Skip to content

(Python, R, C) Poisson matrix factorization (non-Bayesian version) (recommender systems)

License

Notifications You must be signed in to change notification settings

david-cortes/poismf

Repository files navigation

Poisson Factorization

Fast and memory-efficient non-negative matrix factorization for sparse counts data, based on Poisson likelihood with regularization. The algorithm is described in "Fast Non-Bayesian Poisson Factorization for Implicit-Feedback Recommendations" [To be updated after last additions].

The model is similar to Hierarchical Poisson Factorization, but uses regularization instead of a bayesian hierarchical structure, and is fit through gradient-based methods instead of coordinate ascent.

The implementation is in C with interfaces for Python and R.

Update 2020-23-05

The conjugate gradient method in this package has been reworked, and it's no longer susceptible to failed optimizations. Using the conjugate gradient method coupled with large numbers of iterations is now very competitive in terms of both quality and speed against HPF (Bayesian version).

Additionally, the package has now added a truncated Newton - Conjugate Gradient solver option (it bundles a modified version of Jean-Sebastien Roy's C version, which was taken from SciPy). This is slower than the other methods, and slower than HPF, but tends to result in better quality solutions and relateively sparse latent factors (i.e. many of them are zero-valued), which is oftentimes desirable.

Model description

This library tries to fit a low-rank factorization model in which some sparse X matrix of counts data is assumed to be Poisson-distributed, with parameters given by the product of two non-negative and lower-dimensional matrices - that is: X ~ Poisson(A * t(B)).

The model is fit through maximum likelihood estimation (adding a regularization term) by alternating between updates to the A and B matrices, exploiting a shortcut for fast evaluation and optimization of Poisson likelihood when the A and B matrices are constrained to be non-negative and with no link function: image

The intended use is for recommender systems, in which users are the rows of the X matrices, items the columns, and the non-zero values indicate interactions (e.g. clicks, views, plays, etc.) - the idea being that the items with the highest-predicted value for a given user are the best candidates to recommend. Nevertheless, can also be used for other domains such as topic modeling or as a general dimensionality reduction model - just take any mention of users as rows or documents and any mention of items as columns or words.

Compared to other models, and depending on the optimization method used, this model has the advantage of producing sparse user and item factor matrices (i.e. most of the entries are exactly zero), which can be desirable in some situations.

Installation

  • Python
pip install poismf

or

pip install git+https://www.github.com/david-cortes/poismf.git

(might not work on Windows depending on specific configurations)

Requires some BLAS library such as MKL (pip install mkl-devel) or OpenBLAS - will attempt to use the same as NumPy is using. Also requires a C compiler such as GCC or Visual Studio (in windows + conda, install Visual Studio Build Tools, and select package MSVC140 in the install options).

Windows with unlucky configuration: clone or download the repository and then install with setup.py, e.g.:

git clone https://github.com/david-cortes/poismf.git
cd poismf
python setup.py install

(Note that it requires package findblas, can usually be installed with pip install findblas. Depending on configuration, in Windows you might also try python setup.py install --compiler=msvc).

Note for macOS users: on macOS, the Python version of this package will compile without multi-threading capabilities. This is due to default apple's redistribution of clang not providing OpenMP modules, and aliasing it to gcc which causes confusions in build scripts. If you have a non-apple version of clang with the OpenMP modules, or if you have gcc installed, you can compile this package with multi-threading enabled by setting up an environment variable ENABLE_OMP=1:

export ENABLE_OMP=1
pip install isotree

(Alternatively, can also pass argument enable-omp to the setup.py file: python setup.py install enable-omp)

For any installation problems, please open an issue in GitHub providing information about your system (OS, BLAS, C compiler) and Python installation.

  • R

Latest version (recommended):

remotes::install_github("david-cortes/poismf")

Older version from CRAN:

install.packages("poismf")

Getting started

Example IPython notebook using the package with the Last.FM dataset:

Notebook

Sample usage

  • Python

(API is very similar to cmfrec library)

import numpy as np, pandas as pd

## Generating random sparse data
nusers = 10 ** 2
nitems = 10 ** 3
nnz    = 10 ** 4

np.random.seed(1)
df = pd.DataFrame({
    'UserId' : np.random.randint(nusers, size = nnz),
    'ItemId' : np.random.randint(nitems, size = nnz),
    'Count'  : 1 + np.random.gamma(1, 1, size = nnz).astype(int)
})
### (can also pass a sparse COO matrix instead)

## Fitting the model
from poismf import PoisMF

### good speed, not-so-good quality
model = PoisMF(k=5, method="pg")
### good quality, but slow
model = PoisMF(k=5, method="tncg")
### balance between speed-quality
model = PoisMF(k=5, method="cg")
model.fit(df)

### Predict functionality (chosen entries in X)
model.predict(1, 10) ## entry [1, 10]
model.predict(np.array([1,1,1]), np.array([4,5,6])) ## entries [1,4], [1,5], [1,6]

### Ranking functionality (for recommender systems)
model.topN(user=2, n=5, exclude=df.ItemId.loc[df.UserId==2])
model.topN_new(X=df[["ItemId","Count"]].loc[df.UserId==2],
               n=5, exclude=df.ItemId.loc[df.UserId==2])
## For faster fitting without any checks and castings, can use 'fit_unsafe' too

(For a longer example see the IPython notebook in the section above)

  • R

(See example in the documentation for a slightly longer version)

library(poismf)

### Create a random sparse data frame in COO format
nrow <- 10^2
ncol <- 10^3
nnz  <- 10^4
set.seed(1)
X <- data.frame(
    row_ix = sample(nrow, size=nnz, replace=TRUE),
    col_ix = sample(ncol, size=nnz, replace=TRUE),
    count  = rpois(nnz, 1) + 1)
X <- X[!duplicated(X[, c("row_ix", "col_ix")]), ]
### (can also pass as sparse matrix from Matrix or SparseM)

### Factorize the randomly-generated sparse matrix
### good speed, not-so-good quality
model <- poismf(k=5, X, method="pg")
### good quality, but slow
model <- poismf(k=5, X, method="tncg")
### balance between speed-quality
model <- poismf(k=5, X, method="cg")

### Predict functionality (chosen entries in X)
predict(model, 1, 10) ## entry [1, 10]
predict(model, c(1, 1, 1), c(4, 5, 6)) ## entries [1,4], [1,5], [1,6]

### Ranking functionality (for recommender systems)
topN(model, user=2, n=5, exclude=X$col_ix[X$row_ix==2])
topN.new(model, X=X[X$row_ix==2, c("col_ix","count")],
         n=5, exclude=X$col_ix[X$row_ix==2])
  • C:

You can also take the C file poismf/poismf.c and use it in some language other than Python or R - works with a copy of X in row-sparse and another in column-sparse formats.

/* Main function for Proximal Gradient and Conjugate Gradient solvers
    A                         : Pointer to the already-initialized A matrix
                                (user factors)
    Xr, Xr_indptr, Xr_indices : Pointers to the X matrix in row-sparse format
    B                         : Pointer to the already-initialized B matrix
                                (item factors)
    Xc, Xc_indptr, Xc_indices : Pointers to the X matrix in column-sparse format
    dimA                      : Number of rows in the A matrix
    dimB                      : Number of rows in the B matrix
    k                         : Dimensionality for the factorizing matrices
                                (number of columns of A and B matrices)
    l2_reg                    : Regularization pameter for the L2 norm of the A and B matrices
    l1_reg                    : Regularization pameter for the L1 norm of the A and B matrices
    w_mult                    : Weight multiplier for the positive entries in X
    step_size                 : Initial step size for PGD updates
                                (will be decreased by 1/2 every iteration - ignored for CG)
    method                    : Which optimization method to use (tncg, cg, pg).
    limit_step                : Whether to limit CG step sizes to zero-out one variable per step
    numiter                   : Number of iterations for which to run the procedure
    maxupd                    : Number of updates to the same vector per iteration
    handle_interrupt          : Whether to respond to interrupt signals
    nthreads                  : Number of threads to use
Matrices A and B are optimized in-place,
and are assumed to be in row-major order.
Returns 0 if it succeeds, 1 if it runs out of memory.
*/
#define sparse_ix size_t
#define real_t double
typedef enum Method {tncg = 1, cg = 2, pg = 3} Method;
int run_poismf(
    real_t *restrict A, real_t *restrict Xr, sparse_ix *restrict Xr_indptr, sparse_ix *restrict Xr_indices,
    real_t *restrict B, real_t *restrict Xc, sparse_ix *restrict Xc_indptr, sparse_ix *restrict Xc_indices,
    const size_t dimA, const size_t dimB, const size_t k,
    const real_t l2_reg, const real_t l1_reg, const real_t w_mult, real_t step_size,
    const Method method, const bool limit_step, const size_t numiter, const size_t maxupd,
    const bool handle_interrupt, const int nthreads)

Documentation

  • Python: available at ReadTheDocs.

  • R: documentation available internally (e.g. help(poismf::poismf)). PDF can be download at CRAN.

  • C: documentation available only for the main function, as given in the previous section.

References

  • Cortes, David. "Fast Non-Bayesian Poisson Factorization for Implicit-Feedback Recommendations." arXiv preprint arXiv:1811.01908 (2018).

  • Li, Can. "A conjugate gradient type method for the nonnegative constraints optimization problems." Journal of Applied Mathematics 2013 (2013).

  • Carlsson, Christer, et al. "User’s guide for TN/TNBC: Fortran routines for nonlinear optimization." Mathematical Sciences Dept. Tech. Rep. 307, The Johns Hopkins University. 1984.

About

(Python, R, C) Poisson matrix factorization (non-Bayesian version) (recommender systems)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published