-
Notifications
You must be signed in to change notification settings - Fork 57
/
toms655.html
377 lines (340 loc) · 10.9 KB
/
toms655.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
<html>
<head>
<title>
TOMS655 - Weights for Interpolatory Quadrature
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TOMS655 <br> Weights for Interpolatory Quadrature
</h1>
<hr>
<p>
<b>TOMS655</b>
is a MATLAB library which
computes weights for interpolatory
quadrature schemes,
by Sylvan Elhay and Jaroslav Kautsky.
</p>
<p>
Thus, the typical use of this library is for the user to specify
a quadrature interval, a weight function, and a sequence of abscissas
(which may be repeated), and to request the corresponding weight
vector so that an interpolatory quadrature rule is produced.
</p>
<p>
Note that when an abscissa is repeated, this indicates that, at this
point, not only the function value but one or more derivatives are
to be used in the quadrature formula.
</p>
<p>
The library is also suitable for the simpler task of computing
both the abscissas and weights for a variety of classical Gaussian
quadrature rules, including
<table border="1">
<tr>
<th>Name</th><th>Interval</th><th>Weight function</th>
</tr>
<tr>
<td>Legendre</td><td>(a,b)</td><td>1.0</td>
</tr>
<tr>
<td>Chebyshev Type 1</td><td>(a,b)</td><td>((b-x)*(x-a))^(-0.5)</td>
</tr>
<tr>
<td>Gegenbauer</td><td>(a,b)</td><td>((b-x)*(x-a))^alpha</td>
</tr>
<tr>
<td>Jacobi</td><td>(a,b)</td><td>(b-x)^alpha*(x-a)^beta</td>
</tr>
<tr>
<td>Laguerre and Generalized Laguerre</td><td>(a,+oo)</td><td>(x-a)^alpha*exp(-b*(x-a))</td>
</tr>
<tr>
<td>Hermite and Generalized Hermite</td><td>(-oo,+oo)</td><td>|x-a|^alpha*exp(-b*(x-a)^2)</td>
</tr>
<tr>
<td>Exponential</td><td>(a,b)</td><td>|x-(a+b)/2.0|^alpha</td>
</tr>
<tr>
<td>Rational</td><td>(a,+oo)</td><td>(x-a)^alpha*(x+b)^beta</td>
</tr>
</table>
</p>
<p>
The original, true, correct version of ACM TOMS Algorithm 655
is available through ACM:
<a href = "http://www.acm.org/pubs/calgo/">
http://www.acm.org/pubs/calgo</a>
or NETLIB:
<a href = "http://www.netlib.org/toms/index.html">
http://www.netlib.org/toms/index.html</a>.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TOMS655</b> is available in
<a href = "../../c_src/toms655/toms655.html">a C version</a> and
<a href = "../../cpp_src/toms655/toms655.html">a C++ version</a> and
<a href = "../../f77_src/toms655/toms655.html">a FORTRAN77 version</a> and
<a href = "../../f_src/toms655/toms655.html">a FORTRAN90 version</a> and
<a href = "../../m_src/toms655/toms655.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/chebyshev1_rule/chebyshev1_rule.html">
CHEBYSHEV1_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Chebyshev type 1 quadrature rule.
</p>
<p>
<a href = "../../m_src/chebyshev2_rule/chebyshev2_rule.html">
CHEBYSHEV2_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Chebyshev type 2 quadrature rule.
</p>
<p>
<a href = "../../m_src/gegenbauer_rule/gegenbauer_rule.html">
GEGENBAUER_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Gegenbauer quadrature rule.
</p>
<p>
<a href = "../../m_src/gen_hermite_rule/gen_hermite_rule.html">
GEN_HERMITE_RULE</a>,
a MATLAB program which
can compute and print a generalized Gauss-Hermite quadrature rule.
</p>
<p>
<a href = "../../m_src/gen_laguerre_rule/gen_laguerre_rule.html">
GEN_LAGUERRE_RULE</a>,
a MATLAB program which
can compute and print a generalized Gauss-Laguerre quadrature rule.
</p>
<p>
<a href = "../../m_src/hermite_rule/hermite_rule.html">
HERMITE_RULE</a>,
a MATLAB program which
computes a Gauss-Hermite quadrature rule.
</p>
<p>
<a href = "../../m_src/jacobi_rule/jacobi_rule.html">
JACOBI_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Jacobi quadrature rule.
</p>
<p>
<a href = "../../m_src/laguerre_rule/laguerre_rule.html">
LAGUERRE_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Laguerre quadrature rule.
</p>
<p>
<a href = "../../m_src/legendre_rule/legendre_rule.html">
LEGENDRE_RULE</a>,
a MATLAB program which
computes a Gauss-Legendre quadrature rule.
</p>
<p>
<a href = "../../m_src/quadmom/quadmom.html">
QUADMOM</a>,
a MATLAB library which
computes a Gaussian quadrature rule for a weight function rho(x)
based on the Golub-Welsch procedure that only requires knowledge
of the moments of rho(x).
</p>
<p>
<a href = "../../m_src/quadrule/quadrule.html">
QUADRULE</a>,
a MATLAB library which
contains information about quadrature rules, both as tabulated values,
and as computational procedures.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Sylvan Elhay, Jaroslav Kautsky,<br>
Algorithm 655:
IQPACK,
FORTRAN Subroutines for the Weights of Interpolatory Quadrature,<br>
ACM Transactions on Mathematical Software,<br>
Volume 13, Number 4, December 1987, pages 399-415.
</li>
<li>
Jaroslav Kautsky, Sylvan Elhay,<br>
Calculation of the Weights of Interpolatory Quadratures,<br>
Numerische Mathematik,<br>
Volume 40, Number 3, October 1982, pages 407-422.
</li>
<li>
Roger Martin, James Wilkinson,<br>
The Implicit QL Algorithm,<br>
Numerische Mathematik,<br>
Volume 12, Number 5, December 1968, pages 377-383.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "cawiq.m">cawiq.m</a>
computes quadrature weights for a given set of knots.
</li>
<li>
<a href = "cdgqf.m">cdgqf.m</a>
computes a Gauss quadrature formula with default A, B and simple knots.
</li>
<li>
<a href = "cegqf.m">cegqf.m</a>
computes a quadrature formula and applies it to a function.
</li>
<li>
<a href = "cegqfs.m">cegqfs.m</a>
estimates an integral using a standard quadrature formula.
</li>
<li>
<a href = "ceiqf.m">ceiqf.m</a>
constructs and applies a quadrature formula based on user knots.
</li>
<li>
<a href = "ceiqfs.m">ceiqfs.m</a>
computes and applies a quadrature formula based on user knots.
</li>
<li>
<a href = "cgqf.m">cgqf.m</a>
computes knots and weights of a Gauss quadrature formula.
</li>
<li>
<a href = "cgqfs.m">cgqfs.m</a>
computes knots and weights of a Gauss quadrature formula.
</li>
<li>
<a href = "chkqf.m">chkqf.m</a>
computes and prints the moments of a quadrature formula.
</li>
<li>
<a href = "chkqfs.m">chkqfs.m</a>
checks the polynomial accuracy of a quadrature formula.
</li>
<li>
<a href = "ciqf.m">ciqf.m</a>
computes weights for a classical weight function and any interval.
</li>
<li>
<a href = "ciqfs.m">ciqfs.m</a>
computes some weights of a quadrature formula in the default interval.
</li>
<li>
<a href = "class_matrix.m">class_matrix.m</a>
computes the Jacobi matrix for a quadrature rule.
</li>
<li>
<a href = "cliqf.m">cliqf.m</a>
computes a classical quadrature formula, with optional printing.
</li>
<li>
<a href = "cliqfs.m">cliqfs.m</a>
computes the weights of a quadrature formula in the default interval.
</li>
<li>
<a href = "cwiqd.m">cwiqd.m</a>
computes all the weights for a given knot.
</li>
<li>
<a href = "eiqf.m">eiqf.m</a>
evaluates an interpolatory quadrature formula.
</li>
<li>
<a href = "eiqfs.m">eiqfs.m</a>
evaluates a quadrature formula defined by CLIQF or CLIQFS.
</li>
<li>
<a href = "i4_sign.m">i4_sign.m</a>
returns the sign of an I4.
</li>
<li>
<a href = "imtqlx.m">imtqlx.m</a>
diagonalizes a symmetric tridiagonal matrix.
</li>
<li>
<a href = "parchk.m">parchk.m</a>
checks parameters ALPHA and BETA for classical weight functions.
</li>
<li>
<a href = "r8_sign.m">r8_sign.m</a>
returns the sign of an R8.
</li>
<li>
<a href = "scmm.m">scmm.m</a>
computes moments of a classical weight function scaled to [A,B].
</li>
<li>
<a href = "scqf.m">scqf.m</a>
scales a quadrature formula to a nonstandard interval.
</li>
<li>
<a href = "sct.m">sct.m</a>
rescales distinct knots to an interval [A,B].
</li>
<li>
<a href = "sgqf.m">sgqf.m</a>
computes knots and weights of a Gauss Quadrature formula.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>
prints the current YMDHMS date as a time stamp.
</li>
<li>
<a href = "wm.m">wmn.m</a>
evaluates the first M moments of classical weight functions.
</li>
<li>
<a href = "wtfn.m">wtfn.m</a>
evaluates the classical weight functions at given points.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>TOMS655_TEST</b> is the test distributed with the code.
<ul>
<li>
<a href = "toms655_test.m">toms655_test.m</a>,
a sample calling program;
</li>
<li>
<a href = "toms655_test_output.txt">toms655_test_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 18 September 2013.
</i>
<!-- John Burkardt -->
</body>
</html>