Skip to content
forked from odashi/mteval

Collection of Evaluation Metrics and Algorithms for Machine Translation

License

Notifications You must be signed in to change notification settings

HAOCHENYE/mteval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mteval Toolkit

MTEval - Collection of evaluation metrics and algorithms for machine translation.

About

This software inplements some major machine translation evaluation metrics and evaluation algorithms to be easily used.

If you used MTEval toolkit, please refer this software on your document with below link:

Install

You need following tools to build mteval implementations.

  • GCC 4.7 or later
  • Boost 1.49 or later
  • autotools

You simply run below:

$ cd /path/to/mteval
$ autoreconf -i
$ ./configure
$ make
$ (sudo) make install

Usage

MTEval now have 3 types of evaluation algorithm:

  • mteval-corpus - corpus-wise evaluation
  • mteval-sentence - sentence-wise evaluation
  • mteval-pairwise - pairwise bootstrap resampling

mteval-corpus and mteval-sentence requires 1 reference and 1 hypothesis corpus to compute the goodness of the hypothesis.

mteval-pairwise requires 1 reference and 2 hypothesis corpus to compute statistical significance of 1st hypothesis against 2nd hypothesis.

For example, we use a small example set described below:

ref.tok:
a b c d e
a b c d e
a b c d e

hyp1.tok:
a b c d e f
a b c d e
a c d e

hyp2.tok:
a b c d e
a b c d e f g
a c d e

Then, we type below example commands and get results:

$ mteval-corpus -e BLEU RIBES -r ref.tok -h hyp1.tok
BLEU=0.796902	RIBES=0.976918

$ mteval-sentence -e BLEU RIBES -r ref.tok -h hyp1.tok
BLEU=0.759836	RIBES=0.955443
BLEU=1.000000	RIBES=1.000000
BLEU=0.000000	RIBES=0.975310

$ mteval-pairwise -i 1000 -s 100 -e BLEU RIBES -r ref.tok -h hyp1.tok hyp2.tok 
BLEU: p=0.004000 (996/1000)	RIBES: p=0.009000 (991/1000)

(Note that results of mteval-pairwise changes randomly with a certain range)

Some evaluation metrics have parameters (e.g. maximum n-gram, or smoothing for BLEU). You may set these parameters using :param=value notation:

$ mteval-corpus -e BLEU:ngram=5:smooth=1 -r ref.tok -h hyp1.tok
BLEU=0.805196

$ mteval-corpus -e BLEU:smooth=1 -r ref.tok -h hyp1.tok
BLEU=0.819619

Omitted parameters are assumed as default value.

If you need to obtain inner statistics of each evaluation metrics, you can use --output-stats option for mteval-corpus and mteval-sentence:

$ mteval-corpus --output-stats -e BLEU -r ref.tok -h hyp1.tok | sed 's/\t/\n/g'
BLEU=0.796902
BLEU:len:hyp=15
BLEU:len:ref=15
BLEU:ngram:1:hyp=15
BLEU:ngram:1:match=14
BLEU:ngram:2:hyp=12
BLEU:ngram:2:match=10
BLEU:ngram:3:hyp=9
BLEU:ngram:3:match=7
BLEU:ngram:4:hyp=6
BLEU:ngram:4:match=4
BLEU:samples=3

Type mteval-*** --help to see more information for each command.

List of Metrics

  • BLEU

    • Identifier: BLEU
    • Parameters:
      • ngram: maximum n-gram length (default: 4)
      • smooth: additional counts for >1-gram (default: 0)
    • Statistics:
      • len:hyp: number of words in hypothesis sentences.
      • len:ref: number of words in reference sentences.
      • ngram:%d:hyp: number of n-grams in the hypothesis sentence.
      • ngram:%d:match: number of matched n-grams.
      • samples: number of evaluation samples.
  • NIST

    • Identifier: NIST
    • Parameters:
      • ngram: maximum n-gram length (default: 5)
    • Statistics:
      • len:hyp: number of words in hypothesis sentences.
      • len:ref: number of words in reference sentences.
      • ngram:%d:hyp: number of n-grams in the hypothesis sentence.
      • ngram:%d:match: cumulative weighted n-gram matches.
      • samples: number of evaluation samples.
  • RIBES

    • Identifier: RIBES
    • Parameters:
      • alpha: weight of unigram precision (default: 0.25)
      • beta: weight of brevity penalty (default: 0.1)
    • Statistics:
      • brevity: cumulative brevity penalty for each evaluation sample.
      • nkt: cumulative Kendall's tau for each evaluation sample.
      • prec: cumulative unigram precision for each evaluation sample.
      • samples: number of evaluation samples.
      • score: cumulative RIBES score for each evaluation sample.
  • Word Error Rate

    • Identifier: WER
    • Parameters:
      • substitute: weight of substituting ref/hyp words (default: 1.0)
      • insert: weight of inserting a hyp word (default: 1.0)
      • delete: weight of deleting a hyp word (default: 1.0)
    • Statistics:
      • distance: cumulative Levenshtein distance for each evaluation sample.
      • samples: number of evaluation samples.
      • score: cumulative WER score for each evaluation sample.

Contributors

  • Yusuke Oda (@odashi) - Most coding

We are counting more contributions from you.

Contact

If you find an issue, please contact Y.Oda

  • @odashi_t on Twitter (faster than E-Mail)
  • yus.takara (at) gmail.com

About

Collection of Evaluation Metrics and Algorithms for Machine Translation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 96.3%
  • CMake 3.7%