-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathrandomprojection.go
404 lines (349 loc) · 15.6 KB
/
randomprojection.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
package nlp
import (
"math"
"time"
"golang.org/x/exp/rand"
"github.com/james-bowman/sparse"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat/distuv"
"gonum.org/v1/gonum/stat/sampleuv"
)
// SignRandomProjection represents a transform of a matrix into a lower
// dimensional space. Sign Random Projection is a method of Locality
// Sensitive Hashing (LSH) sometimes referred to as the random hyperplane method.
// A set of random hyperplanes are created in the original dimensional
// space and then input matrices are expressed relative to the random
// hyperplanes as follows:
// For each column vector in the input matrix, construct a corresponding output
// bit vector with each bit (i) calculated as follows:
// if dot(vector, hyperplane[i]) > 0
// bit[i] = 1
// else
// bit[i] = 0
// Whilst similar to other methods of random projection this method is unique in that
// it uses only a single bit in the output matrix to represent the sign of the result
// of the comparison (Dot product) with each hyperplane so encodes vector
// representations with very low memory and processor requirements whilst preserving
// relative distance between vectors from the original space.
// Hamming similarity (and distance) between the transformed vectors in the
// subspace can approximate Angular similarity (and distance) (which is strongly
// related to Cosine similarity) of the associated vectors from the original space.
type SignRandomProjection struct {
// Bits represents the number of bits the output vectors should
// be in length and hence the number of random hyperplanes needed
// for the transformation
Bits int
// simhash is the simhash LSH (Locality Sensitive Hashing) algorithm
// used to perform the sign random projection
simHash *SimHash
}
// NewSignRandomProjection constructs a new SignRandomProjection transformer
// to reduce the dimensionality. The transformer uses a number of random hyperplanes
// represented by `bits` and is the dimensionality of the output, transformed
// matrices.
func NewSignRandomProjection(bits int) *SignRandomProjection {
return &SignRandomProjection{Bits: bits}
}
// Fit creates the random hyperplanes from the input training data matrix, mat and
// stores the hyperplanes as a transform to apply to matrices.
func (s *SignRandomProjection) Fit(m mat.Matrix) Transformer {
rows, _ := m.Dims()
s.simHash = NewSimHash(s.Bits, rows)
return s
}
// Transform applies the transform decomposed from the training data matrix in Fit()
// to the input matrix. The columns in the resulting output matrix will be a low
// dimensional binary representation of the columns within the original
// i.e. a hash or fingerprint that can be quickly and efficiently compared with other
// similar vectors. Hamming similarity in the new dimensional space can be
// used to approximate Cosine similarity between the vectors of the original space.
// The returned matrix is a Binary matrix or BinaryVec type depending
// upon whether m is Matrix or Vector.
func (s *SignRandomProjection) Transform(m mat.Matrix) (mat.Matrix, error) {
_, cols := m.Dims()
sigs := make([]sparse.BinaryVec, cols)
ColDo(m, func(j int, v mat.Vector) {
sigs[j] = *s.simHash.Hash(v)
})
return sparse.NewBinary(s.Bits, cols, sigs), nil
}
// FitTransform is approximately equivalent to calling Fit() followed by Transform()
// on the same matrix. This is a useful shortcut where separate training data is not being
// used to fit the model i.e. the model is fitted on the fly to the test data.
// The returned matrix is a Binary matrix or BinaryVec type depending upon
// whether m is Matrix or Vector.
func (s *SignRandomProjection) FitTransform(m mat.Matrix) (mat.Matrix, error) {
return s.Fit(m).Transform(m)
}
// RandomProjection is a method of dimensionality reduction based upon
// the Johnson–Lindenstrauss lemma stating that a small set of points
// in a high-dimensional space can be embedded into a space of much
// lower dimension in such a way that distances between the points
// are nearly preserved.
//
// The technique projects the original
// matrix orthogonally onto a random subspace, transforming the
// elements of the original matrix into a lower dimensional representation.
// Computing orthogonal matrices is expensive and so this technique
// uses specially generated random matrices (hence the name) following
// the principle that in high dimensional spaces, there are lots of
// nearly orthogonal matrices.
type RandomProjection struct {
K int
Density float64
rnd *rand.Rand
projections mat.Matrix
}
// NewRandomProjection creates and returns a new RandomProjection
// transformer. The RandomProjection will use a specially generated
// random matrix of the specified density and dimensionality k to
// perform the transform to k dimensional space.
func NewRandomProjection(k int, density float64) *RandomProjection {
r := RandomProjection{
K: k,
Density: density,
}
return &r
}
// Fit creates the random (almost) orthogonal matrix used to project
// input matrices into the new reduced dimensional subspace.
func (r *RandomProjection) Fit(m mat.Matrix) Transformer {
rows, _ := m.Dims()
r.projections = CreateRandomProjectionTransform(r.K, rows, r.Density, r.rnd)
return r
}
// Transform applies the transformation, projecting the input matrix
// into the reduced dimensional subspace. The transformed matrix
// will be a sparse CSR format matrix of shape k x c.
func (r *RandomProjection) Transform(m mat.Matrix) (mat.Matrix, error) {
var product sparse.CSR
// projections will be dimensions k x r (k x t)
// m will be dimensions r x c (t x d)
// product will be of reduced dimensions k x c (k x d)
if t, isTypeConv := m.(sparse.TypeConverter); isTypeConv {
m = t.ToCSR()
}
product.Mul(r.projections, m)
return &product, nil
}
// FitTransform is approximately equivalent to calling Fit() followed by Transform()
// on the same matrix. This is a useful shortcut where separate training data is not being
// used to fit the model i.e. the model is fitted on the fly to the test data.
// The returned matrix is a sparse CSR format matrix of shape k x c.
func (r *RandomProjection) FitTransform(m mat.Matrix) (mat.Matrix, error) {
return r.Fit(m).Transform(m)
}
// RRIBasis represents the initial basis for the index/elemental vectors
// used for Random Reflective Indexing
type RRIBasis int
const (
// DocBasedRRI represents columns (documents/contexts in a term-document
// matrix) forming the initial basis for index/elemental vectors in Random Indexing
DocBasedRRI RRIBasis = iota
// TermBasedRRI indicates rows (terms in a term-document matrix)
// form the initial basis for index/elemental vectors in Reflective Random Indexing.
TermBasedRRI
)
// RandomIndexing is a method of dimensionality reduction used for Latent Semantic
// Analysis in a similar way to TruncatedSVD and PCA. Random
// Indexing is designed to solve limitations of very high dimensional
// vector space model implementations for modelling term co-occurance
// in language processing such as SVD typically used for LSA/LSI (Latent
// Semantic Analysis/Latent Semantic Indexing). In implementation
// it bears some similarity to other random projection techniques
// such as those implemented in RandomProjection and SignRandomProjection
// within this package.
// The RandomIndexing type can also be used to perform Reflective
// Random Indexing which extends the Random Indexing model with additional
// training cycles to better support indirect inferrence i.e. find synonyms
// where the words do not appear together in documents.
type RandomIndexing struct {
// K specifies the number of dimensions for the semantic space
K int
// Density specifies the proportion of non-zero elements in the
// elemental vectors
Density float64
// Type specifies the initial basis for the elemental vectors
// i.e. whether they initially represent the rows or columns
// This is only relevent for Reflective Random Indexing
Type RRIBasis
// Reflections specifies the number of reflective training cycles
// to run during fitting for RRI (Reflective Random Indexing). For
// Randome Indexing (non-reflective) this is 0.
Reflections int
rnd *rand.Rand
// components is a k x t matrix where `t` is the number of terms
// (rows) in the training data matrix. The columns in this matrix
// contain the `context` vectors for RI where each column represents
// a semantic representation of a term based upon the contexts
// in which it has appeared within the training data.
components mat.Matrix
}
// NewRandomIndexing returns a new RandomIndexing transformer
// configured to transform term document matrices into k dimensional
// space. The density parameter specifies the density of the index/elemental
// vectors used to project the input matrix into lower dimensional
// space i.e. the proportion of elements that are non-zero.
func NewRandomIndexing(k int, density float64) *RandomIndexing {
return &RandomIndexing{
K: k,
Density: density,
}
}
// NewReflectiveRandomIndexing returns a new RandomIndexing type
// configured for Reflective Random Indexing. Reflective Random
// Indexing applies additional (reflective) training cycles ontop
// of Random Indexing to capture indirect inferences (synonyms).
// i.e. similarity between terms that do not directly co-occur
// within the same context/document.
// basis specifies the basis for the reflective random indexing i.e.
// whether the initial, random index/elemental vectors should represent
// documents (columns) or terms (rows).
// reflections is the number of additional training cycles to apply
// to build the elemental vectors.
// Specifying basis == DocBasedRRI and reflections == 0 is equivalent
// to conventional Random Indexing.
func NewReflectiveRandomIndexing(k int, basis RRIBasis, reflections int, density float64) *RandomIndexing {
return &RandomIndexing{
K: k,
Type: basis,
Reflections: reflections,
Density: density,
}
}
// PartialFit extends the model to take account of the specified matrix m. The
// context vectors are learnt and stored to be used for furture transformations
// and analysis. PartialFit performs Random Indexing even if the Transformer is
// configured for Reflective Random Indexing so if RRI is required please train
// using the Fit() method as a batch operation. Unlike the Fit() method, the
// PartialFit() method is designed to be called multiple times to support online
// and mini-batch learning whereas the Fit() method is only intended to be called
// once for batch learning.
func (r *RandomIndexing) PartialFit(m mat.Matrix) OnlineTransformer {
rows, cols := m.Dims()
if r.components == nil || r.components.(*sparse.CSR).IsZero() {
r.components = sparse.NewCSR(r.K, rows, make([]int, r.K+1), []int{}, []float64{})
}
current := r.components
// Create transform in transpose to get better randomised sparsity patterns
// when partial fitting with small mini-batches e.g. single column/streaming
idxVecs := CreateRandomProjectionTransform(cols, r.K, r.Density, r.rnd).T()
ctxVecs := r.contextualise(m.T(), idxVecs)
current.(*sparse.CSR).Add(current, ctxVecs)
r.components = current
return r
}
// Components returns a t x k matrix where `t` is the number of terms
// (rows) in the training data matrix. The rows in this matrix
// are the `context` vectors for RI each one representing
// a semantic representation of a term based upon the contexts
// in which it has appeared within the training data.
func (r *RandomIndexing) Components() mat.Matrix {
return r.components.T()
}
// SetComponents sets a t x k matrix where `t` is the number of terms
// (rows) in the training data matrix.
func (r *RandomIndexing) SetComponents(m mat.Matrix) {
r.components = m
}
// Fit trains the model, creating random index/elemental vectors to
// be used to construct the new projected feature vectors ('context'
// vectors) in the reduced semantic dimensional space. If configured for
// Reflective Random Indexing then Fit may actually run multiple
// training cycles as specified during construction. The Fit method
// trains the model in batch mode so is intended to be called once, for
// online/streaming or mini-batch training please consider the
// PartialFit method instead.
func (r *RandomIndexing) Fit(m mat.Matrix) Transformer {
rows, cols := m.Dims()
var idxVecs mat.Matrix
if r.Type == TermBasedRRI {
idxVecs = CreateRandomProjectionTransform(r.K, rows, r.Density, r.rnd)
} else {
idxVecs = CreateRandomProjectionTransform(r.K, cols, r.Density, r.rnd)
idxVecs = r.contextualise(m.T(), idxVecs)
}
for i := 0; i < r.Reflections; i++ {
idxVecs = r.contextualise(m, idxVecs)
idxVecs = r.contextualise(m.T(), idxVecs)
}
r.components = idxVecs
return r
}
// FitTransform is approximately equivalent to calling Fit() followed by Transform()
// on the same matrix. This is a useful shortcut where separate training data is not being
// used to fit the model i.e. the model is fitted on the fly to the test data.
// The returned matrix is a sparse CSR format matrix of shape k x c.
func (r *RandomIndexing) FitTransform(m mat.Matrix) (mat.Matrix, error) {
return r.Fit(m).Transform(m)
}
// Transform applies the transform, projecting matrix m into the
// lower dimensional semantic space. The output matrix will be of
// shape k x c and will be a sparse CSR format matrix. The transformation
// for each document vector is simply the accumulation of all trained context
// vectors relating to terms appearing in the document. These are weighted by
// the frequency the term appears in the document.
func (r *RandomIndexing) Transform(m mat.Matrix) (mat.Matrix, error) {
return r.contextualise(m, r.components), nil
}
// contextualise accumulates the vectors vectors for each column in matrix m weighting
// each row vector in vectors by its corresponding value in column of the matrix
func (r *RandomIndexing) contextualise(m mat.Matrix, vectors mat.Matrix) mat.Matrix {
var product sparse.CSR
product.Mul(vectors, m)
return &product
}
// CreateRandomProjectionTransform returns a new random matrix for
// Random Projections of shape newDims x origDims. The matrix will
// be randomly populated using probability distributions where density
// is used as the probability that each element will be populated.
// Populated values will be randomly selected from [-1, 1] scaled
// according to the density and dimensions of the matrix. If rnd is
// nil then a new random number generator will be created and used.
func CreateRandomProjectionTransform(newDims, origDims int, density float64, rnd *rand.Rand) mat.Matrix {
if rnd == nil {
rnd = rand.New(rand.NewSource(uint64(time.Now().UnixNano())))
}
// TODO Possibly return a mat.Dense instead of sparse.CSR if
// density == 1
var ptr int
var ind []int
indptr := make([]int, newDims+1)
for i := 0; i < newDims; i++ {
nnz := binomial(origDims, density, rnd)
if nnz > 0 {
idx := make([]int, nnz)
sampleuv.WithoutReplacement(idx, origDims, rnd)
//sort.Ints(idx)
ind = append(ind, idx...)
ptr += nnz
}
indptr[i+1] = ptr
}
vals := make([]float64, len(ind))
values(vals, newDims, density, rnd)
return sparse.NewCSR(newDims, origDims, indptr, ind, vals)
}
func binomial(n int, p float64, rnd *rand.Rand) int {
dist := distuv.Bernoulli{
P: p,
// Should this be Source (Gonum code and docs seem out of sync)
Src: rnd,
}
var x int
for i := 0; i < n; i++ {
x += int(dist.Rand())
}
return x
}
func values(idx []float64, dims int, density float64, rnd *rand.Rand) {
dist := distuv.Bernoulli{
P: 0.5,
// Should this be Source (Gonum code and docs seem out of sync)
Src: rnd,
}
factor := math.Sqrt(1.0/density) / math.Sqrt(float64(dims))
for i := range idx {
idx[i] = factor * (dist.Rand()*2 - 1)
}
}