Skip to content
/ bun Public
forked from oven-sh/bun

Incredibly fast JavaScript runtime, bundler, test runner, and package manager – all in one

License

Notifications You must be signed in to change notification settings

anonrig/bun

Repository files navigation

Bun

Bun is a new:

  • JavaScript/TypeScript/JSX transpiler
  • JavaScript & CSS bundler
  • Development server with 60fps Hot Module Reloading (& WIP support for React Fast Refresh)
  • JavaScript Runtime Environment (powered by JavaScriptCore, what WebKit/Safari uses)
  • Task runner for package.json scripts

All in one fast & easy-to-use tool. Instead of 1,000 node_modules for development, you only need Bun.

Bun is experimental software. Join Bun's Discord for help and have a look at things that don't work yet.

Install:

curl -fsSL https://bun.sh/install | bash

Benchmarks

CSS: Bun is 14x faster than Next.js at hot reloading CSS. TODO: compare Vite

JavaScript: TODO

Using Bun as a task runner

Instead of waiting 170ms for your npm client to start for each task, you wait 6ms for Bun.

To use bun as a task runner, run bun run instead of npm run.

# Instead of "npm run clean"
bun run clean

# This also works
bun clean

Assuming a package.json with a "clean" command in "scripts":

{
  "name": "myapp",
  "scripts": {
    "clean": "rm -rf dist out node_modules"
  }
}

Note: bun run is not an npm client, it won't install packages.

Using Bun with Next.js

To create a new Next.js app with Bun:

bun create next ./app
cd app
bun

To use an existing Next.js app with Bun:

npm install bun-framework-next
bun bun --use next
bun

Many of Next.js' features are supported, but not all.

Here's what doesn't work yet:

  • getStaticPaths
  • same-origin fetch inside of getStaticProps or getServerSideProps
  • locales, zones, assetPrefix (workaround: change --origin \"http://localhsot:3000/assetPrefixInhere\")
  • next/image is polyfilled to a regular <img src> tag.
  • proxy and anything else in next.config.js
  • API routes, middleware (middleware is easier to support though! similar SSR API)
  • styled-jsx (technically not Next.js but often used with it)

When using Next.js, Bun automatically reads configuration from .env.local, .env.development and .env (in that order). process.env.NEXT_PUBLIC_ and process.env.NEXT_ automatically are replaced via --define.

Currently, any time you import new dependencies from node_modules, you will need to re-run bun bun --use next. This will eventually be automatic.

Using Bun with single page apps

In your project folder root (where package.json is):

bun bun ./entry-point-1.js ./entry-point-2.jsx
bun

By default, bun will look for any HTML files in the public directory and serve that. For browsers navigating to the page, the .html file extension is optional in the URL, and index.html will automatically rewrite for the directory.

Here are examples of routing from public/ and how they're matched:

Dev Server URL File Path
/dir public/dir/index.html
/ public/index.html
/index public/index.html
/hi public/hi.html
/file public/file.html
/font/Inter.woff2 public/font/Inter.woff2
/hello public/index.html

If public/index.html exists, it becomes the default page instead of a 404 page, unless that pathname has a file extension.

Using Bun with Create React App

To create new a React app:

bun create react ./app
cd app
bun

To use an existing React app:

# To enable React Fast Refresh, ensure "react-refresh" is installed
npm install -D react-refresh

# Generate a bundle for your entry point(s)
bun bun ./src/index.js # jsx, tsx, ts also work. can be multiple files

# Start the dev server
bun

From there, Bun relies on the filesystem for mapping dev server paths to source files. All URL paths are relative to the project root (where package.json is located).

Here are examples of routing source code file paths:

Dev Server URL File Path (relative to cwd)
/src/components/Button.tsx src/components/Button.tsx
/src/index.tsx src/index.tsx
/pages/index.js pages/index.js

You do not need to include file extensions in import paths. CommonJS-style import paths without the file extension works.

You can override the public directory by passing --public-dir="path-to-folder".

If no directory is specified and ./public/ doesn't exist, Bun will try ./static/. If ./static/ does not exist, but won't serve from a public directory. If you pass --public-dir=./ Bun will serve from the current directory, but it will check the current directory last instead of first.

Using Bun with TypeScript

TypeScript just works. There's nothing to configure and nothing extra to install. If you import a .ts or .tsx file, Bun will transpile it into JavaScript. Bun also transpiles node_modules containing .ts or .tsx files. This is powered by Bun's TypeScript transpiler, so it's fast.

Bun also reads tsconfig.json, including baseUrl and paths.

Using Tailwind with Bun

Tailwind is a popular CSS utility framework. Currently, the easiest way to use Tailwind with Bun is through Tailwind's CLI. That means running both bun and tailwind, and importing the file tailwind's CLI outputs.

Tailwind's docs talk more about Tailwind's CLI usage, but the gist is you'll want to run this:

npx tailwindcss -i ./src/tailwind.css -o ./dist/tailwind.css --watch

From there, make sure to import the dist/tailwind.css file (or what you chose as the output).

Things that don't work yet

Bun is a project with incredibly large scope, and it's early days.

Feature In
Symlinks Resolver
Finish Fast Refresh JSX Transpiler
Source Maps JavaScript
Source Maps CSS
Private Class Fields JS Transpiler
Import Assertions JS Transpiler
extends in tsconfig.json TS Transpiler
jsx* in tsconfig.json TS Transpiler
TypeScript Decorators TS Transpiler
@jsxPragma comments JS Transpiler
JSX source file name JS Transpiler
Sharing .bun files Bun
Finish fetch Bun.js
setTimeout Bun.js

JS Transpiler == JavaScript Transpiler
TS Transpiler == TypeScript Transpiler
Bun.js == Bun's JavaScriptCore integration that executes JavaScript. Similar to how Node.js & Deno embed V8.

Limitations & intended usage

Bun is great for building websites & webapps. For libraries, consider using Rollup or esbuild instead. Bun currently doesn't minify code and Bun's dead code elimination doesn't look beyond the current file.

Today, Bun is focused on:

  • Development, not production
  • Compatibility with existing frameworks & tooling

Ideally, most projects can use Bun with their existing tooling while making few changes to their codebase. That means using Bun in development, and continuing to use Webpack, esbuild, or another bundler in production. Using two bundlers might sound strange at first, but after all the production-only AST transforms, minification, and special development/production-only imported files...it's not far from the status quo.

Longer-term, Bun intends to replace Node.js, Webpack, Babel, and PostCSS (in production).

Configuration

Loaders

A loader determines how to map imports & file extensions to transforms and output.

Currently, Bun implements the following loaders:

Input Loader Output
.js JSX + JavaScript .js
.jsx JSX + JavaScript .js
.ts TypeScript + JavaScript .js
.tsx TypeScript + JSX + JavaScript .js
.mjs JavaScript .js
.cjs JavaScript .js
.mts TypeScript .js
.cts TypeScript .js
.css CSS .css
.env Env N/A
.* file string

Everything else is treated as file. file replaces the import with a URL (or a path).

You can configure which loaders map to which extensions by passing --loaders to bun. For example:

bun --loader=.js:js

This will disable JSX transforms for .js files.

CSS in JS

When importing CSS in JavaScript-like loaders, CSS is treated special.

By default, Bun will transform a statement like this:

import "../styles/global.css";
When platform is browser:
globalThis.document?.dispatchEvent(
  new CustomEvent("onimportcss", {
    detail: "http://localhost:3000/styles/globals.css",
  })
);

An event handler for turning that into a <link> is automatically registered when HMR is enabled. That event handler can be turned off either in a framework's package.json or by setting globalThis["Bun_disableCSSImports"] = true; in client-side code. Additionally, you can get a list of every .css file imported this way via globalThis["__BUN"].allImportedStyles.

When platform is bun:
//@import url("http://localhost:3000/styles/globals.css");

Additionally, Bun exposes an API for SSR/SSG that returns a flat list of URLs to css files imported. That function is Bun.getImportedStyles().

addEventListener("fetch", async (event: FetchEvent) => {
  var route = Bun.match(event);
  const App = await import("pages/_app");

  // This returns all .css files that were imported in the line above.
  // It's recursive, so any file that imports a CSS file will be included.
  const appStylesheets = Bun.getImportedStyles();

  // ...rest of code
});

This is useful for preventing flash of unstyled content.

CSS Loader

Bun bundles .css files imported via @import into a single file. It doesn't autoprefix or minify CSS today. Multiple .css files imported in one JavaScript file will not be bundled into one file. You'll have to import those from a .css file.

This input:

@import url("./hi.css");
@import url("./hello.css");
@import url("./yo.css");

Becomes:

/* hi.css */
/* ...contents of hi.css */
/* hello.css */
/* ...contents of hello.css */
/* yo.css */
/* ...contents of yo.css */

CSS runtime

To support hot CSS reloading, Bun inserts @supports annotations into CSS that tag which files a stylesheet is composed of. Browsers ignore this, so it doesn't impact styles.

By default, Bun's runtime code automatically listens to onimportcss and will insert the event.detail into a <link rel="stylesheet" href={${event.detail}}> if there is no existing link tag with that stylesheet. That's how Bun's equivalent of style-loader works.

Frameworks

Frameworks preconfigure Bun to enable developers to use Bun with their existing tooling.

Frameworks are configured via the framework object in the package.json of the framework (not in the application's package.json):

Here is an example:

{
  "name": "bun-framework-next",
  "version": "0.0.0-18",
  "description": "",
  "framework": {
    "displayName": "Next.js",
    "static": "public",
    "assetPrefix": "_next/",
    "router": {
      "dir": ["pages", "src/pages"],
      "extensions": [".js", ".ts", ".tsx", ".jsx"]
    },
    "css": "onimportcss",
    "development": {
      "client": "client.development.tsx",
      "fallback": "fallback.development.tsx",
      "server": "server.development.tsx",
      "css": "onimportcss",
      "define": {
        "client": {
          ".env": "NEXT_PUBLIC_",
          "defaults": {
            "process.env.__NEXT_TRAILING_SLASH": "false",
            "process.env.NODE_ENV": "\"development\"",
            "process.env.__NEXT_ROUTER_BASEPATH": "''",
            "process.env.__NEXT_SCROLL_RESTORATION": "false",
            "process.env.__NEXT_I18N_SUPPORT": "false",
            "process.env.__NEXT_HAS_REWRITES": "false",
            "process.env.__NEXT_ANALYTICS_ID": "null",
            "process.env.__NEXT_OPTIMIZE_CSS": "false",
            "process.env.__NEXT_CROSS_ORIGIN": "''",
            "process.env.__NEXT_STRICT_MODE": "false",
            "process.env.__NEXT_IMAGE_OPTS": "null"
          }
        },
        "server": {
          ".env": "NEXT_",
          "defaults": {
            "process.env.__NEXT_TRAILING_SLASH": "false",
            "process.env.__NEXT_OPTIMIZE_FONTS": "false",
            "process.env.NODE_ENV": "\"development\"",
            "process.env.__NEXT_OPTIMIZE_IMAGES": "false",
            "process.env.__NEXT_OPTIMIZE_CSS": "false",
            "process.env.__NEXT_ROUTER_BASEPATH": "''",
            "process.env.__NEXT_SCROLL_RESTORATION": "false",
            "process.env.__NEXT_I18N_SUPPORT": "false",
            "process.env.__NEXT_HAS_REWRITES": "false",
            "process.env.__NEXT_ANALYTICS_ID": "null",
            "process.env.__NEXT_CROSS_ORIGIN": "''",
            "process.env.__NEXT_STRICT_MODE": "false",
            "process.env.__NEXT_IMAGE_OPTS": "null",
            "global": "globalThis",
            "window": "undefined"
          }
        }
      }
    }
  }
}

Here are type definitions:

type Framework = Environment & {
  // This changes what's printed in the console on load
  displayName?: string;

  // This allows a prefix to be added (and ignored) to requests.
  // Useful for integrating an existing framework that expects internal routes to have a prefix
  // e.g. "_next"
  assetPrefix?: string;

  development?: Environment;
  production?: Environment;

  // The directory used for serving unmodified assets like fonts and images
  // Defaults to "public" if exists, else "static", else disabled.
  static?: string;

  // "onimportcss" disables the automatic "onimportcss" feature
  // If the framework does routing, you may want to handle CSS manually
  // "facade" removes CSS imports from JavaScript files,
  //    and replaces an imported object with a proxy that mimics CSS module support without doing any class renaming.
  css?: "onimportcss" | "facade";

  // Bun's filesystem router
  router?: Router;
};

type Define = {
  // By passing ".env", Bun will automatically load .env.local, .env.development, and .env if exists in the project root
  //    (in addition to the processes' environment variables)
  // When "*", all environment variables will be automatically injected into the JavaScript loader
  // When a string like "NEXT_PUBLIC_", only environment variables starting with that prefix will be injected

  ".env": string | "*";

  // These environment variables will be injected into the JavaScript loader
  // These are the equivalent of Webpack's resolve.alias and esbuild's --define.
  // Values are parsed as JSON, so they must be valid JSON. The only exception is '' is a valid string, to simplify writing stringified JSON in JSON.
  // If not set, `process.env.NODE_ENV` will be transformed into "development".
  defaults: Record<string, string>;
};

type Environment = {
  // This is a wrapper for the client-side entry point for a route.
  // This allows frameworks to run initialization code on pages.
  client: string;
  // This is a wrapper for the server-side entry point for a route.
  // This allows frameworks to run initialization code on pages.
  server: string;
  // This runs when "server" code fails to load due to an exception.
  fallback: string;

  // This is how environment variables and .env is configured.
  define?: Define;
};

// Bun's filesystem router
// Currently, Bun supports pages by either an absolute match or a parameter match.
// pages/index.tsx will be executed on navigation to "/" and "/index"
// pages/posts/[id].tsx will be executed on navigation to "/posts/123"
// Routes & parameters are automatically passed to `fallback` and `server`.
type Router = {
  // This determines the folder to look for pages
  dir: string[];

  // These are the allowed file extensions for pages.
  extensions?: string[];
};

To use a framework, you pass bun bun --use package-name.

Your framework's package.json name should start with bun-framework-. This is so that people can type something like bun bun --use next and it will check bun-framework-next first. This is similar to how Babel plugins tend to start with babel-plugin-.

For developing frameworks, you can also do bun bun --use ./relative-path-to-framework.

If you're interested in adding a framework integration, please reach out. There's a lot here and it's not entirely documented yet.

FAQ

When running bun on an M1 (or Apple Silicon), if you see a message like this:

[1] 28447 killed bun create next ./test

It most likely means you're running bun's x64 version on Apple Silicon. This happens if bun is running via Rosetta. Rosetta is unable to emulate AVX2 instructions, which Bun indirectly uses.

The fix is to ensure you installed a version of Bun built for Apple Silicon.

error: Unexpected

If you see an error like this:

image

It usually means the max number of open file descriptors is being explicitly set to a low number. By default, Bun requests the max number of file descriptors available (which on macOS, is something like 32,000). But, if you previously ran into ulimit issues with e.g. Chokidar, someone on The Internet may have advised you to run ulimit -n 8096.

That advice unfortunately lowers the hard limit to 8096. This can be a problem in large repositories or projects with lots of dependencies. Chokidar (and other watchers) don't seem to call setrlimit, which means they're reliant on the (much lower) soft limit.

To fix this issue:

  1. Remove any scripts that call ulimit -n and restart your shell.
  2. Try agin, and if the error still occurs, try setting ulimit -n to an absurdly high number, such as ulimit -n 65542
  3. Try again, and if that still doesn't fix it, open an issue

Reference

bun run

bun run is a fast package.json scripts runner. Instead of waiting 170ms for your npm client to start every time, you wait 6ms for Bun.

By default, bun run prints the script that will be invoked:

bun run clean
$ rm -rf node_modules/.cache dist

You can disable that with --silent

bun run --silent clean

To print a list of scripts, bun run without additional args:

# This command
bun run

# Prints this
hello-create-react-app scripts:

bun run start
react-scripts start

bun run build
react-scripts build

bun run test
react-scripts test

bun run eject
react-scripts eject

4 scripts

bun run automatically loads environment variables from .env into the shell/task. .env files are loaded with the same priority as the rest of Bun, so that means:

  1. .env.local is first
  2. if ($NODE_ENV === "production") .env.production else .env.development
  3. .env

If something is unexpected there, you can run bun run env to get a list of environment variables.

The default shell it uses is bash, but if that's not found, it tries sh and if still not found, it tries zsh. This is not configurable right now, but if you care file an issue.

bun run automatically adds any parent node_modules/.bin to $PATH and if no scripts match, it will load that binary instead. That means you can run executables from packages too.

# If you use Relay
bun run relay-compiler

# You can also do this, but:
# - It will only lookup packages in `node_modules/.bin` instead of `$PATH`
# - It will start Bun's dev server if the script name doesn't exist (`bun` starts the dev server by default)
bun relay-compiler

To pass additional flags through to the task or executable, there are two ways:

# Explicit: include "--" and anything after will be added. This is the recommended way because it is more reliable.
bun run relay-compiler -- -–help

# Implicit: if you do not include "--", anything *after* the script name will be passed through
# Bun flags are parsed first, which means e.g. `bun run relay-compiler --help` will print Bun's help instead of relay-compiler's help.
bun run relay-compiler --schema foo.graphql

bun run supports lifecycle hooks like post${task} and pre{task}. If they exist, they will run matching the behavior of npm clients. If the pre${task} fails, the next task will not be run. There is currently no flag to skip these lifecycle tasks if they exist, if you want that file an issue.

bun create

bun create is a fast way to create a new project from a template.

At the time of writing, bun create react app runs ~11x faster on my local computer than yarn create react-app app. bun create currently does no caching (though your npm client does)

Usage

Create a new Next.js project:

bun create next ./app

Create a new React project:

bun create react ./app

Create from a GitHub repo:

bun create ahfarmer/calculator ./app

To see a list of examples, run:

bun create

Format:

bun create github-user/repo-name destination
bun create local-example-or-remote-example destination
bun create /absolute/path/to-template-folder destination
bun create https://github.com/github-user/repo-name destination
bun create github.com/github-user/repo-name destination

Note: you don't need bun create to use Bun. You don't need any configuration at all. This command exists to make it a little easier.

Local templates

If you have your own boilerplate you prefer using, copy it into $HOME/.bun-create/my-boilerplate-name.

Before checking Bun's examples folder, bun create checks for a local folder matching the input in:

  • $BUN_CREATE_DIR/
  • $HOME/.bun-create/
  • $(pwd)/.bun-create/

If a folder exists in any of those folders with the input, bun will use that instead of a remote template.

To create a local template, run:

mkdir -p $HOME/.bun-create/new-template-name
echo '{"name":"new-template-name"}' > $HOME/.bun-create/new-template-name/package.json

This lets you run:

bun create new-template-name ./app

Now your new template should appear when you run:

bun create

Warning: unlike with remote templates, bun will delete the entire destination folder if it already exists.

Flags
Flag Description
--npm Use npm for tasks & install
--yarn Use yarn for tasks & install
--pnpm Use pnpm for tasks & install
--force Overwrite existing files
--no-install Skip installing node_modules & tasks
--no-git Don't initialize a git repository
--open Start & open in-browser after finish
Environment Variables Description
GITHUB_API_DOMAIN If you're using a GitHub enterprise or a proxy, you can change what the endpoint requests to GitHub go
GITHUB_API_TOKEN This lets bun create work with private repositories or if you get rate-limited

By default, bun create will cancel if there are existing files it would overwrite and its a remote template. You can pass --force to disable this behavior.

Publishing a new template

Clone this repository and a new folder in examples/ with your new template. The package.json must have a name that starts with @bun-examples/. Do not worry about publishing it, that will happen automaticallly after the PR is merged.

Make sure to include a .gitignore that includes node_modules so that node_modules aren't checked in to git when people download the template.

Testing your new template

To test your new template, add it as a local template or pass the absolute path.

bun create /path/to/my/new/template destination-dir

Warning: This will always delete everything in destination-dir.

Config

The bun-create section of package.json is automatically removed from the package.json on disk. This lets you add create-only steps without waiting for an extra package to install.

There are currently two options:

  • postinstall
  • preinstall

They can be an array of strings or one string. An array of steps will be executed in order.

Here is an example:

{
  "name": "@bun-examples/next",
  "version": "0.0.31",
  "main": "index.js",
  "dependencies": {
    "next": "11.1.2",
    "react": "^17.0.2",
    "react-dom": "^17.0.2",
    "react-is": "^17.0.2"
  },
  "devDependencies": {
    "@types/react": "^17.0.19",
    "bun-framework-next": "^0.0.0-21",
    "typescript": "^4.3.5"
  },
  "bun-create": {
    "postinstall": ["bun bun --use next"]
  }
}

By default, all commands run inside the environment exposed by the auto-detected npm client. This incurs a significant performance penalty, something like 150ms spent waiting for the npm client to start on each invocation.

Any command that starts with "bun " will be run without npm, relying on the first bun binary in $PATH.

How bun create works

When you run bun create ${template} ${destination}, here's what happens:

IF remote template

  1. GET registry.npmjs.org/@bun-examples/${template}/latest and parse it

  2. GET registry.npmjs.org/@bun-examples/${template}/-/${template}-${latestVersion}.tgz

  3. Decompress & extract ${template}-${latestVersion}.tgz into ${destination}

    • If there are files that would overwrite, warn and exit unless --force is passed

IF github repo

  1. Download the tarball from GitHub's API

  2. Decompress & extract into ${destination}

    • If there are files that would overwrite, warn and exit unless --force is passed

ELSE IF local template

  1. Open local template folder

  2. Delete destination directory recursively

  3. Copy files recursively using the fastest system calls available (on macOS fcopyfile and Linux, copy_file_range). Do not copy or traverse into node_modules folder if exists (this alone makes it faster than cp)

  4. Parse the package.json (again!), update name to be ${basename(destination)}, remove the bun-create section from the package.json and save the updated package.json to disk.

    • IF Next.js is detected, add bun-framework-next to the list of dependencies
    • IF Create React App is detected, add the entry point in /src/index.{js,jsx,ts,tsx} to public/index.html
    • IF Relay is detected, add bun-macro-relay so that Relay works
  5. Auto-detect the npm client, preferring pnpm, yarn (v1), and lastly npm

  6. Run any tasks defined in "bun-create": { "preinstall" } with the npm client

  7. Run ${npmClient} install unless --no-install is passed OR no dependencies are in package.json

  8. Run any tasks defined in "bun-create": { "preinstall" } with the npm client

  9. Run git init; git add -A .; git commit -am "Initial Commit";

    • Rename gitignore to .gitignore. NPM automatically removes .gitignore files from appearing in packages.
    • If there are dependencies, this runs in a separate thread concurrently while node_modules are being installed
    • Using libgit2 if available was tested and performed 3x slower in microbenchmarks
  10. Done

misctools/publish-examples.js publishes all examples to npm.

bun bun

Run bun bun ./path-to.js to generate a node_modules.bun file containing all imported dependencies (recursively).

Why bundle?

  • For browsers, loading entire apps without bundling dependencies is typically slow. With a fast bundler & transpiler, the bottleneck eventually becomes the web browser's ability to run many network requests concurrently. There are many workarounds for this. <link rel="modulepreload">, HTTP/3, etc but none are more effective than bundling. If you have reproducible evidence to the contrary, feel free to submit an issue. It would be better if bundling wasn't necessary.
  • On the server, bundling reduces the number of filesystem lookups to load JavaScript. While filesystem lookups are faster than HTTP requests, there's still overhead.

What is .bun?

The .bun file contains:

  • all the bundled source code
  • all the bundled source code metadata
  • project metadata & configuration

Here are some of the questions .bun files answer:

  • when I import react/index.js, where in the .bun is the code for that? (not resolving, just the code)
  • what modules of a package are used?
  • what framework is used? (e.g. Next.js)
  • where is the routes directory?
  • how big is each imported dependency?
  • what is the hash of the bundle's contents? (for etags)
  • what is the name & version of every npm package exported in this bundle?
  • what modules from which packages are used in this project? ("project" defined as all the entry points used to generate the .bun)

All in one file.

It's a little like a build cache, but designed for reuse. I hope people will eventually check it into version control so their coworkers don't have to run npm install as often.

Position-independent code

From a design perspective, the most important part of the .bun format is how code is organized. Each module is exported by a hash like this:

// preact/dist/preact.module.js
export var $eb6819b = $$m({
  "preact/dist/preact.module.js": (module, exports) => {
    var n, l, u, i, t, o, r, f, e = {}, c = [], s = /acit|ex(?:s|g|n|p|$)|rph|grid|ows|mnc|ntw|ine[ch]|zoo|^ord|itera/i;
    // ... rest of code

This makes bundled modules position-independent. In theory, one could import only the exact modules in-use without reparsing code and without generating a new bundle. One bundle can dynamically become many bundles comprising only the modules in use on the webpage. Thanks to the metadata with the byte offsets, a web server can send each module to browsers zero-copy using sendfile. Bun itself is not quite this smart yet, but these optimizations would be useful in production and potentially very useful for React Server Components.

To see the schema inside, have a look at JavascriptBundleContainer. You can find JavaScript bindings to read the metadata in src/api/schema.js. This is not really an API yet. It's missing the part where it gets the binary data from the bottom of the file. Someday, I want this to be usable by other tools too.

Where is the code?

.bun files are marked as executable.

To print out the code, run ./node_modules.bun in your terminal or run bun ./path-to-node_modules.bun.

Here is a copy-pastable example:

./node_modules.bun > node_modules.js

This works because every .bun file starts with this:

#!/usr/bin/env bun

To deploy to production with Bun, you'll want to get the code from the .bun file and stick that somewhere your web server can find it (or if you're using Vercel or a Rails app, in a public folder).

Note that .bun is a binary file format, so just opening it in VSCode or vim might render strangely.

Advanced

By default, bun bun only bundles external dependencies that are imported or required in either app code or another external dependency. An "external depenendency" is defined as, "A JavaScript-like file that has /node_modules/ in the resolved file path and a corresponding package.json".

To force bun to bundle packages which are not located in a node_modules folder (i.e. the final, resolved path following all symlinks), add a bun section to the root project's package.json with alwaysBundle set to an array of package names to always bundle. Here's an example:

{
  "name": "my-package-name-in-here",
  "bun": {
    "alwaysBundle": ["@mybigcompany/my-workspace-package"]
  }
}

Bundled dependencies are not eligible for Hot Module Reloading. The code is served to browsers & Bun.js verbatim. But, in the future, it may be sectioned off into only parts of the bundle being used. That's possible in the current version of the .bun file (so long as you know which files are necessary), but it's not implemented yet. Longer-term, it will include all import and export of each module inside.

What is the module ID hash?

The $eb6819b hash used here:

export var $eb6819b = $$m({

Is generated like this:

  1. Murmur3 32 bit hash of package.name@package.version. This is the hash uniquely identifying the npm package.
  2. Wyhash 64 of the package.hash + package_path. package_path means "relative to the root of the npm package, where is the module imported?". For example, if you imported react/jsx-dev-runtime.js, the package_path is jsx-dev-runtime.js. react-dom/cjs/react-dom.development.js would be cjs/react-dom.development.js
  3. Truncate the hash generated above to a u32

The implementation details of this module ID hash will vary between versions of Bun. The important part is the metadata contains the module IDs, the package paths, and the package hashes so it shouldn't really matter in practice if other tooling wants to make use of any of this.

bun completions

This command installs completions for zsh and/or fish. It's run automatically on every bun upgrade and on install. It reads from $SHELL to determine which shell to install for. It tries several common shell completion directories for your shell and OS.

If you want to copy the completions manually, run bun completions > path-to-file. If you know the completions directory to install them to, run bun completions /path/to/directory.

Environment variables

  • GOMAXPROCS: For bun bun, this sets the maximum number of threads to use. If you're experiencing an issue with bun bun, try setting GOMAXPROCS=1 to force bun to run single-threaded
  • DISABLE_BUN_ANALYTICS=1 this disables Bun's analytics. Bun records bundle timings (so we can answer with data, "is bun getting faster?") and feature usage (e.g. "are people actually using macros?"). The request body size is about 60 bytes, so it's not a lot of data
  • TMPDIR: Before bun bun completes, it stores the new .bun in $TMPDIR. If unset, TMPDIR defaults to the platform-specific temporary directory (on Linux, /tmp and on macOS /private/tmp)

Credits

  • While written in Zig instead of Go, Bun's JS transpiler, CSS lexer, and node module resolver source code is based off of @evanw's esbuild project. @evanw did a fantastic job with esbuild.

License

Bun itself is MIT-licensed.

However, JavaScriptCore (and WebKit) is LGPL-2 and Bun statically links it.

Per LGPL2:

(1) If you statically link against an LGPL'd library, you must also provide your application in an object (not necessarily source) format, so that a user has the opportunity to modify the library and relink the application.

You can find the patched version of WebKit used by Bun here: https://github.com/jarred-sumner/webkit. If you would like to relink Bun with changes:

  • git submodule update --init --recursive
  • make jsc
  • zig build

This compiles JavaScriptCore, compiles Bun's .cpp bindings for JavaScriptCore (which are the object files using JavaScriptCore) and outputs a new bun binary with your changes.

To successfully run zig build, you will need to install a patched version of Zig available here: https://github.com/jarred-sumner/zig/tree/jarred/zig-sloppy.

Bun also statically links these libraries:

For compatibiltiy reasons, these NPM packages are embedded into Bun's binary and injected if imported.

Developing Bun

Estimated: 30-90 minutes :(

macOS

Install LLVM 12 and homebrew dependencies:

brew install llvm@12 coreutils libtool cmake libiconv automake openssl@1.1 ninja gnu-sed pkg-config

Bun (& the version of Zig) need LLVM 12 and Clang 12 (clang is part of LLVM). Weird build & runtime errors will happen otherwise.

Make sure LLVM 12 is in your $PATH:

which clang-12

If it is not, you will have to run this to link it:

export PATH=$(brew --prefix llvm@12)/bin:$PATH
export LDFLAGS="$LDFLAGS -L$(brew --prefix llvm@12)/lib"
export CPPFLAGS="$CPPFLAGS -I$(brew --prefix llvm@12)/include"

On fish that looks like fish_add_path (brew --prefix llvm@12)/bin

Compile Zig

git clone https://github.com/jarred-sumner/zig
cd zig
git checkout jarred/zig-sloppy-with-small-structs
cmake . -DCMAKE_PREFIX_PATH=$(brew --prefix llvm@12) -DZIG_STATIC_LLVM=ON -DCMAKE_BUILD_TYPE=Release && make -j 16

Note that brew install zig won't work. Bun uses a build of Zig with a couple patches.

Additionally, you'll need cmake, npm and esbuild installed globally.

You'll want to make sure zig is in $PATH. The zig binary wil be in the same folder as the newly-cloned zig repo. If you use fish, you can run fish_add_path (pwd).

Build bun

If you're building on an Apple Silicon device, you'll need to do is ensure you have set an environment variable CODESIGN_IDENTITY. You can find the correct value by visiting Keychain Access and looking under your login profile for Certificates. The name would usually look like Apple Development: user@example.com (WDYABC123)

If you're not familiar with the process, there's a guide here

In bun:

# If you omit --depth=1, `git submodule update` will take 17.5 minutes on 1gbps internet, mostly due to WebKit.
git submodule update --init --recursive --progress --depth=1
make vendor jsc identifier-cache dev

Verify it worked

First ensure the node dependencies are installed

cd integration/snippets
npm i

Then

# if you're not already in the bun root directory
cd ../../
make test-dev-all

Troubleshooting

If you see an error when compiling libarchive, run this:

brew install pkg-config

If you see an error about missing files on zig build obj, make sure you built the headers

Linux

A Dockerfile with the exact version of Zig used is availble at Dockerfile.zig. This installs all the system dependencies you'll need excluding JavaScriptCore, but doesn't currently compile Bun in one command. If you're having trouble compiling Zig, it might be helpful to look at.

Compile Zig:

git clone https://github.com/jarred-sumner/zig
cd zig
git checkout jarred/zig-sloppy-with-small-structs
cmake . -DCMAKE_BUILD_TYPE=Release && make -j $(nproc)

Compile JavaScriptCore:

# This will take a few minutes, depending on how fast your internet is
git submodule update --init --recursive --progress --depth=1

# This will take 10-30 minutes, depending on how many cores your CPU has
DOCKER_BUILDKIT=1 docker build -t bun-webkit $(pwd)/src/javascript/jsc/WebKit -f $(pwd)/src/javascript/jsc/WebKit/Dockerfile --progress=plain
docker container create bun-webkit

# Find the docker container ID manually. If you know a better way, please submit a PR!
docker container ls

docker cp DOCKER_CONTAINER_ID_YOU_JUST_FOUND:/output $HOME/webkit-build

Compile Bun:

make vendor dev

Verify it worked

First ensure the node dependencies are installed

cd integration/snippets
npm i

Then

# if you're not already in the bun root directory
cd ../../
make test-dev-all

Run bun:

packages/debug-bun-cli-darwin-x64/bin/bun-debug

vscode-zig

You will want to install the fork of vscode-zig so you get a Run test and a Debug test button.

To do that:

git clone https://github.com/jarred-sumner/vscode-zig
cd vscode-zig
yarn install
yarn vsce package && code --install-extension ./zig-0.2.5.vsix

About

Incredibly fast JavaScript runtime, bundler, test runner, and package manager – all in one

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Zig 61.1%
  • C++ 23.0%
  • TypeScript 10.1%
  • C 3.3%
  • JavaScript 1.0%
  • Shell 0.4%
  • Other 1.1%