forked from VITA-Group/ABD-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
392 lines (297 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from __future__ import print_function
from __future__ import division
import os
import sys
import time
import datetime
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import lr_scheduler
from args import argument_parser, image_dataset_kwargs, optimizer_kwargs
from torchreid.data_manager import ImageDataManager
from torchreid import models
from torchreid.utils.iotools import save_checkpoint, check_isfile
from torchreid.utils.avgmeter import AverageMeter
from torchreid.utils.loggers import Logger, RankLogger
from torchreid.utils.torchtools import count_num_param, open_all_layers, open_specified_layers
from torchreid.utils.reidtools import visualize_ranked_results
from torchreid.eval_metrics import evaluate
from torchreid.optimizers import init_optimizer
from torchreid.regularizers import get_regularizer
import logging
logging.basicConfig(level=os.environ.get('LOGLEVEL', 'CRITICAL'))
# global variables
parser = argument_parser()
args = parser.parse_args()
os.environ['TORCH_HOME'] = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '.torch'))
def get_criterion(num_classes: int, use_gpu: bool, args):
if args.criterion == 'htri':
from torchreid.losses.hard_mine_triplet_loss import TripletLoss
criterion = TripletLoss(num_classes, vars(args), use_gpu)
elif args.criterion == 'xent':
from torchreid.losses.cross_entropy_loss import CrossEntropyLoss
criterion = CrossEntropyLoss(num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth)
else:
raise RuntimeError('Unknown criterion {}'.format(args.criterion))
return criterion
def main():
global args
torch.manual_seed(args.seed)
if not args.use_avai_gpus:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if args.use_cpu:
use_gpu = False
log_name = 'log_test.txt' if args.evaluate else 'log_train.txt'
sys.stderr = sys.stdout = Logger(osp.join(args.save_dir, log_name))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU, however, GPU is highly recommended")
print("Initializing image data manager")
dm = ImageDataManager(use_gpu, **image_dataset_kwargs(args))
trainloader, testloader_dict = dm.return_dataloaders()
print("Initializing model: {}".format(args.arch))
model = models.init_model(name=args.arch, num_classes=dm.num_train_pids, loss={'xent'}, use_gpu=use_gpu, args=vars(args))
print(model)
print("Model size: {:.3f} M".format(count_num_param(model)))
criterion = get_criterion(dm.num_train_pids, use_gpu, args)
regularizer = get_regularizer(vars(args))
optimizer = init_optimizer(model.parameters(), **optimizer_kwargs(args))
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
if args.load_weights and check_isfile(args.load_weights):
# load pretrained weights but ignore layers that don't match in size
try:
checkpoint = torch.load(args.load_weights)
except Exception as e:
print(e)
checkpoint = torch.load(args.load_weights, map_location={'cuda:0': 'cpu'})
pretrain_dict = checkpoint['state_dict']
model_dict = model.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
print("Loaded pretrained weights from '{}'".format(args.load_weights))
if args.resume and check_isfile(args.resume):
checkpoint = torch.load(args.resume)
state = model.state_dict()
state.update(checkpoint['state_dict'])
model.load_state_dict(state)
# args.start_epoch = checkpoint['epoch'] + 1
print("Loaded checkpoint from '{}'".format(args.resume))
print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, checkpoint['rank1']))
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.evaluate:
print("Evaluate only")
for name in args.target_names:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]['query'], testloader_dict[name]['query_flip']
galleryloader = testloader_dict[name]['gallery'], testloader_dict[name]['gallery_flip']
distmat = test(model, queryloader, galleryloader, use_gpu, return_distmat=True)
if args.visualize_ranks:
visualize_ranked_results(
distmat, dm.return_testdataset_by_name(name),
save_dir=osp.join(args.save_dir, 'ranked_results', name),
topk=20
)
return
start_time = time.time()
ranklogger = RankLogger(args.source_names, args.target_names)
train_time = 0
print("==> Start training")
if args.fixbase_epoch > 0:
oldenv = os.environ.get('sa', '')
os.environ['sa'] = ''
print("Train {} for {} epochs while keeping other layers frozen".format(args.open_layers, args.fixbase_epoch))
initial_optim_state = optimizer.state_dict()
for epoch in range(args.fixbase_epoch):
start_train_time = time.time()
train(epoch, model, criterion, regularizer, optimizer, trainloader, use_gpu, fixbase=True)
train_time += round(time.time() - start_train_time)
print("Done. All layers are open to train for {} epochs".format(args.max_epoch))
optimizer.load_state_dict(initial_optim_state)
os.environ['sa'] = oldenv
max_r1 = 0
for epoch in range(args.start_epoch, args.max_epoch):
start_train_time = time.time()
print(epoch)
print(criterion)
train(epoch, model, criterion, regularizer, optimizer, trainloader, use_gpu, fixbase=False)
train_time += round(time.time() - start_train_time)
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
save_checkpoint({
'state_dict': state_dict,
'rank1': 0,
'epoch': epoch,
}, False, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
scheduler.step()
if (epoch + 1) > args.start_eval and args.eval_freq > 0 and (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.max_epoch:
print("==> Test")
for name in args.target_names:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]['query'], testloader_dict[name]['query_flip']
galleryloader = testloader_dict[name]['gallery'], testloader_dict[name]['gallery_flip']
rank1 = test(model, queryloader, galleryloader, use_gpu)
ranklogger.write(name, epoch + 1, rank1)
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
if max_r1 < rank1:
print('Save!', max_r1, rank1)
save_checkpoint({
'state_dict': state_dict,
'rank1': rank1,
'epoch': epoch,
}, False, osp.join(args.save_dir, 'checkpoint_best.pth.tar'))
max_r1 = rank1
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
ranklogger.show_summary()
def train(epoch, model, criterion, regularizer, optimizer, trainloader, use_gpu, fixbase=False):
if not fixbase and args.use_of and epoch >= args.of_start_epoch:
print('Using OF')
from torchreid.losses.of_penalty import OFPenalty
of_penalty = OFPenalty(vars(args))
losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
model.train()
if fixbase or args.fixbase:
open_specified_layers(model, args.open_layers)
else:
open_all_layers(model)
end = time.time()
for batch_idx, (imgs, pids, _, _) in enumerate(trainloader):
try:
limited = float(os.environ.get('limited', None))
except (ValueError, TypeError):
limited = 1
if not fixbase and (batch_idx + 1) > limited * len(trainloader):
break
data_time.update(time.time() - end)
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
outputs = model(imgs)
loss = criterion(outputs, pids)
if not fixbase:
reg = regularizer(model)
loss += reg
if not fixbase and args.use_of and epoch >= args.of_start_epoch:
penalty = of_penalty(outputs)
loss += penalty
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
losses.update(loss.item(), pids.size(0))
if (batch_idx + 1) % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time,
data_time=data_time, loss=losses))
end = time.time()
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20], return_distmat=False):
flip_eval = args.flip_eval
if flip_eval:
print('# Using Flip Eval')
batch_time = AverageMeter()
model.eval()
with torch.no_grad():
qf, q_pids, q_camids, q_paths = [], [], [], []
if flip_eval:
enumerator = enumerate(zip(queryloader[0], queryloader[1]))
else:
enumerator = enumerate(queryloader[0])
for batch_idx, package in enumerator:
end = time.time()
if flip_eval:
(imgs0, pids, camids, paths), (imgs1, _, _, _) = package
if use_gpu:
imgs0, imgs1 = imgs0.cuda(), imgs1.cuda()
features = (model(imgs0)[0] + model(imgs1)[0]) / 2.0
# print(features.size())
else:
(imgs, pids, camids, paths) = package
if use_gpu:
imgs = imgs.cuda()
features = model(imgs)[0]
batch_time.update(time.time() - end)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
q_paths.extend(paths)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids, g_paths = [], [], [], []
if flip_eval:
enumerator = enumerate(zip(galleryloader[0], galleryloader[1]))
else:
enumerator = enumerate(galleryloader[0])
for batch_idx, package in enumerator:
# print('fuck')
end = time.time()
if flip_eval:
(imgs0, pids, camids, paths), (imgs1, _, _, _) = package
if use_gpu:
imgs0, imgs1 = imgs0.cuda(), imgs1.cuda()
features = (model(imgs0)[0] + model(imgs1)[0]) / 2.0
# print(features.size())
else:
(imgs, pids, camids, _) = package
if use_gpu:
imgs = imgs.cuda()
features = model(imgs)[0]
batch_time.update(time.time() - end)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
g_paths.extend(paths)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
if os.environ.get('save_feat'):
import scipy.io as io
io.savemat(os.environ.get('save_feat'), {'q': qf.data.numpy(), 'g': gf.data.numpy(), 'qt': q_pids, 'gt': g_pids})
# return
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size))
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
if os.environ.get('distmat'):
import scipy.io as io
io.savemat(os.environ.get('distmat'), {'distmat': distmat, 'qp': q_paths, 'gp': g_paths})
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, use_metric_cuhk03=args.use_metric_cuhk03)
print("Results ----------")
print("mAP: {:.2%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.2%}".format(r, cmc[r - 1]))
print("------------------")
if return_distmat:
return distmat
return cmc[0]
if __name__ == '__main__':
main()