-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathface_detect.py
118 lines (115 loc) · 4.08 KB
/
face_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse as arg
import time
import cv2
import numpy as np
from skin_seg import *
class Face_Detector():
def __init__(self,skin_detect):
"skin_detect is an object from skin_seg file"
self._skin_detect = skin_detect
@property
def skin_detect(self):
"set skin_detect to be an immutable field/property"
return self._skin_detect
def Detect_Face_Img(self,img,size1,size2):
'''this method implements the skin detection algorithm to perform a face detection in a given image.
-inputs:
img : BGR image (numpy array)
size1 : the lower size of a rectangle/face(min size) (type tuple)
size2 : the upper size of a rectangle/face(max size) (type tuple)
-output:
a numpy array with all faces coordinates in a picture.
'''
#get the RGB_H_CbCr representation of the image(for more info, please refer to skin_seg.py)
skin_img = self._skin_detect.RGB_H_CbCr(img,False)
contours, hierarchy = cv2.findContours(skin_img, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
rects = []
for c in contours:
# get the bounding rect
x, y, w, h = cv2.boundingRect(c)
# draw a green rectangle to visualize the bounding rect
if (w > size1[0] and h > size1[1]) and (w < size2[0] and h < size2[1]):
#pinhole distance
Distance1 = 11.5*(img.shape[1]/float(w))
#camera distance
Distance2 = 15.0*((img.shape[1] + 226.8)/float(w))
print("\r[CAMS] Pinhole Distance = {:.2f} cm\n[CAMS] Camera distance = {:.2f} cm".format(Distance1,Distance2))
print("\r[CAMS] Width = {} \t Height = {}".format(w,h))
rects.append(np.asarray([x,y,w,w*1.25], dtype=np.uint16))
return rects
def Detect_Face_Vid(self,vid,size1,size2,scale_factor = 3):
'''this method implements the skin detection algorithm to perform a face detection in a given video file.
-inputs:
vid : video object
size1 : the lower size of a rectangle/face(min size) (type tuple)
size2 : the upper size of a rectangle/face(max size) (type tuple)
scale_factor : parameter for scaling down the image for a better frame rate
-output:
void
'''
while True:
start =time.time()
(grabbed, img) = vid.read()
if not grabbed:
break
#get the frame rate
fps = vid.get(cv2.CAP_PROP_FPS)
print("\r[WEBC] Recording at {} fps".format(fps))
Image = cv2.resize(img, (0, 0), fx=1/scale_factor, fy=1/scale_factor)
rects = self.Detect_Face_Img(Image,size1,size2)
for i,r in enumerate(rects):
# Scale back up face locations since the frame we detected in was scaled to 1/10 size
x0,y0,w,h = r
x0 *= scale_factor
y0 *= scale_factor
w *= scale_factor
h *= scale_factor
cv2.rectangle(img, (x0,y0),(x0+w,y0+h),(0,255,0),1)
font = cv2.FONT_HERSHEY_SIMPLEX
stop = time.time()
time.sleep(abs((1/fps - (stop - start))))
cv2.imshow('faces', img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
vid.release()
def Arg_Parser():
Arg_Par = arg.ArgumentParser()
Arg_Par.add_argument("-i", "--image",
help = "relative/absolute path of the image file")
Arg_Par.add_argument("-v", "--video",
help = "relative/absolute path of the recorded video file")
arg_list = vars(Arg_Par.parse_args())
return arg_list
def open_img(arg_):
mg_src = arg_["image"]
img = cv2.imread(mg_src)
img_arr = np.array(img, 'uint8')
return img_arr
def open_vid(arg_):
vid_src = "videos/video1.mkv"
vid = cv2.VideoCapture(arg_["video"])
return vid
if __name__ == "__main__":
if len(sys.argv) == 1:
print("[LOGS] Please give me a file :Image/video !!!")
print("\r[LOGS] Try Again, For more info type --help to see available options")
sys.exit(0)
in_arg = Arg_Parser()
skin_detect = Skin_Detect()
size1 = (40,40)
size2 = (300,400)
scale_factor = 3
Face_Detect = Face_Detector(skin_detect)
if in_arg["image"] != None:
img = open_img(in_arg)
rects = Face_Detect.Detect_Face_Img(img,size1,size2)
print(rects)
for i,r in enumerate(rects):
x,y,w,h = r
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 1)
cv2.imshow("faces",img)
if cv2.waitKey(0) & 0xFF == ord("q"):
sys.exit(0)
if in_arg["video"] != None:
vid = open_vid(in_arg)
Face_Detect.Detect_Face_Vid(vid,size1,size2,scale_factor)