-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbot.py
267 lines (230 loc) · 11.2 KB
/
bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python
# coding: utf-8
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader, Dataset, random_split
import numpy as np
from matplotlib import pyplot
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from nltk.corpus import stopwords
from nltk import word_tokenize
from transformers import *
import time
import os
import pandas as pd
import codecs
import re
class BertTextProcessor():
def __init__(self, tokenizer, max_length = 100):
self.tokenizer = tokenizer
self.max_length = max_length
self.pad_token_id = tokenizer.pad_token_id
self.cls_token_id = tokenizer.cls_token_id
self.sep_token_id = tokenizer.sep_token_id
self.create_token = lambda x: [self.tokenizer.tokenize(i)[:self.max_length-2] for i in x]
self.token2id = lambda x: [self.tokenizer.convert_tokens_to_ids(i) for i in x]
self.id2string = lambda x: self.tokenizer.convert_tokens_to_string([self.tokenizer.convert_ids_to_tokens(i) for i in x])
def processString(self, text):
o = self.preprocess(pd.DataFrame({"text":text}, index = [0]))
o = self.create_token(o["text"].tolist())
o = self.token2id(o)
o = [self.cls_token_id] + o[0] + [self.sep_token_id]
return o, [1]*len(o)
def preprocess(self, df):
df['text'] = df['text'].str.lower()
df['text'] = df['text'].replace('[a-zA-Z0-9-_.]+@[a-zA-Z0-9-_.]+', '', regex=True) # remove emails
df['text'] = df['text'].replace('((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(\.|$)){4}', '', regex=True) # remove IP address
df['text'] = df['text'].str.replace('[^\w\s]','') # remove special characters
df['text'] = df['text'].replace('\d', '', regex=True)
return df
def create_dataset(self,text,label):
assert len(text) == len(label)
tokenized_text = self.create_token(text)
tokenized_text = self.token2id(tokenized_text)
padmask = []
for i,observation in enumerate(tokenized_text):
maskedlength = 0
if len(observation) == (self.max_length-2):
tokenized_text[i] = [self.cls_token_id] + tokenized_text[i] + [self.sep_token_id]
else:
pad = [self.pad_token_id] * (self.max_length - len(observation) - 2)
maskedlength = len(pad)
tokenized_text[i] = [self.cls_token_id] + tokenized_text[i]+[self.sep_token_id] + pad
padmask.append([1]*(len(observation)+2) + [0]*(maskedlength))
database = TensorDataset(torch.tensor(tokenized_text, dtype=torch.long),
torch.tensor(label, dtype=torch.float),
torch.tensor(padmask, dtype=torch.long))
return database
class GPT2TextProcessor():
def __init__(self, tokenizer, max_length = 100):
self.tokenizer = tokenizer
self.max_length = max_length
self.speaker1_token = "<SPEAKER1>"
self.speaker2_token = "<SPEAKER2>"
self.speaker1_token_id = self.tokenizer.convert_tokens_to_ids(self.speaker1_token)
self.speaker2_token_id = self.tokenizer.convert_tokens_to_ids(self.speaker2_token)
def create_dataset(self,conversations):
pad = lambda x,y: x + [y]*(self.max_length - len(x))
words = []
segments = []
labels = []
attention_masks = []
mc_token_ids = []
for conversation in conversations:
tokenized_line = [self.tokenizer.bos_token_id]
line_segment = [self.speaker1_token_id]
total_length = 0
for i,line in enumerate(conversation):
speaker = self.speaker1_token if i % 2 == 0 else self.speaker2_token
text_line = speaker + " " + line["text"].replace("\n","")
tokenized_text = tokenizer.tokenize(text_line)
tokenized_line = tokenized_line + tokenizer.convert_tokens_to_ids(tokenized_text)
line_segment = line_segment + [tokenizer.convert_tokens_to_ids(speaker)]*len(tokenized_text)
last_seq_length = len(tokenized_text)
total_length += last_seq_length
if total_length >= self.max_length-1:
continue
tokenized_line = tokenized_line + [self.tokenizer.eos_token_id]
label_mask = len(tokenized_line)-last_seq_length
line_segment = line_segment + [line_segment[-1]]
label_line = [-1]*(label_mask)+tokenized_line[label_mask:]
labels.append(pad(label_line,-1))
words.append(pad(tokenized_line,self.tokenizer.pad_token_id))
segments.append(pad(line_segment,self.tokenizer.pad_token_id))
mc_token_ids.append(len(tokenized_line)-1)
dataset = TensorDataset(torch.tensor(words, dtype=torch.long),
torch.tensor(segments, dtype=torch.long),
torch.tensor(labels, dtype=torch.long))
return dataset
class TransformerClassification(nn.Module):
def __init__(self,transformerModel,
hidden_dim,
output_dim,
n_layers,
bidirectional,
dropout):
super().__init__()
self.transformerModel = transformerModel
self.embedding_dim = transformerModel.config.to_dict()['hidden_size']
self.rnn = nn.GRU(self.embedding_dim,
hidden_dim,
num_layers = n_layers,
bidirectional = bidirectional,
batch_first = True,
dropout = 0 if n_layers < 2 else dropout)
self.out = nn.Linear(hidden_dim * 2 if bidirectional else hidden_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self,text,mask):
with torch.no_grad():
embeddings = self.transformerModel(input_ids = text,attention_mask = mask)[0]
output, hidden = self.rnn(embeddings)
if self.rnn.bidirectional:
hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1))
else:
hidden = self.dropout(hidden[-1,:,:])
#hidden = [batch size, hid dim]
output = self.out(hidden)
#output = [batch size, out dim]
return output
def testSentiment(text, text_processor):
model_bert.eval()
prepared_text, mask = text_processor_bert.processString(text)
prediction = model_bert(torch.tensor(prepared_text).view(1,-1).to(device),torch.tensor(mask).view(1,-1).to(device))
if torch.round(torch.sigmoid(prediction)).item() == 0:
print("NEGATIVE, with weight: ", torch.sigmoid(prediction).item())
else:
print("POSITIVE, with weight: ", torch.sigmoid(prediction).item())
class Conversation():
def __init__(self, sentiment_model_path, text_model_path):
"""
Conversation instance that utilizes a sentiment and text model.
Args:
sentiment_model_path (str): Path to the BERT-based sentimental analysis model.
text_model_path (str): Path to the GPT2-based text generation model.
"""
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
#print('Using device:', device)
self.tokenizer_bert = BertTokenizer.from_pretrained('bert-large-uncased')
self.tokenizer_bert.pad_token = "<pad>"
self.tokenizer_bert.sep_token = "[SEP]"
self.tokenizer_bert.cls_token = "[CLS]"
self.text_processor_bert = BertTextProcessor(self.tokenizer_bert)
transformerModel = BertModel.from_pretrained("bert-large-uncased").to(self.device)
HIDDEN_DIM = 256
OUTPUT_DIM = 1
N_LAYERS = 2
BIDIRECTIONAL = True
DROPOUT = 0.25
self.model_bert = TransformerClassification(transformerModel,
HIDDEN_DIM,
OUTPUT_DIM,
N_LAYERS,
BIDIRECTIONAL,
DROPOUT).to(self.device)
self.model_bert.load_state_dict(torch.load(sentiment_model_path, map_location=torch.device(self.device)))
SPECIAL_TOKENS = {"bos_token":"<BOS>","eos_token":"<EOS>",
"pad_token":"<PAD>",
"additional_special_tokens":("<SPEAKER1>","<SPEAKER2>")}
self.model_gpt2, self.tokenizer_gpt2 = GPT2LMHeadModel.from_pretrained("gpt2").to(self.device), GPT2Tokenizer.from_pretrained("gpt2")
n_added_tokens = self.tokenizer_gpt2.add_special_tokens(SPECIAL_TOKENS)
self.model_gpt2.resize_token_embeddings(new_num_tokens=self.tokenizer_gpt2.vocab_size+n_added_tokens)
self.model_gpt2.load_state_dict(torch.load(text_model_path, map_location=torch.device(self.device)))
self.model_bert.eval()
self.model_gpt2.eval()
self.history = [self.tokenizer_gpt2.bos_token_id]
self.temperature = .5
self.length = 60
self.k = 100
def reset(self):
"""
Resets the conversation history.
"""
self.history = [self.tokenizer_gpt2.bos_token_id]
def next_sentence(self, input_sentence):
"""
Returns an answer and sentiment prediction based on an input sentence.
Args:
input_sentence (str): The first parameter.
Returns:
(tuple): tuple containing:
decoded_answer (str): Answer to input_sentence.
prediction_float (float): Sentiment prediction, 0 = Negative, 1 = Positive.
"""
sequence = self.tokenizer_gpt2.encode(input_sentence,add_special_tokens=False) + self.tokenizer_gpt2.convert_tokens_to_ids(["<SPEAKER2>"])
answer = []
input_ids = self.history + sequence
for i in range(self.length):
with torch.no_grad():
out = self.model_gpt2(torch.tensor(input_ids).view(1,-1).to(self.device),out[1] if i >0 else None)
logits = out[0][:, -1, :] / (self.temperature if self.temperature >0 else 1)
indices_to_remove = logits < torch.topk(logits, self.k)[0][..., -1, None]
logits[indices_to_remove] = -float('Inf')
if self.temperature == 0: # greedy sampling:
next_token = torch.argmax(logits, dim=-1).unsqueeze(-1)
else:
next_token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
if next_token[0].item() == self.tokenizer_gpt2.eos_token_id: break
answer.append(next_token[0].item())
input_ids = next_token
decoded_answer = self.tokenizer_gpt2.decode(answer)
prepared_text, mask = self.text_processor_bert.processString(decoded_answer)
prediction = self.model_bert(torch.tensor(prepared_text).view(1,-1).to(self.device),torch.tensor(mask).view(1,-1).to(self.device))
prediction_float = torch.sigmoid(prediction).item()
self.history = self.history + sequence + answer + self.tokenizer_gpt2.convert_tokens_to_ids(["<SPEAKER1>"])
return decoded_answer, prediction_float
if __name__ == "__main__":
conv = Conversation('models/bestModelBert.pt', 'models/bestModelGPT2CONV.pt')
while True:
raw_text = input(">>> ")
if raw_text == "quit":
break
elif raw_text == "reset":
print("Removing history...")
conv.reset()
else:
answer, sentiment = conv.next_sentence(raw_text)
print(answer , {sentiment > .9: ':)', sentiment < .1: ':('}.get(True, ""))