-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdifferent_sigmas_sim.R
185 lines (168 loc) · 9.39 KB
/
different_sigmas_sim.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
library(reshape2)
library(RColorBrewer)
library(R.matlab)
library(randomForest)
library(R.utils)
library(plotly)
library(foreach)
library(doParallel)
library(SpatioTemporal)
sourceDirectory("../functions/", modifiedOnly = F, recursive = F) # useful functions
#### ####
#### iPCA Simulation with Different/Uncommon Sigmas ####
nsim <- 50
param_name <- "diff_idx"
params <- 1:3
avg_err_df <- as.data.frame(matrix(NA, nrow = 15, ncol = length(params)))
colnames(avg_err_df) <- params
rownames(avg_err_df) <- c("pca1", "pca2", "pca3",
"concatenated", "concatenated_without",
"mfa", "mfa_without", "jive", "jive_without",
"addfrob", "addfrob_without",
"multfrob", "multfrob_without",
"l1", "l1_without")
for (param in params) {
# make sims data
sims <- ipca_model_diff_sigmas(nsim = nsim, diff_idx = param)
metric_df <- data.frame(pca1 = NULL, pca2 = NULL, pca3 = NULL,
concatenated = NULL, concatenated_without = NULL,
mfa = NULL, mfa_without = NULL,
jive = NULL, jive_without = NULL,
addfrob = NULL, addfrob_without = NULL,
multfrob = NULL, multfrob_without = NULL,
l1 = NULL, l1_without = NULL)
for (i in 1:nsim) {
sim <- sims[[i]]
sim_data <- sim$sim_data
sim_data_without <- sim$sim_data[-param]
truth <- sim$truth
Sig_true <- truth$Sig_true
dim_U <- 2
# initialize list for Sighs
Sigh_ls <- list()
# individual PCAs
for (k in 1:length(sim_data)) {
pca_name <- paste0("pca", k)
Sigh_ls[[pca_name]] <- IndividualPCA(dat = sim_data, k = k)$Sig
metric_df[i, pca_name] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[[pca_name]],
dim_U = dim_U)
}
# concatenated PCA
Sigh_ls[["concatenated"]] <- ConcatenatedPCA(dat = sim_data)$Sig
metric_df[i, "concatenated"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["concatenated"]],
dim_U = dim_U)
Sigh_ls[["concatenated_without"]] <- ConcatenatedPCA(dat = sim_data_without)$Sig
metric_df[i, "concatenated_without"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["concatenated_without"]],
dim_U = dim_U)
# MFA
Sigh_ls[["mfa"]] <- my_MFA(dat = sim_data)$U
metric_df[i, "mfa"] <- subspace_recovery(Sig = Sig_true,
Uh = Sigh_ls[["mfa"]],
dim_U = dim_U)
Sigh_ls[["mfa_without"]] <- my_MFA(dat = sim_data_without)$U
metric_df[i, "mfa_without"] <- subspace_recovery(Sig = Sig_true,
Uh = Sigh_ls[["mfa_without"]],
dim_U = dim_U)
# JIVE
Sigh_ls[["jive"]] <- my_JIVE(dat = sim_data)$Sig
metric_df[i, "jive"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["jive"]],
dim_U = dim_U)
Sigh_ls[["jive_without"]] <- my_JIVE(dat = sim_data_without)$Sig
metric_df[i, "jive_without"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["jive_without"]],
dim_U = dim_U)
# Addfrob
# to reduce computational time, make lam_grid smaller and choose fewer lams
lams <- c(1e-4, 1e-2, 1, 100, 1000, 10000, 100000) # for additive penalties
lam_grid <- expand.grid(lams, lams, lams, lams)
choose_lambdas_ans <- choose_lambdas(dat = sim_data, lam_grid = lam_grid,
q = "addfrob", trcma = T, maxit = 10,
greedy.search = T, maxit.search = 1,
seed = sample(x = 1:10000, 1))
best_lambdas <- choose_lambdas_ans$best_lambdas
Sigh_ls[["addfrob"]] <- FFmleAddFrob(dat = sim_data,
lamDs = best_lambdas[-1],
lamS = best_lambdas[1])$Sig
metric_df[i, "addfrob"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["addfrob"]],
dim_U = dim_U)
lam_grid <- expand.grid(lams, lams, lams)
choose_lambdas_ans <- choose_lambdas(dat = sim_data_without, lam_grid = lam_grid,
q = "addfrob", trcma = T, maxit = 10,
greedy.search = T, maxit.search = 1,
seed = sample(x = 1:10000, 1))
best_lambdas <- choose_lambdas_ans$best_lambdas
Sigh_ls[["addfrob_without"]] <- FFmleAddFrob(dat = sim_data_without,
lamDs = best_lambdas[-1],
lamS = best_lambdas[1])$Sig
metric_df[i, "addfrob_without"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["addfrob_without"]],
dim_U = dim_U)
# Multfrob
# to reduce computational time, make lam_grid smaller and choose fewer lams
lams <- c(1e-4, 1e-2, 1, 10, 100, 1000, 10000) # for multiplicative penalties
lam_grid <- expand.grid(lams, lams, lams)
choose_lambdas_ans <- choose_lambdas(dat = sim_data, lam_grid = lam_grid,
q = "multfrob", trcma = T, maxit = 10,
greedy.search = T, maxit.search = 1,
seed = sample(x = 1:10000, 1))
best_lambdas <- choose_lambdas_ans$best_lambdas
Sigh_ls[["multfrob"]] <- FFmleMultFrob(dat = sim_data,
lamDs = best_lambdas)$Sig
metric_df[i, "multfrob"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["multfrob"]],
dim_U = dim_U)
lam_grid <- expand.grid(lams, lams)
choose_lambdas_ans <- choose_lambdas(dat = sim_data_without, lam_grid = lam_grid,
q = "multfrob", trcma = T, maxit = 10,
greedy.search = T, maxit.search = 1,
seed = sample(x = 1:10000, 1))
best_lambdas <- choose_lambdas_ans$best_lambdas
Sigh_ls[["multfrob_without"]] <- FFmleMultFrob(dat = sim_data_without,
lamDs = best_lambdas)$Sig
metric_df[i, "multfrob_without"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["multfrob_without"]],
dim_U = dim_U)
# L1
# to reduce computational time, make lam_grid smaller and choose fewer lams
lams <- c(1e-4, 1e-2, 1, 100, 1000, 10000, 100000) # for additive penalties
lam_grid <- expand.grid(lams, lams, lams, lams)
choose_lambdas_ans <- choose_lambdas(dat = sim_data, lam_grid = lam_grid,
q = "1_off", trcma = T, maxit = 10,
greedy.search = T, maxit.search = 1,
seed = sample(x = 1:10000, 1))
best_lambdas <- choose_lambdas_ans$best_lambdas
Sigh_ls[["l1"]] <- FFmleGlasso(dat = sim_data,
lamDs = best_lambdas[-1],
lamS = best_lambdas[1],
maxit = 1, pen_diag = F)$Sig
metric_df[i, "l1"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["l1"]],
dim_U = dim_U)
lam_grid <- expand.grid(lams, lams, lams)
choose_lambdas_ans <- choose_lambdas(dat = sim_data_without, lam_grid = lam_grid,
q = "1_off", trcma = T, maxit = 10,
greedy.search = T, maxit.search = 1,
seed = sample(x = 1:10000, 1))
best_lambdas <- choose_lambdas_ans$best_lambdas
Sigh_ls[["l1_without"]] <- FFmleGlasso(dat = sim_data_without,
lamDs = best_lambdas[-1],
lamS = best_lambdas[1],
maxit = 1, pen_diag = F)$Sig
metric_df[i, "l1_without"] <- subspace_recovery(Sig = Sig_true,
Sigh = Sigh_ls[["l1_without"]],
dim_U = dim_U)
}
avg_err_df[as.character(param)] <- colMeans(metric_df)
}
avg_err_df <- cbind(method = rownames(avg_err_df), avg_err_df)
plt_df <- melt(avg_err_df, id.vars = "method")
plt_df$variable <- as.numeric(as.character(plt_df$variable))
ggplot(plt_df) +
aes(x = method, y = value, color = method, fill = method) +
facet_grid(variable ~ ., scales = "free") +
geom_bar(stat = "identity", position = "dodge", alpha = .75, width = .9)