Skip to content

ZhaoyiW/YouTube-Trending-Video-Analysis

Repository files navigation

YouTube Trending Video Analysis License: MIT

Installation

Modules

pip install these modules

  • pandas: data processing
  • numpy: linear algebra
  • seaborn: data visualization
  • matplotlib: data visualization
  • re: regular expression
  • datetime: manipulate date time types of data
  • os: create folders
  • PTL: image processing
  • wordcloud: word cloud creating

Data Source

Trending YouTube Video Statistics from Kaggle
Focus on the US dataset

Project Motivation

Through analyzing the YouTube trending videos data, I was aiming to answer these questions:

  1. What types of videos are more likely to be trending?
  2. Do descriptions or tags matter?
  3. How long does it take for a video to go viral?

File Description

Datasets

  • USvideos.csv
    Information about trending videos on YouTube dated from 2017-11-14 to 2018-06-14.
    Shape: (40949, 16)
  • US_category_id.json
    Category names

DataWrangling_Visualization.ipynb

  • Data wrangling
  • Explorary data analysis
  • Data visualization

img

Includes all images used for word cloud, and output visualizations

Results

My blog on Medium:
Data-Driven Tips to Make aVideo Go Viral on YouTube

License

This project is under MIT License.

Author

Zhaoyi Wang

About

What types of YouTube videos can go viral?

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published