-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute.py
244 lines (192 loc) · 6.7 KB
/
compute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import itertools
import math
from typing import (
Any,
Iterable,
Iterator,
Optional,
Tuple,
TypeVar,
Dict,
List,
)
import sys
import time
import numpy as np
_T = TypeVar("_T")
if np.__version__.startswith("1.2"):
# Add typing for numpy :
# from numpy.typing import ArrayLike.
# For the moment, they are all Any.
raise Exception("numpy now support ArrayLike with numpy.typing")
def get_angle__180_180(
point1: Tuple[int, int], point2: Tuple[int, int]
) -> float:
angle = (
np.arctan2(point1[1] - point2[1], point1[0] - point2[0]) / np.pi * 180
)
return angle
def get_angle_0_180(point1: Tuple[int, int], point2: Tuple[int, int]) -> float:
angle = get_angle__180_180(point1, point2)
if angle < 0:
angle = angle + 180
return angle
def get_angle_0_180_posx(
point1: Tuple[int, int], point2: Tuple[int, int]
) -> Tuple[float, Optional[int]]:
angle = get_angle_0_180(point1, point2)
if point1[1] == point2[1]:
posx = None
else:
posx = int(
(point1[0] * point2[1] - point2[0] * point1[1])
/ (point2[1] - point1[1])
)
return angle, posx
def sort_edges_by_posx(line: Tuple[Tuple[int, int], Tuple[int, int]]) -> int:
_, posx = get_angle_0_180_posx(line[0], line[1])
if posx is None:
raise Exception("Line can't be vertical")
return posx
def get_bottom_point_from_alpha_posx(
alpha: float, posx: int, height: int
) -> Tuple[int, int]:
return (
int(posx - np.tan((alpha - 90.0) / 180.0 * np.pi) * height),
height - 1,
)
def get_alpha_posy(
point1: Tuple[int, int], point2: Tuple[int, int]
) -> Tuple[float, Optional[int]]:
angle = get_angle_0_180(point1, point2)
if point1[0] == point2[0]:
posy = None
else:
posy = int(
(point1[0] * point2[1] - point2[0] * point1[1])
/ (point1[0] - point2[0])
)
return angle, posy
def sort_edges_by_posy(line: Tuple[Tuple[int, int], Tuple[int, int]]) -> int:
_, posy = get_alpha_posy(line[0], line[1])
if posy is None:
raise Exception("Line can't be vertical")
return posy
def get_right_point_from_alpha_posy(
alpha: float, posy: int, width: int
) -> Tuple[int, int]:
return width - 1, int(posy + np.tan(alpha / 180.0 * np.pi) * width)
def keep_angle_pos_closed_to_target(
data: Tuple[float, Optional[int]],
limit_angle: float,
target_angle: float,
target_pos: int,
limit_pos: int,
) -> bool:
ang, pos = data
if pos is None:
return False
angle_ok = (
-limit_angle < ang + target_angle and ang + target_angle < limit_angle
) or (
-limit_angle < ang + target_angle - 180
and ang + target_angle - 180 < limit_angle
)
posx_ok = target_pos - limit_pos <= pos <= target_pos + limit_pos
return angle_ok and posx_ok
def pourcent_error(val1: float, val2: float) -> float:
if val1 < 0 or val2 < 0:
raise ValueError("pourcent_error", "rgument must be positive.")
return np.absolute(val1 - val2) / np.maximum(val1, val2) * 100.0
def iterator_zip_n_n_1(iteration: Iterable[_T]) -> Iterator[Tuple[_T, _T]]:
iterator = itertools.cycle(iteration)
next(iterator)
return zip(iteration, iterator)
def iterator_zip_n_n_2(iteration: Iterable[_T]) -> Iterator[Tuple[_T, _T]]:
iterator = itertools.cycle(iteration)
next(iterator)
next(iterator)
return zip(iteration, iterator)
def is_contour_rectangle(rectangle: Any, tolerance: float) -> bool:
if len(rectangle) != 4:
return False
distance = [
math.hypot(i[0, 1] - j[0, 1], i[0, 0] - j[0, 0])
for i, j in iterator_zip_n_n_1(rectangle)
]
diagonale = [
math.hypot(i[0, 1] - j[0, 1], i[0, 0] - j[0, 0])
for i, j in iterator_zip_n_n_2(rectangle)
]
edge1_3 = pourcent_error(distance[0], distance[2]) < tolerance
edge2_4 = pourcent_error(distance[1], distance[3]) < tolerance
diag = pourcent_error(diagonale[0], diagonale[1]) < tolerance
return edge1_3 and edge2_4 and diag
def line_intersection(
line1: Tuple[Tuple[int, int], Tuple[int, int]],
line2: Tuple[Tuple[int, int], Tuple[int, int]],
) -> Tuple[int, int]:
xdiff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
ydiff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])
def determinant(point_a: Tuple[int, int], point_b: Tuple[int, int]) -> int:
return int(
np.int64(point_a[0]) * point_b[1]
- np.int64(point_a[1]) * point_b[0]
)
div = determinant(xdiff, ydiff)
if div == 0:
raise Exception("Lines do not intersect")
distance = (determinant(*line1), determinant(*line2))
point_x = determinant(distance, xdiff) / div
point_y = determinant(distance, ydiff) / div
return int(point_x), int(point_y)
def clamp(num: Any, min_value: Any, max_value: Any) -> Any:
return max(min(num, max_value), min_value)
def find_dpi(
imgw: int, imgh: int, width_paper_cm: float, height_paper_cm: float
) -> int:
if (
imgw / 200 * 2.54 < width_paper_cm
and imgh / 200 * 2.54 < height_paper_cm
):
return 200
if (
imgw / 300 * 2.54 < width_paper_cm
and imgh / 300 * 2.54 < height_paper_cm
):
return 300
raise Exception("dpi", "non détecté")
def find_closed_value(
histogram: Dict[int, Tuple[Tuple[int, int], Tuple[int, int]]], i: int
) -> Tuple[Tuple[int, int], Tuple[int, int]]:
ibis = 0
while True:
if i + ibis in histogram:
return histogram[i + ibis]
if i - ibis in histogram:
return histogram[i - ibis]
ibis = ibis + 1
def optional_concat(root: Optional[str], string: str) -> Optional[str]:
if root is None:
return None
return root + string
def optional_str(condition: bool, string: str) -> Optional[str]:
if condition:
return string
return None
def get_timestamp_ns() -> int:
if sys.version_info < (3, 7):
return np.int64(time.time() * 1000000000.0)
return time.time_ns() # pylint: disable=no-member,useless-suppression
def get_top_histogram(
smooth: Any, histogram: Dict[int, Tuple[Tuple[int, int], Tuple[int, int]]]
) -> List[Tuple[Tuple[int, int], Tuple[int, int]]]:
retval: List[Tuple[Tuple[int, int], Tuple[int, int]]] = []
if smooth[0] > smooth[1]:
retval.append(find_closed_value(histogram, 0))
for i in range(1, len(smooth) - 1):
if smooth[i] > smooth[i - 1] and smooth[i] > smooth[i + 1]:
retval.append(find_closed_value(histogram, i))
if smooth[len(smooth) - 1] > smooth[len(smooth) - 2]:
retval.append(find_closed_value(histogram, len(smooth) - 1))
return retval