Skip to content
This repository has been archived by the owner on Jan 15, 2021. It is now read-only.
/ Portrait-mode Public archive

High quality implementation of the portrait mode photo effect using Neural Networks.

Notifications You must be signed in to change notification settings

asiryan/Portrait-mode

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Portrait mode effect

High quality implementation of the portrait mode effect using Neural Networks.

How it works?

Traditionally, the portrait mode effect has been achieved using 2 lenses which detect objects present in the foreground and in the background. With advances in the field of ML, this effect can also be implemented using only image segmentation. Using the pretrained DeepLab-v3+ open source TensorFlow model, we can find the objects in the foreground of the image and blur the background to replicate this effect.

DeepLab to ONNX

Download DeepLab model trained on COCO dataset from the Model Zoo and convert it to onnx model.
For example download deeplabv3_mnv2_pascal_train_aug_2018_01_29 and convert it to onnx model from frozen_inference_graph.pb

python -m tf2onnx.convert 
  --opset 11
  --fold_const
  --graphdef frozen_inference_graph.pb
  --output deeplabv3_mnv2_pascal_train_aug.onnx
  --inputs ImageTensor:0
  --outputs SemanticPredictions:0

or use already-made onnx model.

C# application

Build C# source code, run application and use drag & drop to produce "portrait mode" effect.

Figure 1. Example of "portrait mode" effect

References

[1] Portrait mode implementation using TF and Python.
[2] Tutorial: how to convert them to ONNX and run them under onnxruntime.
[3] Microsoft: ONNX Runtime C# API.
[4] UMapx.NET - digital signal processing library.
[5] Real-time chromakey effect.

About

High quality implementation of the portrait mode photo effect using Neural Networks.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages