-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeploy.py
310 lines (265 loc) · 10.5 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import logging
import os
import os.path as osp
from functools import partial
import mmcv
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method
from mmdeploy.apis import (create_calib_input_data, extract_model,
get_predefined_partition_cfg, torch2onnx,
torch2torchscript, visualize_model)
from mmdeploy.apis.core import PIPELINE_MANAGER
from mmdeploy.apis.utils import to_backend
from mmdeploy.backend.sdk.export_info import export2SDK
from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename,
get_ir_config, get_partition_config,
get_root_logger, load_config, target_wrapper)
import mmcv_custom
import mmseg_custom
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backends.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument('img', help='image used to convert model model')
parser.add_argument(
'--test-img',
default=None,
type=str,
nargs='+',
help='image used to test model')
parser.add_argument(
'--work-dir',
default=os.getcwd(),
help='the dir to save logs and models')
parser.add_argument(
'--calib-dataset-cfg',
help=('dataset config path used to calibrate in int8 mode. If not '
'specified, it will use "val" dataset in model config instead.'),
default=None)
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
parser.add_argument(
'--dump-info', action='store_true', help='Output information for SDK')
parser.add_argument(
'--quant-image-dir',
default=None,
help='Image directory for quantize model.')
parser.add_argument(
'--quant', action='store_true', help='Quantize model to low bit.')
parser.add_argument(
'--uri',
default='192.168.1.1:60000',
help='Remote ipv4:port or ipv6:port for inference on edge device.')
args = parser.parse_args()
return args
def create_process(name, target, args, kwargs, ret_value=None):
logger = get_root_logger()
logger.info(f'{name} start.')
log_level = logger.level
wrap_func = partial(target_wrapper, target, log_level, ret_value)
process = Process(target=wrap_func, args=args, kwargs=kwargs)
process.start()
process.join()
if ret_value is not None:
if ret_value.value != 0:
logger.error(f'{name} failed.')
exit(1)
else:
logger.info(f'{name} success.')
def torch2ir(ir_type: IR):
"""Return the conversion function from torch to the intermediate
representation.
Args:
ir_type (IR): The type of the intermediate representation.
"""
if ir_type == IR.ONNX:
return torch2onnx
elif ir_type == IR.TORCHSCRIPT:
return torch2torchscript
else:
raise KeyError(f'Unexpected IR type {ir_type}')
def main():
args = parse_args()
set_start_method('spawn', force=True)
logger = get_root_logger()
log_level = logging.getLevelName(args.log_level)
logger.setLevel(log_level)
pipeline_funcs = [
torch2onnx, torch2torchscript, extract_model, create_calib_input_data
]
PIPELINE_MANAGER.enable_multiprocess(True, pipeline_funcs)
PIPELINE_MANAGER.set_log_level(log_level, pipeline_funcs)
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
quant = args.quant
quant_image_dir = args.quant_image_dir
# load deploy_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
# create work_dir if not
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
if args.dump_info:
export2SDK(
deploy_cfg,
model_cfg,
args.work_dir,
pth=checkpoint_path,
device=args.device)
ret_value = mp.Value('d', 0, lock=False)
# convert to IR
ir_config = get_ir_config(deploy_cfg)
ir_save_file = ir_config['save_file']
ir_type = IR.get(ir_config['type'])
torch2ir(ir_type)(
args.img,
args.work_dir,
ir_save_file,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
device=args.device)
# convert backend
ir_files = [osp.join(args.work_dir, ir_save_file)]
# partition model
partition_cfgs = get_partition_config(deploy_cfg)
if partition_cfgs is not None:
if 'partition_cfg' in partition_cfgs:
partition_cfgs = partition_cfgs.get('partition_cfg', None)
else:
assert 'type' in partition_cfgs
partition_cfgs = get_predefined_partition_cfg(
deploy_cfg, partition_cfgs['type'])
origin_ir_file = ir_files[0]
ir_files = []
for partition_cfg in partition_cfgs:
save_file = partition_cfg['save_file']
save_path = osp.join(args.work_dir, save_file)
start = partition_cfg['start']
end = partition_cfg['end']
dynamic_axes = partition_cfg.get('dynamic_axes', None)
extract_model(
origin_ir_file,
start,
end,
dynamic_axes=dynamic_axes,
save_file=save_path)
ir_files.append(save_path)
# calib data
calib_filename = get_calib_filename(deploy_cfg)
if calib_filename is not None:
calib_path = osp.join(args.work_dir, calib_filename)
create_calib_input_data(
calib_path,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
dataset_cfg=args.calib_dataset_cfg,
dataset_type='val',
device=args.device)
backend_files = ir_files
# convert backend
backend = get_backend(deploy_cfg)
# preprocess deploy_cfg
if backend == Backend.RKNN:
# TODO: Add this to task_processor in the future
import tempfile
from mmdeploy.utils import (get_common_config, get_normalization,
get_quantization_config,
get_rknn_quantization)
quantization_cfg = get_quantization_config(deploy_cfg)
common_params = get_common_config(deploy_cfg)
if get_rknn_quantization(deploy_cfg) is True:
transform = get_normalization(model_cfg)
common_params.update(
dict(
mean_values=[transform['mean']],
std_values=[transform['std']]))
dataset_file = tempfile.NamedTemporaryFile(suffix='.txt').name
with open(dataset_file, 'w') as f:
f.writelines([osp.abspath(args.img)])
quantization_cfg.setdefault('dataset', dataset_file)
if backend == Backend.ASCEND:
# TODO: Add this to backend manager in the future
if args.dump_info:
from mmdeploy.backend.ascend import update_sdk_pipeline
update_sdk_pipeline(args.work_dir)
# convert to backend
PIPELINE_MANAGER.set_log_level(log_level, [to_backend])
if backend == Backend.TENSORRT:
PIPELINE_MANAGER.enable_multiprocess(True, [to_backend])
backend_files = to_backend(
backend,
ir_files,
work_dir=args.work_dir,
deploy_cfg=deploy_cfg,
log_level=log_level,
device=args.device,
uri=args.uri)
# ncnn quantization
if backend == Backend.NCNN and quant:
from onnx2ncnn_quant_table import get_table
from mmdeploy.apis.ncnn import get_quant_model_file, ncnn2int8
model_param_paths = backend_files[::2]
model_bin_paths = backend_files[1::2]
backend_files = []
for onnx_path, model_param_path, model_bin_path in zip(
ir_files, model_param_paths, model_bin_paths):
deploy_cfg, model_cfg = load_config(deploy_cfg_path,
model_cfg_path)
quant_onnx, quant_table, quant_param, quant_bin = get_quant_model_file( # noqa: E501
onnx_path, args.work_dir)
create_process(
'ncnn quant table',
target=get_table,
args=(onnx_path, deploy_cfg, model_cfg, quant_onnx,
quant_table, quant_image_dir, args.device),
kwargs=dict(),
ret_value=ret_value)
create_process(
'ncnn_int8',
target=ncnn2int8,
args=(model_param_path, model_bin_path, quant_table,
quant_param, quant_bin),
kwargs=dict(),
ret_value=ret_value)
backend_files += [quant_param, quant_bin]
if args.test_img is None:
args.test_img = args.img
extra = dict(
backend=backend,
output_file=osp.join(args.work_dir, f'output_{backend.value}.jpg'),
show_result=args.show)
if backend == Backend.SNPE:
extra['uri'] = args.uri
# get backend inference result, try render
create_process(
f'visualize {backend.value} model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, backend_files, args.test_img,
args.device),
kwargs=extra,
ret_value=ret_value)
# get pytorch model inference result, try visualize if possible
create_process(
'visualize pytorch model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, [checkpoint_path],
args.test_img, args.device),
kwargs=dict(
backend=Backend.PYTORCH,
output_file=osp.join(args.work_dir, 'output_pytorch.jpg'),
show_result=args.show),
ret_value=ret_value)
logger.info('All process success.')
if __name__ == '__main__':
main()