- Authors: Daeun Lee*, Jaehong Yoon*, Sung Ju Hwang (* denotes equal contribution)
More details will be updated soon!
Continual Test Time Adaptation (CTTA) is required to adapt efficiently to continuous unseen domains while retaining previously learned knowledge. However, despite the progress of CTTA, forgetting-adaptation trade-offs and efficiency are still unexplored. Moreover, current CTTA scenarios assume only the disjoint situation, even though real-world domains are seamlessly changed. To tackle these challenges, this paper proposes BECoTTA, an input-dependent yet efficient framework for CTTA. We propose Mixture-of-Domain Low-rank Experts (MoDE) that contains two core components: i) Domain-Adaptive Routing, which aids in selectively capturing the domain-adaptive knowledge with multiple domain routers, and (ii) Domain-Expert Synergy Loss to maximize the dependency between each domain and expert. We validate our method outperforms multiple CTTA scenarios including disjoint and gradual domain shits, while only requiring ∼98% fewer trainable parameters. We also provide analyses of our method, including the construction of experts, the effect of domain-adaptive experts, and visualizations.
bash becotta.sh
- We follow mmsegmentation code base provided by CoTTA authors.
- You can download ACDC dataset from here.
- We provide our trained initialized model checkpoints.