forked from AUTOMATIC1111/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstyles.py
92 lines (70 loc) · 3.6 KB
/
styles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# We need this so Python doesn't complain about the unknown StableDiffusionProcessing-typehint at runtime
from __future__ import annotations
import csv
import os
import os.path
import typing
import collections.abc as abc
import tempfile
import shutil
if typing.TYPE_CHECKING:
# Only import this when code is being type-checked, it doesn't have any effect at runtime
from .processing import StableDiffusionProcessing
class PromptStyle(typing.NamedTuple):
name: str
prompt: str
negative_prompt: str
def merge_prompts(style_prompt: str, prompt: str) -> str:
if "{prompt}" in style_prompt:
res = style_prompt.replace("{prompt}", prompt)
else:
parts = filter(None, (prompt.strip(), style_prompt.strip()))
res = ", ".join(parts)
return res
def apply_styles_to_prompt(prompt, styles):
for style in styles:
prompt = merge_prompts(style, prompt)
return prompt
class StyleDatabase:
def __init__(self, path: str):
self.no_style = PromptStyle("None", "", "")
self.styles = {"None": self.no_style}
if not os.path.exists(path):
return
with open(path, "r", encoding="utf8", newline='') as file:
reader = csv.DictReader(file)
for row in reader:
# Support loading old CSV format with "name, text"-columns
prompt = row["prompt"] if "prompt" in row else row["text"]
negative_prompt = row.get("negative_prompt", "")
self.styles[row["name"]] = PromptStyle(row["name"], prompt, negative_prompt)
def get_style_prompts(self, styles):
return [self.styles.get(x, self.no_style).prompt for x in styles]
def get_negative_style_prompts(self, styles):
return [self.styles.get(x, self.no_style).negative_prompt for x in styles]
def apply_styles_to_prompt(self, prompt, styles):
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).prompt for x in styles])
def apply_negative_styles_to_prompt(self, prompt, styles):
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
def apply_styles(self, p: StableDiffusionProcessing) -> None:
if isinstance(p.prompt, list):
p.prompt = [self.apply_styles_to_prompt(prompt, p.styles) for prompt in p.prompt]
else:
p.prompt = self.apply_styles_to_prompt(p.prompt, p.styles)
if isinstance(p.negative_prompt, list):
p.negative_prompt = [self.apply_negative_styles_to_prompt(prompt, p.styles) for prompt in p.negative_prompt]
else:
p.negative_prompt = self.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)
def save_styles(self, path: str) -> None:
# Write to temporary file first, so we don't nuke the file if something goes wrong
fd, temp_path = tempfile.mkstemp(".csv")
with os.fdopen(fd, "w", encoding="utf8", newline='') as file:
# _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple,
# and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict()
writer = csv.DictWriter(file, fieldnames=PromptStyle._fields)
writer.writeheader()
writer.writerows(style._asdict() for k, style in self.styles.items())
# Always keep a backup file around
if os.path.exists(path):
shutil.move(path, path + ".bak")
shutil.move(temp_path, path)