-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathesg_investing_application.py
658 lines (515 loc) · 21.1 KB
/
esg_investing_application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
#Necessary packages:
import tkinter as tk
from tkinter import ttk
import pandas as pd
import numpy as np
#Root window of GUI
root = tk.Tk()
root.geometry('700x900')
root.resizable(False, False)
root.title('ESG Investing')
root.columnconfigure(0, weight=1)
root.columnconfigure(1, weight=4)
root.columnconfigure(2, weight=1)
root.columnconfigure(3, weight=1)
#%% SLIDER 1 - Enviromental ESG Score Input:
#slider current value:
current_value1 = tk.DoubleVar()
def get_current_value1():
return '{: .2f}'.format(current_value1.get())
def slider1_changed(event):
value1_label.configure(text=get_current_value1())
ttk.Label(root, text="\n ESG Asset Allocation Application", font="italic").grid(row=0,columnspan=2)
ttk.Label(root, text="Luc C. Smith & Samuel M. Reisgys").grid(row=1, columnspan= 2)
ttk.Label(root, text="_____________________________________________________________________________________________________________________________________________\n").grid(row=2,columnspan=2, ipady=5, ipadx=5)
# label for the slider1
slider1_label = ttk.Label(
root,
text=' (1) - How much do you care about Environmental (E) issues? \n Ex: gas emissions, anti-pollution actions, regulatory tests, etc. \n (100 being the most care)'
)
slider1_label.grid(
column=0,
row=3,
sticky='w'
)
# slider1
slider1 = ttk.Scale(
root,
from_=0,
to=100,
orient='horizontal', # vertical
command=slider1_changed,
variable=current_value1
)
slider1.grid(
column=1,
row=3,
sticky='we',
ipady = 5
)
# current value1 label
current_value1_label = ttk.Label(
root,
text='Chosen Score:'
)
current_value1_label.grid(
row=4,
columnspan=2,
sticky='n',
ipadx=0,
ipady=5
)
# value1 label
value1_label = ttk.Label(
root,
text=get_current_value1()
)
value1_label.grid(
row=5,
columnspan=2,
sticky='n'
)
ttk.Label(root, text="_____________________________________________________________________________________________________________________________________________\n").grid(row=7,columnspan=2)
#%% SLIDER 2 - Social
# slider2 current value2
current_value2 = tk.DoubleVar()
def get_current_value2():
return '{: .2f}'.format(current_value2.get())
def slider2_changed(event):
value2_label.configure(text=get_current_value2())
# label for the slider2
slider2_label = ttk.Label(
root,
text=' (2) - How much do you care about Social (S) issues? \n Ex: child labor, ethical policies, employee unionization, etc. \n (100 being the most care)'
)
slider2_label.grid(
column=0,
row=15,
sticky='w'
)
# slider2
slider2 = ttk.Scale(
root,
from_=0,
to=100,
orient='horizontal', # vertical
command=slider2_changed,
variable=current_value2
)
slider2.grid(
column=1,
row=15,
sticky='we',
ipady = 5
)
# current value2 label
current_value2_label = ttk.Label(
root,
text='Chosen Score:'
)
current_value2_label.grid(
row=17,
columnspan=2,
sticky='n',
ipadx=0,
ipady=5
)
# value2 label
value2_label = ttk.Label(
root,
text=get_current_value2()
)
value2_label.grid(
row=19,
columnspan=2,
sticky='n'
)
ttk.Label(root, text="_____________________________________________________________________________________________________________________________________________\n").grid(row=20,columnspan=2)
#%% SLIDER 3 - Governance
# slider3 current value3
current_value3 = tk.DoubleVar()
def get_current_value3():
return '{: .2f}'.format(current_value3.get())
def slider3_changed(event):
value3_label.configure(text=get_current_value3())
# label for the slider3
slider3_label = ttk.Label(
root,
text=' (3) - How much do you care about how a firm Governs (G) itself? \n Ex: fairness, corruption, compensation of employees, bias, etc.\n (100 being the most care)'
)
slider3_label.grid(
column=0,
row=30,
sticky='w'
)
# slider3
slider3 = ttk.Scale(
root,
from_=0,
to=100,
orient='horizontal', # vertical
command=slider3_changed,
variable=current_value3
)
slider3.grid(
column=1,
row=30,
sticky='we',
ipady = 5
)
# current value3 label
current_value3_label = ttk.Label(
root,
text='Chosen Score:'
)
current_value3_label.grid(
row=32,
columnspan=2,
sticky='n',
ipadx=0,
ipady=5
)
# value3 label
value3_label = ttk.Label(
root,
text=get_current_value3()
)
value3_label.grid(
row=34,
columnspan=2,
sticky='n'
)
ttk.Label(root, text="_____________________________________________________________________________________________________________________________________________\n").grid(row=35,columnspan=2)
#%% Risk Aversion
current_value4 = tk.DoubleVar()
def get_current_value4():
return '{: .2f}'.format(current_value4.get())
def slider4_changed(event):
value4_label.configure(text=get_current_value4())
# label for the slider4
slider4_label = ttk.Label(
root,
text=' (4) - How much do you try to avoid risk (A)? \n (5 avoiding most risk) \n (0 taking most risk)'
)
slider4_label.grid(
column=0,
row=36,
sticky='w'
)
# slider4
slider4 = ttk.Scale(
root,
from_=0,
to=5,
orient='horizontal', # vertical
command=slider4_changed,
variable=current_value4
)
slider4.grid(
column=1,
row=36,
sticky='we',
ipady = 5
)
# current value4 label
current_value4_label = ttk.Label(
root,
text='Chosen Score:'
)
current_value4_label.grid(
row=37,
columnspan=2,
sticky='n',
ipadx=0,
ipady=5
)
# value4 label
value4_label = ttk.Label(
root,
text=get_current_value4()
)
value4_label.grid(
row=38,
columnspan=2,
sticky='n'
)
ttk.Label(root, text="_____________________________________________________________________________________________________________________________________________\n").grid(row=39,columnspan=2)
#%% Stock Picking
e = tk.StringVar(root)
def get_current_value5():
global e
value1 = e.get()
return value1
def call_sectors():
window = tk.Tk()
window.geometry('250x150')
window.title('Sector names')
ttk.Label(window, text=' Communication Services \n Consumer \n Financials \n Health Care \n Information Technology \n Utilities',
).grid(row=1, column=1)
window.mainloop()
tk.Button(root, text="See sector names",command=call_sectors).grid(row=44,columnspan=2,ipadx=18, pady=4)
ttk.Label(root,text="Type in any sector you'd like to neglect (Separate it by commas and exact name as shown):").grid(row=40, columnspan=2)
e_entry = tk.Entry(root, width=50, textvariable = e).grid(row=41,columnspan=2, pady=2)
e2 = tk.StringVar(root)
def get_current_value6():
global e2
value2 = e2.get()
return value2
ttk.Label(root, text="Stocks that should be excluded from the portfolio (Enter ticker and separate by comma, ex: TSLA, AAPL):").grid(row=45, columnspan=2)
e2_entry = tk.Entry(root, width=50, textvariable = e2).grid(row=46, columnspan=2, pady=2)
#%% Buttons
def Confirm():
#Globalize variables needed:
global esg_list
global stock_list
global sec_list
global get_current_value1
global get_current_value2
global get_current_value3
global get_current_value4
global get_current_value5
global get_current_value6
#Empty lists to store inputs:
esg_list = []
sec_list = []
stock_list = []
#Add inputs when confirmed by user:
esg_list.append(get_current_value1())
esg_list.append(get_current_value2())
esg_list.append(get_current_value3())
esg_list.append(get_current_value4())
sec_list.append(get_current_value5())
stock_list.append(get_current_value6())
#Exhibit confirmed values to be used:
texter = "Selected Values:\n E:"+str(esg_list[0])+" S:"+str(esg_list[1])+" G:"+str(esg_list[2])+" R:"+str(esg_list[3])+" "
myLabel = tk.Label(root, text=texter)
myLabel.grid(row=51,columnspan = 3, sticky="e")
text1 = "Excluded sectors: "+str(sec_list)+ " \nExcluded stocks: "+str(stock_list)+ " "
otherLabel = tk.Label(root, text=text1)
otherLabel.grid(row=52, sticky="ne", rowspan= 10, columnspan=3)
return esg_list, stock_list, sec_list
Confirm = tk.Button(root, text="Confirm Values (1)", command= Confirm)
Confirm.grid(
row = 51, columnspan=2, sticky ="w", pady=4, ipadx=26, padx=127
)
tk.Button(root, text="Quit", command=root.destroy, bg="#ed2f2f", fg="white").grid(row=53, column = 0, pady=4)
#Create command for "Loading..." window before chart is shown:
def shut_down():
global window
window = tk.Toplevel(root)
window.title("Creating Portfolio... \nIt may take up to a minute")
Label1 = tk.Label(window, text="Portfolio created successfully.")
Label1.pack()
tk.Button(window, text="OK",command=window.destroy).pack()
window.geometry("450x60")
window.grab_set()
window.lift()
#Function that generates the chart of the investment portfolio:
def get_portfolio():
#Globalize variables of the lists of inputs:
global esg_list
global stock_list
global sec_list
#Run loading window
shut_down()
#Fama-French 3-Factor Model function used to predict stock returns:
def getFamaFrench3_returns(stocks):
'''
stocks: DataFrame of stock/stocks price data.
returns: Series of Fama-French 3-Factor Model yearly return predictions for each stock.
'''
#Package to perform least squares regression:
import statsmodels.api as sm
#Read in Fama-French data and select same time period as price data (2017-01-01 to 2022-04-28):
ff_data = pd.read_csv('fama_french_data.csv', index_col='date', parse_dates=True)
ff_data = ff_data.loc[ff_data.index > '2017']
ff_data = ff_data.resample('M').last()
#Adjust price data to same period as fama-french data availability (2022-03-31):
stocks = stocks.loc[stocks.index < '2022-04'].resample('M').last()
#Take excess returns of stocks (subtract risk-free rates):
excess = stocks.pct_change()
excess.fillna(method='ffill', inplace=True)
excess.fillna(0, inplace=True)
excess = excess.subtract(ff_data.RF, axis=0)
#Set regression variables for the three factors + add constant:
factors = ff_data[['Mkt-RF', 'SMB', 'HML']]
factors = sm.add_constant(factors)
#Perform regression to find Fama-French 3-factor coefficients:
ff_betas = sm.OLS(excess, factors).fit().params
ff_betas.set_axis(excess.columns, axis=1, inplace=True)
ff_betas = ff_betas.transpose()
#Set variables for Fama-French model equation:
r_f = ff_data.RF.mean() #Risk-free rate
mkt_prem = ff_data['Mkt-RF'].mean() #Market premium
SMB = ff_data.SMB.mean() #Size premium
HML = ff_data.HML.mean() #Value premium
ff_betas.set_axis(['const', 'b1', 'b2', 'b3'], axis=1, inplace=True)
#Estimate returns with model equation + annualize it (12 months in a year):
e_r = (r_f + ff_betas.b1*mkt_prem + ff_betas.b2*SMB + ff_betas.b3*HML)*12
return e_r
# Black-Litterman Model: Adjust Covariance + Returns to Fama-French predictions:
def BlackLit_opt(prices, risk_a):
'''
prices: DataFrame of stock price data.
risk_a: risk-aversion given by the user input.
Black-Litterman Meucci Model using Fama-French 3-Factor model return predictions as views.
returns: posterior returns + covariance matrix as NumPy arrays and list of stock names.
'''
#Packages to adjust covariances:
from statsmodels.stats.correlation_tools import cov_nearest
from sklearn.covariance import LedoitWolf
#Views vector (Q) as Fama-French 3-Factor model predictions:
Q = getFamaFrench3_returns(prices)
Q = Q[Q>-1]
prices = prices.loc[:, Q.index] #Filter price data to prediction data
#Get market cap data for initial portfolio weights:
mcap_data = pd.read_csv('mktcap.csv', index_col='ticker')
mcap_data.index = [stock.split()[0] for stock in mcap_data.index]
mcap_data = mcap_data.loc[prices.columns]
mcap_data.fillna(mcap_data.mean(), inplace=True)
mcap_wgts = (mcap_data / mcap_data.sum()).CUR_MKT_CAP.values #Np array form for calculations.
#Risk-aversion (A) + covariance matrix of stock returns (S):
A = risk_a
cov = prices.pct_change().cov()
#Use LedoitWolf to shrink covariance matrix:
cov_shrunk = LedoitWolf().fit(cov)
S = cov_shrunk.covariance_
#Implied equilibrium excess returns vector (pi = 2A*S*w -> Meucci):
pi = 2.0*A*(S@mcap_wgts)
#Link matrix (P) with 1s showing the position of the stock for that view (return prediction):
P = np.zeros((len(Q), len(Q))) #Make a matrix with length of stocks and views
np.fill_diagonal(P, 1) #Fill matrix's diagonal with 1 for each stock
#Scalar (tau) and uncertainty of views matrix (omega):
#tau 0 between 1 --> 1 / length of time series by Meucci
#c default is 1 by Meucci -> constant rep overall confidence in the views return estimator
#omega = 1/c * P * S * P^T -> Meucci
tau = 1.0/float(len(prices))
c = 1.0
omega = np.dot(np.dot(P, S), P.T) / c
#BL Excess Return: (Meucci formula)
# = pi + tau*S*P^T * (tau*P*S*P^T + omega)^-1 * (Q - P*pi)
r2 = np.linalg.inv(tau*P@S@P.T + omega)
post_pi = pi + np.dot((tau*S@P.T) @ r2, (Q - P@pi))
#BL Covariance Matrix: (Meucci formula)
# = (1+tau)*S - tau^2*S*P.T * (tau*P*S*P.T + omega)^-1 * P*S
c2 = np.linalg.inv(tau*P@S@P.T + omega)
post_S = (1.0+tau)*S - np.dot(np.dot(tau**2.0*np.dot(S, P.T),
c2), np.dot(P, S))
symS = (post_S + post_S.T) / 2 #Make it symmetric
semidefS = cov_nearest(symS) #Ensure strict positive semi-definite
return post_pi, semidefS, Q.index
#Mean-Variance Optimization integrating user preferences and Black-Lit. adjustments:
def allocate(E, S, G, r_a, no_sec=None, no_stock=None):
'''
E: Environmental score/care input (float).
S: Social score/care input (float).
G: Governance score/care input (float).
ESG: Total ESG score/care input (float).
r_a: Risk-aversion input (float).
no_sec: list of unwanted sectors.
no_stock: list of unwanted stocks.
Uses inputs of ESG and risk-aversion preferences along with return and
covariance adjustments of the Black-Litterman model to conduct
mean-variance optimization for weights of allocation.
returns: DataFrame of allocation weights and beta for each stock &
list of portfolio metrics.
'''
#Necessary packages for optimization:
import cvxpy as cp
from cvxpy.atoms.affine.wraps import psd_wrap
#Read in price data of stocks and ESG scores:
esg = pd.read_csv('esg_scores.csv', index_col='ticker') #ESG scores
prices = pd.read_csv('daily_prices.csv', index_col='date', parse_dates=True) #Stock prices
#Make sure same stocks and add sector/group info:
esg = esg.loc[prices.columns]
sec = pd.read_csv('env.csv', usecols=['GICS_SECTOR_NAME', 'ticker'],index_col=0).loc[prices.columns]
esg = pd.merge(esg, sec, left_index=True, right_index=True)
esg = esg.sort_index()
prices = prices.sort_index(axis=1) #Make stocks in same order as esg DF
#Make stock names just the symbol:
esg.index = [stock.split()[0] for stock in esg.index]
esg = esg.sort_index()
prices.columns = [stock.split()[0] for stock in prices.columns]
prices = prices.sort_index(axis=1)
#Filter out unwanted stocks and sectors:
if no_sec != None:
esg = esg.loc[esg.GICS_SECTOR_NAME.isin(no_sec) == False].sort_index()
prices = prices.loc[:, esg.index]
if no_stock != None:
esg = esg.loc[esg.index.isin(no_stock) == False].sort_index()
prices = prices.loc[:, esg.index]
#Gather returns and covariance matrix to produce risk and return variables:
ret, cov, stocks = BlackLit_opt(prices, r_a)
cov = psd_wrap(cov) #Ensure positive semi-definite matrix
esg = esg.loc[stocks] #Filter for stocks used by Black-Lit.
#Variables: weights, esg scores, volatility:
wgts = cp.Variable(len(ret)) #Variable to be optimized (weights of allocation)
E_scr = esg.E_score.values @ wgts #Portfolio E score
S_scr = esg.S_score.values @ wgts #Portfolio S score
G_scr = esg.G_score.values @ wgts #Portfolio G score
risk = cp.quad_form(wgts, cov) #Portfolio Volatility
A = r_a #Risk-aversion parameter
#Constraints and objective function:
cons = [cp.sum(wgts)==1, wgts<=0.10, wgts>=0, E_scr>=E, S_scr>=S, G_scr>=G]
obj = cp.Minimize(risk - A*ret@wgts)
#Optimize:
prob = cp.Problem(obj, cons) #Optimization of objective with constraints
prob.solve() #Solves the problem created (optimal variance given)
weights = np.array(wgts.value.round(3)) #Rounding weights to 3 decimals
#Place weights and returns in DF with appropriate stock:
wgts_df = pd.DataFrame(weights, columns=['Weight'], index=stocks)
wgts_df['Return'] = ret
#Add ESG scores to a list:
scores = [E_scr.value, S_scr.value, G_scr.value]
#Get SPX Index (benchmark) price data for betas calculation:
spx = pd.read_csv('daily_spx.csv', index_col=0, parse_dates=True) #Benchmark prices
#Calculate percentage returns of stocks and SPX:
ret_1Y = prices.iloc[-252:].pct_change() #252 trading days in a year
ret_1Y['SPX'] = spx[-252:].pct_change() #benchmark
#Covariance of stocks and SPX:
cov = ret_1Y.cov().iloc[:, -1]
#Beta calculation = covariace(stock, benchmark) / variance(benchmark)
beta_1Y = cov / ret_1Y.SPX.var()
wgts_df['Beta'] = beta_1Y[:-1]
return wgts_df, scores
#Get allocation weights and portfolio metrics:
port, s = allocate(float(esg_list[0]),float(esg_list[1]),float(esg_list[2]),
float(esg_list[3]),sec_list,stock_list)
#Construct Pie Chart of Portfolio:
import seaborn as sea
import matplotlib.pyplot as plt
#Portfolio beta calculation:
po = port.Weight
po = po[po>0]
p_b = port.Beta.loc[po.index]
beta = np.round(np.dot(po, p_b), 2) #weighted average
#Weights and return of portfolio (weighted average):
p = port.Weight*100
p.index = [stock.split()[0] for stock in p.index]
r = np.round(np.dot(port.Return, port.Weight)*252*100, 2)
#Graph construction (pie chart):
sea.set_theme()
plt.figure(figsize=(10,8))
plt.pie(p[p>0], labels=p[p>0].index,
autopct='%.1f%%', explode=np.full(len(p[p>0].index), 0.05))
#Making it a donut-type pie chart:
center = plt.Circle((0,0), 0.45, fc='white')
fig = plt.gcf()
fig.gca().add_artist(center)
#Adding title and legend of stock names onto chart:
plt.title('Investment Portfolio:',
bbox={'facecolor': 'none','edgecolor': 'black','boxstyle': 'round'},
fontdict={'family':'serif','color':'black','weight': 'bold','size': 20})
plt.legend(loc='upper left', title='Stocks:', bbox_to_anchor=(1.02, 1), borderaxespad=0)
#Making annotation string to exhibit portfolio metrics (Risk, Return, ESG):
esg_string = '''ESG Ratings: \n\nE: {} \nS: {} \nG: {} \nTotal: {}'''.format(np.round(s[0],1),np.round(s[1],1),np.round(s[-1],1),np.round((s[0]+s[1]+s[-1])/3,1))
risk_ret_string = 'Annual Return: {}% \n1-Year Beta: {}'.format(r, beta)
#Annotating chart with strings made above:
plt.annotate(risk_ret_string, xy=(-1.2,0.85), xytext=(-2,0.85), fontsize=14, weight='bold',
bbox=dict(boxstyle="round", facecolor='lightblue',edgecolor='steelblue', alpha=0.4))
plt.annotate(esg_string, xy=(-1.2,0.45), xytext=(-2,0.21), fontsize=14, weight='bold',
bbox=dict(boxstyle="round", facecolor='lightblue',edgecolor='steelblue',alpha=0.3))
plt.show() #Exhibit chart
#Create button to generate the investment portfolio pie chart:
tk.Button(root, text="Create Portfolio (2)", command=get_portfolio,bg='#40e342', fg='black', font='bold').grid(row=52,columnspan=2, sticky ="w", pady=4, ipadx=7, padx=127)
root.mainloop()