Abstract
Certain characteristics of tumor cells make it possible to develop rational strategies for targeting tumors without harming normal cells. These include the presence of cell surface molecules that characterize the current state of the tumor (e.g. CD30 on Hodgkin lymphoma cells) and the genetic and epigenetic changes that activate oncogenes and inactivate tumor suppressor genes (e.g. the inactivation of tumor suppressor gene DAPK2 in Hodgkin lymphoma cells, which blocks apoptosis). We have developed a novel tumor-targeting fusion protein by combining a selective ligand (CD30L) with a constitutively active version of DAPK2 (DAPK2-CD30L), thus increasing tumor specificity and reducing systemic toxicity. We showed that this immunokinase fusion protein induces apoptosis specifically in CD30+/DAPK2 – tumor cells in vitro and significantly prolonged overall survival in a disseminated Hodgkin lymphoma xenograft SCID mouse model. Therapeutic strategies based on the cell-specific restoration of a defective, tumor-suppressing kinase demonstrate the feasibility of targeted therapy using recombinant immunokinases
Keywords: Immunotherapy, targeted cancer therapy, serine/threonine protein kinases, CaM kinases, apoptosis, autophagy, therapeutic fusion protein, immunotoxins
Current Pharmaceutical Design
Title: Immunokinases, a Novel Class of Immunotherapeutics for Targeted Cancer Therapy
Volume: 15 Issue: 23
Author(s): Mehmet Kemal Tur, Inga Neef, Gernot Jager, Andreas Teubner, Michael Stocker, Georg Melmer and Stefan Barth
Affiliation:
Keywords: Immunotherapy, targeted cancer therapy, serine/threonine protein kinases, CaM kinases, apoptosis, autophagy, therapeutic fusion protein, immunotoxins
Abstract: Certain characteristics of tumor cells make it possible to develop rational strategies for targeting tumors without harming normal cells. These include the presence of cell surface molecules that characterize the current state of the tumor (e.g. CD30 on Hodgkin lymphoma cells) and the genetic and epigenetic changes that activate oncogenes and inactivate tumor suppressor genes (e.g. the inactivation of tumor suppressor gene DAPK2 in Hodgkin lymphoma cells, which blocks apoptosis). We have developed a novel tumor-targeting fusion protein by combining a selective ligand (CD30L) with a constitutively active version of DAPK2 (DAPK2-CD30L), thus increasing tumor specificity and reducing systemic toxicity. We showed that this immunokinase fusion protein induces apoptosis specifically in CD30+/DAPK2 – tumor cells in vitro and significantly prolonged overall survival in a disseminated Hodgkin lymphoma xenograft SCID mouse model. Therapeutic strategies based on the cell-specific restoration of a defective, tumor-suppressing kinase demonstrate the feasibility of targeted therapy using recombinant immunokinases
Export Options
About this article
Cite this article as:
Tur Kemal Mehmet, Neef Inga, Jager Gernot, Teubner Andreas, Stocker Michael, Melmer Georg and Barth Stefan, Immunokinases, a Novel Class of Immunotherapeutics for Targeted Cancer Therapy, Current Pharmaceutical Design 2009; 15 (23) . https://dx.doi.org/10.2174/138161209788923877
DOI https://dx.doi.org/10.2174/138161209788923877 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employed in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, and prediction, to monitoring of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal ...read more
Current Pharmaceutical challenges in the treatment and diagnosis of neurological dysfunctions
Neurological dysfunctions (MND, ALS, MS, PD, AD, HD, ALS, Autism, OCD etc..) present significant challenges in both diagnosis and treatment, often necessitating innovative approaches and therapeutic interventions. This thematic issue aims to explore the current pharmaceutical landscape surrounding neurological disorders, shedding light on the challenges faced by researchers, clinicians, and ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Current and Future Therapies for Human Osteosarcoma
Current Cancer Therapy Reviews Vitamin D Analogs in Cutaneous Malignancies
Current Pharmaceutical Design Recruitment of Endogenous Neural Progenitor Cells by Malignant Neoplasms of the Central Nervous System
Current Stem Cell Research & Therapy DNA Methylation: A Possible Target for Current and Future Studies on Cancer?
Epigenetic Diagnosis & Therapy (Discontinued) Diacylglycerol Kinases as Emerging Potential Drug Targets for a Variety of Diseases
Current Drug Targets Sirolimus and its Analogs and its Effects on Vascular Diseases
Current Pharmaceutical Design TRIM45 Suppresses the Development of Non-small Cell Lung Cancer
Current Molecular Medicine Current and Potential Treatments for Cervical Cancer
Current Cancer Drug Targets Viral Based Gene Therapy for Prostate Cancer
Current Gene Therapy Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives
Current Protein & Peptide Science Association of Genetic Variants with Colorectal Cancer in the Extended MENA Region: A Systematic Review
Current Molecular Medicine TRP Channels: New Potential Therapeutic Approaches in CNS Neuropathies
CNS & Neurological Disorders - Drug Targets Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease
Current Medicinal Chemistry MicroRNAs Determining Carcinogenesis by Regulating Oncogenes and Tumor Suppressor Genes During Cell Cycle
MicroRNA TRPC Channels and Their Splice Variants are Essential for Promoting Human Ovarian Cancer Cell Proliferation and Tumorigenesis
Current Cancer Drug Targets YF343, A Novel Histone Deacetylase Inhibitor, Combined with CQ to Inhibit- Autophagy, Contributes to Increased Apoptosis in Triple- Negative Breast Cancer
Current Medicinal Chemistry Cervical Cancer and Human Papillomaviruses: Inactivation of Retinoblastoma and Other Tumor Suppressor Pathways
Current Molecular Medicine An Integrative Systems Analysis of High-grade Glioma Cell Lines: TLRs, Wnt, BRCA1, Netrins, STXBP1 and MDH1 Provide Putative Molecular Targets for Therapeutic Intervention
Current Pharmacogenomics and Personalized Medicine A Synopsis on the Role of Human Papilloma Virus Infection in Cervical Cancer
Current Drug Metabolism Elucidation of the Molecular Mechanisms of a Salicylhydrazide Class of Compounds by Proteomic Analysis
Current Cancer Drug Targets