forked from 81NewArk/StupidOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IconSelection_Demo.py
162 lines (138 loc) · 33.5 KB
/
IconSelection_Demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import cv2
import base64
import numpy as np
import uvicorn
from fastapi import FastAPI, Body
from fastapi.responses import HTMLResponse
import socket
description = """
_________________
### 项目说明:
* <strong>会HttpPost协议即可调用的原则!</strong>
* 支持部署 <strong>本地</strong> 和 <strong>服务器</strong> .
* <strong>长期更新 免费开源 欢迎赞助 </strong>
### 关于作者:
* 哔哩哔哩 <https://space.bilibili.com/37887820>
* GitHub <https://github.com/81NewArk/StupidOCR>
###
_________________
"""
app = FastAPI(
title='StupidOCR-图标选点版',
description=description,
version="1.0.1",
)
@app.post("/api.TargetReconnoitre", summary='侦察图片目标', description='上传图片的Base64编码,返回每个目标的xywh和中心点', tags=['Icon点选'])
async def TargetReconnoitre(have_Ico_Image: str = Body(..., title='图片Base64', embed=True)):
if __name__ == '__main__':
img_data = base64.b64decode(have_Ico_Image)
# 使用numpy数组来表示图像数据
img_array = np.frombuffer(img_data, dtype=np.uint8)
# 解码图像
img = cv2.imdecode(img_array, flags=cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 进行 Canny 边缘检测
edges = cv2.Canny(gray, 50, 150)
# 使用闭操作填充边缘内部的空洞
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
# 查找轮廓
contours, _ = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 存储每个 icon 的信息
icons = []
# 在原图上绘制轮廓并记录每个 icon 的信息
for contour in contours:
# 计算轮廓的边界框
x, y, w, h = cv2.boundingRect(contour)
# 计算轮廓的面积和宽高比
area = cv2.contourArea(contour)
aspect_ratio = float(w) / h if h != 0 else 0
# 如果轮廓面积过小或宽高比不合适,则忽略该轮廓
if area < 100 or aspect_ratio < 0.5 or aspect_ratio > 2:
continue
# 记录 icon 的信息
icon = {
'x': x,
'y': y,
'w': w,
'h': h,
'center_x': x + w / 2,
'center_y': y + h / 2
}
icons.append(icon)
# 将结果封装成字典格式输出
result = {
'icons': icons
}
hostname = socket.gethostname()
ip = socket.gethostbyname(hostname)
return {"result": result, "BiliBili": "https://space.bilibili.com/37887820",
"supports": "http://" + ip + ":6688/support"}
@app.post("/api.IconReconnaissance", summary='Icon点选', description='上传icon图标和背景图标,返回每个目标的xywh和中心点,准确率随缘,等待更新', tags=['Icon点选'])
async def IcoReconnaissance(Icon_ImageBase64: str = Body(..., title='Icon图标Base64', embed=True),
BackGround_Base64: str = Body(..., title='背景图片base64', embed=True)):
# 从base64编码的字符串读取图像数据
background_data = base64.b64decode(BackGround_Base64)
icon_data = base64.b64decode(Icon_ImageBase64)
# 将图像数据解码为OpenCV的图像格式
background = cv2.imdecode(np.frombuffer(background_data, dtype=np.uint8), cv2.IMREAD_GRAYSCALE)
icon = cv2.imdecode(np.frombuffer(icon_data, dtype=np.uint8), cv2.IMREAD_GRAYSCALE)
# 将icon图标转换为二值图像
_, icon = cv2.threshold(icon, 128, 255, cv2.THRESH_BINARY)
# 使用模板匹配技术查找icon图标在背景图片中的位置
result = cv2.matchTemplate(background, icon, cv2.TM_CCOEFF_NORMED)
# 找到最佳匹配的位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
top_left = max_loc
bottom_right = (top_left[0] + icon.shape[1], top_left[1] + icon.shape[0])
# 计算icon的中心点
center_x = (top_left[0] + bottom_right[0]) // 2
center_y = (top_left[1] + bottom_right[1]) // 2
# 输出icon图标在背景图片上的坐标和中心点
result = {
'x': top_left[0],
'y': top_left[1],
'w': icon.shape[1],
'h': icon.shape[0],
'center_x': center_x,
'center_y': center_y
}
hostname = socket.gethostname()
ip = socket.gethostbyname(hostname)
return {"result": result,
"BiliBili": "https://space.bilibili.com/37887820", "supports": "http://" + ip + ":6688/support"}
@app.get("/support", response_class=HTMLResponse,tags=['赞助StupidOCR'],summary='打开网页:http://localhost:6688/support',include_in_schema=False)
async def support():
return """
<html>
<head>
<title>赞助作者</title>
</head>
<body>
<h1 align="center">给无业的作者打赏</h1>
<h3 align="center">微信 支付宝</h3>
<h1 align="center"> <img src="" > <img src="" ></h1>
<hr>
<h2 align="left"> GitHub: <a href="https://github.com/81NewArk/StupidOCR">https://github.com/81NewArk/StupidOCR</a></h2>
<h2 align="left"> BiLiBiLi: <a href="https://space.bilibili.com/37887820">https://space.bilibili.com/37887820</a></h2>
<h2 align="left"> E-Mail : 751247667@qq.com</h2>
</body>
</html>
"""
if __name__ == '__main__':
print('''
_____ _ _ _ ____ _____ _____
/ ____| | | (_) | | / __ \ / ____| | __ \
| (___ | |_ _ _ _ __ _ __| | | | | | | | | |__) |
\___ \ | __| | | | | | '_ \ | | / _` | | | | | | | | _ /
____) | | |_ | |_| | | |_) | | | | (_| | | |__| | | |____ | | \ \
|_____/ \__| \__,_| | .__/ |_| \__,_| \____/ \_____| |_| \_/
| |
|_|
开发文档:http://localhost:6688/docs
赞助页面:http://127.0.0.1:6688/support
作者逼站:https://space.bilibili.com/37887820
代码编写:81NewArk
当前版本为图标选点专版
''')
uvicorn.run(app, port=6688, host="0.0.0.0")