Abstract
Glucocorticoids (GC) and their cognate intracellular receptor, the glucocorticoid receptor (GR), have been characterised as critical checkpoints in the endocrine control of energy homeostasis in mammals. Indeed, aberrant GC action has been linked to a variety of severe metabolic diseases, including obesity, insulin resistance and type 2 diabetes. As a steroid-binding member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are – in many cases – associated with glucose and lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of GC/GR function in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism.
Acknowledgments
We apologize to all colleagues who could not be cited due to space limitations. Our work is supported by the EU-FP7 Collaborative Project DIABAT (HEALTH -F2-2011-278373), the Helmholtz Consortium ICEMED and the Helmholtz Cross-Program Topic Metabolic Dysfunction to S.H.
References
1. Malkoski SP, Dorin RI. Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol Endocrinol 1999;13:1629–44.10.1210/mend.13.10.0351Search in Google Scholar
2. Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, Schutz G. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 1995;9:1608–21.10.1101/gad.9.13.1608Search in Google Scholar
3. Raber J. Detrimental effects of chronic hypothalamic-pituitary-adrenal axis activation. From obesity to memory deficits. Mol Neurobiol 1998;18:1–22.10.1007/BF02741457Search in Google Scholar
4. Gagner JP, Drouin J. Opposite regulation of pro-opiomelanocortin gene transcription by glucocorticoids and CRH. Mol Cell Endocrinol 1985;40:25–32.10.1016/0303-7207(85)90154-6Search in Google Scholar
5. Gagner JP, Drouin J. Tissue-specific regulation of pituitary proopiomelanocortin gene transcription by corticotropin-releasing hormone, 3’,5’-cyclic adenosine monophosphate, and glucocorticoids. Mol Endocrinol 1987;1:677–82.10.1210/mend-1-10-677Search in Google Scholar
6. Drouin J, Trifiro MA, Plante RK, Nemer M, Eriksson P, Wrange O. Glucocorticoid receptor binding to a specific DNA sequence is required for hormone-dependent repression of pro-opiomelanocortin gene transcription. Mol Cell Biol 1989;9:5305–14.Search in Google Scholar
7. Tata JR. Signalling through nuclear receptors. Nat Rev Mol Cell Biol 2002;3:702–10.10.1038/nrm914Search in Google Scholar
8. Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, Schutz G. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 1998;93:531–41.10.1016/S0092-8674(00)81183-6Search in Google Scholar
9. Hu Z, Wang H, Lee IH, Du J, Mitch WE. Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J Clin Invest 2009;119:3059–69.10.1172/JCI38770Search in Google Scholar PubMed PubMed Central
10. Perez MH, Cormack J, Mallinson D, Mutungi G. A membrane glucocorticoid receptor mediates the rapid/non-genomic actions of glucocorticoids in mammalian skeletal muscle fibres. J Physiol 2013;591:5171–85.10.1113/jphysiol.2013.256586Search in Google Scholar PubMed PubMed Central
11. Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, Rebsamen MC, Hsieh CM, Chui DS, Thomas KL, Prorock AJ, Laubach VE, Moskowitz MA, French BA, Ley K, Liao JK. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 2002;8:473–9.10.1038/nm0502-473Search in Google Scholar PubMed PubMed Central
12. Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: An update. Mol Cell Endocrinol 2013;380:65–78.10.1016/j.mce.2013.03.007Search in Google Scholar
13. Kuo T, Harris CA, Wang JC. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol 2013;380:79–88.10.1016/j.mce.2013.03.003Search in Google Scholar
14. Baschant U, Culemann S, Tuckermann J. Molecular determinants of glucocorticoid actions in inflammatory joint diseases. Mol Cell Endocrinol 2013;380:108–18.10.1016/j.mce.2013.06.009Search in Google Scholar
15. Rothwell NJ, Stock MJ, York DA. Effects of adrenalectomy on energy balance, diet-induced thermogenesis and brown adipose tissue in adult cafeteria-fed rats. Comp Biochem Physiol A Comp Physiol 1984;78:565–9.10.1016/0300-9629(84)90597-8Search in Google Scholar
16. Marchington D, Rothwell NJ, Stock MJ, York DA. Energy balance, diet-induced thermogenesis and brown adipose tissue in lean and obese (fa/fa) Zucker rats after adrenalectomy. J Nutr 1983;113:1395–402.10.1093/jn/113.7.1395Search in Google Scholar
17. Rothwell NJ, Stock MJ. Sympathetic and adrenocorticoid influences on diet-induced thermogenesis and brown fat activity in the rat. Comp Biochem Physiol A Comp Physiol 1984;79:575–9.10.1016/0300-9629(84)90451-1Search in Google Scholar
18. Kellendonk C, Eiden S, Kretz O, Schutz G, Schmidt I, Tronche F, Simon E. Inactivation of the GR in the nervous system affects energy accumulation. Endocrinology 2002;143:2333–40.10.1210/endo.143.6.8853Search in Google Scholar PubMed
19. Lee B, Kim SG, Kim J, Choi KY, Lee S, Lee SK, Lee JW. Brain-specific homeobox factor as a target selector for glucocorticoid receptor in energy balance. Mol Cell Biol 2013;33:2650–8.10.1128/MCB.00094-13Search in Google Scholar PubMed PubMed Central
20. Kim SG, Lee B, Kim DH, Kim J, Lee S, Lee SK, Lee JW. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor. Mol Cell Biol 2013;33:3826–34.10.1128/MCB.00385-13Search in Google Scholar PubMed PubMed Central
21. Smart JL, Tolle V, Low MJ. Glucocorticoids exacerbate obesity and insulin resistance in neuron-specific proopiomelanocortin-deficient mice. J Clin Invest 2006;116:495–505.10.1172/JCI25243Search in Google Scholar PubMed PubMed Central
22. Kershaw EE, Morton NM, Dhillon H, Ramage L, Seckl JR, Flier JS. Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes 2005;54:1023–31.10.2337/diabetes.54.4.1023Search in Google Scholar
23. Rose AJ, Diaz MB, Reimann A, Klement J, Walcher T, Krones-Herzig A, Strobel O, Werner J, Peters A, Kleyman A, Tuckermann JP, Vegiopoulos A, Herzig S. Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor. Cell Metab 2011;14:123–30.10.1016/j.cmet.2011.04.010Search in Google Scholar
24. Herzig S. Liver: a target of late diabetic complications. Exp Clin Endocrinol Diabetes 2012;120:202–4.10.1055/s-0032-1304568Search in Google Scholar
25. van den Berghe G. The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis 1991;14:407–20.10.1007/BF01797914Search in Google Scholar
26. Consoli A. Role of liver in pathophysiology of NIDDM. Diabetes Care 1992;15:430–41.10.2337/diacare.15.3.430Search in Google Scholar
27. Gunn JM, Hanson RW, Meyuhas O, Reshef L, Ballard FJ. Glucocorticoids and the regulation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in the rat. Biochem J 1975;150:195–203.10.1042/bj1500195Search in Google Scholar
28. Kioussis D, Reshef L, Cohen H, Tilghman SM, Iynedjian PB, Ballard FJ, Hanson RW. Alterations in translatable messenger RNA coding for phosphoenolpyruvate carboxykinase (GTP) in rat liver cytosol during deinduction. J Biol Chem 1978;253:4327–32.10.1016/S0021-9258(17)34723-3Search in Google Scholar
29. Tilghman SM, Gunn JM, Fisher LM, Hanson RW. Deinduction of phosphoenolpyruvate carboxykinase (guanosine triphosphate) synthesis in Reuber H-35 cells. J Biol Chem 1975;250:3322–9.10.1016/S0021-9258(19)41517-2Search in Google Scholar
30. Tilghman SM, Hanson RW, Reshef L, Hopgood MF, Ballard FJ. Rapid loss of translatable messenger RNA of phosphoenolpyruvate carboxykinase during glucose repression in liver. Proc Natl Acad Sci USA 1974;71:1304–8.10.1073/pnas.71.4.1304Search in Google Scholar
31. Iynedjian PB, Ballard FJ, Hanson RW. The regulation of phosphoenolpyruvate carboxykinase (GTP) synthesis in rat kidney cortex. The role of acid-base balance and glucocorticoids. J Biol Chem 1975;250:5596–603.10.1016/S0021-9258(19)41221-0Search in Google Scholar
32. Iynedjian PB, Hanson RW. Messenger RNA for renal phosphoenolpyruvate carboxykinase (GTP). Its translation in a heterologous cell-free system and its regulation by glucocorticoids and by changes in acid-base balance. J Biol Chem 1977;252:8398–403.10.1016/S0021-9258(19)75232-6Search in Google Scholar
33. Iynedjian PB, Hanson RW. Increase in level of functional messenger RNA coding for phosphoenolpyruvate carboxykinase (GTP) during induction by cyclic adenosine 3’:5’-monophosphate. J Biol Chem 1977;252:655–62.10.1016/S0021-9258(17)32769-2Search in Google Scholar
34. Hanson RW, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 1997;66:581–611.10.1146/annurev.biochem.66.1.581Search in Google Scholar
35. Loose DS, Cameron DK, Short HP, Hanson RW. Thyroid hormone regulates transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase (GTP) in rat liver. Biochemistry 1985;24:4509–12.10.1021/bi00338a004Search in Google Scholar
36. Opherk C, Tronche F, Kellendonk C, Kohlmuller D, Schulze A, Schmid W, Schutz G. Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol Endocrinol 2004;18:1346–53.10.1210/me.2003-0283Search in Google Scholar
37. Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 2003;285:E685–92.10.1152/ajpendo.00253.2003Search in Google Scholar
38. Oishi K, Amagai N, Shirai H, Kadota K, Ohkura N, Ishida N. Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res 2005;12:191–202.10.1093/dnares/dsi003Search in Google Scholar
39. Garland RC. Induction of glucose 6-phosphatase in cultured hepatoma cells by dexamethasone. Biochem Biophys Res Commun 1986;139:1130–4.10.1016/S0006-291X(86)80295-9Search in Google Scholar
40. Garland RC. Effect of insulin on the induction by dexamethasone of glucose-6-phosphohydrolase and translocase activities in cultured hepatoma cells. Biochem Biophys Res Commun 1988;153:307–12.10.1016/S0006-291X(88)81223-3Search in Google Scholar
41. Schmoll D, Allan BB, Burchell A. Cloning and sequencing of the 5’ region of the human glucose-6-phosphatase gene: transcriptional regulation by cAMP, insulin and glucocorticoids in H4IIE hepatoma cells. FEBS Lett 1996;383:63–6.10.1016/0014-5793(96)00224-4Search in Google Scholar
42. Schmoll D, Wasner C, Hinds CJ, Allan BB, Walther R, Burchell A. Identification of a cAMP response element within the glucose- 6-phosphatase hydrolytic subunit gene promoter which is involved in the transcriptional regulation by cAMP and glucocorticoids in H4IIE hepatoma cells. Biochem J 1999;338:457–63.10.1042/bj3380457Search in Google Scholar
43. Vander Kooi BT, Onuma H, Oeser JK, Svitek CA, Allen SR, Vander Kooi CW, Chazin WJ, O’Brien RM. The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements. Mol Endocrinol 2005;19:3001–22.10.1210/me.2004-0497Search in Google Scholar
44. Lin B, Morris DW, Chou JY. Hepatocyte nuclear factor 1alpha is an accessory factor required for activation of glucose-6-phosphatase gene transcription by glucocorticoids. DNA Cell Biol 1998;17:967–74.10.1089/dna.1998.17.967Search in Google Scholar
45. Renga B, Mencarelli A, D’Amore C, Cipriani S, Baldelli F, Zampella A, Distrutti E, Fiorucci S. Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition. FASEB J 2012;26:3021–31.10.1096/fj.11-195701Search in Google Scholar
46. Winkler R, Benz V, Clemenz M, Bloch M, Foryst-Ludwig A, Wardat S, Witte N, Trappiel M, Namsolleck P, Mai K, Spranger J, Matthias G, Roloff T, Truee O, Kappert K, Schupp M, Matthias P, Kintscher U. Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis. Diabetes 2012;61:513–23.10.2337/db11-0313Search in Google Scholar
47. Mitchell J, Noisin E, Hall R, O’Brien R, Imai E, Granner D. Integration of multiple signals through a complex hormone response unit in the phosphoenolpyruvate carboxykinase gene promoter. Mol Endocrinol 1994;8:585–94.Search in Google Scholar
48. Imai E, Stromstedt PE, Quinn PG, Carlstedt-Duke J, Gustafsson JA, Granner DK. Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 1990;10:4712–9.Search in Google Scholar
49. Stafford JM, Wilkinson JC, Beechem JM, Granner DK. Accessory factors facilitate the binding of glucocorticoid receptor to the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 2001;276:39885–91.10.1074/jbc.M105370200Search in Google Scholar
50. Nader N, Ng SS, Wang Y, Abel BS, Chrousos GP, Kino T. Liver x receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism. PLoS One 2012;7:e26751.10.1371/journal.pone.0026751Search in Google Scholar
51. Patel R, Patel M, Tsai R, Lin V, Bookout AL, Zhang Y, Magomedova L, Li T, Chan JF, Budd C, Mangelsdorf DJ, Cummins CL. LXRbeta is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J Clin Invest 2011;121:431–41.10.1172/JCI41681Search in Google Scholar
52. Sommerfeld A, Krones-Herzig A, Herzig S. Transcriptional co-factors and hepatic energy metabolism. Mol Cell Endocrinol 2011;332:21–31.10.1016/j.mce.2010.11.020Search in Google Scholar
53. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998;92:829–39.10.1016/S0092-8674(00)81410-5Search in Google Scholar
54. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001;413:179–83.10.1038/35093131Search in Google Scholar PubMed
55. Lee D, Le Lay J, Kaestner KH. The transcription factor CREB has no non-redundant functions in hepatic glucose metabolism in mice. Diabetologia 2014;57:1242–8.10.1007/s00125-014-3203-2Search in Google Scholar PubMed
56. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003;423:550–5.10.1038/nature01667Search in Google Scholar PubMed
57. Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 2003;100:4012–7.10.1073/pnas.0730870100Search in Google Scholar PubMed PubMed Central
58. Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 2001;108:1359–67.10.1172/JCI200112876Search in Google Scholar
59. Park MJ, Kong HJ, Kim HY, Kim HH, Kim JH, Cheong J. Transcriptional repression of gluconeogenic gene PEPCK by orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha. Biochem J 2007;402:567–74.10.1042/BJ20061549Search in Google Scholar PubMed PubMed Central
60. Borgius LJ, Steffensen KR, Gustafsson JA, Treuter E. Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. J Biol Chem 2002;277:49761–6.10.1074/jbc.M205641200Search in Google Scholar PubMed
61. Stafford JM, Waltner-Law M, Granner DK. Role of accessory factors and steroid receptor coactivator 1 in the regulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. J Biol Chem 2001;276:3811–9.10.1074/jbc.M009389200Search in Google Scholar PubMed
62. Kucera T, Waltner-Law M, Scott DK, Prasad R, Granner DK. A point mutation of the AF2 transactivation domain of the glucocorticoid receptor disrupts its interaction with steroid receptor coactivator 1. J Biol Chem 2002;277:26098–102.10.1074/jbc.M204013200Search in Google Scholar PubMed
63. Wang XL, Herzog B, Waltner-Law M, Hall RK, Shiota M, Granner DK. The synergistic effect of dexamethasone and all-trans-retinoic acid on hepatic phosphoenolpyruvate carboxykinase gene expression involves the coactivator p300. J Biol Chem 2004;279:34191–200.10.1074/jbc.M403455200Search in Google Scholar PubMed
64. Ichijo T, Voutetakis A, Cotrim AP, Bhattachryya N, Fujii M, Chrousos GP, Kino T. The Smad6-histone deacetylase 3 complex silences the transcriptional activity of the glucocorticoid receptor: potential clinical implications. J Biol Chem 2005;280:42067–77.10.1074/jbc.M509338200Search in Google Scholar PubMed
65. Nader N, Ng SS, Lambrou GI, Pervanidou P, Wang Y, Chrousos GP, Kino T. AMPK regulates metabolic actions of glucocorticoids by phosphorylating the glucocorticoid receptor through p38 MAPK. Mol Endocrinol 2010;24:1748–64.10.1210/me.2010-0192Search in Google Scholar PubMed PubMed Central
66. Langley SC, York DA. Glucocorticoid receptor numbers in the brain and liver of the obese Zucker rat. Int J Obes Relat Metab Disord 1992;16:135–43.Search in Google Scholar
67. Liu Y, Nakagawa Y, Wang Y, Liu L, Du H, Wang W, Ren X, Lutfy K, Friedman TC. Reduction of hepatic glucocorticoid receptor and hexose-6-phosphate dehydrogenase expression ameliorates diet-induced obesity and insulin resistance in mice. J Mol Endocrinol 2008;41:53–64.10.1677/JME-08-0004Search in Google Scholar PubMed PubMed Central
68. Liu Y, Yan C, Wang Y, Nakagawa Y, Nerio N, Anghel A, Lutfy K, Friedman TC. Liver X receptor agonist T0901317 inhibition of glucocorticoid receptor expression in hepatocytes may contribute to the amelioration of diabetic syndrome in db/db mice. Endocrinology 2006;147:5061–8.10.1210/en.2006-0243Search in Google Scholar PubMed
69. Solomon J, Mayer J. The effect of adrenalectomy on the development of the obese-hyperglycemic syndrome in ob-ob mice. Endocrinology 1973;93:510–2.10.1210/endo-93-2-510Search in Google Scholar PubMed
70. Liang Y, Osborne MC, Monia BP, Bhanot S, Watts LM, She P, DeCarlo SO, Chen X, Demarest K. Antisense oligonucleotides targeted against glucocorticoid receptor reduce hepatic glucose production and ameliorate hyperglycemia in diabetic mice. Metab Clin Exp 2005;54:848–55.10.1016/j.metabol.2005.01.030Search in Google Scholar PubMed
71. Watts LM, Manchem VP, Leedom TA, Rivard AL, McKay RA, Bao D, Neroladakis T, Monia BP, Bodenmiller DM, Cao JX, Zhang HY, Cox AL, Jacobs SJ, Michael MD, Sloop KW, Bhanot S. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism. Diabetes 2005;54:1846–53.10.2337/diabetes.54.6.1846Search in Google Scholar PubMed
72. Jacobson PB, von Geldern TW, Ohman L, Osterland M, Wang J, Zinker B, Wilcox D, Nguyen PT, Mika A, Fung S, Fey T, Goos-Nilsson A, Grynfarb M, Barkhem T, Marsh K, Beno DW, Nga-Nguyen B, Kym PR, Link JT, Tu N, Edgerton DS, Cherrington A, Efendic S, Lane BC, Opgenorth TJ. Hepatic glucocorticoid receptor antagonism is sufficient to reduce elevated hepatic glucose output and improve glucose control in animal models of type 2 diabetes. J Pharmacol Exp Ther 2005;314:191–200.10.1124/jpet.104.081257Search in Google Scholar PubMed
73. von Geldern TW, Tu N, Kym PR, Link JT, Jae HS, Lai C, Apelqvist T, Rhonnstad P, Hagberg L, Koehler K, Grynfarb M, Goos-Nilsson A, Sandberg J, Osterlund M, Barkhem T, Hoglund M, Wang J, Fung S, Wilcox D, Nguyen P, Jakob C, Hutchins C, Farnegardh M, Kauppi B, Ohman L, Jacobson PB. Liver-selective glucocorticoid antagonists: a novel treatment for type 2 diabetes. J Med Chem 2004;47:4213–30.10.1021/jm0400045Search in Google Scholar PubMed
74. Jenson M, Kilroy G, York DA, Braymer D. Abnormal regulation of hepatic glucocorticoid receptor mRNA and receptor protein distribution in the obese Zucker rat. Obes Res 1996;4:133–43.10.1002/j.1550-8528.1996.tb00525.xSearch in Google Scholar PubMed
75. Liu Y, Nakagawa Y, Wang Y, Sakurai R, Tripathi PV, Lutfy K, Friedman TC. Increased glucocorticoid receptor and 11{beta}-hydroxysteroid dehydrogenase type 1 expression in hepatocytes may contribute to the phenotype of type 2 diabetes in db/db mice. Diabetes 2005;54:32–40.10.2337/diabetes.54.1.32Search in Google Scholar
76. O’Brien RM, Granner DK. Regulation of gene expression by insulin. Biochem J 1991;278:609–19.10.1042/bj2780609Search in Google Scholar
77. Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 2001;104:517–29.10.1016/S0092-8674(01)00239-2Search in Google Scholar
78. Schacke H, Docke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 2002;96:23–43.10.1016/S0163-7258(02)00297-8Search in Google Scholar
79. Gesina E, Tronche F, Herrera P, Duchene B, Tales W, Czernichow P, Breant B. Dissecting the role of glucocorticoids on pancreas development. Diabetes 2004;53:2322–9.10.2337/diabetes.53.9.2322Search in Google Scholar PubMed
80. Matthews LC, Hanley NA. The stress of starvation: glucocorticoid restraint of beta cell development. Diabetologia 2011;54:223–6.10.1007/s00125-010-1963-xSearch in Google Scholar PubMed PubMed Central
81. Valtat B, Dupuis C, Zenaty D, Singh-Estivalet A, Tronche F, Breant B, Blondeau B. Genetic evidence of the programming of beta cell mass and function by glucocorticoids in mice. Diabetologia 2011;54:350–9.10.1007/s00125-010-1898-2Search in Google Scholar PubMed
82. Blondeau B, Sahly I, Massourides E, Singh-Estivalet A, Valtat B, Dorchene D, Jaisser F, Breant B, Tronche F. Novel transgenic mice for inducible gene overexpression in pancreatic cells define glucocorticoid receptor-mediated regulations of beta cells. PLoS One 2012;7:e30210.10.1371/journal.pone.0030210Search in Google Scholar PubMed PubMed Central
83. Delaunay F, Khan A, Cintra A, Davani B, Ling ZC, Andersson A, Ostenson CG, Gustafsson J, Efendic S, Okret S. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest 1997;100:2094–8.10.1172/JCI119743Search in Google Scholar PubMed PubMed Central
84. Davani B, Portwood N, Bryzgalova G, Reimer MK, Heiden T, Ostenson CG, Okret S, Ahren B, Efendic S, Khan A. Aged transgenic mice with increased glucocorticoid sensitivity in pancreatic beta-cells develop diabetes. Diabetes 2004; 53(Suppl 1):S51–9.10.2337/diabetes.53.2007.S51Search in Google Scholar
85. Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest 1997;99:414–23.10.1172/JCI119175Search in Google Scholar
86. Vegiopoulos A, Herzig S. Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 2007;275:43–61.10.1016/j.mce.2007.05.015Search in Google Scholar
87. Weinstein SP, Wilson CM, Pritsker A, Cushman SW. Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metab Clin Exp 1998;47:3–6.10.1016/S0026-0495(98)90184-6Search in Google Scholar
88. Weinstein SP, Paquin T, Pritsker A, Haber RS. Glucocorticoid-induced insulin resistance: dexamethasone inhibits the activation of glucose transport in rat skeletal muscle by both insulin- and non-insulin-related stimuli. Diabetes 1995;44:441–5.10.2337/diab.44.4.441Search in Google Scholar PubMed
89. Ekstrand A, Schalin-Jantti C, Lofman M, Parkkonen M, Widen E, Franssila-Kallunki A, Saloranta C, Koivisto V, Groop L. The effect of (steroid) immunosuppression on skeletal muscle glycogen metabolism in patients after kidney transplantation. Transplantation 1996;61:889–93.10.1097/00007890-199603270-00008Search in Google Scholar PubMed
90. Coderre L, Srivastava AK, Chiasson JL. Effect of hypercorticism on regulation of skeletal muscle glycogen metabolism by insulin. Am J Physiol 1992;262:E427–33.10.1152/ajpendo.1992.262.4.E427Search in Google Scholar PubMed
91. Dimitriadis G, Leighton B, Parry-Billings M, Sasson S, Young M, Krause U, Bevan S, Piva T, Wegener G, Newsholme EA. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J 1997;321:707–12.10.1042/bj3210707Search in Google Scholar PubMed PubMed Central
92. Buren J, Lai YC, Lundgren M, Eriksson JW, Jensen J. Insulin action and signalling in fat and muscle from dexamethasone-treated rats. Arch Biochem Biophys 2008;474:91–101.10.1016/j.abb.2008.02.034Search in Google Scholar PubMed
93. Vestergaard H, Bratholm P, Christensen NJ. Increments in insulin sensitivity during intensive treatment are closely correlated with decrements in glucocorticoid receptor mRNA in skeletal muscle from patients with type II diabetes. Clin Sci (Lond) 2001;101:533–40.10.1042/CS20010084Search in Google Scholar
94. Whorwood CB, Donovan SJ, Flanagan D, Phillips DI, Byrne CD. Increased glucocorticoid receptor expression in human skeletal muscle cells may contribute to the pathogenesis of the metabolic syndrome. Diabetes 2002;51:1066–75.10.2337/diabetes.51.4.1066Search in Google Scholar PubMed
95. Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP, Wang JC. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci USA 2012;109:11160–5.10.1073/pnas.1111334109Search in Google Scholar
96. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, Jr., Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr Opin Cardiol 2006;21:1–6.10.1097/01.hco.0000200416.65370.a0Search in Google Scholar
97. Arnaldi G, Mancini T, Tirabassi G, Trementino L, Boscaro M. Advances in the epidemiology, pathogenesis, and management of Cushing’s syndrome complications. J Endocrinol Invest 2012;35:434–48.10.1007/BF03345431Search in Google Scholar
98. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 2009;94:2692–701.10.1210/jc.2009-0370Search in Google Scholar
99. Werner A, Kuipers F, Verkade HJ. Fat absorption and lipid metabolism in cholestasis. In: Werner AK, Verkade HJ, editors. Molecular pathogenesis of cholestasis. Austin (TX): Landes Bioscience, 2003.Search in Google Scholar
100. Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 2011;60:1500–10.10.1016/j.metabol.2011.06.012Search in Google Scholar
101. Yu CY, Mayba O, Lee JV, Tran J, Harris C, Speed TP, Wang JC. Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One 2010;5:e15188.10.1371/journal.pone.0015188Search in Google Scholar
102. Campbell JE, Peckett AJ, D’Souza AM, Hawke TJ, Riddell MC. Adipogenic and lipolytic effects of chronic glucocorticoid exposure. Am J Physiol Cell Physiol 2011;300:C198–209.10.1152/ajpcell.00045.2010Search in Google Scholar
103. Slavin BG, Ong JM, Kern PA. Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res 1994;35:1535–41.10.1016/S0022-2275(20)41151-4Search in Google Scholar
104. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 2004;279:47066–75.10.1074/jbc.M403855200Search in Google Scholar PubMed
105. Ebbert JO, Jensen MD. Fat depots, free fatty acids, and dyslipidemia. Nutrients 2013;5:498–508.10.3390/nu5020498Search in Google Scholar PubMed PubMed Central
106. Carmen GY, Victor SM. Signalling mechanisms regulating lipolysis. Cell Signal 2006;18:401–8.10.1016/j.cellsig.2005.08.009Search in Google Scholar
107. Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 2003;31:1120–4.10.1042/bst0311120Search in Google Scholar
108. Xu C, He J, Jiang H, Zu L, Zhai W, Pu S, Xu G. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol 2009;23:1161–70.10.1210/me.2008-0464Search in Google Scholar
109. Koliwad SK, Kuo T, Shipp LE, Gray NE, Backhed F, So AY, Farese RV, Jr., Wang JC. Angiopoietin-like 4 (ANGPTL4/FIAF) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism. J Biol Chem 2009;284:25593–601.10.1074/jbc.M109.025452Search in Google Scholar
110. van Raalte DH, Brands M, Serlie MJ, Mudde K, Stienstra R, Sauerwein HP, Kersten S, Diamant M. Angiopoietin-like protein 4 is differentially regulated by glucocorticoids and insulin in vitro and in vivo in healthy humans. Exp Clin Endocrinol Diabetes 2012;120:598–603.10.1055/s-0032-1321864Search in Google Scholar
111. Birkenhager JC, Timmermans HA, Lamberts SW. Depressed plasma FFA turnover rate in Cushing’s syndrome. J Clin Endocrinol Metab 1976;42:28–32.10.1210/jcem-42-1-28Search in Google Scholar
112. Saunders J, Hall SE, Sonksen PH. Glucose and free fatty acid turnover in Cushing’s syndrome. J Endocrinol Invest 1980;3:309–11.10.1007/BF03348282Search in Google Scholar
113. Miyoshi H, Shulman GI, Peters EJ, Wolfe MH, Elahi D, Wolfe RR. Hormonal control of substrate cycling in humans. J Clin Invest 1988;81:1545–55.10.1172/JCI113487Search in Google Scholar
114. Gravholt CH, Dall R, Christiansen JS, Moller N, Schmitz O. Preferential stimulation of abdominal subcutaneous lipolysis after prednisolone exposure in humans. Obes Res 2002;10:774–81.10.1038/oby.2002.105Search in Google Scholar
115. Johnston DG, Gill A, Orskov H, Batstone GF, Alberti KG. Metabolic effects of cortisol in man–studies with somatostatin. Metabolism1982;31:312–7.10.1016/0026-0495(82)90105-6Search in Google Scholar
116. Djurhuus CB, Gravholt CH, Nielsen S, Mengel A, Christiansen JS, Schmitz OE, Moller N. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am J Physiol Endocrinol Metab 2002;283:E172–7.10.1152/ajpendo.00544.2001Search in Google Scholar
117. Samra JS, Clark ML, Humphreys SM, MacDonald IA, Bannister PA, Frayn KN. Effects of physiological hypercortisolemia on the regulation of lipolysis in subcutaneous adipose tissue. J Clin Endocrinol Metab 1998;83:626–31.10.1210/jc.83.2.626Search in Google Scholar
118. Hillgartner FB, Salati LM, Goodridge AG. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev 1995;75:47–76.10.1152/physrev.1995.75.1.47Search in Google Scholar
119. Williams BH, Berdanier CD. Effects of diet composition and adrenalectomy on the lipogenic responses of rats to starvation-refeeding. J Nutr 1982;112:534–41.10.1093/jn/112.3.534Search in Google Scholar
120. Wang Y, Jones Voy B, Urs S, Kim S, Soltani-Bejnood M, Quigley N, Heo YR, Standridge M, Andersen B, Dhar M, Joshi R, Wortman P, Taylor JW, Chun J, Leuze M, Claycombe K, Saxton AM, Moustaid-Moussa N. The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue. J Nutr 2004;134:1032–8.10.1093/jn/134.5.1032Search in Google Scholar
121. Gathercole LL, Morgan SA, Bujalska IJ, Hauton D, Stewart PM, Tomlinson JW. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PLoS One 2011;6:e26223.10.1371/journal.pone.0026223Search in Google Scholar
122. Sul HS, Wang D. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu Rev Nutr 1998;18:331–51.10.1146/annurev.nutr.18.1.331Search in Google Scholar
123. Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, Yamamoto KR. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc Natl Acad Sci USA 2004;101:15603–8.10.1073/pnas.0407008101Search in Google Scholar
124. Lu Z, Gu Y, Rooney SA. Transcriptional regulation of the lung fatty acid synthase gene by glucocorticoid, thyroid hormone and transforming growth factor-beta 1. Biochim Biophys Acta 2001;1532:213–22.10.1016/S1388-1981(01)00135-4Search in Google Scholar
125. Legrand P, Catheline D, Hannetel JM, Lemarchal P. Stearoyl-CoA desaturase activity in primary culture of chicken hepatocytes. Influence of insulin, glucocorticoid, fatty acids and cordycepin. Int J Biochem 1994;26:777–85.10.1016/0020-711X(94)90107-4Search in Google Scholar
126. Dich J, Bro B, Grunnet N, Jensen F, Kondrup J. Accumulation of triacylglycerol in cultured rat hepatocytes is increased by ethanol and by insulin and dexamethasone. Biochem J 1983;212:617–23.10.1042/bj2120617Search in Google Scholar
127. Dolinsky VW, Douglas DN, Lehner R, Vance DE. Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem J 2004;378:967–74.10.1042/bj20031320Search in Google Scholar
128. Mangiapane EH, Brindley DN. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes. Biochem J 1986;233:151–60.10.1042/bj2330151Search in Google Scholar
129. Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab 2011;22:353–63.10.1016/j.tem.2011.04.007Search in Google Scholar
130. Lemke U, Krones-Herzig A, Berriel Diaz M, Narvekar P, Ziegler A, Vegiopoulos A, Cato AC, Bohl S, Klingmuller U, Screaton RA, Muller-Decker K, Kersten S, Herzig S. The glucocorticoid receptor controls hepatic dyslipidemia through Hes1. Cell Metab 2008;8:212–23.10.1016/j.cmet.2008.08.001Search in Google Scholar
131. Jia Y, Viswakarma N, Fu T, Yu S, Rao MS, Borensztajn J, Reddy JK. Conditional ablation of mediator subunit MED1 (MED1/PPARBP) gene in mouse liver attenuates glucocorticoid receptor agonist dexamethasone-induced hepatic steatosis. Gene Expr 2009;14:291–306.10.3727/105221609788681213Search in Google Scholar
132. Zhang Y, Xiaoli, Zhao X, Yang F. The mediator complex and lipid metabolism. J Biochem Pharmacol Res 2013;1:51–5.Search in Google Scholar
133. Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab (Lond) 2010;7:35.10.1186/1743-7075-7-35Search in Google Scholar
134. Martin-Sanz P, Vance JE, Brindley DN. Stimulation of apolipoprotein secretion in very-low-density and high-density lipoproteins from cultured rat hepatocytes by dexamethasone. Biochem J 1990;271:575–83.10.1042/bj2710575Search in Google Scholar
135. Duerden JM, Bartlett SM, Gibbons GF. Regulation of very-low-density-lipoprotein lipid secretion in hepatocyte cultures derived from diabetic animals. Biochem J 1989;262:313–9.10.1042/bj2620313Search in Google Scholar
136. Cole TG, Wilcox HG, Heimberg M. Effects of adrenalectomy and dexamethasone on hepatic lipid metabolism. J Lipid Res 1982;23:81–91.10.1016/S0022-2275(20)38176-1Search in Google Scholar
137. Bagdade JD, Yee E, Albers J, Pykalisto OJ. Glucocorticoids and triglyceride transport: effects on triglyceride secretion rates, lipoprotein lipase, and plasma lipoproteins in the rat. Metabolism 1976;25:533–42.10.1016/0026-0495(76)90007-XSearch in Google Scholar
138. Wang CN, Hobman TC, Brindley DN. Degradation of apolipoprotein B in cultured rat hepatocytes occurs in a post-endoplasmic reticulum compartment. J Biol Chem 1995;270:24924–31.10.1074/jbc.270.42.24924Search in Google Scholar PubMed
139. Narvekar P, Berriel Diaz M, Krones-Herzig A, Hardeland U, Strzoda D, Stohr S, Frohme M, Herzig S. Liver-specific loss of lipolysis-stimulated lipoprotein receptor triggers systemic hyperlipidemia in mice. Diabetes 2009;58:1040–9.10.2337/db08-1184Search in Google Scholar PubMed PubMed Central
140. Chan DC, Watts GF, Barrett PH, Mamo JC, Redgrave TG. Markers of triglyceride-rich lipoprotein remnant metabolism in visceral obesity. Clin Chem 2002;48:278–83.10.1093/clinchem/48.2.278Search in Google Scholar
141. Penno CA, Morgan SA, Rose AJ, Herzig S, Lavery GG, Odermatt A. 11β-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice. Mol Metab 2014;3:554–64.10.1016/j.molmet.2014.04.008Search in Google Scholar PubMed PubMed Central
142. Nader N, Chrousos GP, Kino T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol Metab 2010;21:277–86.10.1016/j.tem.2009.12.011Search in Google Scholar PubMed PubMed Central
143. Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012;47:158–67.10.1016/j.molcel.2012.06.026Search in Google Scholar PubMed PubMed Central
144. Rose AJ, Vegiopoulos A, Herzig S. Role of glucocorticoids and the glucocorticoid receptor in metabolism: insights from genetic manipulations. J Steroid Biochem Mol Biol 2010;122:10–20.10.1016/j.jsbmb.2010.02.010Search in Google Scholar PubMed
145. Bernal-Mizrachi C, Weng S, Feng C, Finck BN, Knutsen RH, Leone TC, Coleman T, Mecham RP, Kelly DP, Semenkovich CF. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat Med 2003;9:1069–75.10.1038/nm898Search in Google Scholar PubMed
146. Bernal-Mizrachi C, Xiaozhong L, Yin L, Knutsen RH, Howard MJ, Arends JJ, Desantis P, Coleman T, Semenkovich CF. An afferent vagal nerve pathway links hepatic PPARalpha activation to glucocorticoid-induced insulin resistance and hypertension. Cell Metab 2007;5:91–102.10.1016/j.cmet.2006.12.010Search in Google Scholar PubMed PubMed Central
147. Kinote A, Faria JA, Roman EA, Solon C, Razolli DS, Ignacio-Souza LM, Sollon CS, Nascimento LF, de Araujo TM, Barbosa AP, Lellis-Santos C, Velloso LA, Bordin S, Anhe GF. Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels. Endocrinology 2012;153:3633–45.10.1210/en.2012-1341Search in Google Scholar PubMed
148. Reichardt SD, Foller M, Rexhepaj R, Pathare G, Minnich K, Tuckermann JP, Lang F, Reichardt HM. Glucocorticoids enhance intestinal glucose uptake via the dimerized glucocorticoid receptor in enterocytes. Endocrinology 2012;153:1783–94.10.1210/en.2011-1747Search in Google Scholar PubMed
149. Brennan-Speranza TC, Henneicke H, Gasparini SJ, Blankenstein KI, Heinevetter U, Cogger VC, Svistounov D, Zhang Y, Cooney GJ, Buttgereit F, Dunstan CR, Gundberg C, Zhou H, Seibel MJ. Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest 2012;122:4172–89.10.1172/JCI63377Search in Google Scholar PubMed PubMed Central
©2014 by De Gruyter