Skip to content

Commit

Permalink
Update main.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Jun 2, 2024
1 parent 43590f6 commit fd5bcfd
Showing 1 changed file with 40 additions and 32 deletions.
72 changes: 40 additions & 32 deletions src/cosmic_pi_network/main.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,40 @@
from cosmic_pi_network.cosmic_network import CosmicPiNetwork
from cosmic_pi_network.data_processing import clean_data, preprocess_data
from cosmic_pi_network.data_analysis import analyze_data
from cosmic_pi_network.models import train_model, evaluate_model
from cosmic_pi_network.visualization import plot_results
from cosmic_pi_network.config import COSMIC_PI_IP, COSMIC_PI_PORT

# Initialize the network object
network = CosmicPiNetwork(ip=COSMIC_PI_IP, port=COSMIC_PI_PORT)

# Connect to the network
network.connect()

# Receive raw data from the network
raw_data = network.receive_data()

# Clean and preprocess the data
cleaned_data = clean_data(raw_data)
preprocessed_data = preprocess_data(cleaned_data)

# Analyze the data
analysis_results = analyze_data(preprocessed_data)

# Train and evaluate the model
model = train_model(analysis_results)
model_accuracy = evaluate_model(model, analysis_results)

# Visualize the results
plot_results(analysis_results)

# Disconnect from the network
network.disconnect()
from cosmic_pi_network.api import API
from cosmic_pi_network.computer_vision import ComputerVision
from cosmic_pi_network.data_preprocessing import DataPreprocessing
from cosmic_pi_network.neural_network import NeuralNetwork
from cosmic_pi_network.nlp import NLP

def main():
api = API()
weather_data = api.get_weather("New York")
print("Weather data:", weather_data)

nlp = NLP()
text = "This is a sample text."
tokens = nlp.tokenize_text(text)
filtered_tokens = nlp.remove_stopwords(tokens)
lemmatized_tokens = nlp.lemmatize_tokens(filtered_tokens)
sentiment = nlp.sentiment_analysis(text)
print("Sentiment:", sentiment)

computer_vision = ComputerVision()
image = computer_vision.load_image("image.jpg")
grayscale_image = computer_vision.convert_to_grayscale(image)
thresh_image = computer_vision.apply_threshold(grayscale_image)
edges_image = computer_vision.detect_edges(grayscale_image)
faces = computer_vision.detect_faces(grayscale_image)
print("Number offaces detected:", len(faces))

data_preprocessing = DataPreprocessing()
data = data_preprocessing.load_data("data.csv")
X_train, X_test, y_train, y_test = data_preprocessing.split_data(data)
X_train_scaled, X_test_scaled = data_preprocessing.scale_data(X_train, X_test)

neural_network = NeuralNetwork()
model = neural_network.create_model((28, 28, 1), 10)
neural_network.train_model(model, X_train_scaled, y_train)
loss, accuracy = neural_network.evaluate_model(model, X_test_scaled, y_test)
print("Loss:", loss, "Accuracy:", accuracy)

if __name__ == "__main__":
main()

0 comments on commit fd5bcfd

Please sign in to comment.