Data Collection: Sourcing data from various internal and external databases, APIs, or through manual collection.
Data Cleaning: Processing and preparing data for analysis, which may include handling missing values, removing duplicates, or normalizing formats.
Exploratory Data Analysis (EDA): Analyzing datasets to summarize their main characteristics, often using visual methods to identify patterns and outliers.
Model Development: Creating predictive models using machine learning techniques, including supervised and unsupervised learning algorithms.
Data Visualization: Presenting data and analysis results in a clear and visually appealing manner to stakeholders, using tools like Tableau, Matplotlib, or Power BI.
Communication: Translating complex data-related findings into actionable insights for non-technical stakeholders.
Cambios guardados
0.0 · 0 Reviews
Opiniones
¡No hay comentarios para ver aquí!
Verificaciones
¡Invitación enviada correctamente!
¡Gracias! Te hemos enviado un enlace para reclamar tu crédito gratuito.
Algo salió mal al enviar tu correo electrónico. Por favor, intenta de nuevo.