Skip to content

DevTeam/Pure.DI

Repository files navigation

Pure DI for .NET

NuGet License Build

Key features

Pure.DI is not a framework or library, but a source code generator for creating object graphs. To make them accurate, the developer uses a set of intuitive hints from the Pure.DI API. During the compilation phase, Pure.DI determines the optimal graph structure, checks its correctness, and generates partial class code to create object graphs in the Pure DI paradigm using only basic language constructs. The resulting generated code is robust, works everywhere, throws no exceptions, does not depend on .NET library calls or .NET reflections, is efficient in terms of performance and memory consumption, and is subject to all optimizations. This code can be easily integrated into an application because it does not use unnecessary delegates, additional calls to any methods, type conversions, boxing/unboxing, etc.

  • DI without any IoC/DI containers, frameworks, dependencies and hence no performance impact or side effects.

    Pure.DI is actually a .NET code generator. It uses basic language constructs to create simple code as well as if you were doing it yourself: de facto it's just a bunch of nested constructor calls. This code can be viewed, analyzed at any time, and debugged.

  • A predictable and verified dependency graph is built and validated on the fly while writing code.

    All logic for analyzing the graph of objects, constructors and methods takes place at compile time. Pure.DI notifies the developer at compile time about missing or ring dependencies, cases when some dependencies are not suitable for injection, etc. The developer has no chance to get a program that will crash at runtime because of some exception related to incorrect object graph construction. All this magic happens at the same time as the code is written, so you have instant feedback between the fact that you have made changes to your code and the fact that your code is already tested and ready to use.

  • Does not add any dependencies to other assemblies.

    When using pure DI, no dependencies are added to assemblies because only basic language constructs and nothing more are used.

  • Highest performance, including compiler and JIT optimization and minimal memory consumption.

    All generated code runs as fast as your own, in pure DI style, including compile-time and run-time optimization. As mentioned above, graph analysis is done at compile time, and at runtime there are only a bunch of nested constructors, and that's it. Memory is spent only on the object graph being created.

  • It works everywhere.

    Since the pure DI approach does not use any dependencies or .NET reflection at runtime, it does not prevent the code from running as expected on any platform: Full .NET Framework 2.0+, .NET Core, .NET, UWP/XBOX, .NET IoT, Xamarin, Native AOT, etc.

  • Ease of Use.

    The Pure.DI API is very similar to the API of most IoC/DI libraries. And this was a conscious decision: the main reason is that programmers don't need to learn a new API.

  • Superfine customization of generic types.

    In Pure.DI it is proposed to use special marker types instead of using open generic types. This allows you to build the object graph more accurately and take full advantage of generic types.

  • Supports the major .NET BCL types out of the box.

    Pure.DI already supports many of BCL types like Array, IEnumerable<T>, IList<T>, IReadOnlyCollection<T>, IReadOnlyList<T>, ISet<T>, IProducerConsumerCollection<T>, ConcurrentBag<T>, Func<T>, ThreadLocal, ValueTask<T>, Task<T>, MemoryPool<T>, ArrayPool<T>, ReadOnlyMemory<T>, Memory<T>, ReadOnlySpan<T>, Span<T>, IComparer<T>, IEqualityComparer<T> and etc. without any extra effort.

  • Good for building libraries or frameworks where resource consumption is particularly critical.

    Its high performance, zero memory consumption/preparation overhead, and lack of dependencies make it ideal for building libraries and frameworks.

Schrödinger's cat will demonstrate how it all works CSharp

The reality is

Cat

Let's create an abstraction

interface IBox<out T>
{
    T Content { get; }
}

interface ICat
{
    State State { get; }
}

enum State
{
    Alive,
    Dead
}

Here's our implementation

class CardboardBox<T>(T content) : IBox<T>
{
    public T Content { get; } = content;

    public override string ToString() => $"[{Content}]";
}

class ShroedingersCat(Lazy<State> superposition) : ICat
{
    // The decoherence of the superposition
    // at the time of observation via an irreversible process
    public State State => superposition.Value;

    public override string ToString() => $"{State} cat";
}

It is important to note that our abstraction and implementation knows nothing about the magic of DI or any frameworks.

Let's glue it all together

Add the Pure.DI package to your project:

NuGet

Let's bind the abstractions to their implementations and set up the creation of the object graph:

DI.Setup(nameof(Composition))
    // Models a random subatomic event that may or may not occur
    .Bind().As(Singleton).To<Random>()
    // Represents a quantum superposition of 2 states: Alive or Dead
    .Bind().To(ctx =>
    {
      ctx.Inject<Random>(out var random);
      return (State)random.Next(2);
    })
    .Bind().To<ShroedingersCat>()
    // Represents a cardboard box with any contents
    .Bind().To<CardboardBox<TT>>()
    // Composition Root
    .Root<Program>("Root");

The above code specifies the generation of a partial class named Composition, this name is defined in the DI.Setup(nameof(Composition)) call. This class contains a Root property that returns a graph of objects with an object of type Program as the root. The type and name of the property is defined by calling Root<Program>("Root"). The code of the generated class looks as follows:

partial class Composition
{
    private object _lock = new object();
    private Random _random;    
    
    public Program Root
    {
      get
      {
        Func<State> stateFunc = new Func<State>(() =>
        {
          if (_random == null)
          {
            lock (_lock)
            {
              if (_random == null)
              {
                _random = new Random();
              }
            }
          }
          
          return (State)_random.Next(2);      
        });
        
        return new Program(
          new CardboardBox<ICat>(
            new ShroedingersCat(
              new Lazy<Sample.State>(
                stateFunc))));    
      }
    }
    
    public T Resolve<T>() { ... }
    
    public object Resolve(Type type) { ... }    
}

The public Program Root { get; } property here is a Composition Root, the only place in the application where the composition of the object graph for the application takes place. Each instance is created by only basic language constructs, which compiles with all optimizations with minimal impact on performance and memory consumption. In general, applications may have multiple composition roots and thus such properties. Each composition root must have its own unique name, which is defined when the Root<T>(string name) method is called, as shown in the above code.

Time to open boxes!

class Program(IBox<ICat> box)
{
  // Composition Root, a single place in an application
  // where the composition of the object graphs for an application take place
  static void Main() => new Composition().Root.Run();

  private void Run() => Console.WriteLine(box);
}

The full analog of this application with top-level statements can be found here.

To summarize

Pure.DI creates efficient code in a pure DI paradigm, using only basic language constructs as if you were writing code by hand. This allows you to take full advantage of Dependency Injection everywhere and always, without any compromise!

Just try!

Download a sample project

git clone https://github.com/DevTeam/Pure.DI.Example.git

And run it from solution root folder

cd ./Pure.DI.Example
dotnet run

Examples

Basics

Lifetimes

Base Class Library

Generics

Attributes

Interception

Hints

Advanced

Applications

Generated Code

Each generated class, hereafter called a composition, must be customized. Setup starts with a call to the Setup(string compositionTypeName) method:

DI.Setup("Composition")
    .Bind<IDependency>().To<Dependency>()
    .Bind<IService>().To<Service>()
    .Root<IService>("Root");
The following class will be generated
partial class Composition
{
    // Default constructor
    public Composition() { }

    // Scope constructor
    internal Composition(Composition baseComposition) { }

    // Composition root
    public IService Root
    {
        get
        {
            return new Service(new Dependency());
        }
    }

    public T Resolve<T>()  { ... }

    public T Resolve<T>(object? tag)  { ... }

    public object Resolve(Type type) { ... }

    public object Resolve(Type type, object? tag) { ... }
}
Setup arguments

The first parameter is used to specify the name of the composition class. All sets with the same name will be combined to create one composition class. Alternatively, this name may contain a namespace, e.g. a composition class is generated for Sample.Composition:

namespace Sample
{
    partial class Composition
    {
        ...
    }
}

The second optional parameter may have multiple values to determine the kind of composition.

CompositionKind.Public

This value is used by default. If this value is specified, a normal composition class will be created.

CompositionKind.Internal

If you specify this value, the class will not be generated, but this setup can be used by others as a base setup. For example:

DI.Setup("BaseComposition", CompositionKind.Internal)
    .Bind<IDependency>().To<Dependency>();

DI.Setup("Composition").DependsOn("BaseComposition")
    .Bind<IService>().To<Service>();    

If the CompositionKind.Public flag is set in the composition setup, it can also be the base for other compositions, as in the example above.

CompositionKind.Global

No composition class will be created when this value is specified, but this setup is the base setup for all setups in the current project, and DependsOn(...) is not required.

Constructors

Default constructor

It's quite trivial, this constructor simply initializes the internal state.

Parameterized constructor

It replaces the default constructor and is only created if at least one argument is specified. For example:

DI.Setup("Composition")
    .Arg<string>("name")
    .Arg<int>("id")
    ...

In this case, the constructor with arguments is as follows:

public Composition(string name, int id) { ... }

and there is no default constructor. It is important to remember that only those arguments that are used in the object graph will appear in the constructor. Arguments that are not involved cannot be defined, as they are omitted from the constructor parameters to save resources.

Scope constructor

This constructor creates a composition instance for the new scope. This allows Lifetime.Scoped to be applied. See this example for details.

Properties

Public Composition Roots

To create an object graph quickly and conveniently, a set of properties (or a methods) is formed. These properties are here called roots of compositions. The type of a property/method is the type of the root object created by the composition. Accordingly, each invocation of a property/method leads to the creation of a composition with a root element of this type.

DI.Setup("Composition")
    .Bind<IService>().To<Service>()
    .Root<IService>("MyService");

In this case, the property for the IService type will be named MyService and will be available for direct use. The result of its use will be the creation of a composition of objects with the root of IService type:

public IService MyService
{
    get
    { 
        ...
        return new Service(...);
    }
}

This is recommended way to create a composition root. A composition class can contain any number of roots.

Private Composition Roots

If the root name is empty, a private composition root with a random name is created:

private IService RootM07D16di_0001
{
    get { ... }
}

This root is available in Resolve methods in the same way as public roots. For example:

DI.Setup("Composition")
    .Bind<IService>().To<Service>()
    .Root<IService>();

These properties have an arbitrary name and access modifier private and cannot be used directly from the code. Do not attempt to use them, as their names are arbitrarily changed. Private composition roots can be resolved by Resolve methods.

Methods

Resolve

By default, a set of four Resolve methods is generated:

public T Resolve<T>() { ... }

public T Resolve<T>(object? tag) { ... }

public object Resolve(Type type) { ... }

public object Resolve(Type type, object? tag) { ... }

These methods can resolve both public and private composition roots that do not depend on any arguments of the composition roots. They are useful when using the Service Locator approach, where the code resolves composition roots in place:

var composition = new Composition();

composition.Resolve<IService>();

This is a not recommended way to create composition roots. To control the generation of these methods, see the Resolve hint.

Dispose

Provides a mechanism to release unmanaged resources. This method is generated only if the composition contains at least one singleton instance that implements the IDisposable interface. To dispose of all created singleton objects, the Dispose() method of the composition should be called:

using var composition = new Composition();
Setup hints

Setup hints

Hints are used to fine-tune code generation. Setup hints can be used as shown in the following example:

DI.Setup("Composition")
    .Hint(Hint.Resolve, "Off")
    .Hint(Hint.ThreadSafe, "Off")
    .Hint(Hint.ToString, "On")
    ...

In addition, setup hints can be commented out before the Setup method as hint = value. For example:

// Resolve = Off
// ThreadSafe = Off
DI.Setup("Composition")
    .Hint(Hint.ToString, "On")
    ...

Both approaches can be used in combination with each other.

Hint Values C# version Default
Resolve On or Off On
OnNewInstance On or Off 9.0 Off
OnNewInstancePartial On or Off On
OnNewInstanceImplementationTypeNameRegularExpression Regular expression .+
OnNewInstanceTagRegularExpression Regular expression .+
OnNewInstanceLifetimeRegularExpression Regular expression .+
OnDependencyInjection On or Off 9.0 Off
OnDependencyInjectionPartial On or Off On
OnDependencyInjectionImplementationTypeNameRegularExpression Regular expression .+
OnDependencyInjectionContractTypeNameRegularExpression Regular expression .+
OnDependencyInjectionTagRegularExpression Regular expression .+
OnDependencyInjectionLifetimeRegularExpression Regular expression .+
OnCannotResolve On or Off 9.0 Off
OnCannotResolvePartial On or Off On
OnCannotResolveContractTypeNameRegularExpression Regular expression .+
OnCannotResolveTagRegularExpression Regular expression .+
OnCannotResolveLifetimeRegularExpression Regular expression .+
OnNewRoot On or Off Off
OnNewRootPartial On or Off On
ToString On or Off Off
ThreadSafe On or Off On
ResolveMethodModifiers Method modifier public
ResolveMethodName Method name Resolve
ResolveByTagMethodModifiers Method modifier public
ResolveByTagMethodName Method name Resolve
ObjectResolveMethodModifiers Method modifier public
ObjectResolveMethodName Method name Resolve
ObjectResolveByTagMethodModifiers Method modifier public
ObjectResolveByTagMethodName Method name Resolve
DisposeMethodModifiers Method modifier public
FormatCode On or Off Off
SeverityOfNotImplementedContract Error or Warning or Info or Hidden Error
Comments On or Off On

The list of hints will be gradually expanded to meet the needs and desires for fine-tuning code generation. Please feel free to add your ideas.

Resolve Hint

Determines whether to generate Resolve methods. By default, a set of four Resolve methods are generated. Set this hint to Off to disable the generation of resolve methods. This will reduce the generation time of the class composition, and in this case no private composition roots will be generated. The class composition will be smaller and will only have public roots. When the Resolve hint is disabled, only the public roots properties are available, so be sure to explicitly define them using the Root<T>(string name) method with an explicit composition root name.

OnNewInstance Hint

Determines whether to use the OnNewInstance partial method. By default, this partial method is not generated. This can be useful, for example, for logging purposes:

internal partial class Composition
{
    partial void OnNewInstance<T>(ref T value, object? tag, object lifetime)            
    {
        Console.WriteLine($"'{typeof(T)}'('{tag}') created.");            
    }
}

You can also replace the created instance with a T type, where T is the actual type of the created instance. To minimize performance loss when calling OnNewInstance, use the three hints below.

OnNewInstancePartial Hint

Determines whether to generate the OnNewInstance partial method. By default, this partial method is generated when the OnNewInstance hint is On.

OnNewInstanceImplementationTypeNameRegularExpression Hint

This is a regular expression for filtering by instance type name. This hint is useful when OnNewInstance is in On state and it is necessary to limit the set of types for which the OnNewInstance method will be called.

OnNewInstanceTagRegularExpression Hint

This is a regular expression for filtering by tag. This hint is also useful when OnNewInstance is in On state and it is necessary to limit the set of tags for which the OnNewInstance method will be called.

OnNewInstanceLifetimeRegularExpression Hint

This is a regular expression for filtering by lifetime. This hint is also useful when OnNewInstance is in On state and it is necessary to restrict the set of life times for which the OnNewInstance method will be called.

OnDependencyInjection Hint

Determines whether to use the OnDependencyInjection partial method when the OnDependencyInjection hint is On to control dependency injection. By default it is On.

// OnDependencyInjection = On
// OnDependencyInjectionPartial = Off
// OnDependencyInjectionContractTypeNameRegularExpression = ICalculator[\d]{1}
// OnDependencyInjectionTagRegularExpression = Abc
DI.Setup("Composition")
    ...

OnDependencyInjectionPartial Hint

Determines whether to generate the OnDependencyInjection partial method to control dependency injection. By default, this partial method is not generated. It cannot have an empty body because of the return value. It must be overridden when it is generated. This may be useful, for example, for Interception Scenario.

// OnDependencyInjection = On
// OnDependencyInjectionContractTypeNameRegularExpression = ICalculator[\d]{1}
// OnDependencyInjectionTagRegularExpression = Abc
DI.Setup("Composition")
    ...

To minimize performance loss when calling OnDependencyInjection, use the three tips below.

OnDependencyInjectionImplementationTypeNameRegularExpression Hint

This is a regular expression for filtering by instance type name. This hint is useful when OnDependencyInjection is in On state and it is necessary to restrict the set of types for which the OnDependencyInjection method will be called.

OnDependencyInjectionContractTypeNameRegularExpression Hint

This is a regular expression for filtering by the name of the resolving type. This hint is also useful when OnDependencyInjection is in On state and it is necessary to limit the set of permissive types for which the OnDependencyInjection method will be called.

OnDependencyInjectionTagRegularExpression Hint

This is a regular expression for filtering by tag. This hint is also useful when OnDependencyInjection is in the On state and you want to limit the set of tags for which the OnDependencyInjection method will be called.

OnDependencyInjectionLifetimeRegularExpression Hint

This is a regular expression for filtering by lifetime. This hint is also useful when OnDependencyInjection is in On state and it is necessary to restrict the set of lifetime for which the OnDependencyInjection method will be called.

OnCannotResolve Hint

Determines whether to use the OnCannotResolve<T>(...) partial method to handle a scenario in which an instance cannot be resolved. By default, this partial method is not generated. Because of the return value, it cannot have an empty body and must be overridden at creation.

// OnCannotResolve = On
// OnCannotResolveContractTypeNameRegularExpression = string|DateTime
// OnDependencyInjectionTagRegularExpression = null
DI.Setup("Composition")
    ...

To avoid missing failed bindings by mistake, use the two relevant hints below.

OnCannotResolvePartial Hint

Determines whether to generate the OnCannotResolve<T>(...) partial method when the OnCannotResolve hint is On to handle a scenario in which an instance cannot be resolved. By default it is On.

// OnCannotResolve = On
// OnCannotResolvePartial = Off
// OnCannotResolveContractTypeNameRegularExpression = string|DateTime
// OnDependencyInjectionTagRegularExpression = null
DI.Setup("Composition")
    ...

To avoid missing failed bindings by mistake, use the two relevant hints below.

OnNewRoot Hint

Determines whether to use a static partial method OnNewRoot<TContract, T>(...) to handle the new composition root registration event.

// OnNewRoot = On
DI.Setup("Composition")
    ...

Be careful, this hint disables checks for the ability to resolve dependencies!

OnNewRootPartial Hint

Determines whether to generate a static partial method OnNewRoot<TContract, T>(...) when the OnNewRoot hint is On to handle the new composition root registration event.

// OnNewRootPartial = Off
DI.Setup("Composition")
    ...

OnCannotResolveContractTypeNameRegularExpression Hint

This is a regular expression for filtering by the name of the resolving type. This hint is also useful when OnCannotResolve is in On state and it is necessary to limit the set of resolving types for which the OnCannotResolve method will be called.

OnCannotResolveTagRegularExpression Hint

This is a regular expression for filtering by tag. This hint is also useful when OnCannotResolve is in On state and it is necessary to limit the set of tags for which the OnCannotResolve method will be called.

OnCannotResolveLifetimeRegularExpression Hint

This is a regular expression for filtering by lifetime. This hint is also useful when OnCannotResolve is in the On state and it is necessary to restrict the set of lives for which the OnCannotResolve method will be called.

ToString Hint

Determines whether to generate the ToString() method. This method provides a class diagram in mermaid format. To see this diagram, just call the ToString method and copy the text to this site.

// ToString = On
DI.Setup("Composition")
    .Bind<IService>().To<Service>()
    .Root<IService>("MyService");
    
var composition = new Composition();
string classDiagram = composition.ToString(); 

ThreadSafe Hint

This hint determines whether the composition of objects will be created in a thread-safe way. The default value of this hint is On. It is a good practice not to use threads when creating an object graph, in this case the hint can be disabled, which will result in a small performance gain. For example:

// ThreadSafe = Off
DI.Setup("Composition")
    .Bind<IService>().To<Service>()
    .Root<IService>("MyService");

ResolveMethodModifiers Hint

Overrides the modifiers of the public T Resolve<T>() method.

ResolveMethodName Hint

Overrides the method name for public T Resolve<T>().

ResolveByTagMethodModifiers Hint

Overrides the modifiers of the public T Resolve<T>(object? tag) method.

ResolveByTagMethodName Hint

Overrides the method name for public T Resolve<T>(object? tag).

ObjectResolveMethodModifiers Hint

Overrides the modifiers of the public object Resolve(Type type) method.

ObjectResolveMethodName Hint

Overrides the method name for public object Resolve(Type type).

ObjectResolveByTagMethodModifiers Hint

Overrides the modifiers of the public object Resolve(Type type, object? tag) method.

ObjectResolveByTagMethodName Hint

Overrides the method name for public object Resolve(Type type, object? tag).

DisposeMethodModifiers Hint

Overrides the modifiers of the public void Dispose() method.

FormatCode Hint

Specifies whether the generated code should be formatted. This option consumes a lot of CPU resources. This hint may be useful when studying the generated code or, for example, when making presentations.

SeverityOfNotImplementedContract Hint

Indicates the severity level of the situation when, in the binding, an implementation does not implement a contract. Possible values:

  • "Error", it is default value.
  • "Warning" - something suspicious but allowed.
  • "Info" - information that does not indicate a problem.
  • "Hidden" - what's not a problem.

Comments Hint

Specifies whether the generated code should be commented.

// Represents the composition class
DI.Setup(nameof(Composition))
    .Bind<IService>().To<Service>()
    // Provides a composition root of my service
    .Root<IService>("MyService");

Appropriate comments will be added to the generated Composition class and the documentation for the class, depending on the IDE used, will look something like this:

ReadmeDocumentation1.png

Then documentation for the composition root:

ReadmeDocumentation2.png

NuGet packages

Pure.DI NuGet DI Source code generator
Pure.DI.Templates NuGet Template Package you can call from the shell/command line.
Pure.DI.MS NuGet Tools for working with Microsoft DI

Requirements for development environments

Project template

Install the DI template Pure.DI.Templates

dotnet new -i Pure.DI.Templates

Create a "Sample" console application from the template di

dotnet new di -o ./Sample

And run it

dotnet run --project Sample

For more information about the template, please see this page.

Troubleshooting

Version update

When updating the version, it is possible that the previous version of the code generator remains active and is used by compilation services. In this case, the old and new versions of the generator may conflict. For a project where the code generator is used, it is recommended to do the following:

  • After updating the version, close the IDE if it is open
  • Delete the obj and bin directories
  • Execute the following commands one by one
dotnet build-server shutdown
dotnet restore
dotnet build
Disabling API generation

Pure.DI automatically generates its API. If an assembly already has the Pure.DI API, for example, from another assembly, it is sometimes necessary to disable its automatic generation to avoid ambiguity. To do this, you need to add a DefineConstants element to the project files of these modules. For example:

<PropertyGroup>
    <DefineConstants>$(DefineConstants);PUREDI_API_SUPPRESSION</DefineConstants>
</PropertyGroup>
Display generated files

You can set project properties to save generated files and control their storage location. In the project file, add the <EmitCompilerGeneratedFiles> element to the <PropertyGroup> group and set its value to true. Build the project again. The generated files are now created in the obj/Debug/netX.X/generated/Pure.DI/Pure.DI/Pure.DI.SourceGenerator directory. The path components correspond to the build configuration, the target framework, the source generator project name, and the full name of the generator type. You can choose a more convenient output folder by adding the <CompilerGeneratedFilesOutputPath> element to the application project file. For example:

<Project Sdk="Microsoft.NET.Sdk">
    
    <PropertyGroup>
        <EmitCompilerGeneratedFiles>true</EmitCompilerGeneratedFiles>
        <CompilerGeneratedFilesOutputPath>$(BaseIntermediateOutputPath)Generated</CompilerGeneratedFilesOutputPath>
    </PropertyGroup>
    
</Project>

Contribution

Thank you for your interest in contributing to the Pure.DI project! First of all, if you are going to make a big change or feature, please open a problem first. That way, we can coordinate and understand if the change you're going to work on fits with current priorities and if we can commit to reviewing and merging it within a reasonable timeframe. We don't want you to waste a lot of your valuable time on something that may not align with what we want for Pure.DI.

This project uses the "build as code" approach using csharp-interactive. The entire build logic is a regular console .NET application. You can use the build.cmd and build.sh files with the appropriate command in the parameters to perform all basic actions on the project, e.g:

Command Description
g, generator Builds and tests generator
l, libs Builds and tests libraries
c, check Compatibility checks
p, pack Creates NuGet packages
r, readme Generates README.md
benchmarks, bm Runs benchmarks
deploy, dp Deploys packages
t, template Creates and deploys templates
u, update Updates internal DI version

For example:

./build.sh pack
./build.cmd benchmarks

If you are using the Rider IDE, it already has a set of configurations to run these commands.

Contribution Prerequisites

Installed .NET SDK 8.0

Benchmarks

Transient
Method Mean Error StdDev RatioRatioSDGen0Gen1AllocatedAlloc Ratio
'Pure.DI composition root'11.71 ns0.360 ns0.719 ns1.010.100.0009-24 B1.00
'Hand Coded'11.74 ns0.364 ns0.880 ns1.000.000.0009-24 B1.00
'Pure.DI Resolve<T>()'15.11 ns0.428 ns0.864 ns1.300.120.0009-24 B1.00
'Pure.DI Resolve(Type)'19.97 ns0.527 ns1.322 ns1.710.160.0009-24 B1.00
LightInject25.10 ns0.628 ns1.677 ns2.140.210.0009-24 B1.00
'Microsoft DI'34.89 ns0.821 ns2.192 ns2.970.280.0009-24 B1.00
DryIoc37.01 ns0.874 ns1.785 ns3.180.310.0009-24 B1.00
'Simple Injector'47.68 ns1.072 ns2.670 ns4.080.410.0009-24 B1.00
Unity15,191.23 ns300.391 ns485.075 ns1,343.3898.430.1831-5176 B215.67
Autofac45,388.57 ns901.253 ns2,467.165 ns3,879.60376.821.22070.061033224 B1,384.33
'Castle Windsor'92,274.63 ns2,395.998 ns6,353.846 ns7,919.73844.072.0752-54360 B2,265.00
Ninject437,510.11 ns11,211.063 ns31,251.962 ns37,506.083,954.024.88281.4648131008 B5,458.67

Transient details

Singleton
Method Mean Error StdDev Median RatioRatioSDGen0Gen1AllocatedAlloc Ratio
'Hand Coded'11.30 ns0.347 ns0.950 ns11.28 ns1.000.000.0009-24 B1.00
'Pure.DI composition root'11.83 ns0.366 ns0.989 ns11.94 ns1.060.140.0009-24 B1.00
'Pure.DI Resolve<T>()'15.58 ns0.438 ns0.999 ns15.66 ns1.410.140.0009-24 B1.00
'Pure.DI Resolve(Type)'19.48 ns0.526 ns0.907 ns19.46 ns1.750.190.0009-24 B1.00
DryIoc36.15 ns0.841 ns1.966 ns36.16 ns3.250.360.0009-24 B1.00
'Simple Injector'50.35 ns1.132 ns2.438 ns50.47 ns4.560.460.0009-24 B1.00
'Microsoft DI'54.55 ns1.219 ns3.168 ns54.37 ns4.880.540.0008-24 B1.00
LightInject1,167.20 ns29.455 ns85.455 ns1,168.13 ns104.3912.14--24 B1.00
Unity13,851.41 ns990.752 ns2,921.254 ns13,388.93 ns1,221.03270.170.1068-3184 B132.67
Autofac29,432.69 ns580.743 ns1,250.110 ns29,628.93 ns2,662.95238.010.91550.030524208 B1,008.67
'Castle Windsor'55,866.46 ns4,142.818 ns12,215.193 ns50,217.47 ns4,961.921,115.860.8545-23912 B996.33
Ninject185,155.88 ns5,901.921 ns16,156.414 ns183,742.97 ns16,506.271,997.271.9531-74097 B3,087.38

Singleton details

Func
Method Mean Error StdDevMedianRatioRatioSDGen0AllocatedAlloc Ratio
'Pure.DI composition root'12.12 ns0.454 ns1.280 ns12.20 ns1.000.130.000924 B1.00
'Hand Coded'12.24 ns0.386 ns1.070 ns12.39 ns1.000.000.000924 B1.00
'Pure.DI Resolve<T>()'16.70 ns0.460 ns0.793 ns16.70 ns1.380.150.000924 B1.00
'Pure.DI Resolve(Type)'20.25 ns0.531 ns1.370 ns20.32 ns1.670.210.000924 B1.00
DryIoc99.11 ns6.928 ns20.428 ns90.87 ns8.211.870.0045120 B5.00
LightInject456.39 ns9.905 ns27.281 ns454.75 ns37.654.580.0191504 B21.00
Unity6,421.69 ns128.095 ns371.628 ns6,498.50 ns528.3256.740.09162552 B106.33
Autofac20,047.40 ns1,348.433 ns3,975.886 ns18,347.20 ns1,683.65428.790.518814008 B583.67

Func details

Array
Method Mean ErrorStdDevMedianRatioRatioSDGen0AllocatedAlloc Ratio
'Pure.DI composition root'241.2 ns6.22 ns17.96 ns242.1 ns1.000.100.0238632 B1.00
'Hand Coded'242.6 ns4.94 ns11.83 ns242.9 ns1.000.000.0238632 B1.00
'Pure.DI Resolve<T>()'250.5 ns6.13 ns17.60 ns250.7 ns1.050.090.0238632 B1.00
'Pure.DI Resolve(Type)'262.6 ns6.31 ns18.32 ns264.5 ns1.090.100.0238632 B1.00
LightInject268.9 ns10.84 ns29.66 ns264.2 ns1.090.090.0238632 B1.00
DryIoc271.4 ns5.53 ns16.05 ns271.7 ns1.130.090.0238632 B1.00
Unity16,147.7 ns372.62 ns1,038.71 ns16,193.5 ns66.635.500.549314520 B22.97
Autofac51,686.3 ns3,931.99 ns11,593.55 ns45,129.5 ns229.4054.231.098628816 B45.59

Array details

Enum
Method Mean ErrorStdDevMedianRatioRatioSDGen0AllocatedAlloc Ratio
'Pure.DI composition root'175.8 ns3.62 ns9.60 ns176.1 ns0.970.080.0131344 B1.00
'Pure.DI Resolve<T>()'176.9 ns3.61 ns8.37 ns178.0 ns0.980.070.0131344 B1.00
'Hand Coded'181.5 ns3.77 ns9.92 ns180.9 ns1.000.000.0131344 B1.00
'Pure.DI Resolve(Type)'185.6 ns3.81 ns8.99 ns184.7 ns1.020.070.0131344 B1.00
'Microsoft DI'308.0 ns20.95 ns61.78 ns276.8 ns1.760.350.0176472 B1.37
LightInject439.1 ns22.65 ns66.79 ns408.1 ns2.420.390.0324856 B2.49
DryIoc484.5 ns27.58 ns81.32 ns466.2 ns2.760.460.0324856 B2.49
Unity12,287.5 ns245.07 ns495.05 ns12,357.3 ns68.254.840.518813752 B39.98
Autofac48,070.2 ns2,330.57 ns6,379.91 ns46,378.6 ns265.5936.701.098628944 B84.14

Enum details

Benchmarks environment

BenchmarkDotNet v0.13.12, Windows 11 (10.0.22000.2538/21H2/SunValley) (Hyper-V)
Intel Xeon CPU E5-2673 v4 2.30GHz, 1 CPU, 2 logical cores and 1 physical core
.NET SDK 8.0.200
  [Host]     : .NET 8.0.2 (8.0.224.6711), X64 RyuJIT AVX2
  DefaultJob : .NET 8.0.2 (8.0.224.6711), X64 RyuJIT AVX2