forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_lasso.py
99 lines (78 loc) · 3.03 KB
/
bench_lasso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
Benchmarks of Lasso vs LassoLars
First, we fix a training set and increase the number of
samples. Then we plot the computation time as function of
the number of samples.
In the second benchmark, we increase the number of dimensions of the
training set. Then we plot the computation time as function of
the number of dimensions.
In both cases, only 10% of the features are informative.
"""
import gc
from time import time
import numpy as np
from sklearn.datasets import make_regression
def compute_bench(alpha, n_samples, n_features, precompute):
lasso_results = []
lars_lasso_results = []
it = 0
for ns in n_samples:
for nf in n_features:
it += 1
print("==================")
print("Iteration %s of %s" % (it, max(len(n_samples), len(n_features))))
print("==================")
n_informative = nf // 10
X, Y, coef_ = make_regression(
n_samples=ns,
n_features=nf,
n_informative=n_informative,
noise=0.1,
coef=True,
)
X /= np.sqrt(np.sum(X**2, axis=0)) # Normalize data
gc.collect()
print("- benchmarking Lasso")
clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute)
tstart = time()
clf.fit(X, Y)
lasso_results.append(time() - tstart)
gc.collect()
print("- benchmarking LassoLars")
clf = LassoLars(alpha=alpha, fit_intercept=False, precompute=precompute)
tstart = time()
clf.fit(X, Y)
lars_lasso_results.append(time() - tstart)
return lasso_results, lars_lasso_results
if __name__ == "__main__":
import matplotlib.pyplot as plt
from sklearn.linear_model import Lasso, LassoLars
alpha = 0.01 # regularization parameter
n_features = 10
list_n_samples = np.linspace(100, 1000000, 5).astype(int)
lasso_results, lars_lasso_results = compute_bench(
alpha, list_n_samples, [n_features], precompute=True
)
plt.figure("scikit-learn LASSO benchmark results")
plt.subplot(211)
plt.plot(list_n_samples, lasso_results, "b-", label="Lasso")
plt.plot(list_n_samples, lars_lasso_results, "r-", label="LassoLars")
plt.title("precomputed Gram matrix, %d features, alpha=%s" % (n_features, alpha))
plt.legend(loc="upper left")
plt.xlabel("number of samples")
plt.ylabel("Time (s)")
plt.axis("tight")
n_samples = 2000
list_n_features = np.linspace(500, 3000, 5).astype(int)
lasso_results, lars_lasso_results = compute_bench(
alpha, [n_samples], list_n_features, precompute=False
)
plt.subplot(212)
plt.plot(list_n_features, lasso_results, "b-", label="Lasso")
plt.plot(list_n_features, lars_lasso_results, "r-", label="LassoLars")
plt.title("%d samples, alpha=%s" % (n_samples, alpha))
plt.legend(loc="upper left")
plt.xlabel("number of features")
plt.ylabel("Time (s)")
plt.axis("tight")
plt.show()