Skip to content
forked from odashi/mteval

Collection of Evaluation Metrics and Algorithms for Machine Translation

License

Notifications You must be signed in to change notification settings

HAOCHENYE/mteval

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MTEval Toolkit

MTEval - Collection of evaluation metrics and algorithms for machine translation.

About

This software inplements some major machine translation evaluation metrics and evaluation algorithms to be easily used.

If you used MTEval toolkit, please refer this software on your document with below link:

Install

MTEval depends on below libraries:

  • Boost 1.48 or later

And uses below toolkit to build libraries and executalbes:

  • CMake 3.1.0 or later

First, we make a root directory of the build tree:

$ cd /path/to/mteval
$ mkdir build
$ cd build

Then we build the tool:

$ cmake ..
$ make -j <threads>

And optionally you can run unit tests:

$ make test

All executables (see next section) are stored in the build/bin directory.

Usage

MTEval currently have 3 executables:

  • mteval-corpus - corpus-wise evaluation
  • mteval-sentence - sentence-wise evaluation
  • mteval-pairwise - pairwise bootstrap resampling

mteval-corpus and mteval-sentence requires 1 reference and 1 hypothesis corpus to compute the goodness of the hypothesis.

mteval-pairwise requires 1 reference and 2 hypothesis corpus to compute statistical significance of 1st hypothesis against 2nd hypothesis.

For example, we use a small example set described below:

data/ref:
a b c d e
a b c d e
a b c d e
a b c d e

data/hyp1:
a b c d e
a b c d e f
a c d e
a b x d e

data/hyp2:
a b c d e
a b c d e f g
a b c d e
a b x d e

Then, we type below example commands and get results:

$ cd /path/to/mteval
$ build/bin/mteval-corpus -e BLEU RIBES -r data/ref -h data/hyp1
BLEU=0.666113	RIBES=0.969124

$ build/bin/mteval-sentence -e BLEU RIBES -r data/ref -h data/hyp1
BLEU=1.000000	RIBES=1.000000
BLEU=0.759836	RIBES=0.955443
BLEU=0.000000	RIBES=0.975310
BLEU=0.000000	RIBES=0.945742

$ build/bin/mteval-pairwise -i 1000 -s 100 -e BLEU RIBES -r data/ref -h data/hyp{1,2}
BLEU: p=0.986000 (14/1000) RIBES: p=0.089000 (911/1000)

(Note that results of mteval-pairwise changes randomly with a certain range)

Some evaluation metrics have parameters (e.g. maximum n-gram, or smoothing for BLEU). You may set these parameters using :param=value notation:

$ build/bin/mteval-corpus -e BLEU:ngram=5:smooth=1 -r data/ref -h data/hyp1
BLEU=0.676009

$ build/bin/mteval-corpus -e BLEU:smooth=1 -r data/ref -h data/hyp1
BLEU=0.696471

Omitted parameters are assumed as default value.

If you need to obtain inner statistics of each evaluation metrics, you can use --output-stats option for mteval-corpus and mteval-sentence:

$ build/bin/mteval-corpus --output-stats -e BLEU -r data/ref -h data/hyp1 \
  | tr '\t' '\n'
BLEU=0.666113
BLEU:len:hyp=20
BLEU:len:ref=20
BLEU:ngram:1:hyp=20
BLEU:ngram:1:match=18
BLEU:ngram:2:hyp=16
BLEU:ngram:2:match=12
BLEU:ngram:3:hyp=12
BLEU:ngram:3:match=7
BLEU:ngram:4:hyp=8
BLEU:ngram:4:match=4
BLEU:samples=4

Type mteval-*** --help to see more information for each command.

List of Metrics

  • BLEU

    • Identifier: BLEU
    • Parameters:
      • ngram: maximum n-gram length (default: 4)
      • smooth: additional counts for >1-gram (default: 0)
    • Statistics:
      • len:hyp: number of words in hypothesis sentences.
      • len:ref: number of words in reference sentences.
      • ngram:%d:hyp: number of n-grams in the hypothesis sentence.
      • ngram:%d:match: number of matched n-grams.
      • samples: number of evaluation samples.
  • NIST

    • Identifier: NIST
    • Parameters:
      • ngram: maximum n-gram length (default: 5)
    • Statistics:
      • len:hyp: number of words in hypothesis sentences.
      • len:ref: number of words in reference sentences.
      • ngram:%d:hyp: number of n-grams in the hypothesis sentence.
      • ngram:%d:match: cumulative weighted n-gram matches.
      • samples: number of evaluation samples.
  • RIBES

    • Identifier: RIBES
    • Parameters:
      • alpha: weight of unigram precision (default: 0.25)
      • beta: weight of brevity penalty (default: 0.1)
    • Statistics:
      • brevity: cumulative brevity penalty for each evaluation sample.
      • nkt: cumulative Kendall's tau for each evaluation sample.
      • prec: cumulative unigram precision for each evaluation sample.
      • samples: number of evaluation samples.
      • score: cumulative RIBES score for each evaluation sample.
  • Word Error Rate

    • Identifier: WER
    • Parameters:
      • substitute: weight of substituting ref/hyp words (default: 1.0)
      • insert: weight of inserting a hyp word (default: 1.0)
      • delete: weight of deleting a hyp word (default: 1.0)
    • Statistics:
      • distance: cumulative Levenshtein distance for each evaluation sample.
      • samples: number of evaluation samples.
      • score: cumulative WER score for each evaluation sample.

Contributors

  • Yusuke Oda (@odashi) - Most coding

We are counting more contributions from you.

Contact

If you find an issue, please contact Y.Oda

  • @odashi_t on Twitter (faster than E-Mail)
  • yus.takara (at) gmail.com

About

Collection of Evaluation Metrics and Algorithms for Machine Translation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 96.3%
  • CMake 3.7%