MTEval
- Collection of evaluation metrics and algorithms for machine translation.
This software inplements some major machine translation evaluation metrics and evaluation algorithms to be easily used.
If you used MTEval
toolkit, please refer this software on your document with below link:
You need following tools to build mteval
implementations.
GCC 4.7
or laterBoost 1.49
or laterautotools
You simply run below:
$ cd /path/to/mteval
$ autoreconf -i
$ ./configure
$ make
$ (sudo) make install
MTEval now have 3 types of evaluation algorithm:
mteval-corpus
- corpus-wise evaluationmteval-sentence
- sentence-wise evaluationmteval-pairwise
- pairwise bootstrap resampling
mteval-corpus
and mteval-sentence
requires 1 reference and 1 hypothesis corpus
to compute the goodness of the hypothesis.
mteval-pairwise
requires 1 reference and 2 hypothesis corpus
to compute statistical significance of 1st hypothesis against 2nd hypothesis.
For example, we use a small example set described below:
ref.tok:
a b c d e
a b c d e
a b c d e
hyp1.tok:
a b c d e f
a b c d e
a c d e
hyp2.tok:
a b c d e
a b c d e f g
a c d e
Then, we type below example commands and get results:
$ mteval-corpus -e BLEU RIBES -r ref.tok -h hyp1.tok
BLEU=0.796902 RIBES=0.976918
$ mteval-sentence -e BLEU RIBES -r ref.tok -h hyp1.tok
BLEU=0.759836 RIBES=0.955443
BLEU=1.000000 RIBES=1.000000
BLEU=0.000000 RIBES=0.975310
$ mteval-pairwise -i 1000 -s 100 -e BLEU RIBES -r ref.tok -h hyp1.tok hyp2.tok
BLEU: p=0.004000 (996/1000) RIBES: p=0.009000 (991/1000)
(Note that results of mteval-pairwise
changes randomly with a certain range)
Some evaluation metrics have parameters (e.g. maximum n-gram, or smoothing for BLEU).
You may set these parameters using :param=value
notation:
$ mteval-corpus -e BLEU:ngram=5:smooth=1 -r ref.tok -h hyp1.tok
BLEU=0.805196
$ mteval-corpus -e BLEU:smooth=1 -r ref.tok -h hyp1.tok
BLEU=0.819619
Omitted parameters are assumed as default value.
If you need to obtain inner statistics of each evaluation metrics,
you can use --output-stats
option for mteval-corpus
and mteval-sentence
:
$ mteval-corpus --output-stats -e BLEU -r ref.tok -h hyp1.tok | sed 's/\t/\n/g'
BLEU=0.796902
BLEU:len:hyp=15
BLEU:len:ref=15
BLEU:ngram:1:hyp=15
BLEU:ngram:1:match=14
BLEU:ngram:2:hyp=12
BLEU:ngram:2:match=10
BLEU:ngram:3:hyp=9
BLEU:ngram:3:match=7
BLEU:ngram:4:hyp=6
BLEU:ngram:4:match=4
BLEU:samples=3
Type mteval-*** --help
to see more information for each command.
-
BLEU
- Identifier:
BLEU
- Parameters:
ngram
: maximum n-gram length (default:4
)smooth
: additional counts for >1-gram (default:0
)
- Statistics:
len:hyp
: number of words in hypothesis sentences.len:ref
: number of words in reference sentences.ngram:%d:hyp
: number of n-grams in the hypothesis sentence.ngram:%d:match
: number of matched n-grams.samples
: number of evaluation samples.
- Identifier:
-
NIST
- Identifier:
NIST
- Parameters:
ngram
: maximum n-gram length (default:5
)
- Statistics:
len:hyp
: number of words in hypothesis sentences.len:ref
: number of words in reference sentences.ngram:%d:hyp
: number of n-grams in the hypothesis sentence.ngram:%d:match
: cumulative weighted n-gram matches.samples
: number of evaluation samples.
- Identifier:
-
RIBES
- Identifier:
RIBES
- Parameters:
alpha
: weight of unigram precision (default:0.25
)beta
: weight of brevity penalty (default:0.1
)
- Statistics:
brevity
: cumulative brevity penalty for each evaluation sample.nkt
: cumulative Kendall's tau for each evaluation sample.prec
: cumulative unigram precision for each evaluation sample.samples
: number of evaluation samples.score
: cumulative RIBES score for each evaluation sample.
- Identifier:
-
Word Error Rate
- Identifier:
WER
- Parameters:
substitute
: weight of substituting ref/hyp words (default:1.0
)insert
: weight of inserting a hyp word (default:1.0
)delete
: weight of deleting a hyp word (default:1.0
)
- Statistics:
distance
: cumulative Levenshtein distance for each evaluation sample.samples
: number of evaluation samples.score
: cumulative WER score for each evaluation sample.
- Identifier:
- Yusuke Oda (@odashi) - Most coding
We are counting more contributions from you.
If you find an issue, please contact Y.Oda
- @odashi_t on Twitter (faster than E-Mail)
- yus.takara (at) gmail.com