Data Collection: Sourcing data from various internal and external databases, APIs, or through manual collection.
Data Cleaning: Processing and preparing data for analysis, which may include handling missing values, removing duplicates, or normalizing formats.
Exploratory Data Analysis (EDA): Analyzing datasets to summarize their main characteristics, often using visual methods to identify patterns and outliers.
Model Development: Creating predictive models using machine learning techniques, including supervised and unsupervised learning algorithms.
Data Visualization: Presenting data and analysis results in a clear and visually appealing manner to stakeholders, using tools like Tableau, Matplotlib, or Power BI.
Communication: Translating complex data-related findings into actionable insights for non-technical stakeholders.
Změny byly uloženy
0.0 · 0 Reviews
Hodnocení
K dispozici nejsou žádné recenze.
Ověření
Pozvánka byla úspěšně odeslána!
Díky! Poslali jsme vám e-mailem odkaz pro získání kreditu zdarma.
Při odesílání e-mailu se něco pokazilo. Zkuste to prosím znovu.