-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
355 lines (318 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import click
import json
import logging
import numpy as np
import os
import pprint
import random
import re
import torch
import string
import sys
import torch
import wandb
import warnings
warnings.filterwarnings("ignore")
from collections import defaultdict
from datetime import datetime
from time import time
from tqdm import tqdm
from accelerate import infer_auto_device_map, init_empty_weights, Accelerator
from sklearn.metrics import accuracy_score, f1_score
from torch.profiler import profile, record_function, ProfilerActivity
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from config import *
from src.processing.generate import (
format_instance,
get_sentences,
generate_prefix,
generate_instructions,
generate_demonstrations,
generate_prediction,
)
from src.processing.extractions import extract_all_tagged_phrases, extract_prediction
from src.eval.metrics import classify_predictions, compute_metrics
from src.utils.utils import (
load_model_and_tokenizer,
save_results,
load_sweep_config,
save_best_config,
)
@click.command()
@click.option(
"--kind",
default=DEFAULT_KIND,
help="Specify the kind of prompt input: json (default) or readable",
)
@click.option(
"--runtype",
type=click.Choice(["new", "eval"], case_sensitive=False),
default="eval",
help="Specify the type of run: new or eval (default)",
)
@click.option(
"--data",
default=None,
help="Specify the directory of the data if running on new data",
)
@click.option(
"--sweep",
is_flag=True,
help="Run sweeps",
)
@click.option(
"--sweep_config",
default="sweep_config.json",
help="Sweep configuration file",
)
@click.option(
"--load_best_config",
default=None,
help="Load the best configuration from a file",
)
def main(kind, runtype, data, sweep, sweep_config, load_best_config):
# set up wandb
run = wandb.init(project="kg-runs")
config = wandb.config
run_flag = "run"
if sweep:
if runtype != "eval":
raise ValueError("Sweeps can only be run in eval mode")
run_flag = "sweep"
kind = config.kind
temperature = config.temperature
top_p = config.top_p
few_shot_num = config.few_shot_num
few_shot_selection = config.few_shot_selection
# few_shot_type = config.few_shot_type
elif load_best_config:
with open(load_best_config, "r") as f:
best_config = json.load(f)
kind = best_config["kind"]
temperature = best_config["temperature"]
top_p = best_config["top_p"]
few_shot_num = best_config["few_shot_num"]
few_shot_selection = best_config["few_shot_selection"]
else:
temperature = DEFAULT_TEMPERATURE
top_p = DEFAULT_TOP_P
few_shot_num = DEFAULT_FEW_SHOT_NUM
few_shot_selection = DEFAULT_FEW_SHOT_SELECTION
config.update(
{
"kind": kind,
"temperature": temperature,
"top_p": top_p,
"few_shot_num": few_shot_num,
"few_shot_selection": few_shot_selection,
}
)
wandb.config.update(config)
wandb.run.name = f"{run_flag}_{kind}_t{temperature:.2f}_p{top_p:.2f}_fs{few_shot_num}_{few_shot_selection}"
logger = logging.getLogger(__name__)
# set up logging and save directories
uuid = "".join(
random.choice(string.ascii_letters + string.digits) for _ in range(8)
)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
out_dir_path = f"{runtype}_{few_shot_selection}_{kind}_{uuid}_{timestamp}"
os.makedirs(os.path.join(DEFAULT_RES_DIR, out_dir_path), exist_ok=True)
os.makedirs(
os.path.join(DEFAULT_RES_DIR, out_dir_path, DEFAULT_LOG_DIR), exist_ok=True
)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.FileHandler(
os.path.join(DEFAULT_RES_DIR, out_dir_path, DEFAULT_LOG_DIR, f"log.txt")
),
logging.StreamHandler(),
],
)
# set random seeds and environment variables
logging.info("setting random seeds and environment variables...")
random.seed(0)
np.random.seed(1)
torch.manual_seed(2)
if torch.cuda.is_available():
logging.info(
"Using {} {} GPUs".format(
torch.cuda.device_count(), torch.cuda.get_device_name()
)
)
torch.cuda.empty_cache()
torch.cuda.manual_seed_all(3)
torch.backends.cudnn.deterministic = True
# load the schema
logging.info("loading schema and data...")
with open("data/manual/schema.json", "r") as f:
schema = json.load(f)
# load the data
examples = []
with open("data/manual/human_annotations.jsonl", "r") as f:
for line in f:
examples.append(json.loads(line))
train = examples[:3]
valid = []
if runtype == "new":
seen = set()
for file in os.listdir(data):
with open(os.path.join(data, file), "r") as f:
for line in f:
dict_line = json.loads(line)
if dict_line["title"] not in seen:
seen.add(dict_line["title"])
valid.append(dict_line)
else:
logging.info(f"Duplicate found in {file}:\n{dict_line}\n\n")
else:
valid = examples[3:]
logging.info(f"Number of training examples: {len(train)}")
logging.info(f"Number of validation examples: {len(valid)}")
# load model and tokenizer
logging.info("loading model and tokenizer...")
model_id = DEFAULT_MODEL_ID
model, tokenizer = load_model_and_tokenizer(model_id)
# generate the prefix
logging.info("generating base prompt...")
prefix = generate_prefix(
instructions=generate_instructions(schema, kind),
demonstrations=generate_demonstrations(
train, kind, num_examples=few_shot_num, selection=few_shot_selection
),
)
# run/evaluate the model
logging.info("running the model...")
logging.info(f"Run type: {runtype}")
logging.info(f"Data: {data}")
logging.info(f"Model: {model_id}")
logging.info(
f"Run parameters: kind={kind}, temperature={temperature}, top_p={top_p}, few_shot_num={few_shot_num}, few_shot_selection={few_shot_selection}"
)
if runtype == "eval":
n_tp = 0
n_fp = 0
n_fn = 0
n_tp_union = 0
n_fp_union = 0
n_fn_union = 0
running_time = 0
pred_times = []
all_inputs = []
predicted_responses = []
gold_tags = []
predicted_tags = []
for i, example in enumerate(tqdm(valid)):
logging.info(f"#" * 50)
abstract = example["title"] + ". " + example["abstract"]
sentences = get_sentences(abstract)
if runtype == "eval":
tagged_abstract = (
example["tagged_title"] + ". " + example["tagged_abstract"]
)
tagged_sentences = get_sentences(tagged_abstract)
zipped = zip(sentences, tagged_sentences, strict=True)
else:
zipped = zip(sentences, [None for _ in sentences], strict=True)
for sentence, tagged_sentence in tqdm(zipped):
input = format_instance(sentence, extraction=None)
s_time = time()
predicted_response = generate_prediction(
model,
tokenizer,
prefix,
input,
kind,
temperature=temperature,
top_p=top_p,
)
e_time = time()
pred = extract_prediction(schema, predicted_response, kind=kind)
if runtype == "eval":
gold = extract_all_tagged_phrases(tagged_sentence)
tp, fp, fn = classify_predictions(gold, pred)
n_tp += tp
n_fp += fp
n_fn += fn
utp, ufp, ufn = classify_predictions(gold, pred, union=True)
n_tp_union += utp
n_fp_union += ufp
n_fn_union += ufn
else:
gold = None
running_time += time() - s_time
pred_times.append(e_time - s_time)
all_inputs.append(prefix + input)
gold_tags.append(gold)
predicted_responses.append(predicted_response)
predicted_tags.append(pred)
logging.info(f"Prompt:\n{prefix + input}\n")
logging.info(f"True Tag:\n{gold}\n")
logging.info(f"Predicted Response:\n{predicted_response}\n")
logging.info(f"Predicted Tag:\n{pred}\n")
if (i + 1) % DEFAULT_SAVE_INTERVAL == 0:
if runtype == "eval":
metrics = compute_metrics(
running_time,
pred_times,
runtype,
eval_metrics=(n_tp, n_fp, n_fn, n_tp_union, n_fp_union, n_fn_union),
)
wandb.log(metrics)
else:
metrics = compute_metrics(running_time, pred_times, runtype)
save_results(
out_dir_path,
all_inputs,
gold_tags,
predicted_responses,
predicted_tags,
metrics,
runtype,
)
if i == len(valid) - 1:
if runtype == "eval":
metrics = compute_metrics(
running_time,
pred_times,
runtype,
eval_metrics=(n_tp, n_fp, n_fn, n_tp_union, n_fp_union, n_fn_union),
)
else:
metrics = compute_metrics(running_time, pred_times, runtype)
save_results(
out_dir_path,
all_inputs,
gold_tags,
predicted_responses,
predicted_tags,
metrics,
runtype,
append=True,
)
all_inputs.clear()
gold_tags.clear()
predicted_responses.clear()
predicted_tags.clear()
pprint.pprint(metrics)
if runtype == "eval" and sweep:
wandb.log(
{
"prediction_time": e_time - s_time,
"true_positives": tp,
"false_positives": fp,
"false_negatives": fn,
"union_true_positives": utp,
"union_false_positives": ufp,
"union_false_negatives": ufn,
}
)
save_best_config(metrics, config)
logger.info(f"Results saved in: {os.path.join(DEFAULT_RES_DIR, out_dir_path)}")
if __name__ == "__main__":
if "--sweep" in sys.argv:
sweep_config = load_sweep_config()
wandb.agent(wandb.sweep(sweep_config, project="kg-runs"), function=main)
else:
main()