-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
380 lines (315 loc) · 19.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Copyright (c) 2022 Erik Härkönen, Aalto University
# Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
# This is a derivative work of StyleGAN3 by NVIDIA Corporation
"""Train a GAN using the techniques described in the paper
"Disentangling Random and Cyclic Effects from Time-Lapse Sequences"."""
import os
import click
import re
import json
import tempfile
import torch
import numpy as np
from typing import Iterable
from pathlib import Path
import dnnlib
from training import training_loop, cond_specs
from training.dataset import ImageFolderDataset
from torch_utils import training_stats
from torch_utils import custom_ops
#----------------------------------------------------------------------------
def subprocess_fn(rank, c, temp_dir):
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Init torch.distributed.
if c.num_gpus > 1:
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus)
else:
init_method = f'file://{init_file}'
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus)
# Init torch_utils.
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(rank=rank, **c)
#----------------------------------------------------------------------------
def launch_training(c, desc, outdir, dry_run):
dnnlib.util.Logger(should_flush=True)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
print()
print('Training options:')
print(json.dumps(c, indent=2, sort_keys=True))
print()
print(f'Output directory: {c.run_dir}')
print(f'Number of GPUs: {c.num_gpus}')
print(f'Batch size: {c.batch_size} images')
print(f'Training duration: {c.total_kimg} kimg')
print(f'Conditioning: {c.cond_args.type}')
print(f'Dataset path: {c.training_set_kwargs.path}')
print(f'Dataset size: {c.training_set_kwargs.max_size} images')
print(f'Dataset resolution: {c.training_set_kwargs.resolution}')
print(f'Dataset labels: {c.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
os.makedirs(c.run_dir)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
# Launch processes.
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn')
with tempfile.TemporaryDirectory() as temp_dir:
if c.num_gpus == 1:
subprocess_fn(rank=0, c=c, temp_dir=temp_dir)
else:
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus)
#----------------------------------------------------------------------------
def arch_sg2(c, opts, n_gpus):
c.G_kwargs = dnnlib.EasyDict(class_name=None, z_dim=512, w_dim=512, mapping_kwargs=dnnlib.EasyDict())
c.D_kwargs = dnnlib.EasyDict(class_name='training.networks_stylegan2.Discriminator', block_kwargs=dnnlib.EasyDict(), mapping_kwargs=dnnlib.EasyDict(), epilogue_kwargs=dnnlib.EasyDict())
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8, lr=opts.glr)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8, lr=opts.dlr)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.StyleGAN2Loss')
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2, num_workers=opts.workers)
# Hyperparameters & settings.
res = c.training_set_kwargs.resolution
c.batch_size = opts.batch # 32
c.batch_gpu = min(4096 // c.training_set_kwargs.resolution, c.batch_size // n_gpus) if opts.batch_gpu is None else opts.batch_gpu
c.D_kwargs.epilogue_kwargs.mbstd_group_size = min(c.batch_gpu, 4)
c.num_gpus = n_gpus
c.G_kwargs.channel_base = c.D_kwargs.channel_base = opts.cbase # 16384 also OK-ish for 256x256
c.G_kwargs.channel_max = c.D_kwargs.channel_max = opts.cmax # 512
c.G_kwargs.mapping_kwargs.num_layers = 2 if opts.map_depth is None else opts.map_depth
c.D_kwargs.block_kwargs.freeze_layers = opts.freezed # 0
c.G_kwargs.out_rect = (0, 0, res, res)
c.metrics = opts.metrics
c.ema_kimg = c.batch_size * 10 / 32
if opts.aug != 'noaug':
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1)
if opts.aug == 'ada':
c.ada_target = opts.target
if opts.aug == 'fixed':
c.augment_p = opts.p
c.G_kwargs.class_name = 'training.networks_stylegan2.Generator'
c.loss_kwargs.style_mixing_prob = 0.9 # Enable style mixing regularization.
c.loss_kwargs.pl_weight = 2 # Enable path length regularization.
c.G_reg_interval = 4 # Enable lazy regularization for G.
c.G_kwargs.fused_modconv_default = 'inference_only' # Speed up training by using regular convolutions instead of grouped convolutions.
c.loss_kwargs.pl_no_weight_grad = True # Speed up path length regularization by skipping gradient computation wrt. conv2d weights.
c.loss_kwargs.r1_gamma = (c.training_set_kwargs.resolution / 256) ** 2 if opts.gamma is None else opts.gamma # {128: 0.25, 256: 1, 512: 4, 1024: 16}
return f'sg2-a{n_gpus}'
def _set_noise_global(c, noise, n_frames, n_days):
scale = parse_noises([noise], c, n_frames, n_days)[0]
c.cond_args.noise = scale # global noise, measured in frame deltas
c.cond_args.noise_f = [] # disable per-f noise
return f'-n{str(noise).replace(" ", "")}'
def _set_noise_per_f(c, noises, n_frames, n_days):
scales = parse_noises(noises, c, n_frames, n_days)
assert np.all(np.diff(scales) <= 0), 'Noises not descending, are you sure?'
c.cond_args.noise = 0 # disable global noise
c.cond_args.noise_f = scales # in frame deltas, for [1e-3f] + [manual freqs]
return '-n_' + '_'.join([str(f).replace(' ', '') for f in noises])
def _set_freqs(c, base_freqs, explicit_lin):
assert c.cond_args.type in ['fourier', 'f_concat']
desc = ''
if explicit_lin:
c.cond_args.f_manual = [*base_freqs]
c.cond_args.include_lin = True
c.cond_args.dims = 2*(len(c.cond_args.f_manual) + 1)
desc += '-fman_lin'
else:
c.cond_args.f_manual = [1e-3, *base_freqs]
c.cond_args.include_lin = False
c.cond_args.dims = 2*len(c.cond_args.f_manual)
desc += '-fman_impl'
if base_freqs:
desc += "_" + "_".join([str(int(round(f))) for f in base_freqs])
return desc
# Map noise magnitude to frame deltas
def days(fr_tot, d_tot):
return fr_tot / d_tot # one sigma in both directions
def hours(fr_tot, d_tot):
return days(fr_tot, d_tot) / 24
def weeks(fr_tot, d_tot):
return days(fr_tot, d_tot) * 7
def months(fr_tot, d_tot):
return days(fr_tot, d_tot) * (365.25/12) # avg days in month
def years(fr_tot, d_tot):
return days(fr_tot, d_tot) * 365.25
# Convert strings like '2.5years' to sigmas
def parse_noises(noises, c=None, n_frames=None, n_days=None):
ret = []
for n in noises:
if isinstance(n, (float, int)):
ret.append(n)
elif 'hour' in n:
ret.append(hours(n_frames, n_days)*float(n.split('hour')[0]))
elif 'day' in n:
ret.append(days(n_frames, n_days)*float(n.split('day')[0]))
elif 'week' in n:
ret.append(weeks(n_frames, n_days)*float(n.split('week')[0]))
elif 'month' in n:
ret.append(months(n_frames, n_days)*float(n.split('month')[0]))
elif 'year' in n:
ret.append(years(n_frames, n_days)*float(n.split('year')[0]))
else:
raise RuntimeError(f'Unkown noise scale: {n}')
assert len(ret) == len(noises)
return ret
def dataset(c, opts, path, cond_type, f=[], noise=[], mask=None, explicit_lin=True):
try:
res = list(r for r in [128, 256, 512, 1024] if str(r) in path)
assert len(res) == 1, 'Path does not indicate resolution'
res = res[0]
# Training set
c.training_set_kwargs = dnnlib.EasyDict(
class_name='training.dataset.ImageFolderDataset',
path=path, resolution=res, max_size=None, xflip=opts.mirror, use_labels=cond_type != 'none')
dset = ImageFolderDataset(c.training_set_kwargs.path)
frames = len(dset)
meta = dset._get_meta()
# Must know number of days in sequence
days = meta.get('num_days', None) if opts.days is None else opts.days
assert days is not None, 'Number of days not in dataset metadata, must specify manually with --days'
# Hyperparameters & settings.
c.total_kimg = opts.kimg
c.kimg_per_tick = opts.tick
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
# Init network arch based on dataset resolution
desc = arch_sg2(c, opts, n_gpus=opts.gpus)
# Non-square datasets: define content rect, for masking
# This improves training dynamics (crips borders from the very beginning)
if mask is None:
mask = (meta.get('pad_horizontal', 0), meta.get('pad_vertical', 0))
rect = [mask[0], mask[1], res - mask[0], res - mask[1]]
assert 0 <= rect[0] < rect[2] <= res, 'Invalid out rect'
assert 0 <= rect[1] < rect[3] <= res, 'Invalid out rect'
c.G_kwargs.out_rect = tuple(rect) # (x1, y1, x2, y2)
name = Path(path).stem.split('_')[0]
desc += f'-{name}_{res}'
c.cond_args = dnnlib.EasyDict(cond_specs.specs[cond_type])
desc += {'concat': '-concat', 'none': '-uncond', 'f_concat': '-fcat', 'fourier': ''}[cond_type]
if cond_type in ['fourier', 'f_concat']:
freqs = f or list(filter(lambda f: f > 1, [days/365.25, days])) # only cylces of over 1Hz
desc += _set_freqs(c, freqs, explicit_lin)
if 'auto' in noise:
noise_lin = [] if days < 365.25 else [f'{0.2 * days / 365.25:.2f} years'] # fifth of whole sequence length
desc += _set_noise_per_f(c, [*noise_lin, '4 days', 0], frames, days) # lin, years, days
elif len(noise) == 1:
desc += _set_noise_global(c, noise, frames, days)
elif isinstance(noise, Iterable) and len(noise) > 0:
desc += _set_noise_per_f(c, noise, frames, days) # lin, years, days
return desc
except IOError as err:
raise click.ClickException(f'--data: {err}')
#----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
#----------------------------------------------------------------------------
@click.command()
# Required.
@click.option('--outdir', help='Where to save the results', metavar='DIR', required=True)
@click.option('--data', help='Training data', metavar='[ZIP|DIR]', type=str, required=True)
@click.option('--gpus', help='Number of GPUs to use', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), required=True)
# Optional features.
@click.option('--mirror', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--aug', help='Augmentation mode', type=click.Choice(['noaug', 'ada', 'fixed']), default='ada', show_default=True)
@click.option('--resume', help='Resume from given network pickle', metavar='[PATH|URL]', type=str)
@click.option('--freezed', help='Freeze first layers of D', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
# Time-lapse specific hyperparameters.
@click.option('--cond_lr', help='Learning rate for all conditioning signals', metavar='FLOAT', type=click.FloatRange(min=0), default=1.0, show_default=True)
@click.option('--trend_lr', help='Additional LR multiplier for trend signal', metavar='FLOAT', type=click.FloatRange(min=0), default=1.0, show_default=True)
@click.option('--cond', help='Conditioning type', type=click.Choice(['fourier', 'f_concat', 'concat', 'none']), default='fourier', show_default=True)
@click.option('--noise', help='Timestamp augmentation noise', metavar='[NAME|A,B,C|auto]', type=parse_comma_separated_list, default='auto', show_default=True)
@click.option('--days', help='Number of days in sequence [default: use metadata]', metavar='INT', type=int, default=None)
# Misc hyperparameters.
@click.option('--gamma', help='R1 regularization weight [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0))
@click.option('--p', help='Probability for --aug=fixed', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.2, show_default=True)
@click.option('--target', help='Target value for --aug=ada', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.6, show_default=True)
@click.option('--batch-gpu', help='Limit batch size per GPU', metavar='INT', type=click.IntRange(min=1))
@click.option('--cbase', help='Capacity multiplier', metavar='INT', type=click.IntRange(min=1), default=32<<10, show_default=True)
@click.option('--cmax', help='Max. feature maps', metavar='INT', type=click.IntRange(min=1), default=512, show_default=True)
@click.option('--glr', help='G learning rate', metavar='FLOAT', type=click.FloatRange(min=0), default=0.002, show_default=True)
@click.option('--dlr', help='D learning rate', metavar='FLOAT', type=click.FloatRange(min=0), default=0.002, show_default=True)
@click.option('--map-depth', help='Mapping network depth [default: varies]', metavar='INT', type=click.IntRange(min=1))
# Misc settings.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k_full,var_ratio_mc_5k', show_default=True)
@click.option('--kimg', help='Total training duration', metavar='KIMG', type=click.IntRange(min=1), default=8_000, show_default=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=4, show_default=True)
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--seed', help='Random seed', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--fp32', help='Disable mixed-precision', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--nobench', help='Disable cuDNN benchmarking', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=3, show_default=True)
@click.option('-n','--dry-run', help='Print training options and exit', is_flag=True)
def main(**kwargs):
"""Train a GAN using the techniques described in the paper
"Disentangling Random and Cyclic Effects from Time-Lapse Sequences".
Examples:
\b
# Train TLGAN on Valley using 4 GPUs.
python train.py --outdir=~/training-runs --data=~/datasets/valley_1024x1024_2225hz.zip --gpus=4 --batch=32
\b
# Train an unconditional StyleGAN2 on Teton using 2 GPUs.
python train.py --outdir=~/training-runs --data=~/datasets/teton_512x512_2225hz.zip --gpus=2 --batch=32 --cond=none --metrics=fid50k_full
"""
# Initialize config and dataset.
opts = dnnlib.EasyDict(kwargs) # Command line arguments.
c = dnnlib.EasyDict() # Main config dict.
desc = dataset(c, opts, path=opts.data, cond_type=opts.cond, noise=opts.noise)
# Sanity checks.
if c.cond_args.type in ['fourier', 'f_concat']:
assert len(c.cond_args.noise_f) in [0, len(c.cond_args.f_manual) + int(c.cond_args.include_lin)], 'Wrong number of per-f noises'
assert all(np.sort(c.cond_args.f_manual) == c.cond_args.f_manual), 'f_manual not sorted'
assert not any('var_ratio' in n for n in c.metrics) or len(c.cond_args.f_manual) in [0, 1, 2, 3], 'Var ratio metric will fail!'
if c.cond_args.type == 'none':
assert c.training_set_kwargs.use_labels == False, 'Labels not disabled for uncond model'
assert c.batch_size % c.num_gpus == 0, '--batch must be a multiple of --gpus'
assert c.batch_size % (c.num_gpus * c.batch_gpu) == 0, '--batch must be a multiple of --gpus times --batch-gpu'
assert c.batch_gpu >= c.D_kwargs.epilogue_kwargs.mbstd_group_size, '--batch-gpu cannot be smaller than --mbstd'
# Resume.
if opts.resume is not None:
c.resume_pkl = opts.resume
c.ada_kimg = 100 # Make ADA react faster at the beginning.
c.ema_rampup = None # Disable EMA rampup.
c.loss_kwargs.blur_init_sigma = 0 # Disable blur rampup.
# Performance-related toggles.
if opts.fp32:
c.G_kwargs.num_fp16_res = c.D_kwargs.num_fp16_res = 0
c.G_kwargs.conv_clamp = c.D_kwargs.conv_clamp = None
if opts.nobench:
c.cudnn_benchmark = False
# Description string.
if opts.desc is not None:
desc += f'-{opts.desc}'
# Launch.
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------