Skip to content

Implementation of "LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace"

Notifications You must be signed in to change notification settings

UCAS-YanYang/LancBiO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 

Repository files navigation

LancBiO Implementation

Code repository of "LancBiO: Dynamic Lanczos-aided Bilevel Optimization via Krylov Subspace".

Dependencies

  • Ubuntu 20.04
  • Python 3.8
  • PyTorch 1.13.1
  • CUDA 11.7
  • wandb 0.16.0 (We heavily rely on Weights & Biases for visualization and monitoring)

Get Started

You can create a conda environment by simply running the following commands.

$ conda create -n lancbio_env python=3.8
$ pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
$ pip install wandb

To start training, run

$ conda activate lancbio_env
$ cd ./Code/LancBiO_deterministic
$ python3 main.py
$ conda activate lancbio_env
$ cd ./Code/LancBiO_stochastic
$ python3 main.py
$ conda activate lancbio_env
$ cd ./Code/SytheticProblem
$ python3 main.py

About

Implementation of "LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages