-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathlows_and_highs.py
61 lines (56 loc) · 1.98 KB
/
lows_and_highs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
from vector import cb, plot_peaks
import peakutils.peak
def plot_peaks_lows_highs(x, highs, lows, algorithm=None, mph=None, mpd=None):
"""Plot results of the peak dectection."""
try:
import matplotlib.pyplot as plt
except ImportError:
print('matplotlib is not available.')
return
_, ax = plt.subplots(1, 1, figsize=(8, 4))
ax.plot(x, 'b', lw=1)
if highs.size:
label = 'high peak'
label = label + 's' if highs.size > 1 else label
ax.plot(highs, x[highs], '+', mfc=None, mec='r', mew=2, ms=8,
label='%d %s' % (highs.size, label))
ax.legend(loc='best', framealpha=.5, numpoints=1)
if lows.size:
label = 'low peak'
label = label + 's' if lows.size > 1 else label
ax.plot(lows, x[lows], '+', mfc=None, mec='g', mew=2, ms=8,
label='%d %s' % (lows.size, label))
ax.legend(loc='best', framealpha=.5, numpoints=1)
ax.set_xlim(-.02*x.size, x.size*1.02-1)
ymin, ymax = x[np.isfinite(x)].min(), x[np.isfinite(x)].max()
yrange = ymax - ymin if ymax > ymin else 1
ax.set_ylim(ymin - 0.1*yrange, ymax + 0.1*yrange)
ax.set_xlabel('Data #', fontsize=14)
ax.set_ylabel('Amplitude', fontsize=14)
ax.set_title('%s (mph=%s, mpd=%s)' % (algorithm, mph, mpd))
plt.show()
threshold = 0.02
min_dist = 150
print('Detect high peaks with minimum height and distance filters.')
highs = peakutils.peak.indexes(
np.array(cb),
thres=threshold/max(cb), min_dist=min_dist
)
print('High peaks are: %s' % (highs))
print('Detect low peaks with minimum height and distance filters.')
# Invert the signal.
cbInverted = cb * -1
lows = peakutils.peak.indexes(
np.array(cbInverted),
thres=threshold/max(cbInverted), min_dist=min_dist
)
print('Low peaks are: %s' % (lows))
plot_peaks_lows_highs(
np.array(cb),
highs,
lows,
mph=threshold, mpd=min_dist, algorithm='peakutils.peak.indexes'
)