-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathoptimize_mask_cifar.py
252 lines (208 loc) · 10.8 KB
/
optimize_mask_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import time
import argparse
import numpy as np
from collections import OrderedDict
import torch
from torch.utils.data import DataLoader, RandomSampler
from torchvision.datasets import CIFAR10
import torchvision.transforms as transforms
import models
import data.poison_cifar as poison
parser = argparse.ArgumentParser(description='Train poisoned networks')
# Basic model parameters.
parser.add_argument('--arch', type=str, default='resnet18',
choices=['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'MobileNetV2', 'vgg19_bn'])
parser.add_argument('--checkpoint', type=str, required=True, help='The checkpoint to be pruned')
parser.add_argument('--widen-factor', type=int, default=1, help='widen_factor for WideResNet')
parser.add_argument('--batch-size', type=int, default=128, help='the batch size for dataloader')
parser.add_argument('--lr', type=float, default=0.2, help='the learning rate for mask optimization')
parser.add_argument('--nb-iter', type=int, default=2000, help='the number of iterations for training')
parser.add_argument('--print-every', type=int, default=500, help='print results every few iterations')
parser.add_argument('--data-dir', type=str, default='../data', help='dir to the dataset')
parser.add_argument('--val-frac', type=float, default=0.01, help='The fraction of the validate set')
parser.add_argument('--output-dir', type=str, default='logs/models/')
parser.add_argument('--trigger-info', type=str, default='', help='The information of backdoor trigger')
parser.add_argument('--poison-type', type=str, default='benign', choices=['badnets', 'blend', 'clean-label', 'benign'],
help='type of backdoor attacks for evaluation')
parser.add_argument('--poison-target', type=int, default=0, help='target class of backdoor attack')
parser.add_argument('--trigger-alpha', type=float, default=1.0, help='the transparency of the trigger pattern.')
parser.add_argument('--anp-eps', type=float, default=0.4)
parser.add_argument('--anp-steps', type=int, default=1)
parser.add_argument('--anp-alpha', type=float, default=0.2)
args = parser.parse_args()
args_dict = vars(args)
print(args_dict)
os.makedirs(args.output_dir, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def main():
MEAN_CIFAR10 = (0.4914, 0.4822, 0.4465)
STD_CIFAR10 = (0.2023, 0.1994, 0.2010)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN_CIFAR10, STD_CIFAR10)
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(MEAN_CIFAR10, STD_CIFAR10)
])
# Step 1: create dataset - clean val set, poisoned test set, and clean test set.
if args.trigger_info:
trigger_info = torch.load(args.trigger_info, map_location=device)
else:
if args.poison_type == 'benign':
trigger_info = None
else:
triggers = {'badnets': 'checkerboard_1corner',
'clean-label': 'checkerboard_4corner',
'blend': 'gaussian_noise'}
trigger_type = triggers[args.poison_type]
pattern, mask = poison.generate_trigger(trigger_type=trigger_type)
trigger_info = {'trigger_pattern': pattern[np.newaxis, :, :, :], 'trigger_mask': mask[np.newaxis, :, :, :],
'trigger_alpha': args.trigger_alpha, 'poison_target': np.array([args.poison_target])}
orig_train = CIFAR10(root=args.data_dir, train=True, download=True, transform=transform_train)
_, clean_val = poison.split_dataset(dataset=orig_train, val_frac=args.val_frac,
perm=np.loadtxt('./data/cifar_shuffle.txt', dtype=int))
clean_test = CIFAR10(root=args.data_dir, train=False, download=True, transform=transform_test)
poison_test = poison.add_predefined_trigger_cifar(data_set=clean_test, trigger_info=trigger_info)
random_sampler = RandomSampler(data_source=clean_val, replacement=True,
num_samples=args.print_every * args.batch_size)
clean_val_loader = DataLoader(clean_val, batch_size=args.batch_size,
shuffle=False, sampler=random_sampler, num_workers=0)
poison_test_loader = DataLoader(poison_test, batch_size=args.batch_size, num_workers=0)
clean_test_loader = DataLoader(clean_test, batch_size=args.batch_size, num_workers=0)
# Step 2: load model checkpoints and trigger info
state_dict = torch.load(args.checkpoint, map_location=device)
net = getattr(models, args.arch)(num_classes=10, norm_layer=models.NoisyBatchNorm2d)
load_state_dict(net, orig_state_dict=state_dict)
net = net.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
parameters = list(net.named_parameters())
mask_params = [v for n, v in parameters if "neuron_mask" in n]
mask_optimizer = torch.optim.SGD(mask_params, lr=args.lr, momentum=0.9)
noise_params = [v for n, v in parameters if "neuron_noise" in n]
noise_optimizer = torch.optim.SGD(noise_params, lr=args.anp_eps / args.anp_steps)
# Step 3: train backdoored models
print('Iter \t lr \t Time \t TrainLoss \t TrainACC \t PoisonLoss \t PoisonACC \t CleanLoss \t CleanACC')
nb_repeat = int(np.ceil(args.nb_iter / args.print_every))
for i in range(nb_repeat):
start = time.time()
lr = mask_optimizer.param_groups[0]['lr']
train_loss, train_acc = mask_train(model=net, criterion=criterion, data_loader=clean_val_loader,
mask_opt=mask_optimizer, noise_opt=noise_optimizer)
cl_test_loss, cl_test_acc = test(model=net, criterion=criterion, data_loader=clean_test_loader)
po_test_loss, po_test_acc = test(model=net, criterion=criterion, data_loader=poison_test_loader)
end = time.time()
print('{} \t {:.3f} \t {:.1f} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f}'.format(
(i + 1) * args.print_every, lr, end - start, train_loss, train_acc, po_test_loss, po_test_acc,
cl_test_loss, cl_test_acc))
save_mask_scores(net.state_dict(), os.path.join(args.output_dir, 'mask_values.txt'))
def load_state_dict(net, orig_state_dict):
if 'state_dict' in orig_state_dict.keys():
orig_state_dict = orig_state_dict['state_dict']
if "state_dict" in orig_state_dict.keys():
orig_state_dict = orig_state_dict["state_dict"]
new_state_dict = OrderedDict()
for k, v in net.state_dict().items():
if k in orig_state_dict.keys():
new_state_dict[k] = orig_state_dict[k]
elif 'running_mean_noisy' in k or 'running_var_noisy' in k or 'num_batches_tracked_noisy' in k:
new_state_dict[k] = orig_state_dict[k[:-6]].clone().detach()
else:
new_state_dict[k] = v
net.load_state_dict(new_state_dict)
def clip_mask(model, lower=0.0, upper=1.0):
params = [param for name, param in model.named_parameters() if 'neuron_mask' in name]
with torch.no_grad():
for param in params:
param.clamp_(lower, upper)
def sign_grad(model):
noise = [param for name, param in model.named_parameters() if 'neuron_noise' in name]
for p in noise:
p.grad.data = torch.sign(p.grad.data)
def perturb(model, is_perturbed=True):
for name, module in model.named_modules():
if isinstance(module, models.NoisyBatchNorm2d) or isinstance(module, models.NoisyBatchNorm1d):
module.perturb(is_perturbed=is_perturbed)
def include_noise(model):
for name, module in model.named_modules():
if isinstance(module, models.NoisyBatchNorm2d) or isinstance(module, models.NoisyBatchNorm1d):
module.include_noise()
def exclude_noise(model):
for name, module in model.named_modules():
if isinstance(module, models.NoisyBatchNorm2d) or isinstance(module, models.NoisyBatchNorm1d):
module.exclude_noise()
def reset(model, rand_init):
for name, module in model.named_modules():
if isinstance(module, models.NoisyBatchNorm2d) or isinstance(module, models.NoisyBatchNorm1d):
module.reset(rand_init=rand_init, eps=args.anp_eps)
def mask_train(model, criterion, mask_opt, noise_opt, data_loader):
model.train()
total_correct = 0
total_loss = 0.0
nb_samples = 0
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(device), labels.to(device)
nb_samples += images.size(0)
# step 1: calculate the adversarial perturbation for neurons
if args.anp_eps > 0.0:
reset(model, rand_init=True)
for _ in range(args.anp_steps):
noise_opt.zero_grad()
include_noise(model)
output_noise = model(images)
loss_noise = - criterion(output_noise, labels)
loss_noise.backward()
sign_grad(model)
noise_opt.step()
# step 2: calculate loss and update the mask values
mask_opt.zero_grad()
if args.anp_eps > 0.0:
include_noise(model)
output_noise = model(images)
loss_rob = criterion(output_noise, labels)
else:
loss_rob = 0.0
exclude_noise(model)
output_clean = model(images)
loss_nat = criterion(output_clean, labels)
loss = args.anp_alpha * loss_nat + (1 - args.anp_alpha) * loss_rob
pred = output_clean.data.max(1)[1]
total_correct += pred.eq(labels.view_as(pred)).sum()
total_loss += loss.item()
loss.backward()
mask_opt.step()
clip_mask(model)
loss = total_loss / len(data_loader)
acc = float(total_correct) / nb_samples
return loss, acc
def test(model, criterion, data_loader):
model.eval()
total_correct = 0
total_loss = 0.0
with torch.no_grad():
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(device), labels.to(device)
output = model(images)
total_loss += criterion(output, labels).item()
pred = output.data.max(1)[1]
total_correct += pred.eq(labels.data.view_as(pred)).sum()
loss = total_loss / len(data_loader)
acc = float(total_correct) / len(data_loader.dataset)
return loss, acc
def save_mask_scores(state_dict, file_name):
mask_values = []
count = 0
for name, param in state_dict.items():
if 'neuron_mask' in name:
for idx in range(param.size(0)):
neuron_name = '.'.join(name.split('.')[:-1])
mask_values.append('{} \t {} \t {} \t {:.4f} \n'.format(count, neuron_name, idx, param[idx].item()))
count += 1
with open(file_name, "w") as f:
f.write('No \t Layer Name \t Neuron Idx \t Mask Score \n')
f.writelines(mask_values)
if __name__ == '__main__':
main()