I have participated in various research and commercial machine learning projects. I also have good research experience and some publications that allow me to understand and implement state-of-art machine learning models and use them for new applications.
I am a professional developer that enjoys creating Deep Learning, Machine Learning, and Computer Vision solutions. I have used many types of neural networks to solve complicated real-world issues in just four short years.
Through online courses like (CS229 Stanford University, taught by Prof. Andrew Ng), I have studied a wide range of significant ML and NLP topics, but the ones I have covered practically and theoretically are logistic and linear regression, locally weighted linear regression, PCA, distribution fitting, neural network, and backpropagation algorithm, Convolutional neural network (ConvNet), dropout regularisation technique, K means, linear SVM, gaussian mixture model, and Gaussian process are a few of the terms used to describe deep learning and unsupervised feature learning. Additionally, I have worked on preprocessing, clustering, and feature engineering.
Skills:
☆ Python: Open CV, Pandas, Numpy, Scikit-Learn, Tensorflow, Keras, Matplotlib, Seaborn ...
☆ Big Data: Pyspark, Hive, Scala
☆ Machine Learning: Ensemble Learning, Decision tree, Liner Regression, SVM, SVC Random Forest, Xgboost, LightGBM, Catboost, LR, Kmeans ...
☆ Deep Learning: CNN, DNN, RNN, LSTM, Wide&Deep, Cross Validation, Yolov5,yolov6,yolov7, Segmentation, Semantic Segmentation, Classification, Hyperparameter tunning...
☆Image Preprocessing: PCA, ZCA, Brightness Level Set, Image Resize, Image Augmentation, Rotation
☆ Data Analysis
☆ SQL
☆ Git
Зміни збережено
0.0 · 0 Reviews
Відгуки
Тут немає відгуків для перегляду!
Верифікації
Запрошення успішно надіслане!
Дякуємо! Ми надіслали на вашу електронну пошту посилання для отримання безкоштовного кредиту.
Під час надсилання електронного листа сталася помилка. Будь ласка, спробуйте ще раз.