC5mK7IbKR79+75ceZzIdgaDAY4Pj72HrTMsCFgkWEyKWhlWIAp2fTiszzHaDxGJYSHQRCg13WZJ0mcYDgYIKjPR4DeBhvNJu5KZhtTOrGd9ESs9TUMgiBwTdXCEFEdztA6QJ4VKIsKZQ04XD0IN0eCOmMgCl3XUbIZZKL4WfIapVdLzYUEO+1Ouk2hrwi9bh+T8RSj4RhxlCCKkrqAlSuRn2cldtsU2+0OWequ21QGeV5ivdpiuVxht02xXm1qcFgiCEPoMICONKwGlLZQAWBQoTIldKiw3W2xq782m7XX9vA5yzRyMoSnp6f1vChQVW4clqsNvvrVP/FzgKyUT010IwtYp8kg2ChN5frT7Da+Tbx7fmZPL+M2+HrrtUBVlcjzFJvNGpvNGkmc4Pjo2IXqdFPjwQMOZeAbVqh9ut9NF/d3YypcXDyry68DAMFDAWsqVFWJqipgTP29KmFM8x1o5imNqgMD/J0DY20dh8wkaoc6JAPBeyLoCAK1ByyUsmjspvFrxdTX7tZKBWur+lolGNmn/Nug4lAYQK659t+UvGkASjfgKAhUDZqa63bXWor7vB2SkYxGA65uZ6K0gQVf02YjJBvSvle+r81wyNfKzyPb6vo46bpCbp11VBeAs/YQt3P38SHCKFQNO1SvlUZP0P+77dZpK7quvLcCkNRx+PVmg26vi7/yV/4KBoMhsixFmqUoygLf/alP4ft/4DOYzWbo9tz5otilG/b6fdfoyzRdZkmB0/viIJL6pqcsB5f1MBhWoYHr9/sOiQdNmqrUSzDLhR5zFEW+10ue557FaAsNqc2QIQyCEHrSBCbURNy7d6/uM+GM8L1797xQlpMAaASvjLFeXV1ivV77Uu5esFin0lIP8fz5c591cv/+fQRBgNPTU1xdXaHb7eLZs2d49OgRrq+vcXx8jM1mgwcPHnhRL6+LoRet970Fbio+xFJvNDRcbE8POMbBdRttwisEXjIcwg2fIk9WF51Op17HQ8EhDSjp/MFggKqqfJYNBb0y9MT3c6FKQ8zsCFewrEnFnkwmMMZgNBr5+yeY5OcC8M+u2+026d/WVXNk+IMbEhf8nlfDjeaAB0b2QYbm+AyYNeRjv0HoU4W3261nj0iBA/C6qW63u0eXeoFp/VyZ3XIo7q+19vdKT4teVxiEYIM56XXKeh7UTDSfqfY2ZR1on5nixkAq8F04M63Tj5n2yflELQ+ZNGZx0UDyuj75yW/H48ePvEYmCJsCZc0abEIsDWPl1vl6vfbAzG3G9b8t4yWdEbf+N3Uqvsarr74KHQTewB3yvsVMuPUb7nusP0SdlnxWzHzw483/m9v6DfmzrHbpASga6l8aPhk+aV+fDDfcxTDUr/avb+tY+DtplA8BhUN/b7MH7VBEG6xokZ1zSKNyKFzUZPq0e4+8+GizGG39TPsz7wr/tOfDXUBKzgOeQ+py2tcsQ20yW+VFx4cKo1RVTf/VRsDR/0OfIdDr92BsBSiLpNupUyQNdrst/vpf/+t4/aMfwbOLpxiNhjC10CqOInzxZ38WnV7XdTM0LlPEKkAHuvYoXa0KggCmilJMNhqNAABnZ2deK5FlqU/xY4yZAjcKTLn57IRAkb1CKJ6kweGmRMOxWCy88ST9zk2X2gTWKqBXReDC80hv4OnTp95oUsA5n889eJCiTopBXfrlAN1uF51Op2YkjM+KobFbLpd48OBBXXxqiKurK1Cce3p66gS1tUiOvWMo5uWY0wjTiDuNQLlXX0MaGDne7fhhksSIBcXN81C/wtAEFzY1NPLZ85qYGm2ty6ThdT5//twzFcxwIDDmc+fzk8ZVli4HsNdEUIbIJFjlQuVCZtYND79BBIErX621S4E9sOH569G67quxnw0BNGXN2/SwBCF8HhRgkqUhKKJ+hfcsa7YQAFJkyUNqZOR1S6DBQ6ZBS01P2yC1N0tmtlCTxfsMAteCnoZA6mxYqr3X62E6nWI8HvuwG8Gr1FTxefH6h3XTuY985KN4+OiRb9bG8fEVTQEwc0OGlIq88EDOP8OW0fCGay8mbmsGLcVmt4XRwMnpOZJuF0VZorKAVRqm7suqrHJfB9vDOnwq9WgUibaZrLaHKw+5TtuGtw02jDGwaJyLtni0ua4GNLS99f3rv11cTB63APkdhxxn+ZxlKKcNcg6FKvzr9V3jfTd70f79i0HVbdDVHof239pgn+v00DkOgav2udog5JATxOfPNfXfDmzUk0VpDVNVvq9GFEVYLBY4OTnxk28wHCDNUvQHPSxXC3z2Bz+LH/vxvwBjDUajIfKicILTqsBiucS9Bw/wMz/zM9ilOxydHAP1JlLWRnO92SAIXHolDTvFnoBrF0+v/eTkBEEQ+FLfYRji6dOn3vizP4ik7Jm2ScAhvWqgEWrR0FFctlqtfLybVH+apnupvKSQ+VBns5lvJMb3EDRQTGqtRb/fx/HxsWdMGE7YbrceICilsN068S0BEQ3TarVCmqa+Fw0NLfUhDCE8f/58r5prURS+gBUFuZx0jONHUYQojjy4oJBOCpvoubVDFO76XBiIYR+yHlEUYTabeSaBDBANvizDfHx8vKdXYY0QGlKOO8cbcOLXomh66CyXSy9KbYdQZB0Wily5EKXoVTJP0pAEgWvxHokY9iFPSxrjvQXaEm1JsaI8Dz0PmY7MDYjXQuPdzmbixsFz0Sgz1VUyh7xGshv8bJmaTN0NQyy8TglGm+3E+s/nufk5ewBDa+iAqYBNXQ0oNCnKSQdHR0eYTCb+WfP6fZir1/PsJp2UMAzRSRJUlWOGTk9d92iGAmEbnRrQbMr8fMAB2NVqhdVq5UEt54nMLuLvpJdLMLNaLbFarqC0RmfQx8PHj2FgPWUNlj4H6t4lL86SIFi/vLz0mjJ5HXdd03t9Sa+5MUj7BpbzlPsBQYiuqfk2COC13PX1fo10O7QgAbp8vwRGbZaC52uPEeS4mcOZIPL8ZNvar3kvgNQ+2mAGwEGQQRDQzjbiOQ4BRzl28kuyKTza72///b2ODxVGARSiSMbpYh8ecEbRba7L9QpKA7ssxauvvYK/9bf/JvIig7FuIbMMcFlW6PS6gAI+97nP4eVXXkGaZ1hvN3XBQ4VMUOzr9RpnZ2f+/xwIXg8R13a7RbpzdPHV1ZUPewDw2SmbzQb9us+F9GzpDclJLCmmJkbtwjgMq9Dg5bnrSkqansaaYIFGk9SrpFSZSUJDWJblXtVTPmSmpzoPT/sxoFGnEbbWYjweYzQa+U2YIIwbda/Xw3w+x3A49GCHDAjFXrIOAmPeDAHJQlasgUKPWKJgvkZmAEkjTY0Ee3UopTzzwJREhgIIjgD4sBcNIAEjvd/T01M/NmR6yEyQ/WGBK3r4Ydj0Q5HpZzTEgNtUZI0Lpugy88rXjTFNijRZuMFgQOGGa3PuN4b9+CkPCQrkhiBrejBVmJsQ37fdbr3Akxss3yszi6SYTwIXyX7wvPyMLMt8+IBfsqU8X0cm6UXpfHzOBCUE+lUpCsbphtlQECWiVVOMTILbIGhScvmsyOLREOVFgaIoEccJHjx46EJ2tR7C2CbF3VrUz2m/2iIFzNQYyf3S1l1U2x5qY5AUirLAcrnCerOBCtxae+WVVxHHHZ/J03y9eNtWCv7ay7LE1dWVb2XQvOZwPQn5swyhHAqfyGdrRMYK701mrZC5lXoOCVBexGS0r/cQCwMxD+Se3Q4pyHGXIONQOKINPA5dmbQbbWAkQ8rvdX/y2bXZlUPX1D7XIcflvcJL8n1yrO4a+zZA5O/kvHrR8eEEolUJQCFOGu/IWhe/dlUS3WvyMqs3hgr/w//49/Dg0UMUZQ5TK6XLqkRZVSjqhknz+RyT6RR/8Sd/EtuNa6yW5hks3IZ5enaG7W6HwXDo26JT5MVUV8bTWSo8zVK/sbGkuRxQihCVUlivNzVLsPWDz9ewTgb1IlEU7ZVQZ0wUgNcmkLK11oUdkiTxPWAIWAhqWKKbm6VvcmaMF5MyZEKdAsM0rkKpM3abzcazLaenp9hsNv7LGIMnT554METgQIaDpeW73a7vF0MPlmmyRVF4tkApV7ZeipKkZ8ywmlSk02ACdRigKH01R4YtaNw5pgRsDKEB8O8B4MEI9RPsH8MQV1VVODk5wXa7xXA49OdhtVZ+tozlA00dCGOMr7XBhSYLj3GecEyoK+F4ECgTJPZ6Pbz66qs4OzvD/fv3XV8ZrWt6vha4tTYoY5zIkIbNU/rC4PGLgI+bwGaz8cyW1yeF4d5GMRgMPNvHeU7AwPAUmYq2hoMAhGwTmUI+CxosjgfHivMDkF2DjQ9L7AE71VD7BBgUThNUJEnsGSYyiwRRVVX5++a8Z90WtgrYbNZ4/Pgxzs5O6xLlDfMiN32LpjR4VbkSANRc3QIb/hlRdFcbC2NrUOnAX545sGJgESYxVBji+OwMo6MpdmneMBteEOqyT9oGkSyDRQN0WYaAgIfXxddz3KWXLI2V/JsUEe951+ZwyiwBNrszu/XWhFik0T9kKOU48jkfYvbkPUlwsQeIhPGVAGE/pLV/yNCTNc31BGGT8nnoeuVn89olsGkbeRZRA273G5EAieeUxl9+HvesQ4zQXfcpx5Vzof3c23oOyWD/NwujcKE5j8gZIKZ5DQYDLBcLlFWFvCyQJDGubq7wkz/1F/Ed3/kdWCwXjtEwBuvtGsY6oDEYDLBYLnF2dob5YoHv+Z7vwcuvvOLrQURxDAsnMI2T2GsKuHmyEyo3Ff6+qioMay1JHMc+5ZRUMr06bzRqL5WMBD05eoo0tEopX3OBhpRlv1mpk6EWpZQHJdJLAOB1DLKKJkV6TOVsF+siyOFD54M+Opr6KqpXV1cYDoe4ublBv9/3/WZYNp7n5mbLjrks6MV0UjJHNOa73a5pHFdv/rJomQRebbQrJysnfhgGHkCRgeBEp7iXDMVisWhi4zWLxo69eZ77rryyhsf5+Tk2mw2yLMPFxYUvDMcFIr1e6mfIatBoMVzHOSCL00mGhnU37t+/7/v2UBzMRU+gmSSJfybegIrNqO1C+c1H3fYE2wc3CM7b5XLptULD4dBrKoqi2Gtwx1AZG7dtNhs/T+WmLjc7oAENzPrhWuAa5KYogQU3tzZjJO/Bh0nquRLopqJsEDY1WlhDQrIlMvunHa4gyFBK4ejoCEo5LdZyucRiscDHP/4GgsCxh8beLhFPsCOfQ1VWfl1wzG5tmmiFPuoMjzB0DO9iuaivS8MYCxUE6PZ7uH//gbsGTbFozWx4zca+pyl/5vixD0xV7Wc5yefZ9r6ttTXmPeyVHzJGXJvtL1kun/Pc7ZuNvkNqPdohDTnfPfBuXYNkWzhPDl3rode2QxLt/1NLlmXpretphyQOXa88JDNxa5rY/YJ9bUaifb52LQ7+rn2P7bBHm6ngedu6KglCuWbbYEU+j/c6PjDYUPUNxXGEXrfrKPc4htYB5vO5L5pjjMsA+MwPfAZ/6Wd+GpUpkRc5yrKAAeutW0SRMzCkCjudDo5PT/FjP/4XkOU5JpOJ6yra7SBKYug6bCEFf+v12gsvKYRUSnmPi43TiNxkG3h6bkVReCEeQx2c9GQpqGHQWvswDL0obmwEHTLEsVwu99JR5YMC3GbA65ffZbYK28fT05P1AkjlHx0deWOy2Ww8M0BGgdkoLBJ2dHTkQydkhihu5QRkZUopHozjGEXuxjarjXtVVb4zrVQvc5K2Y6j0qpMk3lsE7VRgTmZmHoVhiOFwiNVq5UWEfKZMQSajsdvtMB6PPWAhMBgOh/46+f4kSfDOO+9gsVh4JoisD713Mgq8Phle4v1R+X9zc+PTbZNahMlnzg0hilxX2fF47MGNy1BhQagDBkDMG2n4ObfIjBVFU1lUa+1DaNIIkd6W56fegoazDQL4mVIUrJTyKaay1wrDltT4kDkC9gtlSYMn5400HBa2ARB7XmITkydQYhiPYFVunAT1HC9qvpyuI8SnPvUpFEXuDSQLV+2BpTr0wWfAyr5tVsOvc4ZRDhaAssizHPP53PVgUgqltVA6QNLp4tFLj4Ga9WrCDjXIEL+RB6l4rv0sy/D8+fM7jfQhw8frvvW7A8a5qprMqrZ+4FAmS1HcLhTGZ97eI6RxPgQW5Dg2xvpwqmf7s9oMSDvkK9lDXnv72XEfk2z5XUBDHvL1h4CPfJ187aEQjbzPQ2CqPQbyPBxfGSI9BKTk5/Bv0iF4P8eHykZxBq/wmwl1AA1l1oEOFF776Ov4+b/28zg5OcZmu4WxBnmZI4oC9AY9lNYgjCOUpsJwNERW17EoyxI/+IM/iHsPHyCvHz49bhZoms/nAJzHS+NJ0EAPh14v6XWmrkr0x83B/T7wmyS9ZwBYrVYwxgmtjDFYLBZezEhmot/ve++chohsC+A2NYrHgiDwWRo0aARQm83Gg6HJZOKLcHFSS9GjnHBpmnqvnQZZ6g46nY7fQGnkZrOZN7IcXzITADxjYIzxOhI+c7IwcRT7sA9BI0NDrLoqJ6hczGmaYrVa7xkhjt1isfD3Y4zB0dGRN04M02itfUrr06dP8dJLL6GqKpyenuLi4sIzYGRnyBrRaNGj51gSWPBv1loPGqX4kSCHmxOvk2BmtVr5uUfPGYD/nmUZnj596r3re/fuYTAY1DS7ro1ZfVjrM1bk8SLPlECAwuh+v++fKQ9mqNCI0igzW+XQpiI3K0l3y5AjDTyBKhlCAmPJZtwVA+Zcl14Tz1EUBcoD+gC5NwwGA/9MpbCX83EymeD09BSAc1TodDx4cB+vvPIqlsuVv152/5VCR3e9DbW+2+1cV92tY7KCIGgYDD9mt1X+nE/b3bYWcu9cmEUpVHDsxr37DzEYjVB6EFMDnjuhhvurtfves2M29sM7h4zS/tdhr/og2BDz8xAzIEFH24OWa78NNOT8OGQ0D6+H/SwpyZC1v9qfJUFHG5hItpbtCvZGXVzvXWGZ9tEGTvL9h65XMhJk3Tg3ee1yXRxiidqHZDV4LXxm8plzf5PPvQ2OXnR8CLChaoMWYHp05Cj+7RZpusNgMMDF8+fIiwKVMfj0pz+NN954o75og16/hziuW4BzMAONOElgrHUFtLIMVV2t83Of+5zTEPR6gGIztiZcQh0FmYejoyNPGXtkXVXeMBI0LJdL/345uQDljS4BCT1+a603RqPRCGVZ7indaTxJ0/I8jGXTgNHro5fFBcJaHgQ61lrP2KxWqz3vgJ8LYG8TZPjHGLNXHt0Y47vPkmJeLpd7qZsEUDQ0slaEXDz0SDdbR0VXZv85EGjITYXeLxerDF3JSp/0bOhRyusKgmCvdL0rLx367AL26qBGgIzUbDbzBp/PgQyIUq41OQBfb+GontMUWpKtkrUl+MwZ1mpYmsTH8slwOcan7++Zn39xcYHNZuNDGQSR3DQO7Ait/96t3OdmoOrz8vm0NTE8DzOfKGyVBbzaFCwPzjnOP94rq75ynfGQ5yBLRON3aGOU3ppkbaqq8g3FaMS5OVIEK0GeTDtXSvnMLzoKrty8m4cf/djHEMcR8jxDKNZqkTdsWxBoKLjUV2OMc6BqoFPkDcvjsQZuG2ul6oCKatJmV0uXNWaVggoCVJUL4wxHIzx+6aX6vcxEafbiO3dpLzR0hofN8Q4ZxEPzTQIkee2HwMehc7UdDOkFNx7y7b2l/XnN/dxOKT0ESFA/mzbD1DbY8noPgYrbGTSu5D+PIGxK15PxOHT+u5/P7ZRo9/vDGSkSMEjNVPsa24Bd3suh+5asxV3X3Aam0gF5ETN26x7e16vkoWgsQiRhhH6vj2yXotNxjcMmRxPkVYGPvvEx/LVf+AUknQ46vS7CMEKeFXXmSoVsl6Pb6SMKY5S14dxst+gP+n5D/7Zv+zbvIVbWeDYhDENMJhPvhVNncXl56QWfPEajEW5ubjx40NqVyLaAp9flApE0q7XWsxPcsOgNS0Ehe2GwbDm7l2qt9zJggP3NWyJj6j8A+DRaChfJ2DgQQnHQ/mLrdDpes0EBJMeDTd8oNOW15nnu49aTycT3VJFhCC4mSctWZYlupwNTVQiUQpkXqMoS27XrCSHLFcs4nzeCe8BD+2dDsLHdbr1RloI/GvPBYOCLsvGZEmDleY6bmxsvsK0ql54tdSEUezJ8RSDIBUng0E7hZcM8NmyTaJ9F2wB4DQyfe1E6I0T2iwXCqAeJogiT6RRn5+cYjUdQgQb2SjRboC6N3P693AhuLW4BAqRhp0EkmwE0Zbw578keHaJSD3lb/AxucgSN7bCIe+aBF2nKc8rNVHqkQRAg1HU9DqMAY2ENoOAy2Xa7HWAVjGERNrc/uSyZXY3TXDXVJOlCKY3nzy9xeXkNl0bryql/7GMfh9JhoyfRLqTKaqTuWnVd2JBF1xSKsnQVSI2Frks5N+mu4nGhAQBQBloDcRICtsJ6vUSa7qDhamiYyt1jJ+ni0eOXoHUEa+uGbrgNAG5v067RW1U5o77bpV4A32aT7jJ87poPZzw0pbp5voZRkMXCHNPjegKhThxwIQr3dYjtOAQ05PyQ/z8MOG4zILL4YGMwGw0d1wefPdksuUdrUWejKg8zCLcBx4tBh7xXxyTxy9agydTAliXEyRZV/rXsheSSBBhadK0mwjDyP7MaKGcI3w8PfMmWuzYIzvEBqopjGOy9731ijGb8PtjLG0FUpANoKMxvbpBEMdLdDnlVYrnZoNPv4a//rb+B7qCPbZbCqgDrXQarQ6ggxnKVIcssqjLAbmcAHWKXbZFlO+RF5kSjwwHO79/D9//AD0CFESxcUZvVeuPBBAt30TNku3Z/c1pjsVoiTGLs8gxZWaAwFSprEEQhNukOpTWoYBHEEbIi36s6KitaMvRApoDVKGVMjd4sQzFSwGltU9WS1yZ1CRLdO6EYUFUFoigAYBBFAQaDXt2groTLCDLIsh2ybIerqysPNAgMHj9+7EWhy+USk8nE1yIh5ewqFrosFja+GgwGvnneZrPBdDpGmu7Q63XQ6ybo9Tro97oYDXoIABxNRrBlgVADnSiCsgZVkUPDohNH6MTudzAVAgXAVO5nrTwzwI2A4QyGgDguzB7RWnvmQ9KNZDZoXJk23O/38e677+6FtxjSovfdDvUQxFZV5UEEnye/VquVZ1qYEsznXVWV1w9VVYUoDJGlGdLdztVzKEuEQYBOt4NdniHpdTGajGGUxaOXX8JkMhZ9LFxxPAQKpipgqgIWFWBK94Vqj37mtXNMOY8JishsyNbt8/kcs9nMh1DuSlElGGwDCIbMmFpLBidJEvT7fZelprVPPSUTQUDD8zPziO9lVVGlXHh2PBgjCiIkYYJABdhtUuw2GYq8wmazQ1lZ7PISWVEASqMoDACNNM2x22UIwxgunq9grTMEQRDCQqPfn+CNj38H8tIi7vSxWG2QV073kmc5yrxEmZeAqQuPhRo6DGCVwmy5wjbNYayG0q4nDAiwrYWrpq1qoFRBWQOFCoEqYcot1ssbGJMhihS0qaDyCqENYAsFrSI8evgq+r0RSqugghBKBSirEq5Md3vHdwJSYxRMBcRRB9ZowAZ48q13YCrjn61cP23D7Z6vgzbuu/Hz0VSu3Dn7qZiqQFkUYCl0ltx3+1SOosjgyou7MuNlmXlAQiaU4IQ/t+ca93nurbJCLZ0azn3Xo0WDJczDUDlGypczr1AUWb13pntgS/4stRJRFO2FNyVLwy86UNLzD4L9lFK5z0hbxfEH6r5BVtXGXNfP09bAUSEMY4RhDEAjy3JsNltkWQFjHPBwoMFpIF0doxJVZcAy40q5fiZBECGKEoRhDGtVDVJiWAsURYWytABYsjyoAQaBSfP+OO7g/RwfXCCqFEJS9mmKXreLs7NTKOV6E1hY/Mif/xF84hOfcJ5pXLct1yEiHcKWFr/yT/85/ut/+QOY0sCUbmJRS5FlGcbjkU93/O5PfQqdmvIOowi7Wrw5m8284aHRlKGFqg6fcFHREPABk0qmAZIxa0lRkWIG4AVg9OQYE2f65GAw8KmWsh6BTDMkWiZ9yrgYFxnpeoIcLjz+X3rdUnh5dnbmX8fMg4uLC/R6PVxcXODBgwdYrVaYTCY+C4UahjRNfb8QAL4VO++/2+0hDJ2nutlsGnYiCJHEMbJdijiMAGMRRU0BNI4Tx096DXx29BDkIiWYYKaKn3f1/bIwGUHfYrHAcrn03vTx8bFPgX7+/LkHIxT+shYKtS0SHMpNTdYIkM+L98RnIfu5aK19z5vValW/r0RSv4bnNjUjttm4EtW7NEWv33ep4EUBUxTwLrFyXpUO2KNAA4GGCgOErTTCNpUq74WMHY03wx5ksBgK5NyXHYN5cG63qVV+DoEOwR8Ls7VV7nyubc+U1ywpW4ZdAh0gDEJUlUGW5d4ZyPO6Wdx6g816g+12hzBstEd81rw+axuxsFIaVWXw+KWX8fDRIwRB6ENBy6VjG9ya3K+Y6gptWVTG9XQhO9L2ZpXiPYq4uQIsXNPKssixXq9QljnCUDt3sXIp4QoKVWnR7fYxPjpyDUSsggo0dNA0HDu0R7tn1fTIKUsn2C/rtdumxQ999z8Lhqsds29CJJUPLbWZD2dELdjb5K7wjQQ8bZpfptzK1zvmZF90zn2Tn+fmbA72JGquzw2pHLO9+7Z2b27K0Vb6dkaHvEa5px1iHiXbu8/AyDkk02D3U5v5XjIfzXkJTCrkeYEsyz3rYep0a/n5/Ey3h1DoeqiHSjOHlWqcG8eUvD99yvurxiEHqSYIB/2+L1H7/PkleoM+yvUKR8dH+Ms/93OoqtKVolYaSRwjCJzx+rVf+3X8+q/9Gj7xiU/gsz/wWfQ6XRjkGAyG0ACs1WCb5tFojDc+9jGcn5/jrbf+DIN+H2EQeC0BxY5M1Vyv15hOpx6Vbrdbv+HQOOR5jiBoWr9L4ZwEAXwYBA2ccEz1ZJVKeQ0EK4y7M6uE3iVDMcykkUiYmz+1BDReQFO3Y71ee90BM0C4ObPyJwHH06dP8eqrr+L58+c4Pj72FUKzLKsbwW18KijrldDzvby83PMc3n33HUynU6xWq73FTDCy3W79uFZFiX6vh6zWOwRBcCvTJSAbpOhxKA+q5CJUSnldCYWu6/Uap6enuL6+9u8bDof+GXTrPj00tp1Ox7MiAPZqlLCgG6+Tok8aSM4HGmCZAUUWTcZrZc0OfiW1HmlXlHtApSpLrNcbdG0jqOwNXJhlMHSC4Wy3A2oDyTHhXOY1h2EIVS/j9ubN13Q6HS9ANcb4Kq0UFRNESUGYtU3aJw/+js+Dv2vT2Nx0GUaiWJUp1HL8DhmPuAXMCEwYrpQCX2PMHgDmOAVao6q1PWxjwM8ig0P90m63w3d853d6EbFjdpqsnKKofO8PjikzhsqqhKmf6y1QwfvSuskjUTUAUa6UeZoXWK0WKKsCQaBhygJGAUXOKq5uD7n/4AGeXbyLqiwR6LZG4nCMX4ahyrLEfD6vQ6xjDxgkIJVjflcsX4bD2qEc9/PhzId9oLZ//W2jLc/Xvg4JKhj29I5L7WASVEvnUjIL8l4aYNIYe8lwyPe214K8tkMahmZfu5390b7XNvhof/aLjvZ5ee42eJTnlJ/NOXLotfKcvE/5f77n/RwfKhsFUOgkHQz6AxhrYZRFURbI8hz/1//b/x3n5+e4fH6JxWLhMwLCMMTl5SX+8T/+JfT7fbz55pt4882vQClHr8ZRgt0uA6uRTiYTlGWJ8XiE83uniJMI89kNRmOnwaCnKkUwzOJgHr1MZeKkoic6Go08zU1WhRkcbfElvbSqqnxKoMxoodEiOOADk3UzpC6BhpliTGpHZCYHa3pwAa1WK8+acPMgsOB1MCOHmhaOEz1sevSLxQLdbtcbGtawoDEhkCDjwvAMBbJMGeX1kir3hbasRb/bRa/Tga0qDPt9JFGEThxDWVenIAwCxJGrPivjogSAUlyaZRmWy6Wvpvr8+XM/p8hEMdwhhYes6sr7IqNCUEghaBiGvmZHv9/39w7AG2CZuUJDyoXGz+NCJLAEWLY+B9CkyYWho9n5DMfjMY5Pjn2xteFohPPzc0RJAh00JZXl3KLRA5p4NLCfPsjxTJLE18EYjUY+jMbnzxoRZDx43y9K6WtvvPxOseRsNvPPkGnKfE6s/SEPudnLcJTcwGWmFA9ZuItzmGJwPjuGZuSewA1yu91CK4VPf/rTglEEVqsFioKptDuUVeENh9YatjaqZVE2qe+Bvm0chEfsjJvyLFUQBMizDFmWgnoHbvO8lrx2fM7Pz2vNUnmnEdn/2MaAk9XZbndYLpa3POm24bnL4Mv3tf/OuXnomtqZDm0mq/2Zh8CKBNpSgyTTmAmsWfWX72vPV8n88brl3ON6a4MjeQ5T7TM9EgS3AdSh9/O80qnhtbQ/9y7AIe9D7i3yffI17efK65YaKTkWh7Qo7fcfYm3uOj5EUS+LbpK42LMxWG9d5sV6s8FP/MRP4JPf8UkY6zI2xsMRoiDEarHEdrPFP/h//QOslitPjf7Ob/8OyrJCHCcoS1PHVG+r1j/72R+EUhaT6RhFLdIkJc6NnRVDWWPD1tdAj5WFv9obJidnWZbe6JI2lxOID1G+11rrRYxVVe0VMaLXRK+VsXKCj9Vq5ScXi1HRozamqdlBMNTr9TCbzQA0KZRkYIxxokNWAAWA6+trAPAhkzAM8fLLL/vrZHnvJEl8Uzitta+VwIwX9zfH3nCMjTE4Pj5GGIb+M+kVHh0deS0Liz2VZbmXBkzj4K59vzS11AgQbFDMSKAoNw+CPIbRyGpQzCs3KhodPuder+crG7I+hPSq+TnUElB7wHHj9dGoyfCKtdazXta68tG8B44hwet6vfbPudPpYDQc+XLqvO48z2GqCraeGwxXuEW/711wE+M1rddr79WyrDZLisu0RDmvaZzbG4z0LqXHJ8NmBFFAQ9FWVeXrl0hjzzUg1yX3AL5X0vb8PcdHhpDaz63T6UAp5QElgSCvneP62uuv49VXXkZR5sjzzDMai8Ucm826bq7mQEeWu5CK36yrJq030E2TPP8s0GR2KGWhA+Xj+GVZ1OnwrOcgwIxtuuPmeYbxeIz+oA/4e3zBHi2en5wTZVn4SrLS0EmgKr+3jz1jK55J8+xu17NozxuZHdHOkGiHaeT7JKCRNW+kc8TQeJsNkWMpgTr/Jh3W9nxvz28/xrgNvNrGWgKJ9vv5fNqhdfm69jkPPY82kJFMgwwrtZ8px/hQETYAe/uxXF/8uT0+7+f4EOXKXcv4pGYWJpMJDID79+/ji3/5LwPKFWZirjtTGH/vd38Xv/Wf/hMUgM16jeOjI3zlK1/Bn731ZzBlhc1mi+lk6ox9FGO9duW1szzDxz/+Bl555RUAFmXpNovlculpVCJaggRWCyXA6Pf7fuOmCt4Yl+2w2Wy8N8zBlpOfmxI3UApIWUOARcxoLJjTT6aFgIEHdQgEPoDrMGuMK/e+3W69wWV/EFkvhNoNetG8xsFggIuLC3S7Xex2OxwdHQEAjo6OvCaD7eWVUr7yKpkZeoxMV+Q9XF1dAbC+tPd0OnUeWR2yYKYL03azPMP11bV/TZqmiKPYizaTOPGFx7qdDmydQdA2LMz24HlooJhNQqNFen48HvsUWGprmDHEDUouaHa1BeAZIWazcKPiQmUvm5ubGwBNQzMKLwli2iXr6Y07JqMJ0xljYOo4Mg3+cDjynYaNcfPj5OTE17BpGwXpdTArRW6w/HtRFLi+vsbbT57gyZMnuLi4wGKx8PNZerhyvNpeFTewNtiQG5H8zvUfhiGOjo488CewYHVVuenzPmkQCC6lUFgptbc5SzpdXqMEJ3yWdDp4P8wY+/7PfD+Udm0KNttNzaAVHmzsdltstxtsd6wb0hR7klS9vSXWRM2AlKD2Rqma1dAuTLpcLWCsK40OWOig2ZKp40pTp1GaTKbQStegZj9+Lw/eP9CAdt7zar3a87zbTEObdTgEQCQokMaNn8fv8mfpeUujKsFtm9Hg5/L5tRmAfc2I8cwZNUhSp3SIWeG1SeG3vD95DfUP/nfS22+PmQ9vKqdvOMRq8BxtQCIBU3ucDx1tkN4Ge/KzD4EZyXAQjHGNt4GMXG9yrUtm+kXHhxKINkjSpVVeXV3hpz//ebzx8Tew2W5crwfVxJoXiyX+yT/5J96zoHYgyzL8/u//FyjoGgwoJ3C2zOPXMKbCcDjAd3zHJ5HnGZJOB5vNGg8fPvQGj4aI3qesAMpJJrtUcoA5GWkg+KBp3Jh2yckjMyDoWfH/xjjdBbvNsgARGRJOXp7Xp9cFTRaBpO/onct4JIVrXHxy0mRZhul0CmOaehfMNJhMJpjP54iiCFdXV75HzGQy8Qae3WLH47EHida6suEsCkVvndd4c3PjGSGgBnJKIwpDREEIDYXJaIw4iqChkEQxet0uOnECDYUojHy9A8BtrtR/8PnwuVDTYq3dqzOilPLAkowXx0RSr1wcBCRRFGE4HPqaKDc3N3tgU2oSaISpOWChMAC+Zw0XY1U1qb9Mv1VaQdcpZwSJWmsoKNga7GV1+nan00FZNY3CxuNxkyFV3a4d4DbTwwwDNw0AyNIU85sbXF1d+dLqMo7ONcI5y7XRpCg3nqP0cqQIWynlxcnstcLnFgSB76zrirmtvFdJJ0GyIBLA8/lxDXOcyRzKjZ+6GV5XkiSeAeWz5fMMtNOTffLbv70u1e76qeRFhtl8VgvrSjCTwl2HU+1r3RSAahimA2WrjUwZdvWJ4jiCDjSKMsdut4XWygkO9X7qLwXUReH2o4cPHkBrx4zIeX2IrpfgVBrZxXzh9zuKgO8yhm3D3/7MNn0vgZ/cmzhXGzbzdqE4GRppA51DAIEOhNRHSYAlgRAdMglK5ZhIzZIEj7wWv95e4MFLsTjnZBtASUDCNSOvg3amzSxKMN5+FrzG9ni3n5+cG222qQ32ZQidjrhPCmg96/Znvuj4wGBDa4WTo2Osl0t0kg7KssT3fd/34qf+0k+hrCp0ej0Ya5DudqjKElVZ4ld+5Z/h3Xfexfxmhv/u81/Ad3/ndyHPMtjK4I/+8A+xWKwAaGy3qafbyQpkqYu/ftu3fwJhGGC32/pMhOl0CqWU9yw5aWTJZHpwklKXC1IiWk5Ixq1p0Ljxyk2OD4ibGB8oUaKkgblBDwYDv/ny83ndgAt9MGRAAMDrZUhCNtHigzbGeKaCnnm36+qenJycYD6f4+zszOtAttut72VC40sgluc5VquVj+M74FV5I7per/1ipPc6nU5drYjJxD87gjQKWqkJoIGk122t9ffEe6XxZoiLn8drZiiCvyOrxcXCxcCx5sEKrtzIOVaS9ieQJlDlopxMJh7o8HnwM/k6Pk8yRtTKWGt9jJ/zxM/BMPTsw7Nnz5xXVhmvmRgMBphMJm5OxzGCA5knEkDLjZcbmdYaKgg868geKHJsCPAYIpLrgplW7FQra2RI9oBrh89E6mUIZrbbLRaLBdarFZ48eYLLy0s/Bzj/uEnLzZ/3wvXH85MF43iwbDr/zmfCsWfmGgBEcYyXXnoJp2enyGvGoijy2jveIi9S5HnjpGgNKN3UNzlEtXNd8rCwCKMASlNEHNWZXQU2mzUqU0JpOs3WpZOiyfrJi9zf+3g8Rq/X9+DNPf/3v3eT2aCmjXverWsWAIDPoB1m43slM9FmH3i0gQOv5ZAnLq+1HT479Pq7DKpcF/ybfI88+Bnt+dYGPXK9tIGltCeS5SYDJUGLXKvSyBNoS9H5oes9dMh7k4yIHDf5LOX1t6/t0GvkOHBtSrD3fo4PUWeDb1TIay3B3/sf/ycEUYj1dgMVBsiLAkFdIOSrX/0q/tW//JdQAL77u78bv/h3/y6+93u/xxe9eXZxga+8+WadXhmiLE39wJwOoNfvAcrglVdewvd8z3fX9R76mM/n0Np1NDw/P/dei2QCAOwxGjQwMkbNBSTj7fTmCArI0NBQ0XOiEIlghJ8h0T437KqqPL3HhyopKK31XsvrNsrmvckHTUATx7EPcyilfJdPCh+Pj48xm832OslWVYXFYuGND1NCZVdbeokspc6KptLz7Ha7WK1W6Ha7eOutt5y3G4aIwhBa1dUXiwK9bs9rDlQ9kYqsQc2MexOIcBxoLDgest5GEAReICqfIceLz4ILiM+Kn0egKJusyTlCIEhDSdaIxopGkoaS4ycLwXFeWqGr8OGUuvrkbrfDfD7HarVCEAQ4PjnG0dGR13hMp1M8ePAAZ2dnPi1Z3kOzNve9RKlx8OwDmpCMMU31S44tQ0a8L7IXkiptbzyN596AcckIEgyyb4m1FmUtTL65ufFhHW6uEkxJWlp2TeZcIbjgWmPNE64FrpV2arkxrjrwt3/yk05/Zsta2zLzz9G9NkdVOaPh2SgB7mR65yHNBgCfrhyGGnESwlqD7XaD5XIBU7lMl0bkqzyIqCpXLdXU7Eiv38d0OnXzfa9Pyvs/tltXGp3Gt+01S2PFdSRDFpJql0ZUGqZDAEK+n+N/l9GT49s2mIeYlvYXD3kP/L8U1LdDQc0zbd7DOch1JT741jXIz5UsTXus+B75f/7cHl++9tBx6Jz8/Pb9tIFR2+GWrFR77OQ84b3J/jGSCXrR8YHBRqA1orrba57n+MxnPoM3Pv5xZFnu4+DOgDlh1S/90i95+vTv/J2/A1MZ3Lt3H6enp9jWCPuPv/wVwCr0egO36debnAsHpHWRpwKvvPoKlALKsmnANhgMMJvNPG26Xq+90HKxWHiaU25cbSZDbqSH0J9kGwB4A8jYPRGeNOSHFhELGtEjo4iRtD5Bjcw0kaImoGFbaBjI7EjmQDaRs9bi6dOniGPXhG06nfqxqKrKU/fUL5Ca5j24FF1n1KMownw+9xoSZqkcHx8jz3M8fvwY280GcRihKkrEYYTFbIZOnMCUJZIoRhLFiMPIh1SYISK9J5kqS+qO90nDRM0MjSLQbJQU+BEMcPFIECD/xoUnGQqgaSNOdoVsUVVVPt7vDU0Q7DEuBJ8APNDg/NG67n9im40hr8Wt0pDwuZNtODo6wtHREfr9vgfEnI/So5QbhgQDso29bFpmjPFhH461jK2TUmVRLhmOlIekqOkZUnN0dnaGe/fu+WwljkOWZZjNZnshQrn5SbAhN0TZ54eAg+CYIU6ykZzH1GxIVuz7v//7m07U6xXm8znyPG2eF7UU3jE4HBtvANhtzUFVe6qSDXMgcwsL49kJBzj4PmoTJK1vcXJy7J6J/5z3R2H7a6kqDzYkA8D5Jr8k6yFZhjagcq/HHpDg53HcDnnpErS2P5/vf9G9yPdIQNRmYmTIog0yeC6eT16zNLC3mYx9RmgfgOKWXZH3zP2uzX7zGtvsUBuwHPo6NIZ3MS9tZlSuMRkm5R7A89DGyfV/aB+46/jAdTa01jg7O0Oa7vD6R17Hz37xizCmQhgGsEBN/fYRDQb4l//8X+IP/svvIwxDfOFnfgaf/LZvQ6fTwUdefQ33Ts+wuJkBlcHbT97GO2+/jcePH6MsK8xuZojjCEWRw9Q30u8P8NGPfhTT6RHy1IVQKOyTVJS11hsHGX+SmwLQqIHlQLZZBykw4uDz73ISc1Nj7Q2JlOXryUJUVeWBBTd7SR9zQ6KnLTd8ThzeAz9nMBhgs9mg1+vBWke5MhPl6OgIz58/x2Qy8Z9HQadSygMGgjemuRIMLRZzHB1NvS6EGzZrV9zc3GA6neL58+fodpxBJzswnU7x7NkznJyceNZJshFlYW4tdsaSyZwQAHBRDIdDz0iw9gczE5gFRE9Y5t/zWchx7Pf7PjQiG5DJDJM0TTEcDnF9fY1Hjx75QmGe6q4zojhnGKZiWfUgDGFts0C11j7+2xRMcuBzuVzCVBXyrGEseG+NUU2QZWnTmKwwKAp1a063PSzPjNXgmNdLJsCNESsV2r0CX1wjEvjyvPwyxqAyFbTSyIvca44Ap3Pp9/uYTCfo9/q4uLho5n7NrimlPJtijNkLPRlrYKqmXg3XjNQ4KeWKpQVB4Bi40vUAYldX1PsTx+fRo0d4/fXXURqD3XaLLHVhE7cWS1CXYeriUK4ipkJlFKAib2R1Xd4ZCrXmzHoMoOsCSL1etw7vBihrrQbL2EOAjaqqha5aAcZlu+iyRBQFKPISp2dn6HS6KLIN1Ad0FTlnV8uVd6I499oH56qcT9IwSafKPX9XvdJV7VR7xuwucOZDjHcYrPbcknsEr8utUwAgwGVpdAcIuGc313k73MX5znO3P6O5PqHfCDS0JhCxtWFuwvZS5KlUwyby/GQLeX2yCCRtCP/fDkvJ8WmzUm2AIUHeXcBEjo1kdLhW+JwPhVY+yPGBwYaxBgUqmMDiez7zKXzkjVexWq/QGwygtMJo0EeeptgVFf7h//r/RtJxqYU/+3M/h8paXF9dotvt4Tu/+zvxtT/9GjabNeJ1gnfefhcP7z+EVgHSbIeqrGrj18dyucFg2Mf5g0euymK+wnw+q1MSUxwfn2A2m9WbcgTUZVo7na5nOzgx6TG7yeEWiHsoAcIwqjdU43+ndeBLvkJQl9Z7pU39eldV0FXuA1DTnwZFUdYTXHm6mkaPYtLxeIzr62ucnp769vV84AC8AZMpfJwkNLD9fh/r9Rpaa6+6p6fBdNTlcolOp+snFXUcNAyLxQLj8Rir1QpHR0dYLpcYDgdefMnCStZaf21JkvhGZwpAlufI8hy9fg/r7QYnp6coygK2tJ458aXhy/2qkgSJXBwSABKEMH2PWUbUAhDI0ZASQPCZy1CZMcZfNxkMFppiuIy/Y4YL++ywIJv0ZCgW5gZB5mowGGCX7gBroGARaAVTTyNnlBRsZWAKA6utK7+dlaiKArYe2yiMoayGURbdXhdxGGO3S2BhkeeuiZdCusfIhUGAog5ZecZAayAIYEwJayoorZDEITpJXIcBABcZcIY9ywoo3aSCy/uVHs+edgSAgUVZU9bWGORlgc1u64Tb3S56wwHCm2ukWQqrXfv4vCywzVIUpnJZSgqojKteGWqF0hgv4DT12jFVhYBCaWOBQMNBFKf9sHXYrqqvo6wqBEHoBLhVhTc+/u0wUNhsUqxXa5RZCVsYVHkF2NqgBC6DqtftIYqctqmydeojuEGHgNWuCr/ZZxzCQKHf62I8GqGTRCjyLbJ0h3S7hlIGYeCyiQIdQFmFQAEGdR8cSxGqrbUiGp1uH/3BGDdpBg0LhQYoyIJibcPiKku6PW0+XyHP8lrroryxdXsX4FJY94vISSN9m82hg6ZgTJMxJIEGGUEa4vZ1tkENvxojrUmIifsyYCVX9zdqK+h8ynMF/v9trZPW+xkdbSMt7785NFwVUhfyaippav/s61XubY9kMaTj2mawJQsDNBWoafC5N/HaJAiQjFSbGZKArf07vr7NGMlrbIep23PsvY4Pno2iNbb5Dvce3sNP/cxPYr1bIYpDbDZLwFawRYlQh/j1X/sNFGWF1XqDv/m3/jaOj4/xb//tv8VXv/Y1xEmM7/v+T2NyNEF/0MflxRW++uafYL3eoCoNBoMRwjDB6ek5ut0B4riD7SZDp9PDy6+8giBU0AHRtNv4R6NRXa/AYD5f1PXgXQMilmwdDIZA3XQGdQlfY9yGnSQdGGPB5jXWAlmWY7dLkaYZWOqVoILNcaxFLaA00DpAuxlO0+CmAQ/MuqD3PhwOsVwuPTsxHo/9BPSFnupQlKQzOcEomKNHz98xG4CC2eVyidPTU28s6S1zI7DW4uTkBDc3Nzg9PfXhqUJ4nuv12tPXjPcTgCilUBmDNM/w4NFDVMYg6XSwy1JEcYztbof+YAAohU63i63odSJThoMg2NNMSFqPTdTI+vALaIAVPQNm2BDgbbfbPYqU9RcY65eAQXrzZKxY2psbLs/BEIPcnOlJ53le6/5cF1atlPvS7ruCBowrEqStRlVW2K63sMaim3RhK4vFbOGMYVFitVhhuVghiROcn55jNBji4YMHeHD/Pk6Oj9HtdKBVTd2Lz2OSpPtyPS/CQCEMNBRM/WVhqgJVmcNUJRScR09tCDc5uVHteUxaQQcBKmtRVKUHEPPVEtfzGbZ1L6KLy+fIygJhkiBKYqgwcGCiyJGXBVQQIExiRPVXEIUwsDAKUIFGWZUoygKlqZCXBdI8Q16V6PV7GI3HMHBOUVWWyLMMpjKoSrdetmnqeqEMxvjMZz+L5WqL2XyBdJ2hSF0PFGssNDSUVQh1gDiKEUcdaB2AEQ1jLQwApYLa4CkQI8jtN45C9Htd9LodKGuQ7rbIdhsU+Q6BdgBQQSFQIZRV7ue6aRlTaQ2AojRQOoIOEkymp8grjcIoWAR7exp/bn/RQQqCCOv1Bttd6o23DhR04MCVUvtG5lDMfy8c6I3NfuVR+VoZ4pDna2vS2swH9yfHHIe37sn1t3EgxJXQbpqNNY6fBft+8G/Wukie1gGiKN4Lf7b1TvL6pGGlo8lrpdPJc/P37TAUjbasayF1JIcMOz9frjn5fNp6Fvm5kplph1Xbf5evkyETY8zes5PA8C5W6tDxwcEGgF6viy/+3M9iMp04irDfR1VZ5FkJaxX+5E/+FH//7/997HY7fNd3fRd++Ed+BH/69a/jV37lV/DvvvQlLFcrTCcTvPLKK7DWxa2+8fVvYDab7aUOAcyvbrrWffrT3488zzEZT7wRfvvtt32MnoWlrHVFdpKkg/F4jMlksicipagMgKfbaSRIMUpFu0SLfFgyh7v9EPggiM7bxVXk78lGsIQyK33ygVMvQtQqY2s8p9QpaK19BVZeT1EUvmcIa3AY49IuGfZgTY5er+c7pwJNbwkZV2SxLXZAZcgqiiIP/Pj+IAh8X5b5fO5FaozZs2YFw0z7m4zeW4Bs0CX/xnHgNXJcOWb0AqRGQ2ajSMaIHVn5nOiNMbTU7zfZANRxEMxRrHmIrpWCy30vomYDTLNoXTjDFX5jCChNU8znc6/NWSwWeOedd/y99no99Ho9HB8f4/z83IefZFzYAS0aHlMzg5m/bm6GnJtB0GQO8XdtsZy814hZW6KSJjfUIAjQ7fX82EdxjMHQ9RJKkgRQjTiOGRjUtpRV5dNyd2mKNMtQGVN3W63L7IcBdBC49NH6XMvV0oPktrjxu77ru3B6eobZbOab0Hm2sGYstHcaXF0LZ4BqI2RborjayCg0Jfjdc4/Q7facWNrrXpowolLqltjTogYz1sCKdumVcSHi8/N7bv5VTWWP9r5z12GtA8Cr5aoO4VV1GMVV9pUe611eK59t2+mRBrr9N5kayrUmDaDUOkh9jjR0hwwr52BbdwA0glA5p+UeTQdD7mvyM6Rx5fnk83br24E9yTrIZ8nxkmunzWRIjYYcM8mmyJDK7fDO/hgcAhBtxkM+X7KwXGMSdLzo/RKYvJ/jA4dRrLV47bVX8X3f9317VHQs+jf82q/9Ko6OjnBxcYEvfvGLCIMA//SXfxnX19cYDof4s7fewmuvvYbPfOYz+P3f/30MBgN861vfwrNnz/DGG28gy3b+oSdJhKIwteLf4JVXXvZCLTZkG4+nPqPCWud9syTzcNhHlqXe+Gitfd0C0u0APNVOJoGLA4DfLOXiUEp5cSMNQHsS8HUuJTACSw3zGmRWCVuoU9zKug7sh0LWghOO5+HDp5Fl75MgcK3aT05O8K1vfQv37t3D5eUlAODq6gqj0diHLFgwjCWmlVK+/oVLv7WeYZCt1Zm5EASBR8Fc6Az1SIaBf+dYU/vBBcNy73JT2I8LNxUgyRx4HUJ9bmpC2MeEZdu5WAD4589nRDBHhobznECkqir0akMJuGJrFMqyaimrx0rD5jOK6vOU9c/WWpGdQhq48VgcG2L9mJVl6VkXZqxwww6CwJcg572wcBzDajyH0zswdl/uiZQlmOX4czONa8BNfcohY0bjXFQlbD2HtBtIBEqhm3TQ7zsBaqA08jxDv++6+xZlgSio16dSyHY7BEohDBu9VKAUCmNgq8q1Ydeq7qUExzyEEWoOHwoKu+1W9BfZ+WvsxB0knQ6+93u/F9fX115cXaRO/+IqtNabv9oPIdgafBhjYUpTe9TYmy9uTjZhgjCKECdxbWRcS4eidOEppTSsMo1dsk4XYBmFUQ2Acd03FaIowfHJCQaDARazG1fHQ93WVhw6pKOwWCxQlK5ztFIGQahb738xPd7eC124YF+4yXORlTxE1Utj1TZokmWwdr9niXT6OGdptOW+yv2DjiHPz72gnfUnz8W9oLnWfXFrGDb3IfcpGW6R1yifCzPYpEMA7AOatrPA+z4EvtrP3YN1JcNFtwt6tUGFBCK8JuloSJ2NBInv5/jAYCPpJPjJz/1FTKfjuuqeU6ifnZ6jqix+67d+G//+3/9v2G42+NznPodPf/rT+MpXvoKvf/3r0Frj8vISs9kMnU4HH6ubrF1ezbDdbvHVr34VP/RDP4TtdoeijunT89Jao9tLcHx8jO/+1Kfwh//1jzAcDtHr9er20S48kSTOoytrgHAzu/ETnQYewF4uMx8AJxiFazIkIVFgWyQlEa38m/QA6fUzfEKD0W4Ex2sj00FNQpIkHgRJpTVT/OidsvQ4i1w9efIESZLg5ubGMwkPHjzA9fWNFyWxpXxVVTg5OfFFnzgpyzL3hb1kC3BORikkcoasqp+FA2uTycQjZwlIaMC4GclxoDhRLmBuAqwMS+MnKVCKRSUQ5sLjNW42GwDwgI5Gl1Ut5TO31mUPkX1iYz02pgPgRabMNpBzi2OT5zkKQaNaNBofueAB53GZqvKgSZbl5zPh5sYmZBwbMk1MNeU9NMLc0hWSqs9V5Dm2Yv6TOfLPSTUllXlf1AjJTRsAoGomI3esl1YaGgpVWSFLU1dEK0mAGmyp+vMZljPWosxrEKk0gqApMGaMC4XAuuJKSikEoVDXK4Vux2Wh3NzcuC7AtceZZRk63S5C7diFb/v2T+Kll17CZrv12TU0Tkq5rB03X+BZzjiOUVk47ZapamZD1zZZaiP2q71GYd0ZOU1R1H1UdtsdyqKAE6Aq2Pp+TP1sTa0HAQKogCHYoF5PCoPhCCenZ1jO57C29OGW9wIczRpVmM/nyLIUQaARhAqoKijsi+nvAi1tsOn2uH2tigxFSmMrDdghhoKGdF8f0WSKcR9o3688pBFsgyIPHK3dqzVDBlQCIwlu2uPhXnvbYLdDDPJojyefB++tzU7J59DWiMn7agM7ycS09wz5tzZQkECuHQKSv2//7kVMmjw+MNjo9wf4oR/6IVTGQHkqKURRVChLg3/xL/41qsoijhP8wi/8Aowx+Mf/+B/j3Xff9RvxW2+9he/5nu/B0dERvv3bvx3/n1/+5+j3e3jrrbf8ps4B2m5TjEYu+0DBGdfXX3sNX//aN3zJcl/LwNq6q2FS1/oIMRqNYW3jwXPjlx6d90I8YHFZGjSsUrjIhSAbAAFNaWFJ4cuHYozBer3zD4xghp1MaWzJTsgxoGGVhleCGTmBCDqSJPEhGAIVljGfz+cexAyHQ8znc2+gGEZJ03TPgAENCJJUJw2+rPtBg0oNynA4xG6380wAtRKS6udi5/tJvUrRJwGEZFP4Phnm4XWWZenH1hhX+My1DW8qzHLuyOqSDBFJEOXYqSa0xdcy5Mf5IhvB8Zn6fhxy0VLMV+/PNGx8jlprz2ixU21VlqhMU1mV4a9+v+/HXNYDYZ8bslHr9Rp5niGOXdaJUgqrurmdFNVyzidJgijpQuumIm7bg9vznOr+LwTBZJwI+AhWOC95Dj5TPks+e/k8qF8iK8XxZYYOgfBisUCeOVCe1sA+ikLX/C8MkRcZfuRHfsRv8Hxebepa7gkuBJYgKwrYWjxrDTUVdbqqxZ6x8g5MGKLw4aoMZVGgKJu1DNUyQGjEjqquVhqEIZTWSJIOsnSLJApwdHyCt77+p3taxLZxPHS4sFyA7XaHPMuRdGIE0N5rpxbtRadphxfcGqYDtK/dkHsV55a8XgkEJMCQ+xqwnyXRnqdtgyuFqPLch4COfOZt1kOGY+T9uue0nw4s7QjvTbKp7XCDBD+8HjlO/DzOKc5XyUBKUCPf1/6Zh9Rbta+zDVT4813syfsFGPL44C3mFVBVruodrKvlXxauM+h/+k+/jT/6wz8CrMVf/It/AQ8fPsS/+Tf/Bl//+td9saP1eo0333zTb5If//jH0e3+O1hrMZvN8Pbbb+P111/zHkK324FSNXW9uMGg10ev9iTjOMZms9l76FHkvNnBYABYhSBQKAqXWy4NvLXWd3PlZJNtp6uqwnQ63Wu0Jss3y14bNOaSqpJxQG64Yaj3JrcxrtokvU7ZWIphC34uAL+J0ZiS6ZCThLUneBBQaa0xHo990y9jjM82OTk58QCH9SNknD7Pcw9E2ufmubhIaVBYEl1rl+HCid7v928hboaIqBmgAWG4RbISbCDH8ZFpsP1+f8+7IH3KhUoQIfUeclEBTczYzXXlWahut+sLo5FZkc+B+hUyEGTIaKCtoNubDUOhMrbWOLj3BPXzNnXYg/OB4RM2vKuqyldslUCPup1ut+vZIbIDrgdPz6WmRw6AnZ2decaJ18s4dqfTQRDGWNYVZdughGPFewyCAMhzdOIEQRjCmArdxIGkQGlMRmPPYDiEBeRpE4Iaj8ZQgJ/z6/UaURwijCKURYGk0/Hv6/a6KMsKgdbI8gzp1tUMYUGuMNBOdKs12Fm4KAqcn5/j5ZdfxnK58jqnsnBi2ts0u/JgIwxDlMaFTmT8XGtVg8WmyFcU9V0dlfrQStfMHovFuX2iMiWg3N+NcojT1mLHuuQolA6gdAAdBkjruVjWovLRaITl7DmCsPEuuY4413idnM9ubYfI8wyb7QbdXseFaRRQFhWshb93ua/ItdpkiLSzF24bXGn4CSTbYkOCgrZRl6EN6dG3jawMuwBNijbXc3t9y/9zH2j/neeSnysPCcbaBrsNGni0QdWLwhFthkIe0lltgwHp3EoWCIB3sOiUynoZhxgcybrcdS3y9e91fGCwAThPLYodnT0ej3F6doanTy/wD/7B/4put4fxaIgvfOG/w3qzwW/+5m9iuVzi7OwM1loMh0N84xvfwNtvv42j42Pcv3/fecDbDVarFZ4+fRcPHtzHeDzyVfwoygp0gDzL8Z3f8R34N9P/Ly4vL2sa1Hm8k8kEi4VrK77dbNDvD30tiJOTE1xeXvrQDJuIkSblBkfWgtQ5y3uPRiOfcsmQDD02a633cJmVQEMEoAY2iUf/0mtjuGI8Hnuvn/E8ghuek8ac7Acbs7E8NhcdDTENxs3NjTeA7KXBcIRSTVYGz8/rZu+QJHFg5+joCJvNxtfgkMCCIkZOTJaQJijj75jZoZTyvW047tIjJBDs9/v+vLJLKQEYvXgKNAmMZAiDrAQZhvZCpXFh+IZePcEPgROFr+fn53sCPwIuGmOgyaO31vo24fJwnxmgsDlcLmx9nqqCFfFnAonRaIQ8dx1bGSphqIzjwK6xcRzj6dOnntlYrVYYjUb1+O8wHA6RZa45HzeUsiw9E7XZbDAajdzchjNuHDcZsiHQp56k/TyrqkKgnaaEm/Ahpo3PmWCO4UyyZwx1sSrucDhEunPzaDabeZExwWhVVYiCAGXNoOg6fLLdbfFjP/4TqCqXYbSri3xprRGp8BaroZTya5Brlc8DbLAF5cgp4cW6EFJ9DjSUdVm6lvEs8mWtrbFTS9GvXChHaSeKh3b6jspaaKthKotOt4f+cITN4to7MdJw3GVAVE3D7HY7bLdbhOFZXfL1RYEAAQAASURBVK+DRouGdN/LbZ+//aU1s172wYBcI9wvpIE8RMNLwaRcL7yWfUbFHLyeNhji+EvQI6+Pn+EZqfoayKy599/OyGmzJnK8OOfb98PXcz21r6P9zPh58hm0r5ev4We3GZooinzvLO6jbXDUfp90CtuMRvs5vJ/jgwtEjYUO4JXFSilkaYZ/9a/+Nd5+8g5mswU+//mfweOXHuN3fvu38a1vfQuDwcBv4qPRCBcXF/jN3/xNfOd3fifOz89xdHSE2ewG222B+XzhN3c3SUvvYRZlDm0tHjx8iIcPH+Kb3/wmAFcwiN1bo8hllvT6rprpcDQAYHF5eem7hRJASGM+GAzw/PlzjMdjLJdLTCYT7x1yE2YHTq31Xut2bkar1cqnhMpS31xoRP4SOVIHwAdIJoGIm2r6breLxWLha3TEcbynLaF2gZNYKeeVseGaFEwlSYztNvWvpZaDISRjDIbDIW5ubnzsv9Pp4PLy0je6Y+t4evrL5RLdbtd3sCVqJr3NDYefRbaA+hKCPE5eCkAJTnidFD9yglNo2qb6mP4qKVe5+HjvNE4ERayKSsPJkBqN4dnZGebzuc9M4bgzpOM0RDsPEK21iMIQFhZVy5sLauraGgPLhYt9z47ludfrtZ8HNBRHR0cwxnjWgyGGtG7qVlWuVk2SJJjNZjULFyNNGzZtMBh4Y0724uzsDJ1Ox2lSdIhJONkzpgTVZKkkWAPg2Rg+f85jmVmltd4T7zIj5OjoCFmWYb1ee0aHuhTOuWfPnqHT6eD58+cIggDrtatWTOMTBgGMYLdcsSng+PgY3/aJb8N6vfYp2zQGEmg0m7lqSqQrhkplXQtVC1Lhvqv9JlvueVo/rkWRI6v3QdoIaTwIMhy4CF12TRBAqwAuzdOiKEuYytUQGgyGuApcpgwB2nuFUty+Aux2u7oJYQgd1LU8/Jg12ovb7EWjzZKGyLM84n2cwxQnM9vnkNGks8M9WepelFKI44ZxlqDlrnuU194O3cjPJXsqRenAfiG7hjlvjGpVGbhU19tMi7yG9vq4KxwhGQ95LsmEynCNHB/aCskAyfsh+85nITNh2p/RBk4S0PH/hxiv93N8KGbDTQYKId1i+o3f+E3M5wt89KMfw+c//wUUeY5/+A//IbbbLfr9vr+B6+trjEYjfPnLX8Y777yDBw8e4KWXHuPdp+/A2gS/+7u/iz//53/YswvcvLvdLtZXS3SiGGnm4q6/8zu/49EnN+U0zXF8fIyqrDAeh0gzB1oIGCgaHAwGPpMgDF0r9cePH+PZs2c4OzvDcrlEv9/36aK8DlLsUmzKUAjDROwKyodN4SLgJp/UmBBpEkTQ+wPg62EopZq4fbVfmIrXL8Mb/Bt1FwQCaZri6OjIxbVzN06LhQN3i8XCeYxpivF4jCdPnuDk5KROLx6gKHJ/f/1+H4vFwrMPQRD42iBSkMl7pabAWuvDNVEUeWMnQYDsXUMDys6ssomcVIwz9ENQS4Ai+2MwvMTNhSm/1BG1w1osCV4UBXq9HlarFe7du7dXiI3PiM9YhpQoUmU5+zCOGpARBHUNKg2tNKwSm01NM4d1iEIyXwA8eIiiyFdP5cZIA02QyfLs8/nc1ya5urpCr9dFnmf+Xqg1YRiKTNJut0NlXE0U2eyOm48Mz1VVhfVqhX6v5zlmawyCemMq8xxFlmFXhzk4T/OiQBxFnjF7fnHhAdrs+trXfRlPJrBVhfls5iqDzudIkgSL2cwZg/peXN0KuCwYsSFbOCel2+t6z46MnmPKRHPDWovhurS6rLTMG0r3Cu85Az4MYa0TdmpN4ShQlRXSdFczOSmyOtyqFMEKdR/C2AQBlAqhghAIXJc2g1psbkqgqhBHISZH03qONvsSsF9wrX0EQZPG6zrvGgQ6FCEQBzSs3fesgX0A0WY4WEWBHWkJMBp2ugl1c9/kepCZIpJxkKns1jbGm3OcLG47DNEGR9Jrb4dRpJPCdcxDMg/yvO61t1Ny5fi32aDmffbOvx1iCmgTGof1dtiozRDJ5yL/Np/P91gl+XP7qw0k29f6YY4PXq48aAyFMQZJ3MUv/aN/hOfPn2O32+Hn/+rP4/zsFP/kn/wjfO1rX/OeDWPtpIHfffddXF9f4+HDh/jhH/5h/NZv/RaUUvj617+Oi4vneP311+oc/cZzsxbodnu4vLjAyy+/jNPTU1xdXSHLUg86qqrC1dUVkqQD1MVcsiz1GR1BEGAwGOxlNAyHQ89WUDCZJIlnS2i0+Rl8kDQG3JB2O0dRS8MjwyFVtV+fQPZDafdN4YQqy9KzSDQqi8UC3doApGnqdSXttE0iWd+i3BgfSuJ9jsdjvPPOOx4Q9Puuyd2jR49wc3NTMxk7L44cjUZ7YIdoneCAC4OMi9bas1QcMzIJNGy8Xx4EEVL8y78zdESQQO8/TVPf30Wq1fkaAgTWxJCbFp8pQQKNEQEL2SFumgRRDAkw60Mp5YEP5zzPU+7F+TWACra+1kpsVJUxLOPoN1oAPtuFLBbHm8wZN1Le72Aw8OCDQNbpdUosFjkA9wxns5nf1Flpl1qeoiiQ5RV6tdHg3CJw49xlVg5Uk/ZLUSdDUnme73U1dsLNCOPx2LOOrMnBlO/JZIKrq6s9gEzGq9vt+gyqdoxcMhzuGbv96uzsDCzkJ41ImxWDZQZA5PVdzCJzrz2QoUCBr20atgFAWTU1DAjEwzCERQUNDWMB7ZT2zggq5Tr0BhGgAljlqqIyzKYVPJg5PjnGYDDA/Gbr58N7GQUa2jDUWC6W2Gy2CIK+H0dnNBWcSHQ/e4RHOwTh9irHBHHP4f2SMW3XwJHAm0JfqS/gPtIwk00Xac49snoSLBwCGvLepfG2Yo1Jw821K/dqrTWUacbAVAaV2u8QK5kGOi+SDZKgh9chx1SGQdqMySEwI7VDMpzTfj+BdVuDIT/zrpCNPDhefI28nvdzfChmg4YnjhNcXl7jd3/391CVJT71qe/GZ37g+/D84jn+43/4D+gmCbq9nvOaen3czG5w7949L+785je/iU984hN4+OgBwihAp5Pg+fNLPHnyBJ/4xMdRVa7UN8V4URRiu90gimP0+308fukxrm6uUZQ54sh5e3lBAZND2cY2FSUZ52Y2wmq1wnQ69T0xlsulZyXo9XERk6GhUWdohw+XOgmGV7gwgiCoaXnXwhpojKHfFOvFRsNBI0nNgSsx3vHGhEJEbvwECjI9itQkN35JDwZBiDTNMJlM/KbOsbi4uEC/33feZB1SGo+HPuRAQwbAMzKStSGI4qbD65BeP98jRUrcBOWCo0EHmt4BTKdlkz0CNo41tQAyJsnf8zrkJkIDRi+J98gFRMEk9RC8j149r2lIubkQHPL9eypyNF6Hi9MbuPQ5A4cxKicUhEUUJHsbp2yO1+/3PTgAmh46FKdS3zAYDHyYqQHLBlEU1ALMVf0sNNbrjWsFUFS4vLxEFDmNUV4aaAFqOCZk03xRrfr8nfo6HehxgsPVauXXkxujwj/zq6tLf/3u/LZ2BDo16I9dw7LaAFCPw/PxOba9Oql5UcoVB3v06FGtNVkhzTJEYQQLoNPpoaoMAoojrXFl2pMYo8kIKtBIswxFWbqiYVZ7zQZ8Xdb68zX7pIiUQ1OgKDMUReZDHtR9uCKYFqr+zEApx2joAFCBg6SVhQoa9i9QrijbYDjCcDzCenGDylS3DIgjXCQ74eZaVZWI4w42200dVm70Sa7VAr3ahp6/y+vmunfzXfk92xjrhblV1ejJlHKZVw5kuL3IvbdhU5RyVZkJDG0tmiUw4T5IQCDDC3IMDrEG8v8S8LSFkG0xdPveK8FmyNDDoXNyjNrgQh4EJJKVkq+R1yELnvGaZYiGDgdfz2ertfbrlefg58mxu4vN4f/lfha0wi4vOj5wBVFjDDbbFEEQoyot/ukv/zM8e/cZOkmCL3z+Z9DrdPC//cZv4E++/FUMkj6ydYpe0kO62aGX9FBkJRaLFSoLrLc75GWJ0aiPj33sNVxdPcfx8RH+8A+/jDyvoFUIazXyvClJHXc7iLsJClvisz/8g5iv5+gOuihtCRUAlSmdyhsG680KZVn6ipxPnz7dQ4X9fh9XV1deR8AaCqTQ6X0B8KEgPgxqNSQVLz0BY4zvQEvPj8aRhrURHu0bXL6f1RW5sW82Gy+E42KQBZlYXIwe8Ha73WNmWGFys1mj201wc3OFyWRUh0g6WCxm0BpYrRYYDvsoigxhqL1B1lpjNBphPB77jZ8giN6zFHByc6BXzPGhgJBjEoYhJpMJptOp130Mh0MMBgN/Ho4zF0Icx57d4bhxwdAgUTColMJwONyjBBk+IEtC4SHnAF/LsSYwSdMUk8nEa36ur6/9fGJoRqYDK6UwmUz8omyeewWlLMoqh7UlokjDmAJVVSCJI0RR6DcWMgEEvnmeewChVFNpVGomxuOxp7B577vdDkmcANalqo9GI5RVgfVmiSAEXM2GCr1e35Xp3xUY9PpIt1uk2y1CrZHtdoiCAKYsMbu+RlWWKPMc2W6HbpJgs1lhs1mhKDLkeYrNZo0s20EpiygKEIYaxlTo97tg63ZrK1RVgarKkecp4jjEer1Et+vEnZvNGpPJyDOQki3kHJKbvdYaOtCobAUVaORlgf5oiNHkCMvl2vV8qVkD6AhKhYjiPvIKsEpDhQEQKnRHPQRxgNV2g7wqURmLvDIwUKigUVZAWVkYC0AHCIIICgqmMs6iAijzHFWxQ56vAFUiCF3vk8oCQRgDOoAKQkRJB3G3i6TTQxJ3EAUBQq0QKYU4UFCmRBi4rr1WKagwgoq7ePzS67BKo6wsyspA6RCVqaEPoxvauu8KMKZEECiUldtzZrM5rFUoS8nY1HXXcTtbggwaHSTuge5vrhx4GEbodHro9Qb1Vx9J0kUcdxDHXXS7PSRJF1GUwLV0CAAEYOlxY4CyNMjzEmmaYbdz7SKo71oul1itVj5E2WYQeJ384hrq9/vo9/t7adeSZeE65jlliFKGV+Q48DPaISGydHL8JEiQpcDbRl5eu5zTHHfJZMiaIG2GT4ZJlFIoypKZ9g4sWet/dvNF7f2//bOxTuxelCVQ25kgDG+lb991fPBy5XWrwd0uxbNnz/HlL/8xsizDSy+9hM/8wKfx1je+gV//1V/DZrWCsoCyFkWa+Q1/uVx4fcVXv/pVFEWOJIkduxG6pmeXzy+x3exQVQZ5ltf9KFwd+yzLkBU5LCy6/S7Ozs9daCcOsdk40VxZ0HMCttuNBxUvvfSSN1rz+dxnoThVdugf6PPnzz3lT0+5LVTk76gB6ff7nungZKAAzjEPlaeKabzC0HXcpIEDGg2A1tor7WlsSNvTWNKwUsQo2Q+mY/Z6Pd9XJQgCzGYznJ6eYrVa4fj4uB6HEEWR+5LXLGfOTB5eLxf0YrHw3WUJaGazGQB4gEZBI3UyXEzb7RabzWYPkGy3W8xmM09Vr9drr6fJsmxvAfHggiVTxeciN0C2Zud1l2XpdQ4cHwqEWZODm4oMs1AkyIqk19fXfnworNwPl1WeeTLGFd5SuilVbK1FoJvS7NCAsRWqGmykWYo8L/y5mKHEzZCfw9RWZntILRABLgWvcRy7kFiWoZPECLTGcrHAeDRAtxMDcJ1P4yjEfHaDJE4wHA6xXq98zY6rqys/vygazuvQgls3FzVd68SQbgNWSJIYWZbCxbkLxHFUV/V1zay0VnWXZ3fPq9XSr82iyBHHEebzmQfekgU77IFxnN2aSrPUi6TzoiAHAYu6iidccS2lgrqvikIYRUg6LoSyy3bYZSmMtdBBLdxUyoEVz25wK6W6H37tZFmKIs9h6o64URijk3QRRjGSuINO0kXSEca3vi7YWtIBCw2XKq1rg2ABWAMMRyOMRmMEQQhXZbTtaXJ8UJ9sn5nwqdkWezVLms6pt7NO6LnLr8Zrtp6FIPPj2k3I17IEPPu5yJoSBCtsgxB6VlV+SaZNho0lMJIGWTp5QMMOEFzIsJ88T1vX4O1ga2zan88v7p2y7L90SttjLMPQ8jPvGnfuVfLa5Xjy2QD7nc3lHJBriIBJOtayvo5cc4f0Ki86PlRvlDiO0e/18KUvfQnvvvsugiDAF77wBZwcn+B//73/HX/wB3+Ak5NTZHmOft2yfDgcYrNeI4md/iDbuV4Pi8USYRjgwf0HMMYZr6vrK9zc3LhQTZLg5OTEhyW01q76oFL42Ec/hs9//vN49uxZvYYsbm5uMBwO8c4779TFjNzAjEYjAPCG7ejoCO+++y4mk4lHvjSEx8fHuLm58fF7TtbVauUNt7XW/8wwD0WBw+EQnU4HT548wXQ6bURmdVaGLJddFIUXQFJ/ICk+TkxjjDcyUihKcZ9MRZWFyWiseP7BYIDZbIbpdOrHgedlKjDBA7MUuJCCIMBFLeCjZkc2gCvqeivUCjCktF6v/SSVQkymEvP/bY2MROscK96jjAHLsBQXB88jFx+fBTN86MHw2fg5LhY9r+Py8tIbXDJf1tq99FqGcrjAb8WDxYIOw4bdgQQh9XuMMX6+MKOHGxcZs6OjI5/KzXASNwXOHYJUjnu3kyBNt8jSDXq9BOvVArAGnTgGbIl0u0E3ibBazpDuNojr8B4FxJJFIbsVBEGtVVEwpmFYCHhc5+Ch152wgitTEbfbLYqiwGAw8OEqyfrRK+T8kOE2Pi8ebq6gpvLrzdEYvPzyyw54GhcmcOuqNohKgS3l3cEU3RhZliPdpSiLqu6VEgJqv84Eu626EIquPcaa2SgKbDZblKVBEESIwgRhGCMIIgQ6QhQlwst3Og2WMt8DUEohEPdojEFlSoRh4J2VprAWAdDt3VvG5znHZJpx23Nuwh/N/w8ZVYL9NnXP37eNpTw3sM9EECBwDnNdt40d39cGRHLcZAiEpQUk48D7l2JPaUzb4TkxlLeALq+zrdmT4ILObq/XQ6fT2Utdl/co9RXyXtphHa4Rgg3uIfJZSs3HoefarJt9nQifoTw/zyP/3mZ97jo+MNiAQr3pXuM//sf/iDRN8corr+Jzn/vz+MpX3sQ/+2f/DP3BAGmWotd3aZGbdOc3fmMMyrzA8dERvvqVN/Enb34VWZbj4aOHmE6njhZervCf//N/djqGmgZfr9dYrZxordOtG3+Fgd9E2HdlMpkgzVI8fvy4FoWdeoHfN77xDWitMZ1OsVgsMBqNvMCIOfxKKcxmMwwGA1xcXABwC4cZMW+//fYexX51deUXK9MgLy8vYYzxtQr4sKih4CbLhys9bZmCSn0C64JwATI0QO+ZLIExxrMR7ImhlPJgiA3WqDPodDpYLBbeODGVkwWqaBykyG8ymWC5XHpjzmuR3gXDK8Ph0Ic6eE62hZceqqzWGYausytTHtvpcjKFV7IQZELo3VM3wcVHnQPZH6DJP5eCTup3uFCrqvK6lt1uh+l0ivl87p9nWzDF2Cg3Sm6sWZbV3m39uqpsKotq7YxgvdAdcGw0Q7JnjLUWk8nEC3wJ8Ph3glU+GzYZTNPUeWPWoJNoJJFCul0hDgNEGjBFgSgIoGERaoPpuAdbpSgLdy29Xhez2Q263U69WTtGgoxFksRebyTDRy6baejnMFlAao+MMRiPx0iSBKvVCr1eb6+gHceYv6M4UGu9R0O3N04nRHUhtm6vj5OTUxSFC4UActOlh+30FjQOYRgB1oWeyor9UlzTLVjUgMABDa0VtKb3qWujb/yzTHcZAI0k6SJJugiDCEoF0CpEoMMaeIRQCBygEcb4ljG1BrYqUZU5qiKHVm4/oy7tRRu/av3M/ULuzZz7zD6ikZSG6C6wwb1SAmc+q6B1TxKAtAEO17msmtx2PKRRvsU6CLZBZsVQ48Fn3H6ffK8EsvJaebC3kXy/vDa5t0s9F9C0d5D7WDsU1D63/AyeS1ZuBm6zH3ugpAVC5JjzmVLfl4t96hBrJJli6QC+1/EhmA13cb/927+Nt99+G91uFz/90z+NIAzxn//z72CxWGB6fITKGqggwGa39amkqL00rRTWqzUmozGur69RVRUePXyEs7NTv6F++ctfRpLEKIoc8/nCe/HT6dSrnPM8xyc+8QmcnZ3h7OwMl5dXtTdvvPJ9NpsjjmNcX1/j/PzcU/VlWXqPaz6f+5oFBDyMv3MyUFQqi3elaYqHDx/6wWc6JFNK6cUROEijxoXIzAcaCTZRYzySgEHmSbNgFr/zvGRZOp0OJpOJ94qZeUOGiSCGnuTZ2ZlvXEZtCOl6TmJ69DTGpLwJdLjB73Y7z2oopby2gXn9y+XSlwynMSZ1y/ADw1qk7zmxyfwwq4gbAVOk+WxI83PhZlmG5XKJ6+trT/8TFFGYS3aLXwBqEXSMs7Mz37WW7+dC5ULj4pebIK+P5297eO3YrPOwmw2H9UMIJGUlV1lintVxyZJZa/3YzedzAHVn46oCYJCnG2xWKzy6fx9/7ge+H7/w838V/5f/8/+Ev/d3fxGPHpzDlAXKfIc4UOh0Is88nZ6e1uugYc3IsrnaK30PtgjSWIeF48AKqIOa8aT4ltliXGeyJLybC929DZYg95bHyc3VVHVIx+DBg4cYj6f17qWAOmTiGQnQO23E1QTzReGyRrQK6+0ygNaha0Ev2AelauWjsqiqplldXrgwk4L2wCIMEyRxF3GcIIoShEGEIIgRhlH91XQ91boWjcLC2grWlA5sFDmqPAdgMJlMfJZV423fsX/zD7Wx5T5K1jGKmo7LkoKXhvEQk8C1QHAgNR2HDhp8CTa45uQXX3eXF94OA0hwJg06PXDJMvA675pDEji0X2PsbaAl38fz055JEMhsHQkW2qGVNqPSZqQ41u3xaYMYPlc5nySAJLBpsxfy+XBM72I+/tsxGwDeeust/PI//WU8ePAADx48wA/+uc/i3Xfexa/+6q/h5OQEV1dXCKMIq/WqZjlcxsR0MsFisYBWLva4XCxwc3WFKAwxmU5wcnKC1WqFbq9bVxN9BihX2MstgNhnZjj07OKMn/nMZ+pCS67L5XA42PMKWZGTGzQzS8gonJ+fYzZzMeGLi4u9DqX8/sYbb+DJkyde7xGGIUajEb7xjW9gOBzi+voaZ2dnCIIA8/kco9HIU90sqET9hsweaSo7pt5I0kCzvLas0MhNm9cmsxBYMIlgiaGNfr/v60dwXAiYWCWUIRGtXbElVu5k7QqZSkmmgIaemgDqIViPZLVaIY7dM+NkZ70Hxt/Tuoojr4meEFO15OKj8SEoYeioTfEBTTn56XSKwWAAY1x5doJVrbWn72ncKDpjrQ56Z0+fPvVjyNgv00TJCnEjk0DFg42yyZzgRgDhHXABa6VqhX7ggRDDTWR86IWShVoulzg+PvabFrvT0us4Pz/3LFSSJNhuN9Co8KN//gfxP/zif4//w8//Vfz4j/0oPv/TP4m/94v/R/zP//P/A1/82c9j2OugqjKsVkv0+726MNhNXXfGAUUnFHa9VkajEbbbjQfF3PyMMTg+Pm5aCKDRkfC7LE2vlPIhTLJsLkyz89QzN0cCVm7K8ggCF7rsJB289PLLbi3kJcmjGnZQM7BvSLR2qatFUcIVQXFp96ZSjn2oGY59I2BhrGvXnhdZHa4BsiwFP5EhXdLoTijZQVyHlvlzW+MQaHbQrWCNAxwwBUyZI0t3HijzWqQHfuggMJJGiw6RFFe3Dfxd8XlphCR4eBHTwvdI5qB9LvlMCIDa4VMCM2rXZImA9pyQnrkEH+3742tuszdWnMveMsztz6OBlkafn029VtvxaIOMNhN06Jz8fZvxkNrASIC+drinnX0iAUYbDL7o2b/X8YFTX6uqwu/+7u9huVyiLEr84i/+IkajMX7zN/49rq+vUaR1TnVtSHq9HrK6rPnV1RVO6o0nTVMMBwN89c03XfpVr4sf/dEfxb/+1/8W280W69UGX/rSl/CXfvonMRodQWuFMNKYz2cYDgd+Iw7DEN/7vd+LX/3Sr8JULrZ7dXlVi1GXODo6xmq1xnQ69bG6wWCA+XyO6XSKm5sbHB0dIQgCD0xms5kvcEUW4Fvf+pavvSHLOlNsee/ePVxcXPgYOotcVVVVtySf+b/RWye9JxcbPT1OZLIHnAD09GjYZEohKWxu3szekBVJSWtLUSWNGYEDjRNLnTO8w1AKJzbpbZYLJ5PC18u27JzIYRj6tEzWKLHWVd5cLpd7rAAP6YkQpEiqlouX90na3hjjP2s4HPqFyHGUVKVc+EyT5Tknk4kXCHNhMi2YYI0MBze8oig86Op1e0jzDEEYIq6BQF4DkH6/jzR3NQkqYxAYC6UV8rxAEBjPdFE4O51OYa3dq+DJAmvM/CEDxDAfU7bTdIdOJ8YnP/EqXnvlMZ588y1c1aJOZuI8fvwYP/OXfgp5luI3/v3/D2EJ3Nxco9vtYjDoYz67RqfWJi2Xcw8EnMC464ys8BaZFcXKupzrnU4Hy+XSF9eTxofF2wiuHOOWeP0UnQduvO05xt8nSQfWAA8fPEaWFYjC2JX8VhrW1lkjUFAaCGAR6ABVWfnrdvoLhbKoYCoFrUMACqayUg9aH9ysLfI8q7vCApdXlzg7zjAadfdi6mTWZKE0t/FHqKoCZVXU/y+R5xaVKaErC1d1w8CaCmVRwJjSM6LX11d+bcIXUhcplKqpKGlMY2h2u9QzgtYyLKShlEtblWuwrcGQDIA03JJaP8RM8DvDY9LRkJkakl2RTAPPy79JfRTHuM1OSGPPo81K8FwMfXCfcHuGfF8Fg0ZsyuuRDgT3R59JKQARHQJpqGUYqx26kSwEz8l7lPfD+yXoYuKCfI1kIziGnJOHGB2+ToIQ6dy+X7DxgZmN5WqJL33pSwi0xssvv4zPfvazqKoSv/Irv+K97zCKcD2boT8aIghDnJ+fuxuuaekoihCHIco8x2qxxGI+R5ZnOD8/x6uvvuYFgk+ePIG18CGItN5gWUo6TV0WwNnZGV7/yOuezu8P+r4yJg3C8+fP91rWR1Hk9Qs0cldXVwDgQw7c5He7na/BATiRKQ02H/pyufQUN4si8TOc4e37B0XhH9kEFjrK8xw3Nze+qFEYhr7q283NjTeWnEhcjMxKoMdOwaCM23MyZ1nmi2wB8MCk0+lgNpt5gScrpvKaZdoWqXI52WazmRfISs9qsVh44EXGhZUqpYFnqXeem5kY8v+MMS8WCwDwYQQCEIZ9ZDGtIHDVTRmWoriS4IqLjilx9+7d84XD0jTFZrPxjeQ4tsymoh5CakI4J3h+AL4QlVaNQpypsNIzARw9y7Eh00TWhyEJY5wImfcpxaBJkngxpmRtGCIbDvuYHk+QVwXmyyXefucdfOvJ2/jmkyf44zffxK/++q/hX/yrf4Hze6f4yEdfQV5kiOIQFgar9QKD0QBlVaAocwxHA1SmRBAqDIZ9ZLmbhwS4SimvIZIbMQEE+xMB8JuhqQ0gQ4lcF04XkngBsAxXtQ8HemOkuxyPHj123i8ZPRU4VkM1IkoFp90gcHCbrwubuJLUqq6roV2NDcGGyDoWOtDIixzGNBv706fv4OL5M2TZDk5AWyLPnc6F6aWqrgkURSHiOEQYR4jiBHHSQRTFCMPAFShTCjAWqCrYqgJshaJweh7HlHRFKOH23s1wkaTWq6rCZrP27Ka15paxaVPph3QX8jXcawgYgH2gIMGGfGbSkLXPK8MD7bCDZCEOGctD7AAP+Zp2+EpeY9ugKjTXeOj8MjTRZj+4j3DuSv2ZBBqSTSDIkCnwfB7tuc+9kCystbZufti8RjoDDEETNEkQJJmP9jOWn/V+jg8MNvI8x5e//GWs1mv83M/9HIbDIf6X/+X/idlshrIsMRy5CppKO6HlT/7UT+LHf+InfL+Ry+eXKHKn8E6iBPPZDL/zO7+DQLvKnt1uxw/ukydPcH115Wl4WcXwm9/8JgaDAW5ubvDo0SO88bE3vJCTFK8r0OU81V6v59MzWfpbCtSWyyUePHjggY4c0LIscX5+jqdPn+7FqNmvhAxFGIY+3ECP9/79+163QSPM8IYMezBGfXZ2hvV6jdFohG6367NFhsOhBwU3NzfegLAqJgWg1lqcnJz41NMoirxne3R0hG6364Wx4/EY8/kcw+EQs9kMDx488CEgMjjUljCsQ+CnlPLgjGElAJhOp15XwpLoFxcXPmRCz7SqXFddCZq63S76/b5nfjgPpJfDzaC9CVRV5StKMjxG5uvtt9/2m950OsXR0RHG47F/ltSSAK6c/mq18mKy4XDoz2+Mwenp6V6vDopnAXgQQhAgBWzG1Hnt/qtegK0N0BpbAw5za8MkiAGwx4jRQyQrs9lsvPEh2HReVolOt4MocmM+W8zwx2++id//r3+A//Affgu/+3v/Be8+fYbrmxv86Tf+FKenJ3j11VdgTYXBwIGx9XoFwKLf6+Li4hniOKo1Si5EidrhYPozdRhksKTR4L0RMBVFgaDe/LhmqR2iN8dztMNmbW+XnVZff/0j6HS6MMal7RNkNBuuAw/GmJrVcM/RhfsSlKVLCyUgcTUh2HQMgKrpegVn/PMMQag9BAmCoO7KagA44WhRuiJfWbZDlu2QF2ldb6UCtEIQuk63bt25+R6FgatTogFVV/pQyrqQtNZey/RCT1Ptgw2yglKILQ2LpOyl0eTRZhnaGSN3hSjk8zp0SMMvQY78PMms8FpkiqYMA8mwSxtE7M0ZAZ4km9pmZoAmrCPBhtyfJPvL/xOE0xHg+eV9S0aFX+3U3Dabt/eIawAghalVVfmwnnydBHjyaH/OoXCaXH/vFbbz9/e+XiWOIAgxHo/w8ksv4bOf/SyePn2K3/iN3/AUFqzzzs7unWN6fITP/diP4ujk2HvKcRwh1AGOp0fIswxxGOFPv/51T7W+8sqr/gHNZjO8/c47GA6Hvl7Gdrv19HRVlZ5qfe01V978/v37mM/nXuhID58N2KIowtnZGTabjQccLNu9WCzQ7zvdh9baGxyWRma1UYZR1uu1r1VBMMMHw03ynXfe8WmmMsRA1mM8HnuajtfAollS8EejJvu6SIYDaDxoigJpgMiOMMbt+mP0vKYiTVMfUmLLcXqRFG+y1gONOVOE2fmXE/jm5sYLGNM09c3jyD5womqtfXMuhkck/UmgxPfwbxTXcjGQzTLGeITN8aX3T/aILIGs3zEajXBycoLj42O/OXCDstZ60EWgdXNz48EMi8WRWSKb1Y55djodxFGMUPxe60bTALmBW3rsTRtoLnI2IuMYcHOVmQicY2wGx7ReKejdpimW6zXefuddvPVn38Tl9Qw38yXWmx3++M2v4tnzSxRVhV2e4eHDh+jXAPr/T9ufBsuWXeeB2LfPfHKe7vzeq7kwFUsASTUJU+BMTWSzKYkSu+1Qu3+0HJJCCkd0hDtaEbZ+ObrdVjhshckOqcOtbtGi6JYMSRQlkWJzAGlAAEGCIFAooMY33zkzb86ZZ9rbP/b5du48dQtAMUKn4ta9797Mk+fss/dea33rW9/yPG/bGK4cF8dxMBqN9NpcLk36Y7lcot1uG6I1nwnv306r2JGR6+pSWK4x25kiIsjNje+1N0JuoEVRoNFooNfrw3U9M+c0quFAOwzcSAFyLoTY9hZJkwRZplUshXA0KlIhhQoL4dDaXgJZuo1an3nmLvb3B3BcIMszQGiiZ56nyPIUeZEiz1MURQ4FWRJBGf2XhhUCnuvAdzUiHPjll+sgLPcAW4Pn/Q35e0tCtZHOrT1ky2XgnLINHd9jG0MbUbCdAdtRsA26fX22I2LzEGgDAOx8zm3n5jlsI2lfx23OAg8bQahyNuzrIPrMww/e2zCuel7+rWrUee4qisN5S+eC922Pvf06+zlWx5LjYToV34L+2O/hNXH/4O/ta7PHuapL8u0cH9jZUKUH+aM/+qOI4xi/8Ru/AcdxDHEzSVO02m3c3Nzgp3/6L+Dg4AAf+tCHTBOv4+NjuJ6L9WYNCGC1XuHx48cmJ/493/M9EI5WRYQAvv7664acIxyBKNLQdavVwnq9Vcz8ju/4DlNq1+l0jVHIsm0/DIpqDYdDUylicz8IUdnIg+04cONn10kiE+wn0mw2jSFn+SvL/Qjl20xkllHSMaJ3buejlVLGOHLzpQGdz+dwHMfoWHBy0DEgaROAQYXG47Hp88HKAD4bpjsYITEipRNDsTOiEqPRCHmeG1ItERobfiXyQh7EZDIxpbPj8dhUjVDSmtduT25uekwL8TOqmwuNFo0/PXtbL4TP2IaSWarL8zCP3O12jRN5dHSE9YZOrt6MmW7b29szTqL9fjoEm83GbE5c4LCc0oIRm7KJdtvUUZrqnCtTg3TUms0mPM8zKBb5HCQku66WNOezWSwWWK7WuLi6xnA8wvVohCTN4JdGajafYzqd4tHjR3j69BTr9Qb1srstRcFWqxUAaF5M6cT3ej1NDvY9Q8DtdDrGiafDToeHa85G3ThnlsulFhwr05927xyltjynKudmZ1NzHORFgZde/pBxmjmWMMgGsGN8nW1UaOfUizyHkrJ0MtjzhA6G7XiQzyDw8NEDLFc6PdRqteB5LrIiRZYnKGQGqTJASEil1Y6l0l8KudbnUDQCOsVCWW/P9xCGAeIwRBgE5ZzSBpmIpW0Q36O1oewW9Lvl2uT60KkjUZppTDrRHHPbcNnjXoX/eVSJhrZzYhswPZa7lRcMEGx05ba0SZXoeFtUbn+3U0TcT+wKEdvRsKUI9Enee528hyoqwH2G52Dww32Nr7Pvw97X7Os1T/Z97o/PkMiuQVHUrlZJ1SnhddyWDrOdkdvSZN8MpbKPDy5XriT2+gP8B9/9x3EzHOE3/5dfx/RGt9x2PRerzRqjmxFeefVj+IEf/H74oYdaPcJ/8V/+F/i//T/+Dv7if/zTODo5RCEKKEeh2W3j/PwCX/7yV7BabfDqq6/g+77vk+h0m3AE8Mab38D9+/d1VJ3rIDDPCxSFxGBvgNV6jVq9hnqrgVe+4xVcXp1DCYlGsw4/8OG4DkY3IzTbTVxcXiCuxRCugBf4WCdrjG7G6A36mMwmODo6xHK5QL1eA3OXWhzLQb3eQLJJURQKUVRDstHqlZQ7dxzHEEvPz8/R6/UwmUzgOLrqQ5f4amXBWq0G1/UQBBqmXS5XiONaiZDUSyfKMXltKeWOoZJS7nRfpQFiWoBpFU4O8jySJMFgMDDvYbqGhsteLFEUYTAYlOiD5lu0Wu3yWnwsFkv0+wO4rodGo4kkSTGbzQ1czs2JRF07TULvudVqodVq7ZTjAttKDi5+e5GwDJRRA9Nm9nt5/zS6dGRYeskFwpyqUgqr9QqFlEjSFLksIKEwnc2Q5jkOjo7w7oP78IMQq2QDp9yE1uu1id6Pj48xm82MwVqtVsYJCIIAstDGQ7PYJbYtqsuNiz02FAClyhJE3Y1T338Bz3OxXq/KlFlsDANTQldXV8jzXHfrTRKkpVS5nRLKMomLixGWizUCL8DeoINOw4cvEtSDAt1GiHy1ANIEq+kMi+kM7VYb0+kMq+Ua3U4XvhdgOpmhVm+gXqvj6vIa7VYbtVrdkMIXi4XhLhH9oaNmb6p21ZFOo8aAEMaBIbKm10tgnrWdTrM3QyklCqnL7u8+8wwK6GZocB0USuqeNJAlgVNy8DXVz3EQhBGiuAbX86GUQKEUpAAUJArkgCjgCsAXPkqcBK4LQBSAyrBeL/H6a69hRS5KliNJE6R5jkwWyGSBonQ2i/Jai0JBFgpFrqBkAaEKqDwFZKYly30XvuvAhRbuKoocKpeQuUSWZgAUPE9zk4zwoVLlfBKaZ6IcULOcqSMlddqOlV16HPX+miQp8nwbTVcrJqqGUA9fJSVoOTfvx5uoOgs2ilF1LJiGLOQuAqHUlpNgGz/7+m6L6k26w0JwsjzfSnSXc8pxtdCafeTFrsCVwrbpXpbnkNZ9uzYCIoQ5dzXlxNebfb48LwOH6j0JR/f82TmnUshL5yzLMiRpuuO8VJ1EOyViV/YZe3+LM8H7th2Pb+f4wNUonuvhB/7Ep/Dcs8/hS7/3+xgPR8iSREOtyyV+8Ed+GN/zvd+NVz/+ClrdJrIiRaNdxyuvfhS+7+PJ48eYLqfwY53TTVUGP4jw+PETTKdT7O3tYTDoo1aLMRqN8PDhGMPhEIeHh1rBcJGgUcozX15eIY5jTKZTdNodNNoNdHod3NxMUK/VIPMCwvEQ12u4Hg0RxiEW66VuXz0ZY7C3h/F4jMVqgUajjkePH6HZaOD6+gqDwR6mUx1dpUmK06dn6PV6GI3GODg4wHB4DQ3DN3agbACmSoBVLyTseV5ULuQEh4eHWC5X8Dy/rFzYwPdD85nLpW6MRkeAFSN8sKxaYeUDDSyjFBp9W+SJHjojQ1uZslarYTQaodVqmZb07H6b52t4nl9yMWomul0uV+Vk1I2X6nWtTtpqNXYi+2azaSa1XdFhE/3olJHbwU2T2iWMDpjft4XOAJh7IV+AED8XcpIkZsEz/cTFt1qtsFguAUcgVxJKCDieBzgCjudiOB7hmeeew2w6RRhFSDYbNOsNrMp26dyoSRglMZNpGKVU2UNDOxuAjiz1dLF1H0rgXCg4pQETokAY+chSKhyqEnXaStWzjJRVHESe5ouFUf6kwXcdIM0E5ssEe4M+inyFvU4DQh2iKHLIXCHLFIpCQWU5UChACbQaLbiOi9lUOwDdjk4p5jJH4AfYrPX4QgiTBmG3ZvZnYUqKYnFcLySTAppEWy+1b+jQ6VRpAsfZthQoqpu92nJ3RJ6j1e4hrteRK6UbyeU5PNeDEtpt0Pa+NHpKaJus2DwsQJZJbJIMRfmI9Hsy+ELAgQdPm36UYudQMoMjJM6ePsaDd95B+ySHD8B1PDieb5Asz9EohRCOdlaEgEPyKQRkoUtbXUfBEUCRZ0jXa6xWCywWMyzmcxRZXrZ+085HGGo0o9VqGRKxll8nUXSXp0KHQwgPUm6DN7sEWMuGu2a+cY2yEug2p4FGyjb2tgHV590qIt8WEVfTA+YcFi9ASom8KOBZRlbo/Jf+u4ZttL2yKqOqyAZQkiGhHYVC7iIlOYO8ErF18+19FEUB6Sn9HCwjzg7OTukE5GXgJEvnktdC5wnlvQlHC/tJpeCW6B+Rc4OUbDcN/b7K+EMIcz0531OOZW6hg/b9V9Mw1fSKnQLiM64iLf/e0ij1eh0//EM/BCEEPv3pTyPZbBDHWpnyU9//Kfyt/+r/gB/+4R9Bu93BYrkChFbjK6TCZpPi05/+53jn3XdxPRyi1xtASt3c5Q//8A8NjPPKK6/g9PTUEB7v37+PWq2miZZRBGHllkhyms1m+NSnPlVKcXcwX8zR6bR1dFevoxZFGPT76LRaSDYb9Hs9jK6v0W42EYchojDEwcEBfN9Ht9tFkmzQbjd1OiUMDNmuVqthOBwayDKuxUYfg5UcJFyyaoYVJsy1s6uqhshTQ2YlrKwj8Lph47OShkgH0QpG0Y1Gw4iV2YueES3Po5Ta0YfgxrS/v4/pdIper4flcmnEq2q1mqlwca1onpArc4f0iheLBeI42iFphmFo0BJgK1HNSctS29VqZTgJ9iLjBsfPsqW3ma4g6SqOYwwGAwMl2xUpTAMwdUb0hc+u1WoBalu2VhQF0hI5YMpKlQtLlIQ8+z6klMZZIheI0TedIo4ToJEMk4+1ow1FIbINsizVZFG5JRG7riZSB4FvSpTJ0aCT5vs+prMZ8jw3GhzDoS6LrNXrSNICNzczrNYb1Gt1tLs9vPjSy/ie7/0kPvGd342jo2O4XgDd+VUZB4YVWpvNBtfX14aPQvibfA46FEzzME0WBIE5B5G3brdrULnNZoMszzEej81ci6KofGaeZQh3IWRC9HRmBQT2Dw4QxjGE48DzPU2OdLZGnZUg+oQa3XAc3elVrxWYZmXW/m424izPSr0gIE8ToCiwmM/x5S99CaOrK8hyvgdBgCisIYrqiKI6anETtbiBer2JRl3/HIUxfC8o0QdtM4VQWC0XGF5f4eLiDNfXV5hOJlivV8iyBAoFXNdBGAZwHCAIPLTbTfT7XSilxduEUOU1b6tMqvwCGj6mHrUjxNfsqmcS3eDPJCLexl2wjfb7cQXotNhkVP79/RCSanqlei/Vv1U5EVW+B8mTnEcMQhg02L1YOM95Tfa1ET1gyolOTnUM7H2N90TUwpZm2N/fR7/fN0EX78WzHJHbtEeqXJAqYsKx5fMzjo/1Vb1Hfnb1/LdxVb7Z8YGdjTAM8ZGPfhRvvfEGzk5P4fs+Op02fN/H2ekZlqs18ixDmqSQRYE806VuUAp/+OUv4/Of/zz6/QHunNzBaDhEvV5DmiSYTqd4/Pix0YE4ODgw/ILf+73fw3Q6NWWk3Fh6vd6WoS+AeqNhSIuNegOj0QjdTgez6QztVgvj0QhFXqDdakFJiX6vD1kU6HY6mJSiXlIWiOMIup39ynQVbbWbpbOgF3ieF6jVNRrAScKN//r62hgVGh9uskptFUT5MK+vr00+nFoW3IwBmL4t3Kx5/1wA/HybbMf3Up7bZkQbgzSdGvIqHQ9C4NRpsCczjSVTETTmXDR0MuwcMJuq2T08yLOhE0BUwNaosDc2Li46GdQAscm2NIaXl5c70YAt6c5xoINEoTOWmKpyrHntPC+dwqIoDCH2ejjcqTrheSmDr5QyJdJ09uwNWapdqWJrhaPI8h0ZaQiU60zLUs/nc0ynulyb12sTQ+kgMc1WFAU6nQ4AYDqbw/UCrDYJxtM5NpmEhAs3qCHNgdFkgdk6BdwAbhBjtU5wdXlpnq0Qmsy7v79vcum66ssxFT22jgpF5bipcZ4wJTIejwHAVGwRqcqyzHSujeP41ih4ZyNztt1ggyDA8dERfI+EVFaS2BvktvQVZbdTx3FMtVVuyWUDVn5eAMLVahcaidIIhJISDx/cx6OHD5BnmfFjHOHC80L4XoggiOD7+vv257Asb92qhwoBjEZDnJ2dYjS6xnqz1GiHK+D7mruhjYWLINA/h2GIVquFvb09sybtCFQ7sniPkSB/g9wp13V2DJXtXFS5D9sp+/7S3fbfqg5HlW9QRavsc1WdBhupqF5DlY/ANWobXtthUtgachp+2zGwCZHVz+M18/3kytlEWPtz+cX1xL2cDkgURSaQ3U1vvZcDYpfp2s6Z/Zm3VeIA2Pl3NYWi54Fr9iz73PZnfVCn44PLlTsakvniF7+I4XBoqjniOMY777yNz3/+CwCAZLNBukmwmM+RJiluxjf4p//kn0AoTeBbzBeIowiqkGg2mhiPx/jqV78K13Xx/PPP42Mf+5h5uPP5HO+88w4ajQaEcJClukqD2g40xP1+H9/zPd9TEii18VouFojDEJObCQI/QJYmuixuk0AWBRq1OsajMaIgxM14hCgKMZncmEmnpdE3GI9HqNViY0CSZIPFYm6iOeos0CA2m034vm+USekU0TFgOR8AdDodPHnyBK1WC5eXl2i1WoZQSYIfVUc5IezqDS4MRs8kxdndZBmd2psCq0q4mEjgIpmPBjcMAxNl8nO3+gfb5mHaodi2VrcnNT+DzhA9dApwCaEJjI1Gw2z4XLCMMIhC2FEDJzuraJrNpjGuhPDpNJFDw3HnOGRZhqurKxNN0wEi3E8eAgAMBgNcX1/voCd8H6stWEqo1JaQulqtkJRET3tTvX3Bqp1NzHHcUtU2M8+11+sZ3g0rO1hFxJQJZeqJUGVZBggHmyyHF8QYTeZ4891HeOPtB7j/+AwPnpzjZr6CHzXgxnWMpjO88eZbCEreBMnD1KYhSZoBQKfTgZRa8p+VOUyfcJ3QyaYjmFsRI+cbydl0fqn3Yhsw+8tm6pMIvre3h6JE32Qh4Tr8XKDqaKjyOx2VoiiwLrkkVYNBfQXHFaZbr+MKjMdDfOPrX8N6vYTjuwCbugkXjuvDcXw4wtOpIKHTKLwWYfqzaJ7SfDbDfD5Dkibb6pUSZXFcXcnkOKJ0PnyjSBpFEfr9Plqt5nsMVHWe7UDhZaCk5+SWE1N1NG7L+duIxG0cBD7X2xyNKlmUh23kuU7s391WmcLzSKmRQP5sIxL29djnrjogdqBj31/VyaKTwOuoogs24nHbmHFOMxXLg3pAJNJ/M4TI7BiV8bcdtKrmhj0WVYeNf3s/Qu/7zadv5/jAnA0o4K0338TnPvtZo06WJCl6rRYmsyl+5Vd+BYeH+1CQePGFF3UU4wcYLUYYXo+hlAAKYJMmODo8wuXlJdxAR6ivvfaaiSCff/55Y2CzLDMdSpNsg3WyNhGQEAKDwUDreLTbaJToxvX1NbqtNjarBK16QzeYKqNuVg5Mp1M0azHiQD+MRi3GcrM2uhuNRh3L5RphqCMPXfZax/X1tSa/zadm82TagRu83UadhprCVVEUYTQamY2UBMkkSUzzNt3wTF8nO9lSW4EPmKgLJygnAx0H/o7Kp7Yh4qZqoyGMVGlAiB6kaW6cCQpq0SFgTp1pDCGEcZYY3doQPB0LpktMFVMZnRNtYPrGvl9ObkYDvEallOlFQzie0uN2aaSd2rHRJToTtoKpvZGwWqjVapny6DzLzXVTgZP3QB0OQKey/CDAYrEyz0dXOWw3KZswZsOzvIYsSyHgmOhXIzVbOXaWcQshTHkznUJutvV6HRACs8USrV4HvueiBgXIFG/df4Lzi2vUajGiqAbheFgu15jM5shzGBE2tmnPsgyDwcAIdvF539zcoNlqGYfQHluWuRIZo7hbWvK97J46TFlyHemSb83ZqEK+HE8bym80G2g229gkGer1AGnGhnQ0phaiYW2WjBaZnpJSAk5lgy7RDFn2f9cKngUe3H8Ljx/dB2QBF4DrMCXiwnV8SOFCCAXAhVIOlORmD5M6y/MMq/US88UUjgNEUQBZaD0N5Uo4vFZZQKDUegg8uK6DeiOG77vodFvo9bs4vziD0rmjbSTq4D3Ggf/mvouy9FaP5TYKB3ajfXtMbMfANkDVNIidxuF858G1bqMF5hqtCNx+PQMWex4URYGSGrvjhDLtQHtip1ocIaCs4IVH1YmqDJz5nS2GZTvTVePOa7bv06RVy3FUShkJhSoaZBt7OxipOmJ0ZHjv/Ey7jN7+suUFbDIqz+eYubxFu+zn++0eH7z0VSmMhkM8fPTIMN2V0n1HGnX20WjiuWeeQ55liKMIK4oMRRHWyyWajQa6nS6uLi/Ng6/X63jjjTcwmUwwmUzwXd/1XWYTWSwWGA6HSLPUsO89zzObXBiG6HQ6WK3XePnll7Fer40servTwjpdw498zJdzSEg0202s0zXiRoyr0RVWmxWuhleYzCaQskC9XoPveyWjXudA63WtsiYcAT/wsEnWiOPIVCCwdNWGsu06a/baoBdLAwYA5+fnxhHiJJvP50bfgboFrNzgxClK9nNS9p7hxGfUyL/RQHMjJS+ELdftEk1Wv7B3DFEBpgO2DojenJj+IbFTiK3jYyus2pEEADM+utpn60QQvbCJgEylCLGVyGUuk/AmSatMa1EXgwf5Llyw3EDsMrRNGaFzEZHnQh7PcDg0iM56vTbjT1SG76WzQU5JUJ7fEbt5U7Nwb4GhaYD0c9Gqr4uyvbtGULabGo0znwMdSaaIgBIml7o762K5wGw+R1yrQykHzWYXEh6uh1NcXt/g0ZMzPD2/gvBCuJ6PopBmztAJHI/HxqmZTCZgBRP749ABZ/kqx5IVU9SMcVzXaNDQAeS4ELG0Hbeq5gM3SN73arXCnTt34Lg0lLpstSi2xFyScmXJt9NohTCbLjv0KqtDrHC2G2shCyihdTM8z8FsNsH9+29jPptAFTnarW11lesHAFwtCibK7q7CjhZ1q/ii2JbEC6EVTJ1yLDzPh+/5cB1C5q55/q7rmFQp05P9fn8HxqcBsucX15yUukJHCGEge4BVCO/fJ4SVULaQlj237Qi/apyqRpyRND/XPp/nafVXKu7ysPkV/EzDIbHOxdcShbOdHHMNFjpml6YyhWxzHMz4YYsA2Ckgzk97PXP/4h6240hZY0JHyCad2+Nlj1sV8a3uKfZ3+3P43UZkmOq3hSdvqwrivdjIzW0oy/sdHxjZyPMMX/va19Co142mRJLm8KMQi9USgEC/10ez2cDV1SWmN3ojGgz20O10MR6OMLweaudgtUJcRj3C1fDzF77wBfz4j/84xuMxXnjhBbz55ptotVr43Oc+hx//8T8L13exXCx3UgVXV1fo9/tQUpk+J0EQIPV9bMqmUdejIcIgwGw5x8HBAfpxH4PBAPeeeQZ37tzBwcEB2q0W2t0urq+u8Lf+q7+FTq2G5XKBMAxwczNGu93BZDKF57lQSmKzSQ2BjRwTGi6iCIy+pZQmt319fW2ixNVqZVre9/t9nJ6e4uTkpBTa6mA+n5vonVwG29GgBgJFlDihKEwWBIFBcghtUyX18vISrusaKXZ7QdHx0Y5Ibowuyz2Z7mGJI/+d5xmkFEZbhNEqnzeNAzVAiI5xMXIB2E4S4Xs6H0xLcPJT6Izno4YD0ZOiKIxGCa91MBhgs9kYROry+srAyUwT8TqCQHcN7nQ6uL6+RrPZRKfTxmK2bTRHUuRms0G/3zeOCbAVW7OdKkdbOb0xqS3zW6/b7eI1RlUCYRhZzphrDDcdcEA7W7xPdrsNwxAo0R84AlGzAd91cX11jb1+H0IVWC4L7O0fY7XZIFcbDDp9rEtUohbHxiGgU8nzX19fG5G82WyGTrdrHB0SodmIzS59pRNJtM7eXO2KJZbG5nkB3ZtkF/rl5qjTTHrOHh8d64jN9aC1KnQjNaYqNGffMb1D7Pw2nY2iqHQ3tZu1ObqcESpDUWR49PBdnJ8+gecoJFmGeqN01AFskgQItvl6fQ5GqYweM/MFpUqyqICSSl+lklBSl8UCEnBQXvtWeIkIhOM42Nvb20k/6UMZtKVqiKC2rQx0uovz0YFSWx0GGlE7pcX1yrlaTTvZP9tRuR2B246D/T6bG+B62462NLg2r23nMy2UgoEZS+SZ4uS8sVGCakqhmur0nK259H0fgXu7kudt11RFdKopFduxsH9nn/82h4HjaKeCqugoHRn73NyH+Ho+06qDUb0/pvI5BrZT+62OD+xsrFZr/N4bv1dWL/RNrilNUywXS+zv76HTaePp06f4737257BarfBjP/ZjuHuyhCoUJjdTBEGExWyJZq2pNQ2kRLOpFQPfffddA7u++uqr+MY3vgGlFIbDIR48eIhPfNfHMboZIctS1Mo8MMWVHNfB4eEhPvzhD2M0HOL48AiDvT0EUYjnnnsOjXoDB4cHGAwGaNQbqNVr8IMAqtDNiKIoRJGmcADNx9iLDOQVhj6SZAPHESgKZSJyHjYfgROCBFP+7ebmZoc8REPL6HS9XuPk5ATD4RD9fg9nZ2dGQ4GvY3M4pikY3bPqA4Ah7XFD50ZsR/OMeqkeSo6IPeE4iZIkNeRUCnQxLx/H8U7fGY2qbIwwmF36aiMrRKQcxzEIGSNXRoX2QiWCxujZhhDpcJB0yvOTDEsROCklZrOZcUgYEeZ5jlocY17Ka+9ArCXxkSXBbGefJalJvbDKRSktFU+9lWVZGstIVjgOXJS8HqV0hFzdsJUsRR+sDU8BUgBZphFCPW6uNTdDU2WkeU3C9L9h2sxxHM0r8n2ssw1ySPR62skN/QCtZhfz2QzCddHv72O2XCCKY/iu7t7b7/eNHDzl7qnbMp9r7hJVaB3XRb/f31ER5Ry0SXb2HOOzp4NXhZDfb1NnpEVnfDAYoNFsaIdC2JH1tuyT6qHKIkw6DsxcSJIEUimNHtyyBypoSfnQc7CcrvDg/juYT28giwyOUDg4OIDwfRTQpa+u55WVMPrd+gy6t4mUGfI8gSxKDQ/XgRJa40NAQDplnwoFAGXELyWkzLUTonQlSrO57ezc7bbR7baxWMwg5bZiLwyDreKp2CUsMnWpiYtEZHV30yoCwfG2UQt737PntI082cgAnxedF9sRpwNgR898DYMPe41W55PtJHBvJreJKSKbDJpaRGCbP1S9L0dsy29tZ82+R/6O89weL94T31NFmuzvfI393f47f3ebk8TX2SkW+5rt1ArH2NZYqjpZ1dcRwW80Gjtil9/q+MDORpomGA6HhnylO7ZqMZ5CFtjb28dXv/pV/LNPfxqf+9zn0O/28A/+X/8DDg8OcHlxoSetUohKkllcr6Hb7UG4unPhcDjEkydPcHR0hMFgsBOJQqBUCO1gVkpwp2mKhtUdcjAY4G/+zb8J3/MRRSG8wEcQaRTE9zykJZy+XCwgIbFO1shKhynJBIRSOD07NToTrVYb69UaFNnSEzbVzo7FuZjP50bOnFE0UyDM/wqhRah6vZ6B4clToPNydXVlNvCDgwOcnp5ib2/PePFc3I1GwywcbuJcKK6rlSPp6NTrdcON4CSfz+fY399HmqbY29vDxcUFhNj2aLFLwPr9vmn7bUeiRElIGlwulxBl5QRTR6wuoRLn/v7+zrUAMBOYKQlWJQghjOHhd26MjOToPLF6Ic9zQ3AlqXOz2RgCL+XTaZDZ9nxROgt2sz46SERUHEeXal5dXaHb7sABsL+/j9FoZMSneM7pdGqcgSTZaKKgsnPW8j0bg/7D7npTSkFCQigB3auDOh6x4WWQL8N7pcNlp8aISi1WC3iBC8eLMLm5QbPeROgHGA5HGAz2kMsC5xcX6A56kFJiuVxi0Oubiin+jqJsLPWWsuw+W86RyWSCTmeLzNnwsh2J2wS4Is/hlQ67Hd1Vc8nVjZnqv0IInJycaDKoEFrHoiRf0vnQmiZbLQn2OXFdvalmqYamoVht8t5DSllWpEhMpmNcXp4hzxL4nodms4nnX3geT30fGwBeGf1BCAihnQaFAkoVkEVednfNAEgIR8H1HKjch3L1tbpOec8KZbfXbcfXosghCx0kUO2WaV3uHXTgqtHn1pHfPgs9hlujpPU3dlMaNieB85PPyY6SbUfjNiifv+f5aQCZgq1yFVyxW3ppR+w7a8VCCOzvjuOYfcpOc9j3x+CIc8+u6pGyFHUrj0JK0/W16rzZTo+dlrCDp2raqbrmq/fzHjQKuw6F7XzwOujc2Twbm9tEdMgeT9vxs6+rmkrhWBLt/HaOD+xsKKUJLHfv3MPF+QU6nQ6E4+Hm5gYKCp///OfxO7/9GWxWK/h+gCzPEbgeHtx/oBtz9XooSi3+Xq+P9WaNPM+wmC3hui4ePHhgxKXu3LmDm5sbnJyc4PT0FFeXV3jlOz6G1XKFVqtl4ONFSbyUZT+Jw8NDpEmq66ddB7mSiOLSuMkC48kNanENSZ5BOA6Wm21uuRaEeP7558sN2kOaZmg0G7i6vMbx8UmJALilGFZmDNv+/r6JDFjWR+NH40uWPRGOPM+NcicfvJ2LJtGOTexIeGTag54oS4A5EcnipzPCNEWe5+h0OsY4Ui/k3XffNRG9DSkXRWE0PLihkyzIzZ15UCIYw6EmGpJ4SuNHjgjJjOTjUE6dKAMX12QygVJqh1zICJ4VC9ygWPY3Go0MykHHj5ApdQTogHDRkUyaZHrTXpdOK1NedKaCIECn08FwOMTx8TFuRmOEZSVAu93WOhzlYqYx3kZemvGvrDXEDcBe2LfBkcYRUdrRD4LQOBkcOxvZqJahcvyKQiuI1uoR1pslAs9FI4qxmC8hIuD46BiT6RSFkjjcP8DNbALXd9Hr9XBxcWF6BpHPo6u0Euzt7eHm5gZJkuDo6AhX19cQYivlTifUNiA2oc0myAkLnuccJFSr33PLuJQH0at79+5BKglXCChKjHOTh2PKHPVz2KIdHnk76aa8JlGKLr13D9Q8iRCTm0u8885bGI9HKPIcstDzJvC2CKcsG+vZqIbWvSiQ5SkKmQKOhAvdNVYVuq09UMAVLmDeCwiUBrgokDkZdH+VDJuN7iirmzZqrtmzzz6Dt99+q5wjoUFd3+t0YMfw2I7gZpPsIBrG8Fe4ErZDaD9jfqcRp+PD33EdRlGEWq22sx/YDo2UEirPdwxhNcK3nQIbXbE/ww5wGFBUo377c+3PKIoCudo6G3TK+Hl2mozXQWNdRUns67TROc7j6vjx+ux5b6N99r3SyWBamnvzbfdl70F8rtVzV1M+HE8Ahpv47aZRPjBBVH9YYHK1WaY3Dd/TYjpFnmO92iBJMtTrDTjCxWQyRRzV0Gy0MBqO4bgesqzAZrUxHjS9wCzLcHFxYYhOL774ojFyv/M7v4MojOA4W5lqGlLXddFqt7YwVpEjqsVQUFhvNliuVpBKwQ98CNdFAVnCmwKNZhOO66LeaAAQyPLcLHDH0RD+s889g9HoCqvVEuv1CoCuCEhSTYrcbNaQUrO5m82tgiYA4/0xeqchp8NktyLX6qRDgxpFUWTEkbgYSXQkKY7qohwnEpxsbgfRFSpKpmmKVqtliH0k7dkLZAv9wSAOzK/yvQDMvdDB4MSlsWGunjD8er02Y0GkhBEFr7ndbptOt5zcXEgknZILA+jyaD57OkgkGXqeZ3rU8L18DiYaKfOf3JSprEpEQwiB2WyGwWCg++6UiNL19bWRJa9Cp9s6eG1Iq3ly4Lb8+e0RKF8jpdYZyUoUiA4TN5jVamXu2b5/AGbN1GsxQt9HUeQIAv28zs/PIaVEEIRmLB3hYDQaG0dcSolWq2UcvSiKTCflVquFSYnmKAWzpkmCJgdAkzWL8lnojc73AzQaTYM+xXHNOHi1Wh1hGEG3fLfh5G0hSV7kpcBeDe1OF0JoZGOnaRp2o2v9szLn8lwPSgFZptVFIRwoqd9Zvrr8v9bVcF2B0fUV3nn3HaxWC42CKIXBYA/9wZ5Z+47nQqkCShZQhQSIaCmFosg0L4PQtlv2QPF8eF4Azw/h+RE8P4IfRPCDGEEYI4gihGGEIAxRb9SQZSmWywUcB4iiEFEUoNvtIIpCpGmCosjgOECRFztGeev8KBS57gPDQxuo3dSJbYhso0ZSJc9tO5I2AkF0yzZ81KWQUpryfBvRoGNiO6g2SdhOBdmISjXt835OimuRT6sojF2VVk1XCOyWtnJ/4rltB81GaWzui/067u/V9Mz7pVuA93I2bhP7slM4/M4glfs1bVW1RNb+4mu5/3M/mc/nhj/3rY4PLlfu+eh1+phOp7i+GqHV6uho3vUReAFWswUcAYSej8V0Bs/30Wy1IJXEfLlAo91CRja3koj8EH4UIEk2iIIQy9UKp0+fwnNc7PUH+OiHP4IH797HweEBri4u8fTpE9y9e4KrqyvU6zUsS60LxxHI8wy1hm4uFsYhkiyBUhK1OMB0OkO9FmG+WKDdaCIvcriOi02SQOYSDhxMlxPUghCz2QSFyjG+HqFVNpJaruY4unOEMAjR7XURxzFeeP5F9PcG8F0PJyd38Cu/8qv4tV/7NSTJGoDCzc0YrXod6ab0AIVjPF7C2p7nlaqnujU7+3msVmscHOxjvd4gjuu4uLgoI6paOal8pCm7foYGWTg/PzcEzpOTE0wmE+zv75s28BTEsicpKwooksXqF+bP6/U6hsMROp22MV6TyQR7e3s4PT1Fvz/AZrM2C6fRaJVVCT6KQsFxBLKssNAW3VBqtVrvRDgUkWHuWSllSJZkXdtS49ycbIcTgNmM6KzxYHkqHQkSaweDAeYPF5AQkJIRr4soqiHLZqWaa4Jms4HpdA4pAS/0kVtS6izd5Nh1u13TewYAsiKH5wkUUpQGrUAYaoSm0FWUKPIMUEVpU7cVE9pZ0UaxKLJysweKwgFKDgjRHzY+o7Q6ORthGBoUbT5fwveDslfKClJJdHp9rFZLw1sRhUKeFPBcF/OSbNzpdDAejxGFIRSA+WyGdruNLMuwLFOBm01aOoS6W6pSjJAE0jRDnmfGWQnDqORBuSUB1EW73TUOOCtU8jyDJitukYECDhQKCDjwgxqSTYrDkxMo4QKOD6kcCKHl0wWE7oKiyiixTKtIJSGUhCpcZLlElm901YrwIeDqFIxyIAoBxxWQeYYwihDFLjbLGzx65w1cnj7RDrnno8gyHN17BvV2G2JOp73QDgqkdnjKW1ASEPDhuX5JI6F0uUKOAo7rAYqN3/QbPFcgz1MUuULY8hFIDwe9IzjQ/KsoCBD4HrJkjbt3TnB4sI/R8Lo0MDmiyAeEA8/14HkOHEi4kHChtUKyZIM804hjIXUPJDt1SyeDCAgNDw2YkeYu0Re3NKBKSiM3biNbjqORpjTTPTxsDQ2FMlVRFCZlb3NzgG1vE9so2o4501ee7xvJ+qLQysBFUZiSc6WUJmxjy7+oEi2VUnDc3dicxt4OAmxeBp0QOyVtcx44FjZ5k9dtoyG2A8R9jkgRX0etFfv9Njphoxh0LHaqa6yUVvV6bIfNPvg8/r1xNnS0ska71cH4ZgwFiTTTOc7VaoUXX3wRj588gZQFul3tiIQlKTIvcniei2lZ0VGr15HnGdKF3iipaHl2egYAJkccRZFmzu8NkCWJFvMqG1G1Wi2tk+97gAJmZcmo4+iFvVguAAlEQYDJzU3ZNGxjSHaqkLr1txCoRTU4Auh0O/gzf/bPoN/XZLP9/X006g10u110u1090J4HR7hGV0Mogf/5f/7/lNGSNrBRpOFuz3UhwggFYFIhzKe3221T7UDiHftcXF1p8aizMz0eSinEsWsEm+gw1Os1FIU05MEkSXBwcGAkyB8+fIiDgwNTujqbzXBwcGDquTebDU5OTnBxcYG9vT0sFgtD8CNyUq/XDEGS1TdXV1doNpu4vLxAv983Bm86ne4okrIygeWnvH8hBGq1GjqdjtFXsPVKeM/0tkkipcppp9MxaqdMI3ABUNyJC5r6E9wYDg8PMZ/PcXh4iHfeeQdHR0c4O780hOf5fI5Wq4WDg0PDw0hKUmhRFFjMF/Bcx5TCEmVhF1g6abPZDI7jIHADE5e7robK2UfBdR1NDFQSCTcZtUU67I2Uh96stwgcOxtzHDrdLlarlUkJCSFMemd//xBJkmC1WiMun89yvUKtXketRAuJyiyXC3OP4/HYPEeel4J+OhIGoiguUausfM7bDVmjSh58f1tS3Gg0TJQ3n81MZO84bumskKRIJr0sQQZpmlQVUnM9Bnv7cHwfUjgmZWJEF6xDKZ3aIALnOFo/oyhYAulBCBeO2CJqUBKOkAh8F0IWuDx7gkf338W6RG7YWwXCxSZNy0Zv5gP1N9jGS8Bxtn07jEFxANcv9EVL1yAyWhZ9Dc/3EdU8BKGHe3eOcDzoYn4zxnA0RLJJ0O11EPguLq+ucHx8hK997WtwHQdKKhS5hO9roqpGaMqzKwUBCVnkmqgKzWepciTsCL7KeaADYtIIsNCDknhe/aI9sfUfbH6BUkrLzVuRtx2p8/08qsbRft7cm5jS2a49dwcBsK+Fn8G/h862lJ6N1vg3Olx0hGyUwkY8qtd6mwGvpqJsYmeVRwFo5DyOtxwuOgv26+3z2Ofg87JREvugQ2k7PPa12Kmeb3V88K6vJfw2m09xcnKM9XqFosiwSdbwfBdPT58AkKjVYggoFHmG4fAaV1eXkEWOm/EIjUZNG8g8M0QnCjJNJhM8ePAA8/kceVHg45/4hNGlePfd+5jMZnBcB+vNGn4YoFBKR2h5jjTPkKQJsjxDlumeE57vY7lcwXUDAA6SRBuTPM+Rl7ks3pcoa9aVEPirf/2v4yd+8j/ED//Ij+DlD30IH/7oR9BoNSFcB67vYbGYoyjyMlKcYz6f4+tf/7oxdEIII4OdZRn8wDe8BebTKVpGtIN5Z0oHU7CGD5xiYDTWW2hOK5auVqsdY1CvawGyfr9vUBQu2LOzM3N93W4XFxcXJnL1PA8XFxfaqJbdZSne5ZaVBsOhLl8uigL37t0zTo7ve+b1RCW4KDlpbfKk47gGzbm+vjZpHxIHafx5rYx2+XlUx0ySBMA2n0hjyGiJn99utw2nYTqdGl2Gi8sL7O/vm+ZmbKZHvZP5fG6Mtu1QEBkiuZVRhF3uzGiEf9OQqf+ezYbwevWo5luruWTOB6YsmFKjMV8ul+Z5FEWBm5sbFEVhyq+LothRGd1KthcmFSOLwnA1+EyE0Mqtvu9rAjd2VT05NoR2wzBEHMempt8uXweAsBwzwuq2HHyes3x4Oy4CWnMiTXM0Gk3s7x3AdX3IQpVRq7x1g69Gwu5O1F1unoJRsv5SkPA8F3EcYrNZ4+HDhzi/ON/hWEW1Grq97nsIc+9nWOw0no0UeK5GPIxuhOfqFEkcwvddhFGI559/Bi++/CL6gz0M9vYRRXHJsVCo1evo9Xp46aWXzLz3XNdA/+aazH/6yMv9zEYF7GuupjTYip5kahofe0+lAbPfa/MVbAej+hoAZs3bqQHur/b5bd6EWUvWded5btK2nFfclzg/7T3KRjWYhrWfK1OyVfTARi9IpGSqiPfAisTqmFbHzSaHVqtaOIZ2VQ3vkX+vpn+q6ITtZNioUvUZVNM61eO23912fGBnQ5dSaoN1enqKdru9I5nrOA5cx0GjVsfl2TkW0xl67Q7iIEQjrqHdaELlBdaLJZLVGq7jot/rGQErRtbL5RJZmuLw4MAIQDE90On14foBJATSPMdsucRyvcF6k6Dd7SHNC2RSIpMSruuhUW9CFhJRGCNNUhS51HXsaktMDAIfhSyQ5RmSUpuDfyc5kxH0ZDIBsO3nUKvXcXp6anQsOE4A28m7cIRjNDHIuibBhsaQE4PaFOSkEIZj5QjJfgAMUrBYLJDnOa6urtBoNIzRtomK5HzU63UcHBzsGJZ+v28IoXYZKQ2s3WGUhowqj1y8GpnYmDJam7dBiHE4HJrz0NgAMEqTRDw6nY7hqlBEi9fLcVyv1zsNyMgp4WZELgXVNfM8x9nZGRqNBsbjMQ4PD82Cs5+xEKJsdraN6Ok8JEmiCaKTCQ4PD81CJem1KLQGiN2tFthW6FhLFICGPwWESf3celhRDvBegldR5AZi3TpxmtxKSX8AmM1mZZpLl8dSot1uMkgHS4vE6c+p1+sIygoeEomZpyfn5vLyEnFcM2mrTqdjNr9ms4larYZWq2WiLwCGMEjOEcu0CZXTsaHzzOGzjbd20ICjo2PNuVICRSGN46CH71tvhlKWWhY7zknZyEzoVFa9XoPjOjg/P8OjRw+RJhu4ngtZlu93uj20Wm0EfghT7lzC+K4XwPUCOK4P4Xhawtz14Xrbv/HvrhuUX2WDLc+B6+nUWVQLcPfuMV548Tm0Wg0oBYRxA3GtieVqjZvJFEo5aLd7ePHFl9But5EmGXRX4UqZqlOmHBzHrA86+QAgLaNmExlt40PDeluETBSBwUDV0Fcj79uQj2pqwY6+q06Gnb6g4BW/6EjvpGqseWg7Lfb9Vu/Vni/krdjOg+3Mcr3YTRlt7lWV22IjGrazYfPW7BLVKifDdhZswS/7+fBru3cUO8/Dfo62A2U7JLyGqsDetzr+SAqiWZaWRCTduCxNdUQ7m03R63UBKIyH1+j3ehj0e1CygCOA5WKOKNQSvI4QCHwPULJsLDU1hJP5fI7T01PTwKnf7xu58vOzc4xGI7O5Eyr3fV/nCq2BL4oCUAJxXIPnaY5DGMZIkq2oi74nDclqJyDFnbt3S6GoOparFeZlM7GbsuV6ludYrdfIyiZzcRTht37zN436W17kAJQxzDpVsTbG1lbn5OZMXQRyJ0gQtRtt8UGv12usVisTCdFoh2FoBJSY/iBMTYVREgqpd2H3TCGXwd7MaeijKMJwODTIAA3UZrPBcrk056Vhs1ufX11dGai91+vh5ubGLKQ8z40EuF01w/QOABMNM81CZ42ROhezmdSOY/5GZ4XpDH5Op9PBdDo1vI2iKAyvhRsFz0sHhOmny8tLtNstXF9fo91uG2SDTg6vz2bX2/BlUWzbWZczcLvAhDCtsisLb4dothuhwGzojPxYpk1HlChLnudGlp1divn86CQRGdFpu9g4wCTntloteJ5n5g7VbdM0MYJqbLDGShlukPwi3EyhNxJ6qUppaylsYVqt/WD7bEpqzZu7d+5BSc25AbQcuG20ONRK6RQBv4gMyoKEPbad53hrIa0oCtBo1DGd3uCtt9/A5eUFCplDyhyaGK4FDyeTibk3fX26GdttJEVtfLb9NLSBK8mhHqN4F57nIPA9+IGD4+NDvPTyC6jXa/A8F34YQzge/DCGgov5fIk01ZyYwWAPd+7cRZpmQCkOZqYZ/xPCECSllMjyDLYx53riXmOTn+0vVuDZc53znQbV5gLwnNVSTH6enZLhXLB5Cvb7q46GneKpGkN+Nj/PNprVdICN0rEtwfa5yveQXrnvcC+yEYbbHIsqomE7ITZ6wTHnHs21ab/PHjP7emyui31f9mGnV+wvG6mtOkM2gvPvDdkgpLlerxCGAa6vr0pDmsP3PZydnaLb6SDwfchCKz9u1mskyQbNRgNXl5eIoxBh4EMWBZqNuplA/X4fl5c6b352doY0TXHv3j0MBgOjsnl4eKTzjyX8ytSB7/tot9uGmb8dSA/X12PEcR1FoXsjaCVGXRUxmUywWC4wn8/gOg6iEr2IazWsywhflukYLVfumCZrxB8fPnyIf/fv/p1ZHJ12Rzs4VsklkYk4jjGbzeCVNfmE9uyeJSwVpGdMAiDTG3bL8s1mg6urKziOYzQPWG5LHYQoirBarXZ6oqzXa8PBIILCUlUpJRqNBnq9HgAYwTDqctBxoNfebrdxc3NjUg+MftkDg/opYRji5uYGnU7HGEcaMiI4TIfYRFGiAjRSw+HQIDdUKRVCGGePBEQ74gjD0Ah5sZke+SvNZhNQMBUrdBDtZmppmuLg4ACPHj0yOhrkqbACiFofLAll6oJrgPNcCAG/TGmt12tkVvkn3ieVwjlU3WQAIMtS45BxTO3GfXEcm/FUShlHkGRhAKZSiOOsx1wrknqeb5wFOnxEu4pCVw7pICQ3pbb9ft8QkqWUJm3F68vz3Dgm3OiYimKK0Hao9HMs+RrC0hhQQL3exP7+AShN7jie7gsCAaW2EuUkq9oGRymgKKTZG2zDJZVEIQs4DhDXIgShj8urMzx48A6m0xsk6xWyZGOex3q9xng83omAc2uTVkpptVi15SPsbvR2NYqvu7uWzoZwFU7uHOHFF19As9koK9gEIFwUykEQ1RA3WtikOUbjCRQEWq02nnv2OeMQVHJQW+fHYUpDVxFxrtloho1A0ADupDf8LZnUdiJsfkDVQagatqrxrKZK+LN9LptTYDsYdnqaqLtvXWP13NV1RoNqp2BsJ9IWH7NThnEc76RcGJAxwHs/58d2Cuw1bl9v9d5s54z7FPdMx9nqijCwrn7Wbc6enVqyUzf2+4Hd5nr2M/5mxwcmiBJaV0oZoSemIhhNzeYz+IGPVbLBbDFHVI8RyBDrdINmp435siT1rZYQvov9/QNkhRaP+sQnPoFms4mPfOQjkFKXav7X/81/g00pntXutrHOtIH1vABKCaxXCQCBq6uh5kRMp9jb0xLKy3SNZJPh7bfvYzrVhu65557FcrmA67pa6XG1QKfdQZom8Fx/B/7rdDrGsHPSsfw0TTI0G0187Wtfw3A03MmPbzaJZkIzUnYcqLwwkSHHivLfNHCciPw3O+vyQXdLOWgApbhThFariflcq3menp4atVIuAJZ6Mi0gpdwhVzK/yLJQOh90YuhAEKqng0dy4GKxwN7eXsnj6GKxWO6gD47jmNQO0zJcmNfXl7hz5w7yXBsqkoSpTiqEMEZSKV2d0mw2MRqNTKrETtvYKSdGHayx5/MJw7CsoukbNn0QBlgs18YYc8PhJra/v4/z83N0Oh3c3NygXd6P4ziaX5TnhnRL54rIymazMYx6lwtVWQ2vHE2edl1XE9fke1mNdjMqbvb8tyrRQXJyiqIwwmm8Z1bKbDYbJJsNwhIpoqw9uUJ0EnXER6XYiSltpmw5N9A4js39x3HNNBtkistxHMNBklLu9L2xI2XNEZE73BZ7Q1VKQUFp7RzHKRGtGoQCnnnmWQRBhNVa85SUUJppiW3libDH05BOyxJaoHRqg3Jj5+arn1+n28bh4R5Oz57gS1/6Is7Oz7BaLiAcgSAIUZRogOtq5GcxX0F6rHxxkUktSgUF5OWz9YIQXslN4XgopUrRLlUiOAp5niCKfQz6B3jmmTvodNqAkCgKBSkFpHDghzHgeBCOB9cLMZktEI9u0O108NJLH0Kt9htI1msEUbybcjApIgd5XuieT2VVmed5cB1nJzXHZ0WjR0MjpUSWpkizzMxpG963bQdfbzsDnMe38RiAbcTPa7edBLvfiZ0G4eeRL8Hgge+1HRr7yz4394btubfmMssyFKIw1AE6mEw/87Mo3mg7Dzxso29/NrDlntnjXRTFzhhyP+a92aX3tqAXdUaqjox9EK2ynUp7bvJnOy1jO9HfzvFHqkZZrZYIAh9CKCwWcwAaBtVERA3vLzcrxLUIi+USaZ6iKHLU4hoGBwM06nXs7+3jxZdewvHxEXp7+3A9rYK3v78PIQTG4zGUUmi1WjqaCgIoKIyGI2QyR6fZged4qDVj3NxMkGUpPOHi8YPHSDYb/O7nfxdZmuHx4zMslytMJhNcXV3iP/1P/zemd8Bms0IU1TGbT7FarxDHETZJgkazieVygbgWY5NodCMrvUXP9+AHPvIyTy6lxC/90i9BQBiugyxkyWnIEJUoANELRogATLUIqzY4YUh+pIHI89yIJxH6ZiqDPAOn3BjsaHY6naLVauHi4sKUYNJhYefa8XhsFE052enZ0uFi2ofpBpbORlGE9XptHBeWXTabTUMCtT3l8XhsXkuHq93uGMdiPB7DdV1zn1xg9phRBpyN4ej4ENYHYCJuRuLcdCg+1e12EYahIX8S8eHiZdksUyl04o6Pj40Rd1xNMrXTNUyd2JvLDnkOOmFiRyg8vp0Fa0d/3Ij1ZrL9PTcux3F2iMJ0lO0yPDoh5HdskZKsVFrMzLNaLZcQZbREvg372wQlT4kGiGgG75vn5UZmR1W8Fv6OY1fdxAj3F2X3ND2vXAjHR78/AODAddwS2i4rmJxttFaN0nY1O3Spsx7TbYWB5rfEaLWagACePHmMx48fYz6boshTeL5rziPLdE7gh2AVDaBRE6kAVaZplAQ834PnB/DKqhwhBByhq5O0oyFLOXOJKA5weDjA8dE+BoNeKQaYldyUktCqHKB0NIS7RpHlmExniKMId+/eQ7vVwcXFBZySmFydanYeP89ynVKCRmVcy8ChnLvkI3HszNyszGWOezX1Z88NnpuOp026rF6jHU3b64B/42faSGj1enk9XCN0WPj6qtAX90QaYx6e78HzxHscBjoy9j5gOzB0auw0vv0MtvNxVymURzXVVHWYeB4blbFLZPlZfC2v1UZW7LHkc+HYk7tG9PHbRTWAP4qCqNTVKFTq3Gw2JRwfIE0TLJcL9Pp93D3aRxiEeOmll3B4dIgXXngBR4dHaDQbGgnxfLiOg/F4hHqjBacstWJzLGpOhGGoSzL393F2eorBYIDFfI6333gbRZHjq6+9hjiK8NWvfBXCEbi4uECapFrXwPWQZJoM2h/0MRrdQCmdq81zjQpcXl4ijAIoJbFcapLl+GZsiKpxHOsOmXGMJNUQv1MiIovpArPZTDdW63Ywn81NDlijJhHWi6WJltNim1qI43gnz0njBsDoDNiTbLFYmK6WhPsJd+v00r5pCJbnmktyfHxc/u3QpEyYQjk4ODDlo8aAlhOXhsSGAoFtW3men9oN7FWia8d3y7XIGSEaxOu5vLwsHY8lfN8zZbF0tmgoqxsDHR7yWZrNJoqi2LYEx25fAvIphsOhISrmeW4QB46pC03mTbLULCZgK4SVZZlJNdRqNcwmN3DFtrFUo9EwBEw6GFJKM3ZKwLD7hdBNtrbIiZX3FKWuwi2HvXnz/DpHmxllUVvMjePIsedYMHXCjZXPmnOMrd2F0A4ty7LJF2IVC1NqbOClx8ozjksURViXzRbtDcyG5W3kwo4ub3O+siwDhILjboWYWq02Bv29cs2FKAqU7dsdM676MzVB0v7de69Fd1HldQWBTs12Oi2cnj3Gu+++jcViBiEUHN/VnI1ClZiJwnPPPYePfvSj2D84wpsTF8jLCFXp5+o4Dlx/C11LqXY+XwjA9RwIKVFIiTgOcLA/wL1n7qDVrMP3vNKRcaCkgyKXyHOBTCoouPCDCK4XIE02WK03mM10k8S9wR7Oz8/hul6JqEmdUrL8LiEcQAEZyybLNIHtnBIttJ1IG1WgloZtgKqog/3Mq3PbNrK28eSztw1hNbXD39Fw8jPtQMV2NOy9lQ6OzZXg+rCv3b4vjSJukR/7/dXUDu/H5lHY120jQDZiwc8humE7JPa57DHj99scjducOBth5H7FdGY1rUOni+PMVNK3e3xgZ4Mfxrz8s88+i8FggJOTE0RRhIPDQxwcH+Hw+MgYA0b2URgiLdMHi/kctXodzXYbm5VuS//o0SN4noerqysopdGSyWSC2WyGd999F9PpFJPJBALAdDJBXKthcnNjFsl6rdGVJEkQRhEW0zlqzQ6SNMdoOC51D+aIohhAbjbLKN4SXZkyYD6ZRpBGh1Uxo9EInVYXv/ar/xZnZ2eoRxpO09GjhyAIofPBZbVCHMNR+oETNSCBkEiGPaFZScI0ALkPnucZJCBJEvR6PYRlnxlWctCpYHkWybXD4dB0OyV0TQeCKQkSAlnJQaPBKJgwPRGWdru9k145ODjE5eWVIbYKofUdarWakZenhPm2KVtiroVOlh2R2k4Pe9EwtcI8ZRzHpoSSvA++h/fEvggcczoejuMg2ejPny8XZmHS6282m1gsFkbQbDgcYq/X01C60DLRNO724qSzo5TCarMGrOjPcbZdRoFKWZkQt/ob1VwzD7vCiegF5w55NUxlNJtN42DZyrV5nmMwGKAoCozH49JRSZHnAo26dqSajYYZCxogfpbmGQFCFDssfrdMQVYjIG5efMZ0nhjd2obFPmwC72aT4tln+wjCCEUu4XoOIBllOqVhLQ1p2V5elfwNmIZkFP8iF2HbZKzRaOD45BiOI/H1r7+O+w/eQZKuIfMUwnEhlUIY+Lobq9JOo14LW36EIxwIR5+X/AZga1SALZFQSgklMwiVoNNt4uTkECfHR6jXIwidRILu+OIhyySSjURWFEizHHkh4bi+RkuEg81GE9ub9QZefPFFvPHGG5CygKPK7qn2/BJa60UbzHxnnG0eBOe0bfD4d6aK7ei6Oq9ppDiH7XnA8ah+8bARjdsi/Wp0byOHdiRvr037823nlwbasxyuXVTMGroKonDb/dqoiO0ccB3b92anoapro5r6uc3h43l5bjvdVXXkbMeBQSSDPNsxs+coOXTV8uNv5/jAzkar3cJ//Xf+WzQbDUSR3rDrjSaCUn0yyzJEjRqG4zE69TbWmxU834OCxHK9xKPHjyEAPHr8uKxICfGN19+AlBJvvvmmgdHPzs7Q7XYxmUzQ63YxKXP5yXqNzXqNVqOJ08dPdF+KUkbaUQoqLxAHIdarNaIgwHQyxfGde5jPdVTa7/dx+vQMd+4eGVhIKWlK/9KSUzGbzdBqtzGZTqCvHtjvD7BJNaIglYLne/j0pz+tYeokM5UYqwUbt+WmLDgIAsDZQtl8oDoyzQ3TnxOfzgh/tqtIgG0+cjwem5QQI9vFQvNR7OZZUkrs7e0ZrggJoev1GsC2a61SaifiZVRPo28vrEajYRRKb25u0O/3y061ugFXp9PB5eUl+v2+6cdCg02HKAg8IyLGz2VKzt7MSNJkDwXKpfM+yA3h4gK2GybvZT6fG0eJ3rwtp+1722dBA+l5Wi2V0txseHV5eYlet2MWqP3M4jg2lRp8bgDFpN7buto+NK5xO7ph58y5wfNzgS3yxGfIMaJGCFNHjhDolAqns9kM3W7XaNx4nmdQGp2PFsgy3d11uVwaIS0ppVFLpZO4WCwRhrG5TqbzGJXy4HOtohvAtimfbaz0OOneIa4rkKQZPNeFkgp3794tX7d1JCgIRj4C5yw3xSpELZzyq3RKpJRoNOo4ONhHrVbDo0fv4o03voEnTx5jMZ9DFgV8P4CUGRQUsiRBs9nGYDBAXPLZwOuHVl12xK5hsrkDunRWoypR5KPbbuPoeA97e320WnVImUMVEsLxACUgCyBNc+S5RFYoJFmKJMuhhIDrehphEA426w2GoyGefe45NOp1rDcbKFdqZKT8z1yk0EJVeZZDKj33pYUI8LDz9VWehD2uVaPL9XibRob92ts0SmyjZ6cJGQzYn8n1b6cy7eu0513VabHTm/a5zf3Bvr+tfgcRFPte7f2D6xXADqmWCDHtZtXRqI6xzamwx8bmuNiB2vs5ffa/q3+3nT7737y3qoPzQUpf/0hy5UdHx2jU63A9Xbrl+z7GN2NEUYz5fIHVZoPxeITHDx9jvV7jyZPHuL4e4urqCm++9SYC30eW5bgeXkMVCs1aHfPZHPUygmq124iDEHmSY9Dt4cGjh3j22Wfx5htv4MXnn8dyNkerVkccBFhMp2g1W7g4Oy+dkY0mUQUBXM9HGDfw5PFD7B/s4+L8DL1uFx/+0Ms6RePHuBnfoNlsQBUOihzwvRCj4Q329geQUsH3QqyXK0RhpLtahhEcOGjUaviNX/t1LBcrzG9mlqR3F2GoSuMdYLac6iqBNIVTEsiEAMIwKIk7WoNCLwKdh2VEyslna1LYhDpC+pwQOkWyQRhGKIoczWYLQjjwPBdXV9eo1+slIpUbZKDT6RhxLHIeSDRkdQm5CVThsyHDXq+n8/al7kWrpcmbx8fHuLq6MmXL1FEh2ZUVIdOp7g6qy/UcLBZLHB0dGqVVDWeHZU48wnq92oEGiSowxWJ78USlbO3+zWZjNEb45TiO3mzLyJpN8ugU8popRjUej9Frt1Gv1w0Rl2MxHo+NU8gIIAxDyI0qc/IFlNSRpS49dCDUtgzREQ4kiq0h0NtKqfKou4Bqh5QR5vZ5sByaaTCWuFKhdbVaYTAYIM9zIw53fHyM5XJpyppZJsx+KJvNGv1+D+PxpETWtINWrzcwHF5jMNhDmqZYrTZot7smmrTnid3kz47m6GgTXZJS7qBSu5GkgJASKlcQ0oVQHpqtLu7ceRZJpqtQCimBEs1QSjsnKNNXdPQcR/BslpOh+R+FLJAXGQSAdruJwaCL+ewGb7zxOp4+eYL5dI4iKyA8D0rmgAIKqSD8EC98+KN44aWPwHE8jMYTU2HkOIAntCgYCgklSodHKQgU8DwHUuYIAg/tdgP7ewMcHuyhFmteVJZkCDwPSrjIM4ki05yUNM10SkXmSDcJiiwDZdBdx0cU1pBu1jg9u0Rca6DebCMtJCQUChoZIaxxVoDUnXfzLIMDQLgu3JIoKhw9vhRKVFb0DJSG20ob2MbM5gJUyYX2sxa3vJ/nto0e/06EHdgKWtmcj6oxrqZpbBIrHQ2933BvjnaqTZyKTgn5ZDavg8GAvY/ydXQ+mEJncEVE2kZcbEeG7yP5dMdxUMo8Cx58Xq6rlbFtSQh7DKocDe5/dLJUxdFwy/Slee5K3SbQ+77HH6nrKxwPjh9oDYr5AtPpFJeXF3jy5Ak2mw2+/rXXkWw2mM8XpcJoYWDoZ+7dQ5ImEMLBXmegm/8UOZpRBBQFOvUW0rWGdC+vr5GEPmphhMV0ijsnhxiNrjEY9DAaDdHr9fAT/9H/GigK/Mt/+S9Nv46nT3WL+vVmBSk89LodbFZLxFGEdLPBzXiCeq2Oy8tLTRC90TX+b7/1DSzWc7z00gtI1ynq9Rrm6QJxUEOaJAiDEHmqJ02R5vjVf/Ur2Cw20D0MXHRaXUzG0zLKLkvGPBebVEffqsihOz4Cvu8ZNn8Q+MZQSKmjff1AlYnEOfZM7RB1oCZCUejIqCgkVqttyifLdClwu132sAlCLBZz47TMZjPdRGsyMXLp7M6a57lJp5CjQfVOTnbyHljSKKUyHUJZ/VCr1Qwb2vM808RvOp2i3e7g+vra8H8Ggz2Mx5My7cJ8qwMpdeMq6mawNIsoDR0xO7Jhqobplm63a15PFjvTUTrNkBguB2XZyVVgGuvy8lIjWYUWCOv3+4akSmVORjMkPGZZhiIvN1cpIJSAJzxIKORKS1O7ZdSqigxSFRA7K3hLNg2CELWoDikVVusVZCEhVWEqn2xyHOcNRbpY7eM4jiHGXl9fI45jo5IaxzEGgwGm02mZIupjMV+g2+1pOXHPQxhGWCyW6Hb7mM3mJbKxVf9kWitJEkRRZJxUOxoCdsWU7CgOwM4mJ4QWH3el0JoVfoisAO7dewGuX4PKEo0GKVlKcOeAcKDK1InA1tDI0hNxHE0o1SiAgISChH5/FIXo9drwAoHR6RXeevMNXF6cI880MVNXieQlugIo4UE4AYKoAQgfjqsb72nN7hxZorVhXN+BA63r40DCdYHAV8iLFPt7TRyf9DDo9uCJAK5w4PuudpwKVfZp0bIDeZZDKS3mJvMC6WYFVeRQUiJJczjCRyZzSLhICyDfJKi3OrgcjeB4DtxSVwhlrxYBne7JlYIqJPJUB0qqVITNrFJLOoraQReGh0QjWUWSuM/YRtlGK2ziafXvdELtPh62A0OUxHYqbGNpa2BUUwg8l/0zsIs82CgKoDk9ZkVKCeHu3gcRRRtZ4Py2nTI61VWNDnssqtUtNPY8DMqA0kmwUjU7aKlSkJlW6hbWOfhseD28DnucHYt34rjbkuUs2/bBcR0H355Y+R/B2UizDL/7xS/irTffxPX1NYbDIc7OzswmvlgsAKnQKomBHPhGvYFWs4UkSQ0k3Ww2MRnfoNtuAVDIiwLJJkGt3sD9+w9wcHCA/aN9/PW/8dfwpT/4ffyzf/ZPUatpNOLwUEe/P/wjPwLXdfHbv/3bWK/XmE6n2Nvbw8OHD/HCSy/hwaOnePFDL5ftx3XudDS8hhgM8Eu/9C9wenqKyWSiS1qXMzzz/D1853f+l8ZIea7unRBFEdKNjrrq9Tre/MZbuH//AbIsR73egG50pA3qarUyKSASTbnRs2yYlRBbQ6d2HnwQhBACxmBxshJuY7MvG6K3N3Maj2azaRauEFoqXDe2gmnLznOaahopTR6euiA03JyMtVoN4/HYaIUwt+j7usFakiSmKuXk5MSIcbG6hWjHZDLBYDDAaDQy2hS2RkSr1TKcj8Vijnq9Zvg0FBQj0rO/v2/GarVaWWhLy/wcRZEm9HY6aLVaRlBMQpdCTi158m63a54Ly5NZuXNzM8Fev6fTfL2eMag08Czl1LopK8MjcK2IXxFKvsXQ3pYfrsU1NOoNTGdT5HmBek0LlKVZajYYe/MC9GZFnoWU0qTVSDAmp4rkYtd1dyqJWNE0mUzMs07TzGh6sKqIc4baHaPRyPBzyFOwFQ3tOXvbvVYPpTTM7zkuCiVQi2u4c/cusowoj2FiGPUgzXHYjYZtyH+bx1ZGZM31fbRaTfiBh5vxCO+88xa+/vrXMJ1MNOoks9JZFLrCBAIQCsl6gzTZoF5vYrNOUbaMRbJeIhVLKN+HkAGEH+p9yBFo1Gvo9hoIIwcHh330+i3Uwjo2a6nTKiWpNc91hYjhdhjnTJO9s7JZXZIkyLMcDgDX1f1dhOMg2azR7nQ0ssNqG9fR/VvEVt9FSQWJAq7jII4jLVxopbWqaQmOKb+zRwf3Crv9uA3r01mxS9VpkG1Ogu1M2FwXOhVV40xjaZdqVrkNvNZquoAO065zsatjgQoSw3uw0YHdObtFE3gvtvgeq1+qacT3Ww+2w+K6WoKeqSkisTbB1f58O3qx79VGVuy/V9dLlfNhp3O+3YqUD+xsrFZL/NzP/qzRWGCkS8EkIQQarQZc4ZjIhgZRcx0kjo6OMBgMEEURBr0e3nnrTfiei1a7g2E6KSOqHm5mU/zpn/gzePXjH8fewR6++tU/xNOnTxEFEW5KrsB8OkWtFmOTJAgopRxHuPfMM1iulnjuuWdxdnaGk5MTXF5eoigK3LlzB48fP8Yf/MEf4PT0dEt4RYHv+xPfBzZ7Wq2W6HV7ABQc4WA2mZZldgq/9Zu/hTzLEccR1msdvQ+HQ8M9UEoZvYJms2lId0IIozXAyI49LFgNwLJXRlC2B870Aj1jvpaiUjbZkyhAs9k0Kp6ckK2WNkDdbteMj92AjWRLGm87X8jf0YAzmhiNRuj1+nAcx6QvDg8PcXFxYfqlUIOC+f56vW6cMKpt2ikbipLpCgfH8CfsBSaEMM4deQrckICtYBUXOIXPuNA2mw1c3zckOUZ0tjoijTFLjff7fZydPjUOUlEU76kSchyndHp85LmEKDkEirAlI59ybX0ro0snMwojxJ0abm5u9BhYz8ZOSwAayp1Op4bPw5QXERCSdamsapdeUxiO6BewJb1xfhNVIh+En0dkg6Rcstx5H8xx37bJvd+heSAZhBei0WziYP9Qp0tKZ4NsFw3nw/yuen5ullvDpv8upYSAKteJg4uLCzx88BDX19eALOD6HiAFXGFFugKQaYLR9TVOHz9Cs9GE6245N3meIEkWKAofUoZQqkAQ+PAdH/1+D8+/cA+uqwBRANKF7wVwag42m0QrfyqUHKLCRMJ5liNNdQpQq75myPMUSaq7XMNxQKlzx3GMlo/ruoaPYaTL1fbe6bC5ros4rulIuJwTxmhhW+1VHUvOKxo5OiV0Rm0+QtU5tjkW9jyzycbAdu+x03S3cX7signeHw87bcAvfqbtmNiIw3vWZjlv7IDaJp0C2HGkeA6mCe1KD/7b/m6Ph53qsdPEHM+q02OnnLhWgW2lEQ8GoXZwwmvQHBXsfL79N6Y9P8jxgZ2NIi9Mjw4qJPLGN5sNer0eZpMpmvW62WxZHvk3/sbfwKuvvorIgtUXsyn+73/n/4r79+9jNpuhPxjg6vIa9559DsO33jST5fDwEK+++ip+//d+Dx/+0EcwvrnBwdEhjk6O8dabb2K+XGC9XqPb7WI4GmF/fx/JPMV6szIExaIokBc50ixFu91CvV5Hq9XCeDzW0Wuvhf/gj383lFLotNtYrpblhFLISg4EN/O33noLQjhG+pwRIBEHlnZSO4JkzG63i+FQi4/Zapkkc9oqn06Zn6cx5wOnIaTEOR8+PeVGo2GMdZZlphkbEQymYhxH96W4e/euKTOeTCbG4cnz3DiRdGgWi4Xpi8LJz8j36OgIZ2dn2Ns7MI4MESySPk9PTw0iY3vLdDBYdknjR8OnEZapGQPyVVhxQzSHRNfpdGr6xRAJ0ZLaqVFptR2yqBbj8nKIIArNvZF3IaXcER5zHAfTmzHu3LljInlbKZBcF1tvgs+NGwLz5MwF25uLEFS93D2WqyWODo+x2WwwGg3RaOjeMcv1ynqf2pkP1NngtbRaLYOmOY5jutiSt8PyVs4hdsZltRO5PXRuSc5drVZot9tYLpemnJrk0OVyeeuGXDUw9j3cdjiOgyyX8B0Hvf4AXhCgUK7lWACauADTPrx6cL3Yho98BUdfGFxXkyMvL87x+NEj7eA4jhHvglLla/W5cuHAd13MZxNsVgtEJVEcAAQKFEUCiRwKOYSQEE4Ez3fQbDbKdCvgegGSTYZxvkAc6Zy+67jYbJLSWNtGYls1oYnTSVk5ZPMV2K0WOwHJYrnQqWtfoyYaTS31VsW28oDnqlYH2YhBFZXiWqMDb69VnovjTgTWJhhWjTydDZ7Dfn784hwyabJyrTFIoPNjr0GW8FbfWz2H7RTpNWU7xluyLPdo+96ArbNRTRUKIYzDZqMG1ZSQTaLlte+gDWUaw3a6iB7ajogRZlO7VSn2+YAtYuU4DqJSDNJ+TjZZlUeVS/PNjj9SbxQpJc7OznB0dIQXX3wRH/7wh3FwcIB+v1+mDGKT/+Xm/Oqrr+KHf/RHdZv2dhuqKLCcz9Fqt/Gf/5W/gk6ngyAMMR6PcHB0iKenT9HutOH5HvIshXAcfOijH8bde3fx+Mlj7O3t6UoCpXB85w46nQ7iONZliXt7uH//Pmq1Oq6H1xBCwfc9OA4goLBczBGGAaTMkecphACyLMGP/9k/jW6vg2azgTRLTb4sz/IdSO9f/6t/jbfffndrqKLIVEMURYHr62s4jmMQAjob1DI4PDw0Db044VhJYJcVcTOno2GLRpE4ygd+c3NjokXqHLBs1nG0ymWVy0BvlgTKm5sbc41Mo9hluZOJRp1o/H3fx9HRkenBMhgMMBgMTIUDjQxREEbRrqulszudjjFmVCudlZVFbGrHcdBluTWDnhH64wLQ6SHN7mZjLxr+IAjQaDQMIsLontyNZrOJItdoT1EUCIPQOAus6mCEwE37xRdeBAD0+32zsbAM2YaUt4tzl72tVEn4dF14ZRT6rVIK7VbbODfHxyfmue1G6bvRe1EUppcQu/8yPWVX6BCVkVKaUmeichcXF3BdF51Ox3ymXbVDB8NGNOjQkrRLci3fe9vxTTctIVAo3RnWdT2cnJwgN6gQN0+dvZDfYhyr0DBRZjZVW84XOHv6FF/9ylfxzrvvIE91WkQppRvXKwUHrq7WUEC308Uf+46PYX+vDyUz5OlmW42iCiiVQRYJ8myDNF0jSzcoshSeIyCzAkUm4SgHQrlIk8yo4pLsyzGjE5BlqdEjSpIN1uuNlqnOciile7SYtKza9v9gR+ikhO5d1y25x3JnviwWC4xGI5Mmn0wmRgbbfk60Bbyu9XqNxWJhkL73S3lsnaR053W2QbN/x9dVUQwefA9JnVRNJqrC9WajJLbTX031VImfNvLBgzo5thNj847s9xqCaemI2H+z/22jB7b+hb2meb/kTbAajmkrOnk8F99H5Iloj83XsK8B0IFfrV43BQW8bjoyHK9v9kxuO/5IOhuu6+JnfuZn8DM/8zM4Pj6GUgpf+tKX8PM///Ma3k+2qRVG9GwElqYpnjx5gpubG0ynU7zyysdw5+5d1JsNrDcJXE+T3er1OqbzGRSArCiQbXJ87yc/iV/8x7+I+WyJJE2wSTZYLJcYjUYYjceIohCO62CxXGCwN8BqtcKzzz6Hh48e4eTkBPO5bu3ebreNQqk2qNoQ/rGPfxxCoIz0yh4rvkZu1qs1slRPwH/1r/81oiiGKs/F2mMqgfLB0EC1Wi2TOmD3QSm10BWNN1EAPkRJWWNva4i4OdKbZPmU/bDtumymH4iwsGPqZHKD/f09Y7iIJFAdkuPS7/dxfX1tUh40SJQmbzabuLy8NLl6zX3ZltZyDOzFdffuXZyfn6Pf7+Pq6sqMDXsX+L6P8/PznTr/rSLoVrWVaR0hBGq1GhqNhtGOYPqGglaM3u0xtBeR53lYJxvEcQ2jMjXBBnIktD777LNmPjuOg+FoiKx0NJkuJLfFThFs289vUwdAGXUTbRfY2Yx2XlMeQjjwfB+D/qBsWrjC/r4WchOpMGJu1KGxN1XOA1vLZDqdAoDhDc2mUzSaTTiOY9A1pZSRop/N9NqhKJ0QYid1SgePxNItcXmrP0LjYZf5VZEM+7rtQ/9ewA9D5IVAp9tDXkh4LvQAOgJCKgixRTZuO+wIkp+jP0tCFTpqn05uMJtN8PrXvobZ5KZsHAmjf0KAmVB4s9nEM/fuAY4DWeRINTO0/ESdmpFSQSJHnm+QZkBYeFitF2g060AOZGXzNOEASmlCchFJBH5Qpj4325buSWZ+1ukWjUI6LqCb0ClIsXUCikJr7oRRBAiU87GxfQaqXBuuA0cBi+USy+UCjrXvALupCPu52XC8zX8g6m2jELweOyK20QTb+DPtZiMNVSIlv+yArrCM8G3cCvt3dARuc6CIqhBZdiv8H9ug22gGr4nXa89r26GxUzS8HlbAAFtyKJ0f+5y2s8Axs7/4WXaQXC1hrj4/+3WeuxVzs19r38P7rdX3Oz4wsuE4Dn7sx34Mf/Wv/lUcHBxgPB5jPp/jO7/zO/GpT33KGFIS5Wxious4+IM/+AP87M/+LP7e3/t7+IVf+AW8/vrrJspdLpcIY238qLO/KUlGN+MbFLLAT/25n8LR8RGGoxGCUDsX45uxbv18cYGTO3cglUIQhpjNZzg7PzOExFq9pqNNqNLL0w93vpjjE5/4OJ5//lkIAeRFhjiOEIYBsjzDbD4DBNDt9vDkyVOslmvU602sVxpZYCc+lqfGcWyImY7jGEJimqbodDqYTCbodrsm/8/cNyMLRvSM4G39DUYKVSiYBCq70RX1MSaTSSmelRp0hLD4YrEw1QeMdtmCfDabmWiIjg25F0QTOHEbjYapbHBd3VCNDcrYg+Pw8BDn5+d4/vnnMR6P8fLLLxs9h9VqpY1eiWjo/LwW4GK6iMaahpAH0zxpmhr+x2q1Mo3kVqsVFosFLi8vTapjOByafDZRntVqq/bKZ7dYLLDZbHB6emo2VBpWx3GMMJm9udrQqc36ruZL+V0W28jpm6UR5vOZId42m9v+OsfHx1gtl1iWomzC2UqV08BznFA6EIPBQDfGK9N87VJGnk4loKFou4KFUW+324XjOBgMBkb7hPLy1QiOP9sdhW1H0YbOqxvaTkQnmOOX6HZ7iOIapASUKoXShAM4LuCUJD+xhYt5Dm7S7yUM6pLkIs+Rphssl3O88cY3cHb2FEoWuppFvxA69SUNV0ZKqRszBoFuRub6cB0f24LAUr9DAMLRJbBFkUGpHHmeIE3XusIk17oZaZJCFvr8SRmYcI0xVccIkz9rQ6dMekWnCnZbjEupCbyBH+zMPQ3UqB1jqQmnW0N+mzGrpsCIpNqOBLlo3W4X7XbbtFWozu8qsmB/ho0AVK/Hjqq5H9qpoGq6pPr629IW1XnIdE41EBDlfdhIpX0PtiNkkAhrfXAe+r6PWq1mkGI73cQmjuRb8XpN1Rm2iBffx4DN5oTY6EXVcageduqJdo02JwxDMxZ0jIgYfzvHB3Y26o0GfuqnfgpJkuCNN97Ar/7qr+Ktt97CbDbDn/8LfwFHR0coisKQxehlLpdLTGcz3L9/H5eXl5hOp9hsNvjiF78IPwpxcu8u3EBD94WSmi/hOuh0uyikxGK1xOXlJT75yU9iMBjg8PDQTMBnnn0WvV7PQPqE1P7yX/7L+Es/8xfx4kvPw/N1KVmtHmGzWcFxgeVqgTDyUa/H+LM//mdQi2NkeQrfdxGXEZsq9R3IA/gX//yXMJ8vkWcF6nVN6gRg8t1BEJiImNUP7XbbeKlXV1e4c+eOKUcEYB6ilNLk+wn/A9ghRPHB07gKIazIv9hxTrjBM43SaDQMh2Q2m5nzzee6FHY0GplKDHI67I2liprwullLbiMFrERoNpuYTCa4d+8exmPNc3j77beNDDb5PLxvjgMJhTw3K2voWDiOg/F4bBAl8mHCMMTBwQGklHj69CkAvQGTqLhcLo1htNuac9O1m97xvSwDLorCKMlu1huTOqMRGI/HJlrhF6PK6qYEbHPvUu02nbLhWvto1LUTqCuINMzu+VrRtNfvoz8YmLnv+/5O8yU6a0VpdK6urpBlGQZ7ezsIRrvdNlwWppLoqLqulumflWuMTdcAGIVZezPlnLfvi3+rCsTZG6HtZNgOg4J2pp9/6SUEYahLVpVublZIXWkqASjHMR1VzUZncQDeO77kLSjIXCvuvvH1r2OzWunGaEr/zYHS+hhCQKrScLgu7jxzD/VWG612B41mG3G9uY1oHQ+u48EVLhwI/X5VQMkcWbpBslmhyFLIIocqtAZLUY6F3dacDvx8PjdOhg4spLkHWFG55nFkUFYawy2hdM5Lzu+qs6eUMiRm+9nZhtmeV3akW/2is2uXetqk92oKsIo88fNt7kb1HPx8Otg2R8J2MOy1x/NUI3T7uvgzHTsbmfTc3UaCtg4GERabs2GjHUz3RFGkRTHLvZ7PnHsp1wl5UbaTXn02PKcORJoGKa46cBwDew3a48vgMC/tB+eJ/Xo+/yAIdtKj3+r4wM5GFIV48aWX8M477+Dv/t2/i3/0j/4R/v7f//v48pe/jCLPce/ePUhZmAFiNDybzZBmmSGRATAaDqvlyjQGC6MIUirUmw0UUqJWr8FxHXz5y1/GfL5AXhT4nk9+EkXJunY8F2meYTqfww8DDMdjNFpN/B//9v8J//n/7q/gr/21v44//sf/uElTjMdatrwove/pdIqXX34Z3/3d3431RudAAYXVZonZbFZC6jqHPxwO8eTJKeJIExMpvERvkIuAHVFZocIKDPadoBMyHA4Nic4+6AnbE6peEm7thUiHgxEsI0kAhifB99ocDZYjEjEoisLwTh4/fmzIgWGoBcfYQpxGiYaLGyArT0gaZmVJFEV4+vQpjo6OjLMzn89xcHBgYH+SFIUQO5/Jyh02/rl3717ZVbZjvH46N/P53CwMKSUmk4lJX3BRZOXc46Ll/ZN3w8iPvA4uLJ7X93UnXXJlKB3PDYRt1enAsPEb0whV2HJns7YXZGUzsQ+WzLHh3Xw+h+u46Ha7mM/nhmtDo8/cOQ/+nvoutVrNEIJZhcTUCK+X3J29vb2t41UUWJSVQ/wMm1RczdW/X0R1G6JhR4j2/NdfDhzXxcHBIVgJokoCtzaQutGZKstk7WiO56kS5PR1aTdFO2ouHj96iMVyAVHyGaAKw8EQwtTYAg7gBh7qraYmvdcaCKIawqgBoXMaCPwYvhfDc7X2jq4CUVAqx3qzxGIxwyZZIc+zUi8FIHG4sFApOt3L5RLL5crMbcAyzsLiDnBcLefVpAZKw+w4W+fQfLm7jfNsY2o7iBSrIz+CRpQGkVE/06t0kngvNMb2VxXxqh42ulF1khho2doVPC8Ag/RyPO3rtw25PU/owDCYqSIbxolztyWo3Ft4Xo6NjVjw3hms2VwLm6vCa7Wfj42ccE0TzWALBv6bytV29Zn9Ht63jfbRHuSW6m/V2bQdPnJqvp3jgxNEpcLNeIxf/uVfNhD45eUlvvKVr6AoCnzf930ffF9H5DZhznVdNOp1zOdztFotNJtNHBwc4M/9uT+HKI4wvB7i8ePHGrqt19BoNrXRnk4hpcJv/dZv4fT0FFEc40/+qT8Jx3XRarfQ6fUwGo1Qq9fw4OFDdLod/NSf//P46CuvQJTQ+A/+0A+WC62MYrElEwEK3/Vd34V2uwUpC91fQcsBodNpmQlSr9fxuc99HmdnZ0jSFHt7+8izwsD919fXO6RDGi/m/I+OjpBlmeE7CCF0U7kS+ua4sEyND5Csajt/aMPzXGScxDbkppTCer3G+blWV2X5LaNURr70TGn46XwQTViv19jf3ze5fPYWYTO0+XyOdruNJ0+eIAwDw0XhuM1mM3Q6nZ3cKcspmYKRUu5U6mw2G5PuIUkxCEJcXV0ZB2N/fx9JkqDf75uKFxp2z9OS5naksVwukSSJ4RVw3LMsw2Q6MZsvF6LNlaHTSKdpYfVQobGlo0m0hG3ZbWKdHYmh3LQda7F/M2eD6JqUEu12G3t7ezrVVFZ+dDodw3XhfZAgTE0Sm48xHo/R7/fhuq6RvW82m++Bk9vtNmazmXFOAY1wMlVFVIPzE9jCu3YEeRsZzr7nb/ZFg7e3d4B6TeuwOEJLlgPaKZBKq4TmlYj2toh5F6bX6z3LUpyfneGNb3wD69USssghqfhqevaWGguBFs4qZIGr6xE2SQrHC+AFEYKwZgxXGNYQx03EUQNxGCMIQvieno+yyLBeL7FZL5GmG+R5AqXynU2eBo//1ht8ZgjS2lC45rsoHQ6jSGuMVNkh2Pc0D47KudgSH13XMeknhd2eKIT87XJwRucMVGwHAtiiBzSePE/VuN32rKvPykZsbTSC129H8LZxZzWjzRfh3tDr9dBut291NPg7Oik2xwTYJsns++HBYKhq9G1iJp9xmqZG8JI2gwiyfc82eZTryw4y7fJyu9SYn8/Uin2N1WdAJJ2pZXsN8XO2c25bUWQHNN/s+MDOBgA8ePAQX/jCF0w+fTqd4rXXXsNoNMJHP/pRPPvcs5CqrBAoCiyWCzSaTbz7ztu4vLo0YjL/4U/+JE7u3AGEg02itQ604miOxUIbuka9Ds9z8fwLz+MXfuEfY73WsO53f/d3Y7lcYj6b4ZlnnoHneaYb5Ssf+5jJd0pZYLXUG4f2JgOsVkukyQaz2QS9Xhd/+s/8KQOPFzkrPTbIc+bbcqxXa/zqr/wKHEeXG1HumROLug+NRsNUoQgh0Gw2DYKilDJaHPTy+SBprGhoaajsVt42aYmRA50LTl4bRiR0CWx5JXZFS61WM+d2XXcncqfBWSwWKIpih/jHydZoNIxoFAB0u12zSJjHo6fN7r0UdOv1ekgS3XNjMpkY4a9Op2OqJ/I8N8aM0D7HiyRUKmHSyeOimk6nhgeS5zk6nY7ZiOz8KNUuXdc1kRgXIzcrblDk2GhtEc84GuSG8Pro8DAFAVibfsWZ8DzPlK9tN9jbnQ0iKAAwHA6Nc9Xr90sHTHfv7XQ6eiOoRHk0FDwHS5aplEp+CgXMqFR7c3Njrp9ztSgKox/DyhOOLw25vTFVnSgbrq4amtsPrcp5eHyk9S7KcxeFAuBoiEOVRMyy9Trw/noNBm2RErIokOcFNpsVXvvaVzGZjLHZrEEHQ0JBGtJpWbYogCzTVNDL6yvA0V1XPTeE44eaQwLA8XzN7K/VEccNxFGsDXQQahnyIkeWbJCul8iSDYo8R5FrES9ebbJJzDPzfR9embri/bnuNvJFeY/6miUcR8DzPTiuVyJuutu2NhAKhbQ4GZIpLd252kYJgiAwRGymYUgCpxGynSTbWbAj9SqXwUa9eJ7bkA3yT+zzV1EF/mxH8jaiZu9dDCZ4Xtto2miBncaozl/7WmznYAcBEbslv9y3iZoS0bB5EOxjROfSJlTvIEcWh4XVQFp3ZVs1wudiO/q38TeIItufaae+7ACE98N/v/+a3T0+sLORZRn+4A++ZOAfpRSOjo6wWCxMdUGj0UBUizG6GaNQEnGp0PjwyRP8xf/kP8b/+b/9v+Dv/nc/h7/wn/wl7J8c4/z8Ag/uP0ar2UIY+FgtZnAgMZuMEbiaZX7Q38Ppo6d49813IYSLj370FURRDfPFCutNiryQiGsN+EGEBw8fww9CpGmOeq2F4eUQURAhWSdYL9ZoxA1kWYG8UHjllVcxGBzA9QIsliu4ToCryyGSJMdyuTaVCe+8+w7GN0NASDRbDeR5AscR6Pf3sF4n6HS6EMJFmmZwHA9ZVkAIXSff6/XheQG63T6iqIYsyyGEi/PzC4RhhNHoBt1uD67rw3U91GoN45na/AsaYPPwLIiaXq2U0pTEciNnGoGoBgBICUwmM9RqdTiOh/V6gziuQymBOK5hsVhBSkAI12hfsA8JdTa4SOfzOWazWVluqo3+YrEw1S3dbtcQN6fTqenMS+TFlmDn+XnQkTg4OCi1QCLMZnN0Oj3M50scHZ3oyFToyK4oFDzPR6uleTKMXLiRsFpoNpshTVODIsVxbJwtOg12ftpxnBLCXhpp+SRJ0Wy2sVis4HkBhHARhhGWyzWiqAbP87HZpHpuuC6UALIiR5pngKMrKwCU8L8EpII0vA6n/NLOh1IKQRTA9V0sVwu02k3UGzE2yRpSFmg2G+h229hs1litluh224hrETzPQZ6nSNMNsiyFKkWd6JTSePD5SClxfX1tpN0pCkfCL9vWAzAImeu65vkxvcXNCNhu8jbsbKNvNtpjR1N6npYbonCQOx4O7tzFKkkhXB9pmsMTLiBLLoUCXKHgOmWFg9Lz1y15EwJad0IV2sEQUkFIQBVa/+LBw7dxfvEUOVIoJ4cSGZTIoYSCcgSU40A6HoTroUgzRH6IwPXxsY+8gka9BSUdCOHBcX1TsaIcgcJxIcIYflyDF4bwoxj1ZgONRgP1eg2h50IoBZkmkMkGKssgsxQuFISSkHmGLE1Qi0LEcYgw1JLoQUCDqL8ch23sPcARyFUB4QpIR0B4AoXQwnJhGQikaYIw8CGVdqal0s6VhtELiLIajnL2NjeMEbSdAqPRvc1pqDoQdmrHTovY77d1NvgeGwGs8ho4P+3Ps50Svpb7znK53CGREg3k+rf/zWvjoQCD7hBhrhplzv1q6o73bacbwzA0hHpeKw0/HQqOGX/maNLRse+F/+Y1ZXkOWWh1WNdxtmnB8nyB7yMKQ/ieB3HLcyHaYq/J6ph8q+MDl77KMmJmGoDGYDqd4smTJ/joxz4Gz/e1kFRZ5ZAXBaQAPvkn/lfo9nraMxMCSZ7j333hC/gf/95/j1arhbPTM9y7d89MpDxNMZtM4boeTh8/xV5vgJ//h/8Qh8fH+MEf+iHcf/AAtVoNDx8+hJQKjx8/xvHxMb7yla/g+PgY7VYLv//F38Nnf/t38M5b7+JDH/kwhHAAx4Pr+qjFdfzYn/zTkFJhvd7A90MUskCr1SkniIvA02jLL/7iL+qFGga4mYzw0ssv4OpiiOvra7iui/l8YSZ6vR6aOvharY7r6yHCMDQqnlEUmwmTZRoNmU5nUEqXnO7v7yPPc1NqSmVPqmnSsaCHzrSB7WnaZVP2Js5STepekHORJCmoKqiUj263a9CP9XppkI92u22Msg1nCqGJi3EcoygK7O/vm8qTs7Mz4+hEUbSjD5FlmWkGxwiKJNt2u23SFxcXFzg+PsbZ2TkGgwGur69Rq9Vwfn6Oer1hDJ9enLJ0IGoIwy0hjogDx5KqoHmukatWu4WolGdHuZnQIPO5UBdksVigW/Z1aTa1uNZisTBOHaHRer2Oq+trOK6DnBspNx+hSx6LojCaG3pMZVlmWdbFlsdisTCcldVa6x60O22DnOnKEF06t1gstOMC6GjWpDcy6D46rilVDcMQnXYb4/K51uu6b1Acx0b0zt7k4yhCaiFotuYJ2evchPi5jKpsKN2OrExkjq16oo105EWBdreL7mCANC3glKXhaZrqdArKoN4IY5YcD+HA9CkSWpgpSVNAacZVnuXwPYGr4SXOz88wX0yQpBsIoSB8nU6wS2mFEpo0mmcohIuDw300a1qi3A9cuIEDX25f7zgCfhDCcQCoHI5boF4LcXC4j71eB0WaIk1SqALwHAdCASgk4JbIhiwgiwJFiShpIbsEvq/Xe5ZKAK5GN7RqAIQDFFL3fSlEocuCPWpqKChZQMubM9e+q81CsjSgm3oppcnADC4YwNiIbtX40Fng9+rfdlISlfRJ9bAdUttxqJIWGXzZ7+P57VQHkQAbNeActNEYnsvI8VuOlZYKR7mmttWC9n3aqTpgt+ut7ahXHQkb/eH7bETbnKe8FnJVOD4MSG00T2BXv4PXymdjv6/6ftuW2CkrOz327Rwf3NkoCqOtwNQAPbxarQYBDSMHpb4GCX9xHMNzPQho6NotYar79+/j0aNHqMc13L171ygbbiW7BTzXxcHBAT7zmc8gyTOcnZ/hI52P4Md+7MeQZRmeffZZKKXwzDPPYLFY4Etf+hI++9nP4oXnX8B4OES63ugupJeX8IMAy8UCyUb/7kMf+pCpGGi268iKktPh6mhhWQrsTCdTE4Gzp0itXsNyuTL3SM+aP89mM8PWtRUzhRCm0yujRJvxT3EkEmnJBbHV8Oh9ExbnZKW2BQ0sUwWUH+fkoVHkeNPoep5nSpGvrq7KCS4NCsB7YqkvUyY852q1Rr3ewNOnT9Fut0057Hg8No4SFwWFhi4vL00fkiAIDPrBRUEdkuvrayP4tbe3h/F4bMiSg8EA9+/fx+HhIZbLZTkGwiAnHHumiMjXYPdb13MRBqEp12OfHZSLlOgMuS93jo5NGoNwqC1oxedPTQoubp7P3vCqmyneJwWaJokhcFLB8+bmxvzbdV3jyFGSvSrGpJTu3My5x3TXotRaYcVNo9EAoJu4UYGXTlSaJDs6FrahsaNTYFca2s7t2vdrv9ceHxoJpXSFxsnduwjDCHlW9hJCKS7m0ljCRGwQmuxoNkcjH14gyzMoyeqpHMtVim98/eu4vr6GKtU0pZQQkHAcF6p0/FRphIUCPN+H53p4/oUXEEc15GkGwNNFssZR1FLqfqC7xDrCRVRvY2/QwfHxIVr1GpL1CuvlClmSo8jLoEAoiFLFlCWWSkr4QVg+VwnfL0yqTCMaAq4n4BYCbuGgrMtBXngIw+VOc0im9YqidB7KZ+gQMSjH03F1bxXyCrgXsVyTzjj3MNsZoXG0n6Vt7GxUq5pSuw3ZojNqp0K4x/E1doWNPS9tR7Y6VzkX+T6qOvM1ttGPXIvz4HlwnF11Tfvaq6kLjgU/z74mHnbVjk1Mp3PBezWOHLCj5Gyfj2NdRQ/t9WcHAkTH7XQWx9oupa2OY7XC7psdHziNkhdakZAebb1eNwjHaDRClueYln1TVosF/LJWv9VsodPp4Eu///v423/7b+N/+gf/AFmS4Id/4Adx9+5dQzgkXA3ANEgjd4BVEl9//XUsl0u88sorxihz8FhyGYYhvvKVr0BJaaI0WcLU9VoNnu/jIx/5qDE65GmEYVhqLel8ZhAE6Pf6+JN/6k/utDOfTCYmks+yzGgOLJdLrNdrTCYTKKV5K8fHxxgMBlqpsuQ/kHBHJ0AjHpGpXeYDZY6cuT0SJ5lf46Kxowv735xs9GJZgcFJVq/XsVqtzH2RgPjggW6ER+SDUKXtRdtcE6Im9XrddA51XddoWpCsyF4qvI7Ly0vTEI2y171ez6Rl7EiZcuOtVssIoLGkdb1eo9frmYVM6XLCm8w9tlotKKWM0abSZ6PRBKANMHVGWLXDz2g0GhiNRgbZIARqk1uJAEmpewBtYdEtnMpFymocG2L9ZuqXQcnfSdPUOIn1et04nEppATmOM9Nq3Hj4GeQC6VRQYvK1eZ6bvDGdfYquUcAtKPUk7Py2vWkBu5GrDYvbxFs7b2xvyjRWNmIGAJ7v4eWXXtbquM5uV1FjQNQuvKvK9ytIFHlWRvNrOI5AUejOqRAST58+xuOHDzGfTjVp13HgQGxLVeX2C3J7/jAM0O/34PkOVusVNusVkvUaSbLWvDQAQkmDToRRgMPDAxwdH6Pb6SKOaohrDdTqTURxDOEIZPlWDdImJuq0kCw1Gbbl347LVIIL3y+Jm2GEMAhRrzdQrzXQqDcQx3W4no8s0yiJ63plZLrr2Zr0g7NFHheLxU5TNc4d7ke23kd17vJ5cH+2qyO4p9hEShuBsOH6KhGTqYPVamV4CjbHxE5p8KhyDYDd1ExR6AaOs9kM0+kUk8nEtD2wOSPljb3HGalyOqqOje0A2ER/20lneodBQjXlaCMyRGVoDzh+YRiaqjobKbG5KbchQAbNsngwNrGUY1Ql6t6GRt12fGBnQwhhukiyx8T5+Tk6nY4mw5U3l6XaABdFgTAIAKWbmX3hC1/A11//On73C7+rxa16PXz84x/HbDYz8D/zg5yEZNpSPOm3fuszKPIcTx4/xmAwwM34Rqcb5gukSQpHCOSl1PLjx49x79493NzcQEHDx+NSJXJ8MzaIg5akdjGZTkByH3kSk+kE3/s932tKDyc3EyOKZE8Ybgz7+/umzJW18XSYiqJAq6UdL5YYsonYZrMxYlusDuCkPDk5eU/9tg0f2nCcTQpUattGnd4yHQhWsbB0lYtps9lgf3/fRDNXV1cIggCjsucMFyfz9FJKLBYL4xwOh0NIKY0YFGu3+XlSSpycnJix2mw2hjTb7XZxfn5uDDujGSrr5XluNEI6nQ6ePn26U9qb5zna7bYp7eOcsTcaGtd6vW79O0RYLtikRBBcV0t0U9I8jmMcHBzg6uoK3W4XzWbTqK9eXV0Zg80FSvlvz912obQjeXuhmg3wm0QJq9IJb7Vaxknl5sQ5QMSM8v2sPLGNlw2B0mklbwWAQbEAGOl5OvDc0O3o8v1IerYgETcum6xp54UB7Mxj21kRQiCO4pJUvDH56KLYJSZWdqryfDp0KGQOrUALCCHhOECSrnF2/hQPH9436yNNEuR5AaeM7KSUpdaGPie3Vd8P8cxzz6NpSqB1z6U0SZCuV0anIs9SFHmKei3C4cE+jo+O0Gl14PsBHMeD5wWI4hrqjYYmUwcBRJkOSEqnQyOUDtJkW0VGQ+e5DjzPLq/04PsBwjAu04gRGo029gYH2BvsI/ADTaaFQJbl+l6Nw6tA3Q7HEVBqV4yKz4z7I6XJmda1EQo7AmaUXC0xtW3KbWuhiojw79zDqF9Dp7+aKrGREBp43oOtLko7YzsAtnHm3LSNqu0k22iNvSaqJEq7HJbXwOsnD4b3xIMOhu1M2WgK90auM647BpR2qsgeP9vx4PPhGNjcKt6rjRrxq4oMfavjAzsbbiWv2u12zYb+3HPPQSqFKIxQK/tCOEJgPBohKb3fXreL/b09XJyf49133wUAfOpTnzIMXAo5JUliNjxXCNy5cwfn5+eIwhDvvvMOPv/vPo84ipElKfq9HrIkRS2KMBoOUa/VMZ/NEXge2q22QWI8z0O9dGQ26zVe/9rXMJ1ODeLgOi4EBNblhl2v1U1/kMHeAN/x6qtQSqHRqJsGc8vl0ohlcdO8vLw0kXWn08FmszF8B5vU2W63jYeulG7x/vzzz0MIgZdffnmntwZ7TDCKV0oZVT4ApsSRDohN3KMBYpqGDlCe50YNk85DVjppLCX1PM+Upu7t7WEymZgUGs9P6W9GOiQaUsqdERK9dHIfmArodrtmPDebDU5OThCGIdrtNjqdjoETF4uFeVbkaxDJItRPsTAhdjvfEsUBYO6Jjliv10McxYCCUR9lOgqAUfiLSz5Hq9XCJtkY8iSbzdE55XNKkkQ/N6AkZ24XPDdCbih2VFHdjHn4peMwnU5NdRCRDVYGNBoN08uFGxEJt9xY4jg2Y0FdEN/3TXfcMAyNQwfAkH3zPDdBgK1zYkdXdimkvcnbaBodiNsMRHUT45raCse5xjEAlG4qZg6be6DTr67nQjfQ0pLkjgtskhUUckynY3zjG1/DxcXpVgDL2Uo1Z6UB1dejtKNSrrG4VsN3fMd3oFarbw21LJDnKfI0NUa7yDMIFOj1Wjg5PkTHlFpqQTbX9eB5PsK4hlqriXqzYUoQc4v0ByhD7qYDKaUsy6bpKBBB0PM7jmqIwhjtdhsnJ3fx7DPP4/DwBM1mG46jyez63MIgQLLUHGHTMUbKtn4LnXGijpzv9rymU825QUfTdjJvq0zhYTuQtjNiG9+t1sg2RcHrsR0cXjv3QqLEDLRsI83vRJj5ZZNP7Wvk2uE9VzklVdQG2KZL7PQm0xjcL+1qGbuqzh4XSh1wLdqICcfJJr/SCeHn2VwTIk58Pw/7dbehVtXn9s2OP1IjNg4wIScOWq1WQ5YkePToIdbrNeazObIkRbPRxKDfR7rZ4PDgEI8ePkK9Xsev/Ot/A0iJZ5591igXEmK3jYWUEqPRSAsPzRdo1Gr455/+NEQJefqui1oUIfB9tBoNLOdzHO7vY17qgAAw0LJSCnt7e3AcrUD5mc98BgBKhdNpOTF8RFGIJE3MhNmsN/iZn/mZsrGcnjRXl1cYDAZYr9c4Pj42EUcYhri+vkYURZhOp2YDBmCckCzLjAIjI+2TkxNMp1MkSYJHjx7t8DH4oJvNpkFNyDego0Cv3C6b2vbmEAbKZsTJSTeZTIwTUqvVjLS34zgGcWJqiM+Duhl0NOhdt9st47nPZjNjHIUQhpA5n8+N40PJbWCrksgUxmAwwMXFBWq1Gq6vr3d4GhTuYhUFf79YLExahggcx4DXqpQyqTO/5BblRY5+v4fhcGjGIct1uojXP51OcXJyopGCshyRmiJMaywWC+PYATD3pssJt/ltPh97Q+Lv6CzCjhjKZ8VOy3EcI01T07uGJdY3Nzc4OztDHMfGueXmSYVBok6+7xtnOC15MXRc2B2WhoJzlaJuREMYzXFDYi6fGxE3fM41GpZqCR7HhI6JDd0KIbBJNnjzzTfh+9s1sdkkRm2TqBDXQxD4gFMaZEcbOAhV7gESo/E1Xn/9q3j85CGmsxsUeaob4pUGI/QDxHENtbiGek1/j8MIcRgh9MOyFHpTPiOdbnGEgCoKyCLfMkRRIPAdDHodhL6nCaASyNICSjjwgxB+EML1PEQ1vX5IOKYh1gZamvnVKFEQKSV8Y+RcOMKDU1aP1eva6Wy3u2g2Omg22/jQhz6KT3ziE3j11T+GbqeHPC+MM6D3dQCqgJQaAbJRKzocDBxoB/Tc3mpQ2AgBn4tNwrShd84D/s1OC1QFsTgXbBvEeVVFw+yya/7NLuXkkWW7HYlZxt/r9TAYDLC3t4der2eQdjuCz4utOFh1DdvpHyLMgJYfIBpkjwmRBt6Xjcjw2ukU3Oa00Z7Y6SBbwIx7PpFOG6Gy00g8qrwamxNii7hxjGljv9XxgZ2NMAzx8Y9/3MCuea7lfVutFlqtFr72+uu6ZXZeIAoC3fdBKf3vOMaDBw/Q7XRQ5AXOz89xenqGbreLj33sY8ZoFYUWlWq1Wri+voYoN7MoirBJNJw7mUzw2c9+Fiijfim1wie9N26mlxcXaLVaOD09xeHhIVrNJuazmS4HzXM8ePDARLHs8dButXcGOE0zhFGIbqejy3yXi7JLbWBSEjR+JFl2u10AwP7+vlEtZfSvlNpRmeM4ksfBRXx+fm4mh+1x0wlhaSI3fttzpgEkr4bnsJEGXgsNC7+TpGrrcNC5bLfbOw4Uy0HtseJkZvqmWTb4Iow6Go1MOW6r1cLl5SX29vZweXlp2pN3u108fvwYd+7cQZIkODw8NLwO9mzhQtLdLxMT7RBhAPTGxDQDHQ86OHSQGLXc3NwYDkuSJPC9bVRSFMUOZ0eUGwIXMB0He0PkZpplmSHfcQHzy1Y9rMKT1YMbECMjcpTsclyWKU4mE6zXa/T7fQxKGXO7CSCveVmmQ/0yJcpzUCuGcKvmPMmdzZSOJ+cbnSG7S2eVf2AjGxyn6mGnVmjsBAQePHiA2Uw7d8oyVFU0REfpNIYlCVtJpGkCoMBweIk33vg6Hj66j816Ac9zdtI+IaNhh+WFuzCx67nI0gyr0mgIgTJVrPkZqsihUBJjixyOUFCqQFbOT1MxlRRQSsALfPhBAMd14foe6vW6iaaJcnDMOG+qCramOsRnOktX3Pml09RqtrG/f4Dnn38JH/rQh3H37jMIw8igJuYwMi8aybFTD3aVgj3XbbSumgqpOpb8XbWDKH/P892WmuMRBLqhJPcnG1Wopk44P7c9ZN5b8cH5SoeDY1lN79gG2Y7q7bQk91U79WD/3Z7XdgrQdljoTNjXaqdQ7PHkPVQ/o5qCYgBop6fsVKXNAeEatJ0cm49nE+5vI7q+3/HB0yiui+/8zu/EyckJms0m2u02arUafvInfxLdXg+//Mu/jNVKt35XhcThwQHSNMX5+TlmsxnWq5V+mL6P9WqNz/zWb2Gz2eCVMkVxfX1tNn7j1eValOnRo0fG6Hmeh3/7b/8t/tUv/zJ+6Zd+CfP5HJ12B6enp2Yg6rU6BnsD5HmO/f19PH782FTQZHkO3/Pwla98Ba+99prZPAHNzJdSmZw7IcVOp4P/7X/2nxnp7DiKDcdiNpsZUiPTJ8IyMDc3N0atkhwGRtmcBDbcT4VVboC2d05vmURG+9pphKWUhtBpbw6cWOQW8HUkR/G9bBFPQ0KI/unTpxgMBpiXctWO4xhniYJhdnv4fr9vjHWr1cJms8FBOSfYoZV9U/b29pCmqUEwWPVDNITOFu/ZdXWVEqtCiCZwYVAQzPM8s3HT0bAjBaIFUirDvQC2kRafIREgPe4w1TzkL3HD4pfZ9AAjG23DyzsLkVGkvy1TrR7M53KDtTdtjg1JrdxIJpOJuW7ODeqw1Ot1+OWYKKUrgeigUiuFm+N6vTYRMB0PjqfNP7Fz6bYBqUaffN83O2xIXkqJi8sLnJ2dQTc2Ezsbve1s2NFakmyQJBsIVyBNN3h6+hjvvPsWTk8fI802CEIPjqtQFNtNusgLpEmCpLwPKnbqr1S39pYSvX4P/cEAcVxK3Lu6/1JZZaoPJeG5CjLPsF6vtMOXamdjs0mQpDmkhC5PFVthJzocFJyj4VdKGc0TjWjmpTEIy/RVCM/zzXfP8zVvo95Cu9VFt9PD8dEJDg4OylRKWo7bViHVcQQgFKTcog425F5FHHjcZoyrjgadlqozafN1tumgXTlzPlub+2CjYLYRrTqz1Xlx27VUeQq2U/yeQ+1yGarOkh352ygdP8NOTdHR4LquBiy2U2E77FLtNoKzuRz2HmPfq01mtZEgW33UdmyArZ4IEUs7bWrzQ77V8UdSEL179y5++qd/2rB1X3nlFfzET/wE3nn7bVxcXCBNM5wcH8NxHI0s1Bso8hxvfv3riKMI69IAjIZDPHnyBJ7rYTAYoNfr7VRnpGmKL3zhC/i5n/s5/PZv/7auRklS9Ls9TG8mGF5d4+f+nz+L3/vdL0IoneO8e3IHk/ENup0uri4v4QjHVC74nhauYYkfYeHf/M3fNETHTbLZgdX098CkE1568UUcHhzCcZyyhf2zcF0X9+7dM6hBURR4+vQp5vM5njx5gnq9rjf2snTVzs0xOqnVaiZS5kO/vLw0eUZOEvt9jG754AGY3xHOZ0qCDoPjOCZVwbQC01eEzavQmk0IpYdMBKDZbBpDpt+neQQU+rLLuGazmWG2e55nmvWR/0HHYFJWM/E6mF/lmFMh0/M8IzZ2cXFh0ii9Xq+MqDdm05ZSGuPJMtWiKExvkGSTmCobcgJYcUXSKBGDyWSCWqwFyghpZ1lmnK5q1GZvZvbmxU2PC99xHAPj33bwvYRh6YhKqXuWTKfTHcEtpiFJKCUiwk2NCA6dWZYJc4zCMITnusjLeyNaRR0SpnsIx9rGn79jtMYNjwgXcDuqAWx5KzYHidyCp0+fagOptgRpw+hHRVPBOv98NsWDB/fx5ptv4MnTJ1gs5vA8B66nK1M8x4UnHKtZmk7LbKtRJCB1G/oiz1Gr1XB0dIRWs4kgCFGv1RBHIcLA18JIfM5Kl61m6Rqb5RzJeoUsS5FlWiY9zwtkWQ4pleZwlA4dUxfc0INAd7gmQsUNvpAZXE8gCH2EYQDP9eC5PnwvgOf6EHAh4MF1AwRBhHq9gU6ng729vZJXZ6FBSpXpE80B2d7CFqWokhdtY24f9jyoGkubZ2EHXPbrqobRTulwH7RRBPs6qk6IfU18jY162A7H+73+PcHB+yAT1Wob2+mwq2+qPVmqgYh9XtvY00HhXmGPpe1484vjZCM7NreE92CvoyoxlmNOhNJG5plC/XaOD6yzQSP1/d///WYTf/HFFyGEwFtvvYX5bIZ6rYanT58arYTlcomTe3fx7LPP4TOf+Qxc18Xw+hr7Bwd4/Pgx/uk/+Sd48uQxJpMJOp0Obm5uTBR1eXmJX//1XzcPzpaxtqNlpjBotKeTiSnXI9z/nd/1XWg2GlhvNgjLKK7b7eK1117D22+/jRdeeg5FUZLR8lyLb0llpNOVUmg0m/iBH/wBvP7aaxBKd0ol74FCWJzIbMjGfD6NEu8tyzLTyIqTydbkYL8UThw7/QFsyX2e55n3MG3CKMH3/R3WNn/HyUMkhh4qo/zpdIpOp1O+f2XQhTt37mA4HGJvb884FEVRGGdtPB6j0+kZPgAjXV4P0yDHx8fGIaLBa5b9cAgTUzCLqaJarWbmx927d/H222/j8PAQT548QafTQZ7naDabOD8/L8dImM2ZxE0iNFmWmQZzaZoiruumZK7vGWl4Pk92r53P5wiCAJ1OB8v5HEdHR3jy5IkhwpLbYRtKx3FQyLLZ1y2wrM3hALCzcd629rg52fAvoyQ6rdz4yCkhShbHMS4uLo3TqAWiNiZl0mg0jI5KHMeYTaeI4hiu5xn0ZlUik8CWJE79FDocwHbzZdqHjgbv0eYh3XbYG66UElmewfMDTKcTTCY38N0QrqvXvChjJoGtYRIg8iExm03x8OG7ePr0ERbLKdarJfI8hZCAW4q0KilRCnjvRPTaaXFA+XNd5aIRNRK8hdjq1ziOAKS06lYU0kSPceYXcBwfUjnwpQBUqXbpKCihK2d2InvPK3U2BJxCIlvtii7ZaVHXdSGL3VJOUQqaKaWDJ0c48H0PYRih09HE/uu5riDzPephAMIREGLb0I0EUj5f20DdZpBvc0LoUNjGl3+zHQs6rza6wf2Se0jV4bGdWvvz7fQC55ztAND55hzjHK0afJ7TPrSol3qPQ2SeRbkO+PeqQ8H32CiL/Tk2qmf/zHVvHP3ymrmP34aw2Oe8DanhWPMzbFtBR99On9rvoR37do4P7GwkSYJ3334bJycn+OEf+EHIcuA//en/L37xH/8iVCEBR2HQ68N1PaRJiizP8M5bb+H//T/9Q3z2d/5/ODg8xHLxGIHrYTwc4td/49chpcRqs4aaAFJJpHmGMAjgei6iOMZ8NsN6vUar3cbwZohWswWpNBmzUAWSTQLXdTBfFrj37D3s7+/jzt27uHvnLu7cvYujw0OEZd+IJEkgHAeLxRKdbgfD4RC/9mu/hv/9R/4mwtDHbK6JjK7jwnEF/FYbSZpqldEgxPd+8nvxL/7FP8fN8AZnZ+doN5uQUpium2wOphUda4CCaQJWFMVOy3lu4CTeXVxcoF7XjabYJ4S9R7hQyF9hJC2l1qAQQpcls0Ee1SE5EYmikEsxm81MxY/tBBVFYRqwaSGvqakyubi4xGAwwOPHT3BwsI/pdIper4/pdIIoitFstozjQ/l6VpQQcWm1WpjNZuj1eqYRHRcIm7qNx2N0u12kaWpKg+mA3blzB0+fPjVlsqySYaRQq9WwXC5xeXlh0CKqr9brdZNKoZ6LEALj8Ri9QR+PnzzRz6QsKT06OoLv+xiNRjg5PtYIwvgGYRjg9PQU7XbbPL9Gs6lLH/McSkoIRyDJStEdK6V221HNC+tFvYW2AQFZFAZC1x1sw1ITYF5GGgHa7Q4mkymWyzniuI5msw1A4erqGkmSIgxj42yR19RqtVAUhXFuSZzr9nomfUViKZExImHkWNGpsDcubro2UY1IF7BNC1QP2/BwLJQsUJQVPTfDa7SbbUSRg6LI4Lo+cunAdVwoR0AKwBEKMsswmYzx4MG7ePDgHeR5gmSzgpI5PNeFEIWO5IVGM3T3WHaBBYQonQxVQJbdZJVSEI6Ldq+PerMDpRy4jg+Za9GvLEugZA6xEYDUzc2SdIP1eomiKEBBNSkLyDyH73uQhYci9+C6YtdR0Pk3eL6Cwq6WgxDKBC/bNII0zgJfo1EKp0yNAMpx4YUR2p0+Wu0eLs9PkRUSfugBkFp+VAhAaaVVyv+Tm8S9wjbiPGxH6bY5bRMS7fSYTYq257/tmHBOEPUgSsDyezrcUkrD37INr01y5Wcz2CPfio6MMaoa9jEomo2UaHThlvsvnVZeJ53wnfSOUmUAUiJGFjLHtIrNVeHPwNbRLEonM6cjWaLKvGym/rdz4/Y9porMEDWRsigRWjb821ah0rnwfa90tN+zhG89PrCzMZ/P8fP/w/+Iv/SX/hKef+EFZFmG1197Df/qn/8SlhNt5NIkgR/FGI2GCAINBWZpis9/9nPodbpYzeaoBzGGF5eIazVMZxNskg1a3RaWi6XW7I8iXI10tcd0MUWr04IXeOjt9XC3cQedTgf7+/toNpvo9/vodXs4OjpEt2QPa9i4gON4UKUceRiGWG105F7IAp1uB8vl0kTD77zzDj7y0Q8j8AIIJZClOgKkJ1koiXroIy8y/IlPfR/+8T/+RewdDjC90ZUPq+UahcpxcLCHq6tr1OsNLKYzHB4ewRUupJAm104o1M5/clOn0WSHTnrcy+XSOBlECZgmIZTO35G4ynQDCaRMHdEJoU4E83QkUPI96/UarVa7nGB6810uV4jjGpIkQ7vdxWKxxN7eAUajkXEguKlQB4LS6zwcxzFdaOmkUXGWKBGb1l1eXpoyY9/3cXl5abQ17t69i/l8btJBvbILsM7pejg4OMDFxYWpurA3hna7jcvLS/T7fUzncxSZ7uK5XK+QFzmaYUPLiaeag3N9eaURnWyGZJOg1+thMpmgkBJxufELz4VMNCSeZRmUI+A4HrKSOFuFcLkBcxPQX4BSBfTmD5Q603A8vzR6AkWhsFqt4fshWi0a8RTD4biEW5leWSEIfNTrDcSxMiJILP9luoUbDVNqdMZYncTSakaSTC8RdTLQbmkY7C8aDlsbAMDORs3757OpEhOFUvBRQGYS0/EVkoN93QPF8ZFmGaSQCOsxlHCQSgWvyLBaTHD/3Tfw8MF9ZFmCPE+higwOdHknpC4N0U3Wtu3md6JyiywpROn6eQ78eh0JACFc5NKFEC7CIECuHAAZ2IjN9XVAkWc5PCfHcjFFlm4QRXXEcQ0yD1DkJCKH8HxACa2PLlwHcPhVwA88pFmijUFRoB6HyHPNwyHiqZ8T4AcukEkUEuU9aJ6Jcjwo14fwfcTNJlZphrSQ6IQ1pOkawvEgpYAqERymveyGj0QjbYTBdqTtKhpGvzSWNrJnExN5Dnse2GiDDfHz3HQ4OE/IYbJLYrm+WAJeRR983zcKqlC6oghCoJDUSdHrNgpD1MS29NV1XUBt03ng5ymForwnKXXKDa6LQmhSM/vSMDUusCWLSqmri1jxwWvKswxJuXd5nofA91GUDoHn6e9ZRgQFZQpaGC0aPQ4FPC+4NeW0dTC2KIae8wquqxE3KSmWViAIPERRAF3lpTsXfzvHB0+jAPjqa1/F2fk57t69iziO8Ydf/jIWyyXCmq4WkUphNLnRmv7JGhAC/V4fy8UCnu9jk2wQhJp9XcgCoR/haniN1XqNwWCAo6OX0Wq1cHh4iDt37uCFF14w+ekojrDerHB0eITlamnUS225bUA7RfUauRkB/MBHXuSI4hjD4RCf+9zncHZ2hmaziel0iocPH+J3fud38Mwz91Cr1XZaxdPrZiVIo9HAp77/+/Fv/s2vYLVcIYhCLObz0tDdGE+ZyAArMkYTGkG9mU8mE5PCIKei1+vtpES4OEhypQZCmqYmmicaQcNAOJzkMgBmUdLBYVRKfoGddnFdV49fvW4MDUs8WWa6t7eH2WxmnCb+neWti8XCpJEYlXDxk5RGJAXAjiFSSu0QRJmOo/qoLSa2Wq2Mk0XH0ObBjEYj1Ot1DIdDU20DoEwpXGBvbw+j0QjtdhunFxdmAUopoaRCvV7DernCfD7HcdlwMM9zHBwcGNl+Er7W6zWSLEMYRUjSRGvOlE6WbWBpsO3I3URNZZQgHB0Z2we7cqoyCtdzMzeVRL7fNMhBnheI4wCNRmzSY5RfJ/l3vVqh3ekAgKkoAraQcFEUZmwpwc9ncBvZ1YZeeZ7bcsLfLH3C8bChblP+mecQrovNeoXh9RVOohhKKLhBCD/wUcgcQrlArpBna7z91ht46803QIEqWWQWj0PzMShjTkSjem3v+Tf+/+39W6xmR3YmiH0R+/bfL+d+8mQyM0lWFVmkqqgadVWpWtVjXTzd0sz0WB4BY8uD6QfPg2zAMPw4hmEbhgH387Qb6Jd+6xam0Y0GZDVGl5HHXUKppCqyWqqLimQxmSQzz8lz/++3fYvwQ8QXO/4/kyympBpj4BNAMpPn/Je9Y0fEWutb3/qWRpEXSLMcWZaj1WhCigRaCQgZOOSCBjMMQ0OSDokKFCgKhTw31Sn1egP1esNExEWBIAptV1tAqvV27P4eEgJod9pI8wLLZcUzo/HwuRLmeQQwvY+EdY5baLU7gE3lGVTHfH4YhYjiGEAAKStEgPt0Pp87o8TI23eg/dLTZ6VNuMfJDfDXv+9o+OuI98JzgmuDZ6PPl/PfA1QpDB9l8683stezmcrkz5zKqagaREZh6P7fTyn4HBCeZ/zj85d8x433z+fs8738+aSzVJFYK7SHqWx24va5FwxgNomjm8GP/zuDkklEkXE8qkok6aqAZrOZKyL4NOP5nQ0pEcQxZssFvvHNPwYg0Gw0IMMAqyw1PQMABHEIaGtEtMbF9SU6nS6On5gSVAjg7gt3sX94iEa7joPDQxweHODzn/884iRB3ZPjZl766voaWits75hmbv2kb0pqazVX9pokiYumhqMhGvW2bbIW4eLiAj/60Y/w27/92y5KrtfrYO78u9/9Ln75V34Jt28fuc3hlwP5Coovvvgivva1r+EPfv8PIKVEs9XCcDhCrVaziqp9FEWJKIygFXB+do7eTg9nthTXV0T1y1jn87nrI3J4eOgM+WJhmOzT6dRA/ltb2Nracs7KbDZDo9FwegtbW1sYDAaO3NhoNFzFCVMtrAghYsK8P7+Hhwx7kkynUyil0G63MbKcGPbOyPPcpUQuLi4cutLpdBx6lKbp2qGilLLIScdFPz4y40Ob5JCcnZ3h6OgIZ2dn2NnZQZqmrlzWT6cYKfguRiNDhr137x6urq4ct4NRDSW43/vxj9Hq9d180Fmp1WooMiM8NhqP0bCy8qPRyEX7i8XCVRkVyqQAsyxbi/wLe2BsbnQ/vwsYjUqTXxcovYiJhxoP18nENChstVoOTaJiKw0OUQyiWEyFsJ/KnpWjJ+GXJcKtVstVPTEny9QUnwnRL3MAraMQPHwrCLeSz/84NGNz8L00lo4oLCTSdIXLqwvs7h8gTiSiQEJKo9YJmJLv4w/ex/FHHwDCOBSLxQxCawTSpKa09r5Xr/fT8K/racdIIE5M6aUqNUwrFINk6VIjjs1Bz0/vdLrY329AaGC1SrFYLFEUxjgslguwnbtxWkOEcYQwjhCEwRqxlkiC77w1Gg0rQrd01WWE3p/l1AkwTWP2WVKrQdvr8o1wHMWIoxjadh720wuM2JkK8asRmJLwOWh+1OyXbvqOB99fOdKVY8H3bnI5OA+bnAyuHd+A8rv9dehH9L5j4RMiGYT5FSocSps0qV9lRUfHvydeO4M8vt6/Rl6zz2nynQCTfqu0NYgGGQdi3Rnhs+e+dAJxhXFyn7Wmn8XtAIw4HM9ipoNarZYL+PyS4U8zntvZKIoCy3SFZquJyLLYsyLHam6Y70t7YTs7O+aQv/sCXnjhBWz1++j3++j1enjhhRfQ29pCIE1vhygJXYTN/Hpu+Q5+dFPkOYqyQLdnemM0Gg3nxbGKQ+uq2sRs0hWkDPHtb38b3//+9/E7v/M77uBi23IuhIuLC/zxN76B/+x/8Z+5A5WHN4mbdFCUUviN3/hP8Z1vfwenp2dAUOWot7e3rYHtYnQ9wP7eAbI8dzoVJCkyz+3nCVerlUM3Li8v1zYGqySMsJh0D11r7RYjJeTJHQGAbrfrOs5qbaB0KkbyZzxseLg1m02H7rBkkhUN/kbYsZ19O52O+wy/rJdODe9DykoIjE4RAPddZDyzGdr+/r7TSBkOh9je3sZkMnGI1Msvv4xHjx5hd3cXT548wcHBgakWaTQwHA5x69ahS+V0u11Mp1OX0uEhHgQBotg23SuqiG25XGIymSCJYtfBNQpDXF1dYW9vD8vl0pSE2rleLBZAYNq1t9qttU3Kg4zP2T/cn5XrFkKuHQAA+QQV+lQUps8OnydTXyQncw8wnaW1dg0TtdbOMSMhmEgYuRtFUTiEy2+8t8m14JrhPfGw5O82o6ZPGpyn9bngejP9iiRgBQXH2NpOTNq13kAYBVgt53j80Uc4fvwR8iwDoJEulwikbX+uNYRFNey02rn9+OoYf2iY82V3dxfKVqYoAFESokSJMJLQuqpG6fa66PcKFLlJ6ZalgtbVIU1UIQgC0/tGlyhUYZGFikTsK0HyHKZRB+AiW87ds6JmGUiEOjTCaPbsTeIa0lWGPC8Qhp6xFQZJU6pcc3J4Db5T66cx+F2+IqeUcq2HCs8pVlcQ7fQdPq4nPz3nR/e+Yd4kV/rnk88P8V/vr1F49+Or7fpN2fI8R6aq9ZFlGYro6QZrPueC6Saf67FJWvWdnE3yqD/866bNCAIJk26FmxdWGvo8D54DdBzdWvacHn/egoDPVkLrqpMzX0O9HjpBmwHEx43ndjYgAC0EllmGoxfuoN1qo1GvY3tnG3Gc4OjoFu7ceQF7+3vodroIAqNLUJQFAhk4Us/19TVanQ6yNEUYBxhbwiAX3fHxMT7zmc+gLEt88MEHOD4+xnw+x507tyGk6Q9B+djxaOxabdNY0et+/Ogx/vRPv43f//3fAwA0mw1EUWgP0jFWK1PRYaoeCkymk7U+Ecxj+zLULBs8ODjAz/zM6zg5eYISJZrNFhYLc6i3Wm2TCmi1MBgOkMQ1zFYzZ7iZcmC+ks3OgIqJvFwu3QImbMn6eqIU5DhsSp/PZjP0+33X5ZTIBuc/iiKXLiL/gVUb/uuWyyUajYYxuna+mXZgdQYRGTourEDa2dlxqRgpJba2jEKnEAJXV1eu3TzLN7XWTohqsVigXq/j8vISvV7PITc0lpeXl4jjGMfHx47AyUoXKogmSexIqpQgn06nzrEZDAa4ffu2I6M+On6CwHIt8jxHaPPoM9tWvigKZLYEdjKZQCkjyX51fY1Op4PpdGp1QZqu+yv5MTTQfhqFB4G/kSE2WOOCRAG3/Ww5tDH+bNrHih/qjYzHY3fIUAWRsCcdcqaQSBSmrD3TcUR/lsulCwK4ZnynoIJeq4oBGgwervy9u49PiIZ8nZC1VFNk0mNSSBRFhrOzU3S6PaMJkadYpikenzzB4w8/wmoxhdAZUutURhErKXRVKUJ/Qws8xdUA3Peun38G2Wg3WyiKHEWeIxQasq6d3HkgQ0fQa9QbSJIcgTSHPSAQhivniCpVmvRPYUpwS1UiLAwPZVNd118nnNtaUnP/T2MBu0Z8TpBByyTCKERZ5KjXGnjh9gvY3t7G8PrcIiMJpAwhZQhVahTWQG0iCbwG//n73AgaXD+iJ6+Mz5eiejxLea7y83wDzDXAz+Oc+HyPzZQdz01foMs38P5ehIfA+fdGZMlpT3hLoShK5MidA8TP91NGm06Qj9RwX/Cs93kbPrF6c/9UTv06GgPABXV0dHx0y3zvOvnWX+PrAQ85WECeVwRbBjPAetXcTw3Z6PX6+L/9w/8Hut0uDg4O3EMh6YwRNaOlOIyRWUZ+jhzL1dKUzyUxLi4vcHx8jNXSROIPHjzAxcUFHj9+jF/6pV/C/fv3EYYhfud3fgff/rZp3PZb/5vfwmdf+ayDfJfLJdod0067ZhXxaFj+3b/7d/i93/t9vPnmmyYiHk/Q3+ojL3K8/vprCIIAL774Eu7dvYtut2sqJ/pdt3h8T5XVGLPZzClNKqXx67/+63jzze9iPp1hMLjGzs4ehtcDS8gzHWW3+ts4P79Af9fkyvv9vvPmyTXhQiP8Tk4FEQ0ALkpgFBqGoUMeiLrQ6BdF4QzIcDjE7du3cXJy4t7DNM5oNHLVL/x8Iiz0lmnImFpwUTzgeA/UaNBau2sYjUa4e/eu6xr66NEjbG1tOcSCsvS8fymlQ6g2Pe6yLB28z3QZ0Y84jh2/g1wOHlK9Xs8RTPkMOZ9s9lYUBQajoalMur4GAM/ZqtColU35cMO1Wi2cnp4iSRLXa6bb6SDNs7UKGKXUGvvcj9Z9AqV/WLIiokqjCAgpkRcFhJSo1Qx6RCeQ0RsPdTqGSin3vDi/RVG4KJNVBj7R0y+to+PJLrmEoX3DAKzX4xM5fMqR+pjB+/cP1U1Ymiij1tT0KDGZDDEaDbCzu4csW+H8/AInj46xXMxQFCuoYoVASCAA8iyFgGn5brJT2qZPDFqxiS5tOhl+JKwK02gSMAqhOjQt3Wu1GEFgyISOKxVGkEIhCATi2FS4hFaZlnwmfm9e5FArINIKoqjmkM4qU2g0UmVZIoqrtervFV+HoioJtc5OEEOFEQ4Ob+Hevfu4OD+xiIuAFIZ3opSGtsUpfjqMc+CjC0DlFPoVcz5a4ZffE9kgt8rXufDLXPk9vuNJBM9HB2gIfcTQd1R8x9dPUfBzy6JS5fS/+5PWbFmWKEXpHAN//fropb+mn8Vt4L7h9fuf4ZeM+6Wv/nnBJnx0YBhw+ygTP3+xSNfWtf/8Pm6f0pnyUZLNPfJTczaiKMLP/MzPYDFfIIljXF1do1ZLcHp2hlarhe2tLYxtN9eyKJCuUgxHQ1ycX+Ds7BRlqfCXf/lDNJstHJ8c48nJCeLYtBoH4Lz5L3/5y25DPnjwwFVmMGfOKJ7pjTAMMV/MHdnzRz/6Ef78z/8ce3t7+C//y/819vb2sLu7a5yKdge9vuntQV0H/7D1y6FYvsp/a61dJD6dTHD33j383M/9HL7x3/9/oJTRBdnf28N0MkOz2UIjqaHVbGFklUtpmFhF42tk8PO5ASeTCQ4ODhwszsqBfr/vpLsHg4FT5KTwFEteHx8/RrNhxLaYWiE/hCgCHTYuGs6/D/FRvKooTBO4ZrPpfkYUg8RV6pE0Gg1cXFw4LQ+Kbw0GA0fq9R06vyuszyUhKZGlvGy0RpVZ6nCQe0BxLXM4C4dAsLEYU250TFh9MZ/PUUI6vRalFAILB5Ofsr297fqjXF9fYzweuzRSbI17oavIhKTRKIpQZOt6GpuHhjv89LoaIYSwVRNGC0IJ5qbNwUS+BtE8J05n1xQROvJjqBnCXkFELZh+Y/TIuWeZtJ/bVkqtdeH1DyA/T+5H1ZsH8ubw0R5+D/ckUwWGIe8RJcsSV5fnplw3y3BxdorlYooiS1GWKaBLaKFcB1bBqhKwq6mtPNhI8fC5+Pl0Ol9CCJSFcu0YijxHFEZoNGrY2dqClBpxEiP8sUUkZIgoBKQwiIx/jwwSCIkbIl6KUpcIwmgtEvdTcL5jl6WZE1zj/BLd9B1BM29GMyOKIpRZgO3tHXzxi2/g7R99H6qkEZaIogSGjPI0J4IpUv85+E4yjR6vgesJqLg9/JsOkY+Ice/45FIfKeO5TDTAR37IJ/Gfpc8j8pGATfREPSMV4/MtlFKA5yuUZQkl10XtNp3ttVSNN3zehj8vPBPoZPsOF+ecTkf1sesBDN9PEKAKIIE0XVdL9fcj56ISGjNaKww4ie5s8lf85/uTxnM7G1orzEZjpFmG1WKBxXyO89NTjMdjDIIr/Mk3/ti1cH/vvfewWCwwGAwgpXRt1Hd3dnBycoLtnR0D4fa7bhHWajXXxKzZbGI4NO3jWRZ554UXnOG8vLzE0dGRi3a5EF966SW89tpr+M//V/85IOAMIGByvb43TKPHCWXURhic0SKJkyZFYiLiRr0OVZb4xV/8Rfx3f/CH2N7eQqvVQWrTEbPZDKGQGI8m2OpvQclq09II8V55qLPKY2dnx2lzMHdOQhirCUhKfPz4MV588UUsFgvs7e0hz3OnWMqfsSMqjRA5G8zHh2HoSl8ZTbHjIFM/NEiUUebrKF1OJ4zOSLfbxXA4xNbWlkuXAFWZnjswrVEBKqExaoXMZjNsb287gz+bzXB0dISLiwvX2r3dbruIh7lWU5USYDweuUhqsVhg3wrJsckbuR/37t3Do5NTyEA6h0xIIzN/sLdvUlO2MuOx1eKIItP9ttlsYmBJl04Ax+Y6gfVoYBN+Jqpj9paXc5bSVEtoQ0K08pgAmK9Xzqng+qbTlSQJ+v2+q0whz+fOnTuQQmA0Hruuu41Gw8joZxliWxVFkTwhxJoaKg8jCsVtohc+hM2DyIe8/dyuf8+bhovGgK8vigIaGkJIlLoEFCz/ocBqOcdocInJeIqrq2szVWUBrQpDBhWAgOlZogCUeWF6nvgRuwKAqmJqc2xGw8aRNUYmDEIc7u/i5Zfuo9vrGP0DmGoFe4MwjRvJwwkAXaEDcRwhy9IqBVqWKLIcRbnea4PG1VedhF0WdCj9aJqGidertUnzyCCAKhWkNKJu9+/fx4v3X8Tw+hJJUlt3UGQV4VPNlI78arVyEbTvXPhOmv+MfePKZ+o7oT7HwHcCfIPINAT7GRHpoeKyH9379+GvM3+t0UEoiwJ6I60AwK11BrTBslojfLnv/PmoDpEm/3v95+dfJx1E3p8/B/w3X8fPMM86h2mat57iovPip7UMJydcm3M/peTreRBBpBjc5l71Sfx876cZz+1sLOYL/Iv/5r/BYrHE1dUVZrMphsMhlssVWq0mHj16hDCM0GjUMR5PULcLNE8z7O3s4NGjR5AwpbBlnmNvdxfnV+cOiq/Vatjb28MXvvAFjEYjnF9cuDLI4XDooioAjl1PCWVqKZA4mtuowyAGVcMoQ4CRlrFvcthRFCNNV4jjxCOXpmvwFkl3FENSSgEB8Nrrr+Pf+9KX8M1vfhNlqTGfzlCr1dGo1zEejhCGEcaTMWrNmiPfsY8FiYZMUVC98vr6Grdu3XLt6ul0pGmK8/NzbG1t4fHjx9jf30cYhnjy5InjMnS7XZydneHWrVuuUysN49bWFobDoTMEPEhoJP38Kp2xer2O8WSMZqO5JvbFa6JCKwWhqGxo5rXqGHp1deVQGb8ChZUwTIlwo5O8SVRiOBy6dBvTML2e0Urp9XoYDAaOv2HSJguXNmC0cHl5iXq97ko4qUcyuB4gSWLMrTPKgyuKDQLA1u1Xl5cO6WK1zeXVlZNKL8sSYWQUaP0ojMiGnx/1nYvN/5dCQG1GRboSAIoiU5ZIbo8fyaxWK5yenrrqJDqOfO5EnsqydNVA5AARkfHREV4T03yMnvxr9g86P/rxDzT/9ZuDhxojeH4WYIWEygKxbZimtUF5BCtTLs+xmC+RrubWudGQtr2q0BLKE+qCMBGbEEZlFMoQIT/umng9vH8Jc9hKSJRFgdtHR3jt9c/jcH8PWZphPp+ttW0TwpD4zG3bewx8JUtTTpjnGYTQUFrbNu9VOTiNrm9E+AyazcYavM6gifPnEyM1BIQEAhkg00b0rNfr48UXX8J3r68RhZGpNiRsH1TpCp4XREdJ+OR1EBHldTJQ4/PjtftpCmC9NTwNtc8/cfNunwPPMp+kzO/3Se50YGiY6RhtOrYmMKgc203H0iduisJTytQVIZS8EKIrvAc/xeKjMX61y2aqxUeJ/Iqcp9NKFTKziRjSGfVLbTmnRGn8/eunxMy1swhArzn+fsABVLygj9vTm+O5e6MsFwv8m9/5XfzRH/4h3n/wAFfnl0gXSwyurvHk+AQ7/W1ICEzHE+xub6NRq6NRb2A2nuDq4hK1OMGT4xN0mk3Th0Bp9LumHJFCTru7u+j3+4jjGN//3vdczrlWq6Hf77vNxXI8v+cHc+qTyQSXl5dYLhcOTtdaO4KcyVmn3uJaz2ExIqNz45NjisJIgodBiCiKoZXCG2+8ASEErq+v0ev1TN8PS4KKo9hFLmw7zxw/kRUS8igXHcdGobLf77tyVZ/Aycj+6urKkReZFkrTFDs7O3j8+DFu376Ny8tLt6B8ZT3Xptreqw/VZllWyVZPJqjX6q4ZF3uf+FUmrVbLpbMmtqvu1dWVI7kyHeWXwT7r0Gm1Wo6TIYRw10gHjSgLn8VkMkEQBDg/P3eO0tbWliU99lwdOA9DOnhs+Mb0TVGWKEvlKo3MgRkjy4xGSr1eN7127Byxk28URTi089/r9Yxj4VUO+Cx94NnVGT4EykOM1SjmYPHIooL52aqbpdZ6rZKkLEvs7e25El06hyyRJpucVUHX19eOP8DIi8+a18dDx1cA5XPz/zBC4v36B9Kz/qwdRnKdcLhZFskIX0oBDQWBSvBICoFASuRZhjxbWQNfAigsdKFdGsXNubZpq5/gbGyiL51OF+1WB1EY4WB/H/v7u0iSCGFoVD8pgGQ/BUJU/IEwNH1LKG2eJLHtoJwgtjpC9XolQMW58CN4H0XQWNeC8InIm7wKbZ1FpbXpzF0qNOoNvPzyy6jVEnfuhaEpw+X+5Hcvl0tMp1NMp9OnWiA8K7qms8N5pPHnHmJQR6NLFI1nso9u+EjAarVyjS/JPeKe5dlBp8R3BPznSicmz/M159Bfmww42cnY51wIWVXjEP0Qoqoc8vcGHQx/D7kKy2K94Zlf4eOfF/5cmXXAarbqnPDTW/zeoiisFtFsDYXha/3XA0yDVmeQn37yq2x4rvHaPs14/q6vYYh6kkBqIF+uMBoMMRqM0KzVIBRwfXmFSEroosR4MMJsMsGjDz9EPUmAUqHVaGB/bw+D6wFCIXHy+DG2rSwyo3DANLrhgdPpdFCv13H//n289NJLDtqXUjqnhEZjOp06b3NnZ8cZcObl+TC5gbk56anTCNOD4/voGTPVsFqtUCplxKwA/Md//z/B1772t53n3+12cXV15WTB4yh23mS/34fW2h3+LGHLc6PnwK6pURThyZMnAOD6hLCRWaPRwPb2Nl566SW89957zrAARqBJKYVer7dmVPb29jAcDZ3DRjSDDbsIS/plVD4cGScJplbUamkV7RaLBbTWLoKo1+uu+mN3d9fdLw/KKIrcgUJHa7VauW68i8UCy+XS9TcZjUwa5OLiAkopPHr0yOl67O7uuoOLxGTWf0spcXFx7uaz1Wo5JOS9995Dq93CcDSE0grXg2urWZK5aJ6wc7PZciWwt46O3MHCnjzj8diloGisiQ6wKy9Jen6kyeEbXN/5MPoNG501tXaEURKDqZbL9csUF51ZarkY9HHpeBh0dPlMaAjyPMdwOHRrwT9UaMDYuI3X6l+nUsr1w2GOl1G8bzw2720zmvQPOSklorASKiptGgACKArbBhsaoRQQWkFCQ2oNKCN+BkE/rXL+DOFWQAQf3/iOaYmq3NM4C4acHUArjSLLcXF+gelsbu9PQKvSPafqs9cJ50EQmmqnJEGtliCKY0SReQb1Wt20aiAaoJTj8uQ2VZalhnRPThI1X2jsfFTJ8RiEkbzP0hSwCqFKA7u7e6jVGsgLg8qFYYAwDFyjL9/wzudzV+HG9czKv9i7ZjoGmxG0v058Uibn23/mvjYF10hRGlGx2WyGxWLuHAFDHBbVtSRmH2Z5BtP4jj2ltOUjVJoVhu9VGXz2CTKogEKWpe5s4Yi8ChKKxm06gj6Xg2cqeW/kmPkIjPkTubJhBnthWKEaZVkiy1LP0Xt6/njerGtsFO67oqhKmVAIjAG1mWerVBpXZxbPPdpKovGbqMonjed2NrTWmC0W0ADG0wnqzQaSWoLr4RDtbgcXlxfo725j7/Y+FsUS9W4TcSvBxegKnd0+7r58D5ejK7z06mfQ29vCf/Af/Sr+T/+X/zO++tWvuuhsPp9javUZHj58iOvrayyXSxwd3UIgBaIoxHA4sIbSSFVPJmO3sdNVBgGJ+XyBLMutnkQDSlXqi2EYwTQp0jafFUFrOIIoF+dwOHTiJcyNAsB0OoPQEpGMka9yRGGMw4MjtFsdjMdGy2F3dxfNdgtJPcH16NoZfyGEKxOl48IDYzqdot/vO66DEMJpHqRpim636xbvkydPXFUJAOfgACai3N7edhuaBiaOjFPA3i3kutBj5YHACoWiKBBGEebLJYQ0tfppliGp1aCgkWYZlABGkwniJMFgMIBSyjlRAHBxcQEAGI/HDtXY3t52ERnnhIaPIlLkf9BZnM1mrlyz2Wzi9PQUnU4HQRDg4ODAKbVqrW2aysj1NhpNZFmONM0xHI7R6fZwNRxBCYnzyyvs7B3gyekZgrASQ6pEj5RrV39ycrJ2eJbQkGGAx09OUG82MZlZ7kMcQ0CgyAtIIYy8cLnesGkzGvFztFppG3XbP6bFGKQlEZZFjjxfQUAj4Ps81IEEMQCu5w5RFyJSnG/fmSDXZZOYBqwTPx2BNlhvnw1U/BQeTn4ZK4eL2mBEUrX3B4S1Afe3kKahGDRQZKVVcZcQ2nAgypKS4wIKgAxCQASAlrbrqZET11pAQ0JBQGkBLSUgpF9ZbJ+trVKxqY8giGyTsxBCSLSaTRR5imy1wPHjR/jog48wGU2QZznyXCHNStvAzBIJoQFzOSihACkQxjHipIYgCKFFACEjBGGCOKohimIkUYx6nKAWJ4hkiAAASmX4HKsUeZahSDNkywVUmSMMJMLAVOkYVMdokizTFYpSQcoQ0NqgOPb+pIgggwTN9ha29w9QaiAIJcJYACJHXmRrZ4LvDPj/T2PkI1o+n2cTxePvysLwZ1qtFhr1OuIosj1rjJgd0So6cVIAQiuo0kD9ZVkgS5cWSbJ9YaAhJRDZCqE8TbFaLVEWObQqjSNoUS5AQbv3CiRJhFargVargXo9gbkMZUqcC+PQcMhAEmi092bkvQF2zoX9W6ylA/0UkZ/q4F4yDgwQBAJRFCCOidBEoO4F750aG89CSfk8fP5IUaTIMuNYhWGAer2GRqNmugWHAQCNKArQ7/fR73cd34P7nmkuP/Xip3h+0nhuzkae51isbITUbGKRrrC/v48XP/MyFosF/nf/h/89vvzzX8E/+sf/NVqLNm69cITf+q3fwjf++I/xM6+/jvv37+Of/JN/gv/iH/wDvPXWm2jUm3j55ZdxdHSE733ve5jP5/j7f//vO42I09NT14js537ub2G+mKMockRRAKUKm1YoHGTebrdxdTUAIJDENQShdJF1q9XCaDhCWZoNU0sSW+YFzOcL7O7uuVQLyzJbrRbKokSn28VgcI0gCDEcmhb2qlRoNtooshKzyQyvvvIq/vk/++fY3t7G5eUVjo6ODEqRxDjsdjCbzVx6g4TQbrfrCJ9+n5Dd3V3XG4REWFZaSCnNNfT7TlGTqAbTLn5ZJtMbaZri6OgIQ0vg7fV6XrO1yRqPw4l3SWkiSFViOptha3trLdcoo9CkILTCIl0hDg035ODgwKFNfhqMypuXl5cIggCnp6fo9/suRURyK6tSiGLRSWGpJ/kH/LyHDx+i0+m4zsGj0Qjb29uYzWbo9foYDIe4feeOkRhPatDLJWQYot3rIV2tUG81HarCjRVHEfZ2d6GKEicnJ9jf34cUAte2AmgwHmG+XKLX7ztZdep/FEVhWpHXG1gsFmv5dj9d5eeRK9KfBkphOAUaEDBwueEpmAZIYRCgKDKk6RJRbNAkOhN02phWWy6XTj6eqBAjEx5IdDj9a/P/zeFftx+d+k4HI3hGWb5WwOZYczwscuMitepF5jNlaL0SYXuGWQNbKujAoK4Bv69UHjwuoBRgxLMklAZKrQBtnBMjPyD8b7T3WhlXrTTyrISIA7SabQgYlOH66sqgflGE7ODAGMwwdvclggClLiBRPVshDaoAKU23Vw0EWkCLALpUiEqFXEgEourAWZQFytyqsAbG8VJCAFJAFYUhCsIYW0L1LLcOAgGFHEVWIEAISAlVAkZ3IURca+Ley5/FD7//FkQoUegcapWjLCWisO6CLD8d5j9TH4l6luHzn3P1RMxzDcMQdZsaZkqQaYUqnaChSuM8GOVXTVYvmAIX0JDWSAvyGYRAXuYOlWYKDiQ/WscgigIXyQOs5lHIspVrRgYAYVjF5ob3Y77PNNATFhEyXXrNPJRQal3p1N8bz0qjmj1VIShaG36WOQ9z61jRmXm29gkJnCSM87lVwQUdwwBA4JzTJIlsf64WcitXsbnfNzkfPvL0k8ZzOxthFOIX/s7fwS//yi9DCIE/+eY38V/8g3+Ax48f4/T0FF/62Z/FfLXEbLaAVgK//uv/Kfr9bfzP/pNfR932JfnlX/6fYm93H4GM8C//5b/C3/n633EPodPp4PDw0JFtKHxVlQOFaDTqFpIyk2EIh13nHe7v75ueJRYWXi0zlx6o1w3JUwYS8/nSHaqz6RxFXjr58narCwAmtwmN2XSOQEYQEDg8uIXxaIR60sCDH78HpRTefPNNxxtgGeIHH3yA7e1tK/TUwsXFhat0IETG3KcQwmlwzOdzHBwcYDweY7lc4vDwEGdnZ05ca2try91bt9vFhx9+iIODA1xdXTmDwSoFOmBCCFchw/e2221z71Z4ivPs34MQNgqzlSjUO2APEqZFSJhs1OqAMj1LuNCZTuFc8zmTY0OjRoKo1to5QDx0njx5gq2tLVDB1U+5sXwVgJOuZ18U59iEoSOYnp+fodPtYmyrcWbW0WNvGqaser2e0aeAwP37942jEobY3d3FxcUF9g8PobV26YnhcIidnR1cX1+7yJ9GfhNF4L/9yKHKfT977/nEQPJ/Go0GIAI3V4yUuF/4HOnIsSqJqReuRyJbfq54E/r2D01eh3NKvYOPv+N7Pm4YzsGzf/4sI+Uf0v4By2siLEykUGzksH242b++TUPoXwf/DsIAZWnShL1eD0EYQkMgKwoMRyPIIEBuuTLNZtOVKxjov4TUz3bIqgjR7LmyKCDK9WviWilRPn3/qJACe9Uu0vbJpUVhu6VGoUvJAKaqWsgAL95/Ce++/T2X5y/LAkncRBxHrkpF64poufYMN5zPZz3DTWSEMD7he6bbXDWX54TzfqpntV5R8qxh1m5V8cX1s0l45HOgc85gg69hSioMQ4QyWvt8puY2ne4gCNzeMM0r16s6/ICD81WlRBTY88SfL7Nmq7Qmv9d/DjyPiZpXKab1PVvNTwmtQ2hdnZ2G17Z0aVnf9nKueN1+quvTjOd2NuIoxs9/9Wv43Cuv4P2H7+PV117DcDxClMR497338OJLL+H7P/y+E9f6vd/7PVxcXODXfu3XMBgM8ODBAycvXRQFzs/P8fbbb+Pu3btOzfLo9m0kSYKTkxOXb59Op7h37x6m0wla7Yb9eRuz2dwZqFarhcvLS0RhjDCMXJnmeDxGrVZzZYH0/lht8fjxYyfW9Yu/+ItuQcznc1e9cHp66kSwgiDAn/zJn+Dq7AqT0cQJQ/G+aDh3dnZcyeaTJ08ccnFwcICyNE2u2Ifj8PDQwdiNRgMnJyfYsaXBRVG4Dp1JkriqEhL1Go2GKytmS3YhBPb39/H48WO3gQFDrGRahijAYDDA4eGh679C54Hea1KvoRE1AGBNqIqkVObmgyBAXuQmyrOCUSwtbbfbrkJmOBzic5/7HB4/foxms4nr62sIIZxOSJqmuLi4cI3i6DCxCohol1LKIUAs76XTxOsj+bXIc2S5kUFfpSnitCLmknRLRVOmAObzORLLjaCRrltnptPp4OTJiZNwZ9XOZDJxhz+dSvJA/MOFB4CvaeJzI541+F7mxpUl/NUbbeR54Z5ds9l0jiUPOQddl6X7uc/N8fkUPFh8R2HTyH1cmaJvJDch9M3hKJRiQ2sET0fC/JnPReABy1y2/zNGtnQ4pFLGQdDapTgMSCI2+91tXKR2xFxYqfJ2uwPTtl1CyhBKmQ68l5dXMKS6inRqiMcFgGq+NhEBv+JNaEDrcg2mprHjnK6l32TVd8Qol5rvD8MIaZ6hVFamGrAwvEmvaGjDV4FEURheVaPVhpAhtBIobbtYpapy2k3ypv/MGDlvGla+dtNBJJmTZaBc8zTS/nMuitwGOesVNlyX/NtfH/6a8UmX/l4DsObwcT/5Egjrzmi1jqWoqoPI1fDvY3MvbI7N1EqVijHf41+jn8bi/WyWsdLJoAAcbQHPjGftbf8PAxRyvXhWkXxLR4Y/53d+WkcD+Ks0YhMCMgzw9o/fwYcffIhbt25BBgEmsxne+u5b+NVf+1Wcn19gPpujLEq88867+OVf/hV859vfcYJaURjhvR+/h6Oj2/jqV75q6vptpJ8kCXa2t7G0JJRarYYnT57gjTfewK1btwxUKKSDqqveDhOXgsiz3PEx5rM5AIHZbG5LHleo12oABC4uLiEAZFmOB+89wLs//jGenDwxMPx4jNlshh/+8IeYTqcWYcnQ6/Zw8uQJ4ihGPa6jyHKHEpAz0e12YcrSmq46ADAbgg4EIe5u1yAovmz36ekpDg4OnHT3ycmJE5JqNBpOdjsIAgff06CTmyGEwNtvv426FUFjWS3botP5YskqdS3IlCZ3QmnT5VJL4cpRyS/xCVNUjY3jGCovnCqp1trxOAA4Qtvx8TGyLHOITZ7nzoEiX4PrjYubFRWsKkmSBGdnZ5BS4smTJ2g2m7i8vDQpjsHA9VPZ2toyjqB1SA72DzC3yqCz2cxVzNAxKEujHxJaeeyzszPcvn3bpVm2bSpse3cXy5URgKvX607/ZRMJ8A8G30jzgH6adf/sveenJgATibTbbUymRs212Wy66HA2nRoyt027rSyhlyQvEun8igIespupHv9e/Hyzf10+uZgGw89RPzMC1drKh6xH+psOyqZB4fwyukqSZI2rwioW39kJNlJE/md8EpmeVQfsX9Lr9VCr15HnhSV5aigF2+pgBg2BolTIi9sAEgN9lxpCrLs0nJdnOU9sT891wnvx8++cJ7OerOMaSoShEbPLssKSt4FaoiACow0CVSDQAaQw3DcdBlA6gwwC3Lp1hMnkGhrGYVkslsgz5SotuDb4/X45K6N6/xn5a8WProlANRomgGFFIQedFj4vEyxVzfOelYLgtTwrZUen2k8P+uRW//p4b3wu/n34TowhCq/3rNo07IGdc39/cP/y+7j/7EqHIa9izaj797m5L31EgwilL1XvO+T+fvCDBP6exG4+o8059vecX6n0SeilP57b2ZBBgN7WFl5//TXcvnMH//pf/2u8+PJLeOXVV/Dqa5/H2cU5up0OBtemadbf/vm/jdc//zp++7d/G7/5m78JrTX+uz/8IyRxDf0e8PprP4OvfOWr+N3f/X850aUkSVAWBb71rW852e7bt28jz3N0ui33IAyvInhKJKrT6eD8/MKQKYMQUgQQWmA+NWmA89Nz/PCHP8TFxQVmsxkuLy/x4MEDSCnx5rffXNN/9yGjNE1R5gqhDJFnObY6fZxcVbl6lkLS+HzwwQeuIoEPlOQ8tu6eTCZrUUu323WbTymFDz/8ELu7uzg5OXEoBFMw0+l0rdMpEQwu7Ha7DZYIUxXVJ/1xASmlHOrie/RJkiCznzm3EX8cx24+iIBwYfI5SItSxLHpTdLtdp24GDvWkntBb5nwLefGJ5rt7Oy4dAQN+nw+d/PG5mx5nqPT6eDs7AyJJauyv8qtoyOcnp4azZDxCHEtcTLqNIrkMbBiY7lYottuY29n1817IKV71teDa+zv7+PJkyeIogi9Xs819uMG5HPxD9tNFKCCuq2BVs+2fpubn2uTTi2VVuM4NvlqW5mziRYwSqVz4kPAPsOch5VvTAibEprmeuJnblYYPCvy8aHhTXSDh+KzokLf0PnzycPRN2b8uX8Y+hoHaw7hM5M5JIjatFBRII5rSCzsn5fSGmWBUmnkRYkgBJbLFKPRFKXTfKjiYZe68GBwP5LXWhuNiyBcMwQ0TuTV0DhVXJnKEaCAWFEUyLMMQpoSV7sCjHoqpHGiwgiAglIJ0myBw8MjzBcTKAjkpYYqUqiyKmPl9VYaIcKtGaDSd+C/+XvuB66ZMAxRtxUfLM3kPW7yP8yzosOwKelfcQb4XP20hO94bHIM/D904nzUhtfrl636CqJBGCC0BQ1A1Rhvc60GQVVm6js0fldlH8Wiw7G5tonQMoXq8z/8QIUcOd/54/t90q6/5/g+IiH+XvKfqZ+W01o7G/VJCI4/nr8RmzbdJ999913803/6T/GVr3wFP/7xj/Hqq6+i0WigY+Ht/+N/9V/hH/7Df4gvfuELqMUx/oNf+RVc20P67R/9CLdv3cK3vvlNnJ+f4/TsBG+99Rbm8zl+9Vd/1UX/7NbZ6XScbkCapoh0pZ/PPKpS2gk1jUYTLBdLnJycIE9znByf4Mc//jEG19cYDIeYz2aYLxYuslpZrgCN3nK5NP1LhGk417T5/7t37+L8/BwNm58/PztDr9dz6MLV1RX29/ddFEmUgdEI0yBCCNfZ1Yfh2Lfj8PDQpX7YK6RWq2EymeDo6AgPHjzA0dGR2xjUJyFCQdEzal/4PUG44ZmyMI9Uu8geMBt7MBiYBQlgvlggqSXOiSKhkI6U33pcQNhOu+vRAQ0ikZz79+/jypLrAKwRWZli4uFKrshgYCqQiHhRyO38/ByHh4c4PT3FrVu33BwMBgOwZI+E0tlsBgQSIi9cP5/lcom9vb21zTocDnHr8BBFluPSCnmlaYqlJd/OLenTV2bls+Uc+rosPLQ4d37kxoPQTwX4EKkfOXBOGckVRYE0M43RWq2Wc25SW1XCXjv8fsr+A3Dr1P9uHiaVIYNLU/J62CsHqA533/hwTRN+fVbEyX/7cshFUbg16B9gH3eY+Q6pQwXsKMoChbKVIMKQT/OyYtK719pyyaJUgEuoUBNFQSsNLSVkEKAocvS6PSglAEEVUcAQAsm1kZbIV6ExqlQohV5LP/o6PjQOURQhjEKEopJHZxRJR5yII6uGSqVQr9UgvEAmCIgIFEhsP5tQWiGmooAGENcSU31V5tAQCMIYzVYb7U4fy+XEVKqE607D5rz7a8J/9n707KN7vrPC0lK/Lb3vfPsOrlmvlSPiOw6cH+4Hpn9Zqspn7TsSm4gGgyR//ftr81kOcy2pIZeVgqn/fPx0jV99AqwLeXFPco4BOsfrhPHN6xWiUu+UUjpdJh8p5Xf7yBnXHr+b+9J/nR+A+sMPWOhg+nP5acbzOxswCnStZgu/+b/8TaxWS3zxjTewmM/xg+9/H1/58pdRKgWlNBr1Bq4vr/Gd77yJBw8e4Pz8HKosMbwe4vf+29/HkydPUKsn+N4Pv4der4dOp4ODgwNcX19jsVjgvffecwfm7u4uGs0mBteXgKC3qtDpdG2UXMPZ2Rl++7d/G5PxFPP5wpRfZiVmEwsp1+qI4gjXV9e4dXSEwfUA0BrtVgeL5QLQpjTNVLYs7EILoRVQrzdwfT1Aq2kUNHudLuaWhMr8PvtkcNErZXQ4fJEZGvlr2ymUHmK/33dRznA4RJIkuL6+doRFVrZcX1/jxRdfxOPHj7G7u4vzc6MlwdTN/v4+xuOxKxFlZcJoNHKkzCiKnFw3Safc1DS4rHwJggClrmq32UcFgENSiE60220slgtIjTVRndFo5DgnhL3ff/991zmWVTUsDW632x6h15Cd/N999NFHLsIm1+L09NSpo5KM2+v1HL9lNBqhbVVowzhGXuSug66UEoPBwGmY9Ho9vPDCC0hXpvql02pjNBqhXq/j1q1bOD09RRCGmIynaFo+0eHhIQaDAXZ3d/Hhhx9iZ2fH1dSz4yrwNATsb3CXV9baoRu+ofUPgDzPq6ZrtaY7LPwcK+Fq8jTq9bpTFNxEBny4GFgn3mldEQPJdfKvxXciNpGJzSh1bXivUcr0MKECrW+onjU2URrfkGzC+FpbVc7yaXRBCAHp8vkOg6jg+ajiQUALtNot4xwVVbljEBiiZVEoFIWCDKrrXi5tqaHV2fERJAYhfCaObKfWuSf83bNIiKVWSJLYlCdogVJVyr9FkSNSMQJJ9Mzcm6maCE2lWQkobUqHZRijVqsjy4zTLzVc6SnnnAaK1+Gvk2chaD6i4RvgxXyO5WLhVGsp9kUj5jvZ5ntNBQjXmJ8uazQaLj3IdeqvHc6X77zTyPposJ+O8c+XCrGozGWWpVjMny43f+ba2wga+Hdo05x0ziu9kPUusB/nzGmtHW+C6Sbu/U3EzEfDfIfCt1X+s9vcSx+HdPjr+CeN53Y2lFJ49+13sL+/h+vBAG+9+Ra+82ffhgYwGY3xj//r/yekDLCYzgEF/LN/9s8dX4BGt9Fo4qOPHuHevXsoigxJo4brwZVrljafzzGdTvHBBx84Iulrr72GxWJuNntgyoxqNeVKJpOkhrfffhs/+MEPsFys0GqZSowQEaQMkcSGp7FcrBBFCR4/Oka71cLltSlRhRZot1rIiwLz2cKRLlutFubzhY1QNLJ0aqPtJba3TY8X9gBh6oKERyGE8zi5wEl6bDQarnMqHSoapqIonHEYDocujdLv93F+fo5areY6ujKF0O/3MZvNHDGTjc/Ozs7cAQ4AOzs7jnvAqJ4VIavVylWrsK07nZBClY6zAaxHu/7P0zRFEpqojfyHIKhaztMZYI6RxrDRaDh0hUgCeSwkOwkhXFv44+NjHBwc4NGjRzg6OsJ4PHZGhygD56IoCptnN/MQhBGKskSrWTcdiO31M/dPYrCAMM7saORKsc/OzhDHMWr1OibzmWuQx/TQ+fm5I6tKKZ1cu7/JGXlwc/tGXggBXT7taHD4B7lDQuy+3ISCiXxwjfmHxmbelweIn0PePHj8iNaPoPzf++WRnxZepaOhNpwNjk0HzR+bUTRfEwSBRSOeoXIJuOsOLMehzDKUpdHgMU3RKkcmsKmIOK6hltRQlgqlMjLoEAqyVJClRiEVilIhKJVLnRgSeIE4qRqrMc8PVNVDvG6lFFRerDkVAJwB8dMEWZahKAsIqxWitIKya8KkBKliYvQe+DcRFCGE5cwEYAO2Wr2JxWIOITQiaQuC9bqRp3H5OMPqry3Oo280y9KU0ZcW9SVZlM6Gb0yrz9LuXtizhI5v1f8jd8iBz8tgGmHz+vhvJyTpvcd3DCpno0I40izDvMzWPo9z4DsHSlXpB645OgjkKLpnWZiGfD4a4zsJdID83/NzSQ73Uyqb3BA6dH7qm398Uiznwn+2DrneQFp9R+Ynjed2NlarFf7lv/gXkNJoPQghnETs4f4BHn30EaIwxvbWFj788EOrbTF0wlPXtiyx1WxCCoFut4d333sXO3vbiKII9+7dw2q1wh/8wR84nYQvfOEL6HQ6UKXCIluhVk8QhlV5EatE3nrrLRMNbzexmC9MpFRkSOLESBrbqCtJEiSWYHrv7l0cHx+jbw1Fq9VCkedYLZfYsd/PjoANq1nQsmmUy4sL7O/vW2nsrkv7MFXAh81cmO+VpmmK6XSKVqvlSnz39vYcN4GLkVE3Hbbbt2+7Fu7s9rm9vY3Hjx/j/v37ODs7A2DIg48ePcLBwYH7TuqHaK2dISf7utlsYjabodUynBiSJYuyhFBV0y964a76xBodpp8CaTYDSyrZVI7XwP4t7ADLxnM8aHktdGLIxeA9sYpGa+2k4dkHhORcdjKdzWauW2yv18NsPrcHhYl+yHXhRmQ5bb/fNymp0RhlUWB/f9/wSIRAw6uWOTw4wBOrE8Jn6HNFiDwQBvchWj+NwMOEkYIRZnq6Bp9j0xCXqiKC+caeZa8+WZLfs+ls+AcTf+anVHjI+dEQr3tznfvv9+/1WYPfZ+gRVVmvn4v+pOFH+T5sHQYRRCAhtLIt5O13BBKQwuilWcGlQFitirKAUutRGpGPUplqN1Z6mZJGg66WpUZZGoSjLCsiIwCs0hSD4QRRLJ0yMVn+NJJrjoTWkFiPLHnI02Fc+5kKASGsbohG4aXiDCcqRiADV7UiAokgDiGkQFmY5nRhHCMsM0RRgkazjdF4CFVk0BBOzwLeNfnpN14TsM7Z2EQV+P/8d5qmKDxCMtcs1xiwXpliNC70mlgcX8t9xpQGv4dOq5+q8KtN/HXsP28/5cFgSwiBsKxe6+8dn6P1NGpYET75fUEQOL4U73MTwdhEFTgX/r0BcJo5aZo+hVL4+4LX5gcGPAf8z6Xz69sq/6zwHX8/gPk046+kIJqtVphPZ9jq9SEhAKUQhxEef/QIjbqp3x8Nx4ijBMvFCvVaA6tliiIv0Wg0HSQ5HIxwcvwELdtq+etf/7pbFD/4wQ8gpSFl3nnhBbSsVkS327USrqHjDbB8lJ0IV1bEqN3uot5oWJKOIU6ZktgFylJjMp5iPJ6g2+lhOV+iXmtgPlugltSxmC8RhbE9REIISCwWSzSbLaSrDHGcoN1qu260vt4AW3nzmvyDk63hV6sVut0utNauVJEVJcPh0BlRRqfcYHyNn/pYLpfYspLvhO8pd0sZcGpYUEGSuV9eAwfz+zTEmwiNv4m5EKm5YXZfFWUzN8vSz4uLC5dKIoF0OBy6jU8iKStd+Pzp1c/nc+zu7iLPc/R6PYdcsLkbO9DScWKDuFqthqKsNFQ2DTqvl/c0m81wdXVlOBhSYLFYoCgK16V4NpsZGfTpFHfu3MFisVirbWe5NXkbfE6MyPz14DsflSPwNAvc33++Y5KmKeZevxPCsTT8PJR9h3cTufAPFEZNZLbTOPhOikMOPDiV372JhvDzP+k84fdCCMA6LZsojQ/Xf9xnVM5ada2l92/n2FgHzY9Ia7VkzXC6z+VcwfCKWEEhgwCQpj19oUoU9rtKrVCo0iEbqlSurJ7KxETpfD6Lm1uItQgWgHNOfEcSqGB4/1nxc9vtNnr9HjqdttFPCNcl431kzPzOrMdaUkMUxlb4zJQJb84vjRKdCz+aZnRcr9fRarUcj+hZ88oon2ecX8HENWA+s3KmuYfosCwWC9cnhYEUv4tz6BMgOYe+M72JLnJwH1CK3ecmBLIimHLw/OA98Jzx7417AzDOjC+Dvpme2EybscSe76Fz5XNTADy1vjjPm/vYH6Y/T81VCZEk769RXifRJP81n2Y8v6hXGCIKQ6gyxXQyQafdxnQ6hRQCLYswSBlgMLxGv7eF68G1KVms1SCFgJFZBXKRAwJYLVfYv7WL8XSMo6MjBEGAhw8fYjabYTabotNp44tfeB1alWi3W5gvZojiEFnG7q+GGPfk5Ak++OADxGGM+XyBbqeD4WCARtJEIEPnoJeqRLPRwipdod3pYDQceQ9FoF5vYDabY29vH48eP0an3TGLK7KyyKVGmmYQAphlc6s6V1V0kBBKwxxFkWNbsxstDSMNEksvGcl3Oh28//772N3dxYP3H+Dll17G9fU1XnjhBRwfH6+VOkkp15CBWq3mNDt2d3cxHo9dMyF61CQVmV4gS2xvb+Hq6toJd3U6bWitENp0yGK1Qhisd3Ak8sBNQINR5DkUjDEa2fbri/kcWZ4jqdVwPRiga4msnU7HORJCCJycnCAMQ1xcXCCOY1xfXzvniVEGm7zleY6dnR2cnp663jhSSoxGI9fRVCnlSKAksaZpChkZbYTDw0McHx87TQoSSKlYGsoAi/kC7WYTtbrhBG3v7GA8HmE0HiOp15xgG1M35LRQB8SvnOG8+Yeez6EA1h0ADmFz7UbDgYdEFfEIqUxLc+dImLbmRaEwHA6sg2Mkn7PMlDM71ECbTrJiI5LOy9L83H5/HEcQQtrDLXM8Bq2r3D0NUGk/T1jEQGsN4UHT5urxVOkrX1NulOBWZFRl56JCepTSUIq6DFZoyTMigZSA0ihhKjKEvWYNoNRGL0FBIArNtWe2zNLMuPdMhEAQGkRAw1SnCuWnDkoUqkRQlijKqjeKApDnJSaTGaI4QasJSBmg2ay7c8OlGSCc0+WMuyqRZ0Z2nxG6UcD0q0Q0JMXarSHtdDqmYiKMkKa5M7rCCL1Dl7bKziElNqUQhQjjEFjBSnprez3KoCZKm/mH4cFIGGKsUsaBCG16gykCrZSrcvOdXaVJkAzM+zUlxM2/zRwLV5kTBqas19eGIcLiE0y1NqkidvbV0ChLhaLMIYXJC7HnBwMjaPOsjXaG3QMAwiB0z1YpDaU9fspGfxUhpL0X7VIn6whHhQIJASyXC3e97G9i/r8qG68c4ZrHwynWBBcp2sU0FJ0PH2Xy0yCAmZ8wCNx5IYRRJYanomuus9L9EBIIhDlD4sRw6QIZYrGYI81WH+curI2/AmejhEIBEQB5nmK5NJ0Lz8/O0ajVgNIo9+3ubiPLchwc7OH6+gr1esOUjBUZarU6sFKIIokoaeHy8gJ379/DZz7zGZRljixbYTaboNOK3AMMAABB1UlEQVQxzbO+8IXXEYYCeW4INMbYCyyXKbb62xgNh/jxO+9BFwCkQKAlyrRAu9nCbDLD9vYOLsZDa9w0NEoACkVRor/VdaTJNE0RRhK9WgdFmaFeTwChXAS9XK1QlJn1mAMEkE4anK9hMyxuBC4WVljQ4JBNTMjYjzyJHsxmM9w+uo3VauWQjsPDQzx8+NBxNqSUjrfRarUwGo3cvVCXQynlUhOm26rEbDax+hwjJMkWAGV5ExqLxRxNizZpKMRxBGkXL5EZXjMRJp9vEiWJkV2OQqR5hjAxzoGyvURyVaLebmGZrrCzte0MvNbaORJSStscrUrZUDTLj7Qox220VsbY2dlxJa1pmjrEp2G74UZRZHqayKplPUm0y/kCURCi02qbHhTIUW/UkZUFLs8v8drnX8M777yDe3fvQoRTF10x4qVyKaMMypRvRqlSGpKsX4bGIaWE1AplUQn98A97IZjh5UqV6e/jjxLGqAkBFLlxEAuUpm+IE3kyvIaysB0ltXLkRAWNUpvmZlEUIE1XFqUR7pA0YlXCRsVGNEqZmwCs8yCCSouBRtSH2DdhWikltH0d9wijSkbf5t5LAFWqJgg8Zn2pUeYKsQwRyRhAZubTHqbaWBfowDghMiwRSIEwqSEqS+TZyvZYMfehhCU2ao333v8An/nc69BFDglD5kUJ6LJAWQjkG2mDUmkUClgsM+jrIbQ21WNChlClIT0KAIF3L7kqvGegnKR6aTvd0g0SUEhXGVRp/l9CIg5iqFKjUYNRdVcKAgpxFAE6xipNUWQZAhkgCkyvoyxLoaERRBIhAsRJDBFYJ6tU1skzRhLCOLKUzYYMYJqQFZAwwUy/13PaOTPbuFEKY+C0czABERgCrhDrRGnrzkGXJjgUWiEMEmgtkOcl8ry0fBTKuZu+NRUCVkJIII7Zyj1HnhfQUAhkiCAUkJJVHhGiMLJOl5+2gj3bSqTpCmmaQXky4mWZI0eGslDu9WVZIaXGWQ4QRQDlzwEJIZT1QyWEkG4tG6KxQFlW6AhRDb/ShVWTJIIDWEvHlGW5prdT9UjJnYx7LYkdl02VOaAlyiJ3tqfIU6hSQkogDARyKAitXFVQFAhIKCzmE6RpinpSKat+0njuNEpZUmwE2NnZthF5giSJXQUBoTQpDZJhSr5KrFZLC3VPcHh4AADuQX/2s591RL93330Xw+EQeZ7j/v376HS6gDDeVRgZI2eMucBkajqkvvXWm2jaPH0cx8izHKEMXA5/e3vbeZfj8dg9TD408hF8BTUaPaPNMHYQqg+PU7HN5fUtl4W5Q6YMiFwQESC8xTSIn1IZj8duETFSDMMQvV7PyGTv77tqEW7UVqvleB8s5aQAGB2cfr/vnk+32zXy2zbyZlqCqY9qMWvUa3W3mGlMeX1aa5d7XiwWjkBWqBKZLcHUMHyXvCgQhCFyu3m0MH1GgiDA2dmZq05hFQw3yiZ0X6/XXYUJAMeXEEI4FIkQIyFdzjVbyNMhJD8GACBMyeRgMMDOzg663S6ur68BALcOb+Hk5ATb29s4t43l0jTFzs6O4+rUajVnPGezmUNuXDTnwfabqQE/J8qo+NMPDUod+3/KMkdZFjZlRMRDIopNdFjaNV6UhSE7ArbZns3dxpFDCExH0siDTCmOVFU5yECg0WhYwnay5mR90njWvPh8EUZzm7lsn7/gV3Y450ZXSo+BNEJW/LlDkJQxlFqb9zZbTbQ6bUSRLQstSxstS3toGxKmuQ7z+T6Jks9Qe/dWKIUSAnmuMJ3NMZ8vkGeFNW42fWQ7mxBFKe19F6Up3xXS/NwgCgZVyMsSuSWTlkXVxTeJTCfP2KIAPmwfSOlSQ1EUQVq0TLny4QqVIBrG5l9V2WaVAokidmZd19dYrVaYTqcutUHonWsjSRKDltoGamHIdWTXb2k4NICGFMYgl2WBPM9sz5KVCz6DgGJmcOlRrs0oYiqEKWHjFDcadWxvb+Hw8BD37t7FvXv3cP/+Pdy+fYS9vV10u12bVoicLfPF9bVDfSqeyfo5ZcTWzDOt3sWRJDEoTU5SqBDCnVVAxaHgmcLzy99fnFOttbO//pnJFBWRUJ+PwjQVU0y+qB9RmjQ1VU1SGuQ/sd10DU9k5dbFpxnPjWzwBofDIbb6W5DtAIPBEDvbuxgNBobDUKvhx+/9GJ95+TMYDodOOImLjvLPRs/hGs12E5/73OcwnU5Rq8V48803cXBwgMePH+E3f/M3nZKjicwzVzq6ZaPi0WiI4WCIOE5snn6Bg/19fPjhh7h//yWjjWHFjvwyTDofnOCyLNHpdJzOBKs6THOatmvmRl7BYrHA1taWq55pNpuuuoEODNEHcjno7HBRUDJ8OjWRMn83nU7Rarfw6NEjfO6zn8N7D97Dndt3XG48DE2vD/YA4UHt92P5/Oc/j7feess5A4PBAK1WC4PBNVYrgd3dXVf1wsoYEjTJRUlEDaXSiGWMMAjQaDZxdXmJvChQt1wI073RRL+1JEFuDyUacRIwqZtBTkjdKjEWUeSctXa77crhALjNwuunAdda49atWzg/P3eS5eRbAMB0OkW73cZgMDApq8nEIUA7e3u4vL501T58NkWWIwxC7Ozs4Pj4GEopHB4eoigKTKdT9Ho9R0YbDofY29vD5eUlXnzxRXzwwQeo1Wro9Xo4Pj52XCIaPhK6uI55OGwaWgBQujTQxKccfp76Wb+jwdYakFpAKMNZANiVklFW9VlEVZIkMmlTVZXvMcoy76/ep72eFc+CkTk2uSK+c7X2ebrqT2EquRqekwELQbMaBWuf4XOJmL/eJOIxggSAIi8snJw4wzQtSqORURQIhC2BpdMo7ZwLeNfrEejsLRnHt4SUAmmWoShMKiOQxgEKw8CkRZQ19lEILSpypI/40Pny51WUAlKsE3eFNP1Ysixzjj2fCY0X4BMITRpEyhCAQpLUEUUJClV4871eMcX+OkxpmP1jkNPLywuXzpByXRWW11jmhYm2bRAWhqFrIsdGaWwZH4YhAkFNmsrp4T3TMTLXZiqE+D0+QbrT6TguSbvdRqfTMcUKjaYLyBaLBcbjsRPJ4/mT5zlk6C0yt6a1S6GY7zLdw4sid0g154AyCUQd/PW3yY/afOY+SZRp2GedAa49g3U8KrJ+iDwrnF3ye9wwFc5n6+8fntl+8ODLs2/q53zSeG5ng1FEq9UyyonWEx4MrtFqmHbgURzh3t17GA6HODg4wJMnT9xiJWFSKaPLEMURZnPT96TRaOCdd9/G5eUl8twIYL344otmwytDiGnU6xAycA5HkiSuCZwxunJN8Gk4HLrKhG636yZ2s9QnSRIsFgtkWYbxeOwiYOb/+eBXq5VLUyilXFkjJbRZ1upXaTAHx74dJNUQdaBELMlPLOe9OL/Awf4BHn7wELdv38bIlmDy+nh/rFTp9/vuwbdaLfzlX/4lOp0OhBA4PDzE+fk5FouFRRAm7lnOZjO3IanSSaSk0+lgvlg5EvB8MkUgJKKkBiiNAALzhUljREEIrarqCz5nqgQSaVlLg9i5Imze6/WcIabeBtEhVif5nVnLssSTJ09cqazWeq0SpNPpuGqU8WSMZqNpFETjBGmWOhEpPgMAGI1Grhvv6ekpoihCv993jjPJsuy8e3x8jP39fUynU0dMpaHwhdCeNXiQ8GA0B8WnKxnd3JebY5PcWZYlRKkQRlXkrZUAggBCVJGZQw8AV1bLg5N6BoR2Hd/AOgA+EY7PefPafONnf7D2M+a2/febgy23v6t4LIxkK9Go3DoWlcIhHQ7e27PmisiIhkYcRybVC2CxWKHIFQxfxnBesqyAjCxqo9cdJ4dgkX9guSTaEi6LPMNkOjPwfRSh2aibyjptOBtCmWh5M7W0OZ/uGZSmI63WRpIdALI0g4xM2sknMBKW57RXcL2pmgiCEKUyiG0UxkgXUwjPieFnJUniyIHcn0RBTTt2rDkBZm9XaWKzbwt3bvoOgV9NAqDiAeWFM7abCpp+lU4Yhggj892dTtudtQyS2+22aWlvtTnCMEQoq6CIxpj6Gf66kdJzmAlIgfcaI44TSBnY9a9dGtMgLuv6FrxPrkdeH4nznCuOsiwdausLatGG+FU/riLLrgeuIx99oeMDwHFB+FoTzFYluuR/0NHxia5ch59mPH8jtiTGK6+8gnfffRfb29tIVxXzNcsyHBwcmDy9fcBXV1eo1WqYTqfuJrXWLioUUuD27du4ffs2Wq0WvvPtb2OxWOD6+hr379/D4eEh8jyD0qXLvWtNJb3CtHq3Rj8IJIpCIQojXJyf49atW5jPF24xs1355eWlSwHwIKWxoaGg0eeiN6hLzaUSfKY/S19ZokpD52vVM8piSoSwFTkDVJ9kuSgNrdYmjbFaGsh/MBhge3vbOR50kra2TOv3o6MjPHz4ELu7u85xqNfrePjwoUslUdabKqWUufYjKc6NQWNCd09UoKQDx2dKnkmaZdACbiHTKPklkayWUUohyzOkK8Mq7/f7ThZcCOHSSf1+33UkZAfVuS1jpWAZoxJyTTivTCu1rbBWp9PBk7MzbO/uYGnTeq6So8hRS2ru/lhOzA1Zr9ddd9e9vT1orfHkyRMcHBzg7OwMbUuWJurFZ+8bDs6Bf4j5vA2S5/4mxub3muinQFmGkEEF/fqVODy0eF25Jc7RaPv55MoJMJyQIAyR5+tVH0VRQCvD4+K9+8NHdPh5flWI73RQgZfX4ROTNz/L7Nt1joh/4PtoEjkoAO/HRKrNZhtaB1ioJVSpMZ3OjN7N9j62d/dNvxVDbnjKqaM3pzXTHkAgQyjkWKUZRqOx46G0W00EQeQMWlFWhmgThfERJq01tDIKpVpXaBVQVaoorZzolHE2+Ay0NdyFIX1qpodNc7lGo4XVfAIhKpl6rglGz0RuXSsEBG6d+KWpfglrtQa05Q7ULBFdQwmBMhCAllDCBiRlgULb6g5VQkMhjAIEQWUIk9g6DVGEVrOJVruJZrPhekX51T2s0uO5LoQtAVaVumZsmy/6ys95nkN4VbJxFCMUFrkQ0iIreg3RSJIIpn17uYZU+U4vnSVfe0NK6SqX6FD5KIg/txx+JYsQwp2X/jnOwXOUhHl/71TPrNILYaqFZ5m/Ljm3n2Y8t7PRqNfx6quv4kc/+hFm8xma9Ram07ljDV9cXGD/4AAnJye4c+cOptOpM27L5RIHBwe4vLzE9fW1MWBa43/yi79ocuHnZxiNxo7Yd3h4iP39fXMAhsagzeZzdLt9R4iczWf4sz/7M2NI2l3keYGL83MXBW9v77oGbTxY/ciXxtLAtKbkslarOfVOIgF+GSUdp/l8jqOjo7XuqyQrcpP5rGKllNO2UMpUjkgpXQO3Wq3momqWv15eXrpW541Gw7WX7/f7zkhSMbQoCjx8+BB7e3sumhdCuEW7XC6tczTG1lbfLVBf0ZQVIESCDCFUuKqZ7a0tQzKzh4eyJaW59XiLooAWcHPKeeV80VFL0xRhGGK2SlGzpWXc8CQ5ERW4vLx0aQluNB5+e3t7CILApag4h3y2bNT2+PgY3W4XFxcXCIJKZvz6+tohSqoo3bpgMzymZmik3nnnHdy/fx+np6fY39/H4eEhLi4unMS+EIY3wi61YRi6aIXrwI/8eZBwffjr5a87nhXBa6VQ5BkCbasAPMgWgNGU0YZjoFQJEUWmogMmuuIhyPvh9TJ1wIos/jwIgrWMkH9fdBR8ToFWas3h4Fz4hx5TBRCsyJDIbRokDCOQPFqhHevt5H1jzXs3v5OAhk17SCRJjHa7DejAEHDtdBLBDLVGFJpcto/yMMq3dwxmigwfJoIqC4MWXg8ghSEp1pLYPA9tnAeI9U6d/pz5f8z7K8VIiEoyO4oqfhSvyXyeMJyPPEdRkJNiuRcyRBjEaDbaSJtNoKxKPHmWZFnmHJiK2yUAoVEUTAsEMATOEkVBgmS1HoNQOj6E4YTY9wUBBICioONXoCwrvQ6WopK7QH4J0zr9fh/1eg1BUPHpqmcC9/9cn1JKFFm+9ho6tADW+HVKpe76kyRGPeD9GhSwUgGlhIARg/PRS34WifVmriqCJ//tywPwzONapUPA4JRnCD/Pr+DyA4oorBxx0gZY5cfqRn5Wmho+DNcfnVVf9IvrkyninzSeP40CYHd316glnp3b3gsRVssVwprxIjVMy2JWQ7BM8ezszBkFViCkWYoXX3wRzWYTZ2dnOD194h7G66+/jizP0et2MRxdG+MsTM6o3zfGcj5f4MGDB9YZmCGOa6jX6g4mGg6H2N/fx8nJCTqdjlPF9B8IFx57h2it0W63obV2FRZ8DREKKm+yqysrTYIgcB4xAAc9SSmd0WVkwMGN5qMl5Jfs7e25aJkGmvwK08V26RqbAWbhEmk5PT3F0dERptPpGql1b28PFxfn2NnZcRE7kQrySLgZOp0OBoORea2NYFqWcxMGAXJlSgqZWoqjCAq64nzYDe+Th33DKqxQDwBX0UMP39eKoAgZ548O3sXFBZQyAl0vvfQSzs7OcHR0hI8++qhiXKtKZltr01o7QNW6288Bs7KkXq/j/PwcL7/8MtrtNi4vL6GhcffuXTx+/Bh37951aRs/bcJ1opRyTi0d7c3qEz8K91MVYRhAqCrS96s2/tpDA0CJMl8nhWjtC46xKgAo8hylh8Lwb9+Z8FFCKdd7MPA+/Wun46BLIyrlE0n99BMjJzevqsBqlUFDWUNTqz7LVueY6kaBIjcMf3/eNjURnuWIKJPyt06JtLoDdUAH2N3dx6uvvo4osX2GyhKyTjKgGZtcC6U08rxEGJpqAyEDCG3SP/PZEpcYQAYh2q2WJeEaoqNvVDiHvlHxU17QlaCWskiKlBIikEjtHjI5dg9BK43UeVGUCIIQtVodWpeIogRxbM7ZRqOJbFlB5HyuTGX40LvWhrNjzi5DqDQpFUrJsyzVzGkYVWqkDIaqqqMK1eI90ug2Gg2XCmGJ+tNaGNoZSj5/Xivnk8iclKY0mnPMv6WUTumY+h4rPXWspGazCSQ1m1YzpcmlorIqQGLtZnqQe4hpFF4f9xFTLFqbc5FOFffa5vBRQf7tv5/2h3vJd9z9tB/XDzV6wrAi/frz6DsbvB8WTvyk8fw6G0GIr3zlK/jGN76BM+tsKGUW+2AwMCqY0xm2drYxHA6doubV1RWUUjg/PzflUf0+5vM57r/4Il577TWcnZ3he9/7Hv78z/8ch4eHmM1m+OIXv4jQI/nQYPHgTuIEp6enOD8/d3Da9fUQ9UbDdVWt12trIlA0UoyCqcBGTYpNvgWhoygyXT1Z3820Ax8EP9MvdeShTOeJuWX/QfvQGNGL4XDokAEeglxoC9t91YiWmVTLarVCu93GarWyxNrHDh06OztDp9PB1dUVbt26haIoXL71+vraoQLb29uuAR0RCTpZe3t7KIrCdaSlvDk9YhJmTe26qeEHKmKo36jN3+Raa7QaTcer4UZgv5Z6vY7RaOQa09G5A0yn1yzLHHImhMDDhw8RhiE++ugjdLtdx/M4OztDy85Vs9nEKssQxiFW1nlbLpdWT0K4VNFqtXKCXePx2KQH09TNI/OnzE3zvojc+BuUnJSP4y7wvqufmxI5/3d/E0iHGc9O0WhN6N+oawqQ/Lie8+e1+GvdRY96HS7n9W/et/t/KaGLAgVMtZKvOeOjHnQ24iSBkBKL+RwCQM3ye7hHeR3mYDYcCx8lehbSU6VWvENbKTBckCJAHCeI4zpeeeVV7O3tYbHMsCrMvaZZCg0glsLMmSbB1rzfVPoIlEqghEAIASGMXkeR55hODWq2WqXodtoIgiaCoKoYACryIOfDd/ZQeOtISggLo2RZZkp3UTV7I8Qvpe2LQsTFcjuUFgjKGHFUhxRGK2aYTte4ZZxrHxkwZ5NRPjVS/iYoMNFxaTQ1pJGFF1JASOPsFFlqhNAsv0tEIQIRIKnX3H3WajXj/DebqNdrzsmgY8EULgDkeYE0Xbpz2X/u/vVWSJb5fRSEa6/lGqLdqZyNCBATQBs0GHEBKZd2jy+hdWmcKJtv8R0KP91Ah3GTm8T3kN/H7/UJtptpUZ59/nnjB3T8PNpRPyDm7/g5fL503pQqXXBNMjGDP9ovKk1/mvH8LealwM7uLj73uc/h7R+9jUCacrA4iiA7wpEL33//fbzwwgs4OztzC1VK6SJXwBjnn3n9dbNw4sg151JKYX9/3+XLCatKKXF9fY7tnV2bgxL41re+5QxjXDcL8OrqCnu2x0qS1HFxceGEUfr9vjPY/GyiAexb4qIlrZ0XnySJg8n9qG46nTrPm/1GmLPnoiH8SCeBJDtGxb7Xy5/leY7Dw0OcnJzg8PDQISn0PJnqII+EqQnKg/N+KPZCefAwDDGbTdFut9xmYPWJqVQxnBCllGsJH4UhlosFoihGt93BeDhCt9PBfD6HKko060bLo16rY7FcoCgLxLbPCL11vySrIqqZXD49cF/mfTqdOs0SXtvx8TG2trYq9ntRON0PNkJ74YUX8P7777s1Q3VP8m/y3IhaHR7ewocffehymYWdQ3r4RMUAo653cXGBZrOJO3fu4MmTJy4XzIOMwmA0tFWO/Glyn39YrEPv9udQa69/lqPy1xnPcltMZGq+3QkhWOhfe695FueiOuSM2NFmCsS/P58/YT/AOWRxHDsOEZ8DnfE4jgFBOFqCJb3tdhthGLjeOKYCQgKQKIv1iNXnDGymc1h+aHLsZi7KQmFRLtBoBIhCoN/fQrfbRxAtUU5nVnLbao1IicD+rZRHEC2NGJYxqgoyNH1IAiGhA6AoMszmS2hThAGgRLNZiaP5xEwavjU1yMyKUmntSpl5HgpVKXsaReMCZVmAmhS+OqiUAXQZGOcqSqB1iUajhalNA/qcAToYdDqllBAwuhYsxayet0EVhLS8kyKHUqUhkktLIrX8gnq9jk6ng3a7jaZ1PpkeCeMqfeo/Nz9oY+rBT1n4xnzdoa9QEx9N4Trh2c/fSSkRpRqAQZCDsEL5mLKJoghlafZPWRrUyEfV/HXIZwlUXYvpHBBhrdcNSZkOvI/C+SlFP4CljWUQSoTDIEPB2t5kiijPc4xGI+PQx7ZsOo6QZSlIDOXgWcfrKIrCoeo/afyVGrGpssTf/bt/F7/33/4eBtdDHB4e4eT4BD0beWoB14HTwPAD54mSYMjSxC988Q3DJ1it8N3vfhdKKZydneErX/kK2u22UXi0cKmUEp1OB3luun+en5/j4cOHRpshMbn9ZrONomkrVxoNLJcLF6HTaSCpkNFvu22atnHh+s3T+G/Kj5M8NJ1O1ySoWa4qpXSaHYTLGOGXlt/gL2IuGHJQuJDomDSaDddzg/fhk7W4ia6urtDr9RyvgdA/eRfsMJumqSOa0mHhoU7naLlcotls4urqCkIIXJydmzJRy+tIVytAa6iidGmcxWJh8q0eeYgbxVfJ9A+oIAgcD4bsb1assGEcO6Y2Gg2XQmq327i6ukIQBDg8PMTV1ZWrxhmPx7h9+zZOT08dfOpD9EII5EWOjz76yM0Vn4eEQGo3GLVPpJQ4PTvFrcNb0Frj6urKsdnpvPHZ+BA3nxVhUz6rzYPPhzI5NDb7K/zNOhvPM3x41h+byBwNll+d4b9uM4Iz1lVDBOtRIBvyLRcL5EohsanHoshRqyfI8wy1es32Fpqg3W5hd3fHORzmuwBqafDc2Eyn+D83qQjrXAmrj6CreygKc3ZcXw+wv3cL3W4XmSVlqlKbslmZIRIC0nLXHEEUGmVRIi8KhKHhUoRBYPU5BDSMpsZiQXXIBVTZRqtteklxr/Na/P9XSkHJytnIPaOgbU+YwKpg5lYZ1ZwtClJGZg+rylHkYwmC0PRTESa9QgPOfcS160PpBpGsu0ic6+JZRj8IAiRxjE67hV7XtJRguoBS2Uw5E/5Xlrzrl4vzrPT3EM8X33nw0yOcP96Hf/0+0sg96ld+RM1q/Se1BLXQl2pn1+XK1kBoZGlFqOR+INLhX59/ZvBnm2kgn2Tv7yX/unl2ETlptVouyON98/OJUPjpYN/B4dwTAWE2gL/39/WnGc/tbDCPeXh4iL/15b+FP/rD/7clHG5hMh7j9p07jqtxdnYGrbVTS+Rkp1mGTqeD3b1dvPjifYRhiG/92Z+6KHV7exs/+6WfRVGWLpKNYwN3h1GI+WyJdLXCYDDAw4cPUa/VneKiIYoaB6fZbEEI4Zi3WmvnEJDwya6dhIr8bqZ+WaxvUPiZhq8SOyPOcllyNnwExycE+ZuCyMTe3p77PBp+OkdsQc8KDACu5JYL6fbt246rMZlM1owvKy4MCfccYRjg4ODAVc+w+oXGl9Akn1un20EgzdxkWYZer+ccEr+aJs9zNOp1yDDAwhJl6RzxfrjgSX7KssxVK+S2B0kYhk54jXLgw+HQOU5Mi7GRHZVB6Z2zAocHSFEUSOwmyfMcWzvbGNv3slfMcrk0UGNg0IqdnR08evTIlBh3e87h472fnJyg1Wo5R4LzSD0RRpi+U7jpNPgpkqcQA1TG0D+sf9rDP7gAazOf4XD4ziQNiJCVYJTWRnhKK/+ajciRUfDU7nN9zkqWZWi1W2bNpivkaQYhJeKk6g4chqFTxqWzenBwAKWUJfOa8k7Kjj8rjbIJp2ttBcqk4awIUfE26ES+++47uHXrNg6PbjsCc5YadUqjwikQhIYIqaWG6WOmkZcFgsLoSkghoIRp7qaoA6qArDTVUEWxgkCBKDaaDYyShcCakdRau5JXKSzJ1kunSFUiK6rOvMbJCBxvQ7pnZcpyjc6KPZfCCEURQBUCdVtSPp/P3eeYNU8NCcsxsoGVj+wBcM6H4dDFqNcbaLdb6LTb6LZaaDYba6mKdaTMrJ+0LIySqvJ73xhexmZ6pEIQKoeIRph/+889sIRUgWoP0lb41WRBEAD1ao9u9fuoJQqL5QJiACwWSxiBMQEhjKqqUuUasqlUaWXZYdE5I+sfRzFKVSJdrWBEvqpqK3PPFOazXBwpEEAiCGpunljFkmWZFZcUtsWA9bxRVY5xnvy2CUSkyK8zXYLNHMdxDBmY9gRSBk81ffvpEUS1xng2g1YKb3zpS/jv/+03kOYZZBggTEIMJ0M02i1MpzP0+1smBysDrBYLlKrE/q1DXFyco96q4/5LL2J7dwtRkuC9995DEIaYzSZ49dVX8aUvfck4H0mMLE2R1GKzNZXGVq+HNM0wG89w8pGpMlgWK/R7fVxeDrBYmHJNwGyATqfjWof7KpyMjrlJiDQAJsLyc2vke9CpEEK4qFhK6QwePUi/QQ43IlEPH7YjTEUnZbFYoNczxm17e9vxYFjxQCNPmWxCbnTspJSOEMvrDIIAnU4Hx8fHtnpmtRYhEILc2trC9bUh4j5+/Bi3bt0yCFSr7UTcVKqQ5inCKMR0boinge3AK638MfKK7Eony5fn5nwlSYKkXkeWppCw8sBKIbBIV1KrGflrYaSbDfJRR5qubCpK4fLSqHkuFplVM5TW+YmxXK5cuSQdrkajgYuLS4TWefV5N4XNd88WcyyWS3R7PXS7HZyenqHf67kGeFmaYqvfx8zreTKbzYyWh3WYfZGcNE1dTw1DZNTOmLH5iJDmyCOxDGq9LfdmDvqvM575bt+5ENWrPum7uH6gbdliWUIEGoDpQSGgoYU5sPgdVDeF5FcoQywMBACFVbpEHEe4desQvX4Pb775FrqdFqI4QhQaISyWR3f7W1Blidl0ijiKcHR4iA8++NBycWLb7Es4Qx2GAbI0RZCYSgGmB4IgtAc6I7+qzbz5nam2uB5c4P2H72L/6Ba0EGg0W8jSIcJAoigy03m1jBBAATUSEQuUWQoVSOgwgJbS3LvUCEMJgQDK8hqgNbJcYzpbojZeoNNuI44AkRuHXWhAlwaFUKqEKgpAGHl3o/oaQgQSsgggrJFUZWkFxCTCIAJAB4pcgsA6ZcahCQJpVEUhUegQCBuQURNKr5DnKwAauixhJMElhKbWiBUtywOEkUH7GvUGGs0Gmo0GarU6mq0mmo2m4WDUakjiGFIK5zhoGB2TvMhd8MgeJAoUTaOjYXaT0bIwwnQVX66qxAAqRMMswerc5f9TBRbCcG6U/WylWEFj9is5MADQqrcgkxK6VFjGCyNXrwKUhVHkNY9YQIoQ2qVVNCIhEdpeRbBtM4QoIYUhV0eRtAFsgTwvPSdQI5Cm4ge66oEjUCIKE9SSCEVZQOsS9Xpin6WwKqxGnbUs1Vpajus8CKhszaoXo1dTFBnCyCD5CkBZlMiyAloYUTqTFiu8z/vk8dzORpqmePfdH+NLX/oSXv38a7h3/z4ePHiANM9Qa9aRphmy3OQFi8L0YhiNxmh3mpC2dFUEAoPREK++/iqiWoSr6yv84Ic/NIauHuPe/XuI4hhRZCojarXE8ROW8wXGgxEEAvzgz7+PUATIljmiMMJwMEYYhMgyk2ZZLavKEcAgFJVy6cCVsYZh6PQZaBx9ljS9PSEMYzpNUxcVk0dBZVHmzNjjg59BA0vPmvl+qoHyd4yY2LmUKpckz3GTdDod1zGV10yl1kePHmFnZ8dpQNADJQ+h3W7j7Mz8brFYuLb1jChY7su0xnK1RKPZQKlL1BqGEBREpvwwyzPsb+3j4uLC1fVXBKNKqtuXwmUkTAdMhpbYJ0zp3zJdue+XYYDB2JSyNhsNNEKzLgy0WyLPM8ePocdOMvDOzjYWi6VzAhipJEmC6XzqrisIAkT2eQHmGra3+yiVwuPjY7zyyisYDYaYTCYIggB3jm7j7OIcdSumBlRkWOqLMF22XC4RJ7GBuAXWHA4HlaLqF2H/88y993HoxiYq8kmjciY+xevcv55+A50MewHOaTXy09JGRny/9p69gm0KYvoYhea1Puy+WM5wdnaK3b0d/MIvfA1/8Rd/gVbSRLpYImo0cGjXNKvHyrzAeDjCCy+8gC9+4Qv4i7/4C1vySTl1RqwS9UYdpgFh6SI5gxhKKFVdBwfLSAFAqQAPP3gPn//CG4jrHahygSgOofICOtdAkZu0SWAQDQTG2dBFBpUFKEOJMgCCQEPrEDK07dMK210VJaAElssCw+EUYZAgieuw5z90aT9PCGiUbg1p4bJXFNF250ye5giDAHEUIwpjJHEdUWiqG0qUoOiW1qU1UCRya5Q6QCnqCOIWRDCH1gsrgKVskzSBMJKIE6NxUYt7Tm2Z6px+N1Gm0qWwVTNKoyzWu/IyXeBSxMqiEk4WX2LTtvncC963W6NYT6f576n2kgZzbxqU/tcV94biXZ7yfhLG0DEgGoDUGqldV2m2QpquEAUaRSJRFBJ5SZSiSicbdADVnoDpJdWoN+yaXKAockAo01cmCu0aNM6mDFmZpCGlWRdFnplnEkTuHgENVVbojJShLUuGe/aF3SthGFgkSmC1MqWytXoNcS1BVpTICo2sVJCQUBrQRQGhNcJPef48t7Mxn8/xb/7Nv8Hh4SHu3LmDr3/96zg9PcVsNkOaGSO8mi8RihjTmVGp3NrZRpoaGfOr6ys02030Ox18/etfRxzHOD17HxcXF4Ycqgt8/vOfx3K5hNaJXawJisKwZReLJepRDePRFG+99ZatHintYVcgSUzOKV2lZjGr0hl+wvBEDpgycART+zqiGgCcwaDxo7PBf9MhYGdPOg4+DObnDKscX+lY3r4zsrW1hdPTU2xvb69F3ZRC7/V6OLc6Irz+0WjkmpaxmobIyHA4xNbWFq6urtDtdm05axtBcITT01N0u10nSEVticlk4hwN6l8wQifcyTwfAEd6Xa1WaLZayFeZ+x0Zy7wXkjaJzpAYKD0iIp09wnUkuTYaDcwnptma/1nb26ZHz+npqdNIabVauLy8BKWCJ5MJejYVtbO7gzRLESWxS9cUeW6iKJjvu7q+Rr1Ww9GRmad0uXIE1tPTU9SsE8h5d5UuVgqYpbuCufmNHKufGnEIgR087DZfa373/xvuxlPDvw5t6ZCOJKptKmKdkGegf1XxNTbKHFnyzAP4u2+9hb/9C7+Az3zmMxiPRsjEyu1HiufRqZtMJm79NptNzOZL5EW5tt84d4R9ufeiKDbdcMuyQnhs5Ehn1FRyFBgOB3j//Qf48tf+feSrFO1WG9PJGGEUoSRCmRVQda7/ElqV1hjkBgEODerqa6yYUaltQiuTdmjUEUVVdFwKyrtbiXZZVVH5xtpfbyStx3GMTqfrzjA66H5JNj8LMJB5GEYwaqchVK2OUCg0ay3EcYBaLUGj3USj2TAVO5FRFu10Ok5DyEH/dg0rpVCowpAny6pfEP/4DoE/fN7DpnPNc3XT0eD88r2b1R/mj0JelE/tsWelDP3vNSlwY7ijKMAqXSLLVlitIqxi04ulLBWEjFGoqknacrm0qb5Kz4O/Y6m2eS6VyifT2kTnyW8yzrIpReZZ6aPmDKboQDebzbW95ojEnuMlhECcxFBlAiEiyCAw6R0YtL4scpMutShYJAPITxnrPLezUZYl3nv/PZyenmJrawtf+9rX8Lu/+7sAYAmaLRPRl6XpQWJLS+PYkENr1jB/+ctfRqvdxmw2wx/+4R/i5OQEe3t7qCdNvPb51xwXgl5eHIcWWTBQ4MOHD/HgwQOYTWt4C+bgMRtlPl+gUW8ahTy74FiVwmZtlBbPsswhJ4zsfTY4O3r2+32HRPhkJ+pY0HCQBeyTgZgu4ULgASCldAtCa+34BuRRDAYD7O7uulJQEmt9MiUrNoiC9Ho9nJ2duQoc9luh+JepcDlw+U2Kkd27dw8PHjzAZz/7WZyfn+P27dtO4+P6+to5GuSKcLNMJhOnrCmCAHlhFnmz2VyLWB1y4BE3mcIxTO5KAIwlkCybldJ0nM1XS0d4ZdluGIZOIZVkUkM6LZzCaqfbRZZlrq8P7GfHceyeVyCrJlJ7e3sIpMTx8TG2t7exvb3t8rf37t3Dh48+wp07d9z1hWHoGvH5m5zfL8N1ohwH/+07Z5uJjv8hORtPDess+eMTr8M6FNqLJtcIbR4awrkiYliv111qEgAiIfDhhx/i3r17mNs9y7lgqfdoNIIQwom+kZSeFSXyYuk4QzwDeMACcMRukxdXyJVyjdt8w8frN8RPjQ8+eB8/87M/h16/g/lkhuUiRCgEllqZ6pOicPdZFAVUZJwNpdgt1cDn0Kbhu5QhpIYV8zKCXlleYLE0JdjNeh0K2rVhV8q0sCdiyUY6dHorHop291mv1xFZcrt/FnFOiDLSWIVhaJ56YVIVzWYbu1td1OIA290W6o0EzWYdtWYDAQ2chquWASoD6zsAlWNjXu8To30EgtfuOyqf5HT7gVz1MwGtTWqy4iDoDb4HoFUJCSvqZj7dW8/mP0IIiI19KwQQRhJKRwijAGVpAmMGUaUqoXUAIY2ZXS4XmEhhSoTDSp8mLQsorRHKSnGV3Bj+m+uW65BpIb8qyHc0fHQoCCqF0k3nbrOaR2uD5BjbJ5ClObI8RxAm0EojCiKEgYTQhUkJBQK5dX5+0nh+gqgUuLi4wNtvv41bt25hb28Pv/Ebv4F/9I/+ETqdDk5Pn+Do8A50rpEXGaA1zs/OcHjrAKs0tR5RgJ/7uZ+zFRxj/OD7P0CSJBgMBvi1//DvYXtn24rH5LYCJEKaGnEkVZSIZYw//4s/tx1kp6jVzOFglEJNhN3t9jAeTdBsGbEqlrwyv+SXRrJ6gxUnANYUH7U2+gnj8RjNZtMZVz58chO01k4rA6j6RBDeZ8mrf/j6ugR0Gnz9jyRJMJ/P14h4PAxHoxE6nQ4AOKeFDsqtW7ecwNX5+Tnu3Lnj+oo0Gg384Ac/wK1bt1xb9rI0TeiocVKr1XB+fu6MPgAn1815IC+F2hJbW1uYzGZotTuQNodK54uHOueajgejR84RDzqmjOhkxHGMWpKgaxu1dTodV4r8+PFjF+HSwWG57GKxdAgQD9Q8y1EUuateIMRY2sqZTqeDy8tL1JLEGLr5HOfn57h37x4WiwU++ugj50RQaZZoz/7+Pq6vr10VDoXK8rJwm5uHFe/fPyB5iPm/26ym+B9ybDoavC6IdeeHBEWNj3dEhDCdfiEMx4DrIwxDJyxHJGw0GkFrIwc/nU7xyiuv4OL0zCnAXl5eoixLHBwcYLVaOYSKiOOd27fx6PGJI1L7xpdp0TRN0e12bUO/S0wmE/caVp4BWHtfEAS4urrAX/7l9/Hlf+9vIYpNp9gizZDlOUpdAKp085DnGbLAlP0HYYigZH+PAkLSsEfQQqBAAZSADCVUWWC1TDGZTFFLaoCoA3FgDZKuiLgigBTVWeI7Ebx2imEFQejSm/4z4XwwACCPRcBUboVBiN7+Ae6/cIhWPUIjCRFGBnYvoR3PQtjvo9Hy/2wOadeBz6HgH3+PkBDpO64+1wzAWvBn7sk4GtDSpZT897m/y9L8npwiPJvIzevT3rwZgmyEQAZOk0IpI4Rlzhrj+OWFclVI0ApFniMKQyyisEIkAMPHAFDYQMyfA98h4Jz4kgxMVdFRp5YU95Zve7i2aZv8PwAcGhtIEl0BaIkyLxCKAEEcIBACZVZCSpNCypaLj93za3P4qV7lDR4+f/RHf+SY/H/v7/09fOELX3CVCrklU1Jd886dFzCdTk2apCyxv7+P119/HdfX13jvvffwwQcfoNEwqnxf/epXURSFM7B+GepkMkGe5ZgvFvjOt7/jIpzRaOg2CwB78M+toV6s9QihYaGBJCxLp4MHn68Cyu6dhB+pBcDDiOVBrKTwWdObMLlvVLl4/AOAvAJWh1A0hQaa8Dw9WZY6kYnPJnnz+Rzb29sYj8cuNcPSUR7SAFxVShzHePvtt8GW80AlKsRU0Gw2w2AwgFLKGWoaeKDqIsmqGr//Cw2+855RwZKcRxIrufg5py4ysxUnVDkVQjhDz43GZ+pXqfAwJeLQ6/eglGnSxk1Wlqb2X8NU+uzt7WF/fx/Hx8coisI5bUopvHD3Lihi12w23WGws7OD0WjkyLAkEVf5Ul+ls4KNnxW5Pevv5+Fm/E2OzevznSD+LaVE4K1t/x79+4AwWhSMwoxCZ5WuK8vSdU7mATmbzfDOO+/ghRdewN27d3H37l30+31EUeTaHhwcHKDX62E2m7mqKpYub0bEdGirFGbg9HA4/MoGH50xiFWOt3/0fYxG10iSEK12EyIMIMPIln5X1RBlXmCVrpBlKUpvfWZZWhlLF5WydNj8Wa5SjMYTTKYTLJcrFEWJUhuEIy8K5EWxxs/gPDMY4R+ikFG0DrH7UbKvGePSv8LoZ0gp0W61sbOzi063hySpWyVno+WQ5aabLdPLaZq6vcu9zD3i1tPGuud10KGryJ7SEFyDdbFEPks/PeY/K2k/M5CyIoDqjTSesMXHz0ih+DwS90dXzoaGqRIxvDwjmAbAppwSRFGMMIzWKmzIZ6GoZavVcnLrQhjHjt/l3wvPWToPRIH9Uliel7PZzDmNlaIq1j6DGhx+YQTtiX9OlYUye8Oey0a7RUOoErosgLIEyhJl+ulEvZ7b2TAEwBjvv/8+fvCDH0BKU0b6a7/2a+7GVqvU6WlkWeZKJA0JETg6OkK/38fV5SW+973vOa+80+ngM5/5DJRSruW6WbyZk2ANoxAX5+euzNFA46bqgka7Xq8jXaXuwOdCZr241tqRQXlt9AiJdvjepM854M/q9bpDLbiQhBDOQPPa+DA3a6T5+XQeKARWq9UwnU3dz5iOoMz7+fm54S7Yst3ReOSci62tLdfqnt6t1hoXFxcuWidy0e12sVgsHLeDZZvD4dAtyFqt5jYGDSjnkMgGG8cBwGAwwIFtFe87WiSuEn3h2vArc/haVv1wPulpsyMvjQCfB3U3VqsVer2ec0JMJ8PKaSERWCmFi/MLrJYrLBaLNWNeq9cQSIlXXnkFw+HQVQAxjUYI+vr6CovlAi+++KJLodEBYhmtnz8nKsWfEaHivT+NbFSttZ9l3DfHT0qvNJtNJ8G+vbVlunY2Gqbnj9WdYW6YyBOdQ6JZYRgitE46S8nDMHSHp+84OiKgZ6Q3jQ3ngFwC7i1+Lu+LRmYyHuOdd97Bzs6OM56dTge7u7vOCV2tVk7f5/j42HX2BKpyc14bEZQkSWxL9IpbRQeV+5cGyEWERY7peIA//dNvIi9sY8JGE/Vm0+iCSJYbAtAKabrCcrXAarVEnqfI88xTcLTVONL0JREygIapMDEVWJlxOGZTFLZCIy9KSxJdl1z3y9b9s4+/J2GdfA0aFp6DdPg490prpFmOIAgxmU6xWq6QpWZ9L2yAlq6MsJnW66gbP5dryl/nvgPI5831QsjfX0fPckh8oj3XlO8gCjOLBrUoS+giNwZSlRBamd9Bw3RwMc9Jq9KwcLWCNPxlCMvMVaqwVTjWDqoSRZGhKLK1oIE8lySpodFootlooF5PEIUBBBSiMEC73US9nqDdaqLTaaHZqCGJI0ShkXnn/uB8UcjRv09qYpDvxuaUdAr8pmlKKae6zc/lZ1Pugc+cwXYcJ8ZZCiKDcNgCsjgKoMsScRAihEA6nxmn41OM51cQFRJ5bozMv/pX/wp37941LPAvfhFvvPEGvvUn30IU2Jr4piFrHh8/RrvTQqlM2dsbb7zhuAXf/va3Ua8bpODnf/7nXbnn7u4uAEJy5qAYDoeIghDvv/8+Fos5Op0uRqORI2hy8U2nUwhLuKw3Kn0Mwk8+ZMdNSTETPy1ADQwaR25iHo40Ktwo9DjZzIsbiwcVUwY87BKrsknjSOLqvbv3cHl56UpXGfErZZRVJ5MJGo0GLi8vjXyyJY6ORiO0221nJD/88EPcvn0b1J4gYXR/fx+np6fY29vD1dUV2u22uxZ2LlVKOeeLlSo8CLTW2NracouV/IRer4fpbIatrW2cnZ9hf3/fOQwcRCnG4/HaocN7lFKuichwzkjG3dvecigZ0zNpmmJ/fx/j8Rh7e3tOk6PXM6qp9XodMghcNUleGBXRTWOSpqZM9oc//CE67TYODg/x5OQEUkq0GsbA5lmGUEj0+328/c7b2OpvrZGzuNE5mAPVqhJgexZnwx8maqlQJa6d5x1CVN0ffUMUxtW//Y6v/H9fcCgMIqSpKR/f29vDZDLBeDxGv99fSx1ubW2h1+thMK4cLr/XkFYKEJXMOR0VH7lkipMHKp9NYSP4k5MTNJtNRxBO0xSnp6dr+4TVViR2djodnJ+fr0X+dGpWVqvHoGaxc2J5VnDv+s9MKQWV51jqAg8fvocgCPC3f+GXkNRr0LYM1X9eRZ5hVRgydSClbU1vVETNNYYIbBrFoD62FFXYtvRKYbFYIkliNBtNCEF4XEIGoQ3S11NsnIuyLN3eNOXflSATU1gM0gC458XPKssSYRAhDAIsZiMMhkPsbfcQQEArI8lO+sXmutskbXLeK2RXgsJr/mv8MkofFRbBOhJSVc2sOzlaa9jpg2D1l14novJ11VDwS2rNozMl0+Z12pKg/X1bQmuWq1dy4uZeQgSB7WSrjGqrgEZZmnuTUqBRr0MlMeI4RGBVb+ViicmkSkn4c8Kz0Cfa+w3jfJSHe5hOnn99vEbaKm3PQaDiMIVhiDzNUOYlBEx1WS2pIQ5M+XUtiqDyDNlihmy5NBL5n2I8F7IhYGD+3d09lGWJJ0+e4Bv/9t8aZCDP8bnPfc6Sg4SLNoIgRBTFWC1Nh9dut4c33ngDnU4H77//PgaDgRVE0abxmo1sCYeaNIFpY9zr9TC4HuA733kTRVFgNp2iLEqjlyEDpKt0bdLjOHYkJFWqtcXvD/cepZ0xpVgVjV5Zlmt7qsgrhTUAbmPzQSexqTNPrOfpf2+R57ats3bROh2OsiwxuDbKlPOZSd8wzcHDgAclr7FeN7BmFBqOAMW7aIBbrVaVerHOQ7PRwGw6cw3z6NXOZzNsbW2BxNEwCJHYiEcphdCSMqnrkaYpZlZanGhPnmUGzbBpsMFg4OYfFlXiIa6UsmqFFcLAeWJkZFjQBhlZrVYQtqPnwcEBtra2UOSFQ1NWqxXyzKAn0+kEsMZwYkmlRJmUquBd+8Xueu7cuYN2p4MnJyeOwyGEMM7O/r4j3b7+2utYLpeuLJkHoH+IBjKAFNK1//aN2CZ/g/e/Nhcbh80z9+Un/FwpBQFzuNF5ZnRY5LkTM9JaIwyshLKDmA1SEQbhmiOwu7Pr0I4gMCqFRjbcNmQrFUqLKpWFabgG75BjntlXlg2CALE96KIoqqT2RdWsLkkSfPjhhy61NplMzJqwUVu73Ua/37cpQuEUaKVnpNiOnXt6tVoZIrWNiH3SorTzz+cAWDi6zJCmcywWU/zlj/4ST56cAAII4wiRNerSqINBQyPPVlitllgsF259lra3SpFbZUgtIIV1RCSJo6bEME0zzGZzjCcTLFcpICyp1OpJ+I4sHTmiM+7ZWiG0PDff7cPrfsko914gAwhIZ3zKUmEymbl1bObEyJsLa0aksKk0WUHxdC74MwqQBTYw5OeH9mzadFTc++TTkvNBEDgirnMkNHVdnuZe+Gi1WZvkBVrRLEve1VoB2qRJtA2QNZEPO+iEUDjOOB2hnf8IcZQgiVnyGyG2FSpsUiclLL8jQqNRR6vVQKfdQrvdcr2rfETI57NskoBp73heUo11U+Gac8h9yGCbyDyRwCp1FRmeT5ygWW8iCkLUkxqKLMPZyQmOP3qEmSXtf5oh9E/CYO0o/uf/DFMZYSUDBMXQ1LHDHEatVgsaQLpauY6k5uFqsN7eh2+6vR4CizzMF3MoZVTVWi2jHKi0qkqfhXAqhKaToMnp5lluFhTIKQgcAmLVhjcOYeoFVLoBlRKAdj82WTyn7+Je5/9M2B88rUWwqcHP4nf/lZ5hsWqK/jXz9UJKB+2qUkEGhhhGI6C875G274CAaR0dBqEhdoWVTK1W5jMFKkhZKfO5jMT8CJc5W+1tWq21rZG3z0fyALaiNy4arWq8AYFSlSb/6+ZUr82a/ySq2QYfiLl2Yf4t7c+kkE5kx0Rjeu3zn05PmM2tlCmR3jyI3DcKgTiKYOSHSwSMHNw9Bg4yDoIQeZ5Vzqh1pp7eURra/xJvFbi7fcZ71ueCr3uagvlJmIebByE+dpb9z9n8mU/YCySrBOy6xdN7u1TrLefX1rvZ0BB2n/kXvrZX7QVuPiNDQASC0BimoiiM8dNwhGTYSL9UVdmraQOu1z7bfgFgCet0MohEPXNW3e+qa9YQqCU1hFHkvltrhRxNaEhIvYTUqb1vw1Uwe6EiSD7tLOqNB6GfQgCEu8ZqF1XXVe2DijOzTpLkXtfQzqFTSlVnoftm7c4MpxbqrRR/Pz+FcGxWMfkvER/3qo8f+hn/585o8UmftP7aj/vET3MBcmIQx8v/68tQvRgChqMTBCGCIIQUlRy6eU8BpTLL08kcj4120k/PZYXGKisxmy9c2ng+nzuE2Ucj2EcIqLqWO4daVd1mfWdksxTY59TRuSGSmK8ylLmhTCQ1g/rPJhMMri7x6IMHmFxd4tbeNu7dPkIUCvxv/+//+CdO33OlUdoqR1vlAOrVOxWAiYGNIwRohe2f/EFT88AaEGjIVoWvrACsMnySHlkAIEENiGrPc+n/4x7PnewCQAVZufG3/+/gGb/Dxu+ed/xV3/fXGc8zP/JTvv7T3kdcf77X34y/uRF9ytf9tJ+NBuAyhQJmkaXeC5LqdWuIs4XoP/WX/PWrkf56U/E3cw3/Yx/5qy2ErQSIjF6KKa+t+FRlWaVlpGCpM9bkEdaceItGxQgQZobDQ0fbR3r5Pp+/5QeC/GyfEO87Fz6f0EcU+TtfkyMQIYQAJpMJiuEIi8USZyfHOH1ygvHlOba7bfQ6HURBAKE/3Zr41Mf0H/+Hn8e//IvDT/vym3EzbsbN+P/7cav8JuLlj5AXBcpSIYgi1JIGkloN9UYLSVxDrd5AktQQhpEhCMLyVCx8X5a5IStqjVq9hq1+D61WE0kSOz0MPy0X2FQMlZONsTGlqhqmhHMynVgSudGgoPaEgMAqNR2SZRAiTmJAFZiOB0iXM9y/exvtRg0iMEgXJCz2oaGV6e7qDK9Diq2+xlpfFoN5BS59ZQ0mNiqv7M/sb1D9WKMsFfLclmoGplWB+UaFgOkNj9Ni5tNyOLTVg9GGBGqQYTi0SUrp0jrwUAJAQ92uI2gn5t4sb8WkaDRs6143nxIlNKpyZJ+U6/O7Ki6TdKgFUQYi1EyfkFDrV/r4aU7202Jant9JhIRoF9ESoKIBKKXcz1arFa6vh1itVlguFjh9corz03MEOke/37cyAwUatU8X+H/qNMrNuBk342bcjJtxM27GX2U8d+nrzbgZN+Nm3IybcTNuxvOMG2fjZtyMm3EzbsbNuBk/1XHjbNyMm3EzbsbNuBk346c6bpyNm3EzbsbNuBk342b8VMeNs3EzbsbNuBk342bcjJ/quHE2bsbNuBk342bcjJvxUx03zsbNuBk342bcjJtxM36q48bZuBk342bcjJtxM27GT3XcOBs342bcjJtxM27Gzfipjv8vDExPtj63TZkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "img = run_image(runner,\"dog.jpeg\")\n", + "sv.plot_image(img)" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "04abdf6514eb44a4ab888797cf8e3c63": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0795faa8e6964b7d8991bc48e7e78120": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0f1804d73c8945caad578ab2e0b40de3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1a66e5c531694cf2a4292ab2e209cafc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1e180d233e9949ffa48ed620845923cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1e5784ad09f84e4aa05dd446cf62d0d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ad2925c143b48c38583fd562fb739a8", + "placeholder": "​", + "style": "IPY_MODEL_6013eb051a15403cb0e51550370857cc", + "value": "tokenizer_config.json: 100%" + } + }, + "1f64e7f8d4e6406b8e2e4deb61e08068": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2d12af61122144c19e5127cfb8468ee1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fd3c755df6b4aa4b1f75565f946ffc5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fd523e0517a4398b9228c3cc55250c3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33f92e9a5a1b4dc6a1bf88df718979cc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3437532eaf644c238f302e712da4dc88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "36dcfd81ad6a4114b79a4846843dc309": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7e518ce08f1d44cdb9617c5d710a4420", + "max": 4186, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0795faa8e6964b7d8991bc48e7e78120", + "value": 4186 + } + }, + "37a6e009731e4cbc84ccf8a3359317cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f353bc5399f440bb7bb81a72d10bc2d", + "placeholder": "​", + "style": "IPY_MODEL_9ea3fea6e0694aeaa8e9af76abb71ee3", + "value": " 862k/862k [00:00<00:00, 10.6MB/s]" + } + }, + "3de4e06210ce408d9ffcd32bbfc9b29d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "411bac5bf6dd4bddb4372c9b326da1c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4743dd424f5d4e39aab7c58c7755f5b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea5f3a93205d45519fc7fccc542a6a37", + "placeholder": "​", + "style": "IPY_MODEL_8cd8144ed2754264aabaaf5f5e1f5e8f", + "value": "vocab.json: 100%" + } + }, + "4919b42ae5974b1d9b3dea9c211b9ce0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5cc83955b68246cd97813e6583fa754a", + "max": 389, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7f5af934ca44427c8968709c4130524f", + "value": 389 + } + }, + "4de592e694054de5a60aeecaccf6a92e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2fd523e0517a4398b9228c3cc55250c3", + "placeholder": "​", + "style": "IPY_MODEL_5a01c81cc3924287b2d3dcd41653bf8d", + "value": " 568/568 [00:00<00:00, 17.6kB/s]" + } + }, + "54c1c22cf18f4fd9abc6ba3d9046b896": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aabb148f068548bab2072cfdd7380b42", + "placeholder": "​", + "style": "IPY_MODEL_0f1804d73c8945caad578ab2e0b40de3", + "value": " 2.22M/2.22M [00:00<00:00, 20.6MB/s]" + } + }, + "564261e7438348f0839e714cd9069606": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_937d49bbbde640d696483af51543e511", + "placeholder": "​", + "style": "IPY_MODEL_a6f8f17de942478b848e3a3edca8cded", + "value": "tokenizer.json: 100%" + } + }, + "5a01c81cc3924287b2d3dcd41653bf8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5a2f978a4922429eaf3ed68b3dff8d59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e3b1b856e1254fc9bcdead5e4aa784a5", + "placeholder": "​", + "style": "IPY_MODEL_411bac5bf6dd4bddb4372c9b326da1c3", + "value": " 605M/605M [00:03<00:00, 190MB/s]" + } + }, + "5ad2925c143b48c38583fd562fb739a8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cc83955b68246cd97813e6583fa754a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5db6498089b141feadeccec0973830fe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6013eb051a15403cb0e51550370857cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "68118a30741f4722bc7d8c159e36b4aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc375a3f384845bfab59f30f81dd88f3", + "placeholder": "​", + "style": "IPY_MODEL_1e180d233e9949ffa48ed620845923cb", + "value": " 389/389 [00:00<00:00, 13.8kB/s]" + } + }, + "681fa2e526dd4d7f8d39ed9f39a0e51f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ce533c593f647b5ad76ac6a92bff13f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ad8ec70573d74508b037dcdd2f4faa82", + "placeholder": "​", + "style": "IPY_MODEL_c4a91037d99344deb400a1d2d0001ad3", + "value": "merges.txt: 100%" + } + }, + "6f34083d16b9437ca9fc23e6ecdd9512": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7814a8ed75a143ee91a4581bdcebeb87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e8ede82b571e4bfc9f21ac50e9bed7eb", + "placeholder": "​", + "style": "IPY_MODEL_867598232a1d41c8882f45f7b0d8d5f5", + "value": "pytorch_model.bin: 100%" + } + }, + "7b7480f398ed4c32b2aab6cc59694c73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d68420db06240ca89e7bf3644f4ce13", + "placeholder": "​", + "style": "IPY_MODEL_8c0c55e183e34b1d97b37d1cfe92cfec", + "value": "config.json: 100%" + } + }, + "7d68420db06240ca89e7bf3644f4ce13": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e518ce08f1d44cdb9617c5d710a4420": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7ec0c0159da0497caa68f1c0113d9436": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7f5af934ca44427c8968709c4130524f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "847b497831a64fbdbe0cfd3fb9930b64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fc5350c6f75446a1b56bac6cfbb5404f", + "max": 862328, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9e7fbccd0a804c08ba492bb2b373c64f", + "value": 862328 + } + }, + "859fb7e391574b86876e88ba05a37742": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4743dd424f5d4e39aab7c58c7755f5b1", + "IPY_MODEL_847b497831a64fbdbe0cfd3fb9930b64", + "IPY_MODEL_37a6e009731e4cbc84ccf8a3359317cb" + ], + "layout": "IPY_MODEL_33f92e9a5a1b4dc6a1bf88df718979cc" + } + }, + "867598232a1d41c8882f45f7b0d8d5f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8bff90860c7f4eb993a0c76a309ff877": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7814a8ed75a143ee91a4581bdcebeb87", + "IPY_MODEL_f558a9b8f5184236acbffd0ab8a40176", + "IPY_MODEL_5a2f978a4922429eaf3ed68b3dff8d59" + ], + "layout": "IPY_MODEL_a72e4c3977aa4574a604337f49c02e30" + } + }, + "8c0c55e183e34b1d97b37d1cfe92cfec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8c9597a6d2af4fbfa5d7db3c9e6817a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2d12af61122144c19e5127cfb8468ee1", + "max": 2224041, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f64e7f8d4e6406b8e2e4deb61e08068", + "value": 2224041 + } + }, + "8cd8144ed2754264aabaaf5f5e1f5e8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8f353bc5399f440bb7bb81a72d10bc2d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "937d49bbbde640d696483af51543e511": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "945825c2852842fbbb53b117a760140f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c269ab113d4461c832d815008f0bad5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_564261e7438348f0839e714cd9069606", + "IPY_MODEL_8c9597a6d2af4fbfa5d7db3c9e6817a1", + "IPY_MODEL_54c1c22cf18f4fd9abc6ba3d9046b896" + ], + "layout": "IPY_MODEL_d2631279bf0e442eb7d2cb96c797f1be" + } + }, + "9e7fbccd0a804c08ba492bb2b373c64f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9ea3fea6e0694aeaa8e9af76abb71ee3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a6f8f17de942478b848e3a3edca8cded": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a72e4c3977aa4574a604337f49c02e30": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9c4e6696ef3410589e7fe120b3c4987": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6ce533c593f647b5ad76ac6a92bff13f", + "IPY_MODEL_b59c634d451b4e679460fd1d10beaa32", + "IPY_MODEL_c09e0d909b9041c2a3f13cee7125435d" + ], + "layout": "IPY_MODEL_2fd3c755df6b4aa4b1f75565f946ffc5" + } + }, + "aabb148f068548bab2072cfdd7380b42": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad8ec70573d74508b037dcdd2f4faa82": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b59c634d451b4e679460fd1d10beaa32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c81bd545602f4d15b6f8207d6142b667", + "max": 524657, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3437532eaf644c238f302e712da4dc88", + "value": 524657 + } + }, + "b812ef69c8fb4fdcb74a69e510511321": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b8315505a5b04363b24612682a2d905d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca87707c0f43480da3b4cf04c0c01bbf", + "IPY_MODEL_4919b42ae5974b1d9b3dea9c211b9ce0", + "IPY_MODEL_68118a30741f4722bc7d8c159e36b4aa" + ], + "layout": "IPY_MODEL_5db6498089b141feadeccec0973830fe" + } + }, + "c09e0d909b9041c2a3f13cee7125435d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c48aa8d6255f4c3ebcafbe4a5650ab7c", + "placeholder": "​", + "style": "IPY_MODEL_1a66e5c531694cf2a4292ab2e209cafc", + "value": " 525k/525k [00:00<00:00, 16.7MB/s]" + } + }, + "c48aa8d6255f4c3ebcafbe4a5650ab7c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c4a91037d99344deb400a1d2d0001ad3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c6ceb7466e9743bb8f5fd01924969855": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_681fa2e526dd4d7f8d39ed9f39a0e51f", + "placeholder": "​", + "style": "IPY_MODEL_b812ef69c8fb4fdcb74a69e510511321", + "value": " 4.19k/4.19k [00:00<00:00, 136kB/s]" + } + }, + "c81bd545602f4d15b6f8207d6142b667": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca87707c0f43480da3b4cf04c0c01bbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3de4e06210ce408d9ffcd32bbfc9b29d", + "placeholder": "​", + "style": "IPY_MODEL_945825c2852842fbbb53b117a760140f", + "value": "special_tokens_map.json: 100%" + } + }, + "cc375a3f384845bfab59f30f81dd88f3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc58b1e5ba954e07a1da1f5227ee522b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d2631279bf0e442eb7d2cb96c797f1be": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d32c81ffe92549cb883d944f30d7dc45": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d36f97f604e145f5b01fd3925a8baadc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1e5784ad09f84e4aa05dd446cf62d0d8", + "IPY_MODEL_e232c02ce91c4d16acf378b088868fae", + "IPY_MODEL_4de592e694054de5a60aeecaccf6a92e" + ], + "layout": "IPY_MODEL_cc58b1e5ba954e07a1da1f5227ee522b" + } + }, + "d4128649da884eb78806ea9a7b31257c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e232c02ce91c4d16acf378b088868fae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_04abdf6514eb44a4ab888797cf8e3c63", + "max": 568, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f34083d16b9437ca9fc23e6ecdd9512", + "value": 568 + } + }, + "e3b1b856e1254fc9bcdead5e4aa784a5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e8ede82b571e4bfc9f21ac50e9bed7eb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ea5f3a93205d45519fc7fccc542a6a37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f558a9b8f5184236acbffd0ab8a40176": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7ec0c0159da0497caa68f1c0113d9436", + "max": 605247071, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4128649da884eb78806ea9a7b31257c", + "value": 605247071 + } + }, + "f70e90d8ce894aa4a24b7a493d64d13e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b7480f398ed4c32b2aab6cc59694c73", + "IPY_MODEL_36dcfd81ad6a4114b79a4846843dc309", + "IPY_MODEL_c6ceb7466e9743bb8f5fd01924969855" + ], + "layout": "IPY_MODEL_d32c81ffe92549cb883d944f30d7dc45" + } + }, + "fc5350c6f75446a1b56bac6cfbb5404f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file