Close

透明性を重視して設計された Atlassian Intelligence

オープンなコミュニケーション、説明責任、そして責任ある AI 利用を促進するためのアトラシアンの取り組み。

Atlassian Intelligence は、コラボレーションを迅速化し、チームが作業を加速できるように設計されています。そして、チームとの最適な連携方法を理解するのと同じように、Atlassian Intelligence がどのように機能するかを理解することは、チームがそれをより効果的に使用するのに役立ちます。このページでは、AI を活用した製品や機能がどのように動作するか、何ができ、何ができないか、またそれらが当社の製品の体験方法にどのように貢献するかを説明します。このページの情報をご活用いただくことで、当社の製品とチームワークを最大限に活用できるようになると信じています。責任を持ってテクノロジーを構築するという当社の取り組みの詳細については、当社の責任あるテクノロジー原則をご覧ください。

アラートのグループ化

Atlassian Intelligence でアラートをグループ化する方法 Copy link to heading Copied! 表示
  

Atlassian Intelligence によるアラートのグループ化は、OpenAI が開発した大規模な言語モデルや、他の機械学習モデルによって支えられています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence は、これらの機械学習モデルを利用して、アラート グループを分析および生成し、アラートの内容や使用されているタグの類似性に基づいて、製品内で関連性のある提案 (過去のアラート グループや過去のアラート対応者) を行います。次に、Atlassian Intelligence は大規模な言語モデルを利用して、製品内のこれらのグループの自然言語による説明や内容を分析および生成します。

これらの大規模な言語モデルは、入力された内容に基づいて回答を生成し、確率的です。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

アラートのグループ化のユース ケース Copy link to heading Copied! 表示
  

アラートのグループ化では、Atlassian Intelligence を利用して識別し、同様のアラートを一緒にグループ化します。また、アラートの内容や使用されているタグとの意味的な類似性に基づいて、過去の類似アラート グループや過去のアラート対応者 (または対応者のチーム) を特定して推奨することにも役立ちます。

アラート グループをインシデントにエスカレートする場合、状況に応じた情報すべてがアラートのグループ化により事前に入力され、インシデント作成プロセスの一環として確認できます。

アトラシアンでは、アラートのグループ化は次のようなシナリオで最も効果的だと考えています。

  • 組織では、短期間または長期間にかかわらず、類似または重複しているアラートが大量に発生するパターンが頻繁に起きている。
  • 組織では、常にアラートをタグで分類している。
  • チームは、類似または重複しているアラートをインシデントにエスカレートする必要があると気付くことが多い。
アラートのグループ化を使用する際の考慮事項 Copy link to heading Copied! 表示
  

アラートのグループ化の強化のために使用されているモデルは、その構造上、不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った回答に質問の内容が正確に反映されていなかったり、妥当なようでも虚偽または不完全な内容が含まれていたりする可能性があります。表示されるアラート グループには、タグの意味的な類似性が正確に反映されない可能性があります。

アラートのグループ化は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • アラートを適切にグループ化するために、アラートをグループ化する際に、アクセスする必要のある情報がすぐに利用できない。アラートのグループ化は、チームが設定した役割や権限の範囲内で機能するため、閲覧権限のあるアラートのグループとインサイトにのみアクセスできる。
  • チームが使用しているアラート タグが一貫していない、または適切に管理されていない。アラートのグループ化では、アラートのタイトルとタグの意味的な類似性に基づいてアラートがグループ化されるため、生成されるアラート グループの品質が、チームや組織が使用するアラート タグの一貫性とハイジーンによって決まる。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

また、アラート タグを使用する際に、あなたとチームが一貫したプラクティスに従うようにすることもご検討ください。

お客様のデータとアラートのグループ化 Copy link to heading Copied! 表示
  

アラートのグループ化でのデータの扱いについて、さまざまな疑問が生じることでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

アトラシアンが処理する内容は次のとおりです。

  • お客様のプロンプト(入力)と回答(出力)。
  • アラート データ (アラート タイトル、アラート タグ、優先度、対応者チーム、説明) など、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

アトラシアンでは、お客様のアラート データを処理して、機械学習モデルのバージョンをトレーニングし、お客様のアラート特有のパターンを認識します。このバージョンは、ご自身のエクスペリエンスのためにのみ利用されます。

  • 当社は特定したパターンを保存し、お客様にインサイトをご提供します。
  • お客様のアラート データを利用して LLM をトレーニングすることはありません。

データについては、アラートのグループ化では次の指標が適用されます。

  • お客様の入力と出力:
    • 他のお客様は利用できません
    • OpenAI によって保存されません。
    • OpenAI モデルの改善には利用されません。
    • エクスペリエンスを提供するためにのみ使用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • この機能はサイトの権限に従います。たとえば、Atlassian Intelligence はタグと意味的な類似性に基づいて 50 件のアラートをグループ化し、ユーザーがそのうち 30 件のみを表示する権限を持っている場合、グループ詳細ビューにはその 30 件のみが表示されます。ご自身のアラートがサイトの他のユーザーへの対応として利用されないようにするには、組織/サイトの管理者に連絡して、権限が適切に設定されていることをご確認ください。

Jira Service Management での Atlassian Intelligence の回答

Jira Service Management での Atlassian Intelligence の回答の仕組み Copy link to heading Copied! 表示
  

Atlassian Intelligence による回答は、OpenAI によって開発された大規模言語モデルによって支えられています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

Jira Service Management での Atlassian Intelligence の回答のユース ケース Copy link to heading Copied! 表示
  

Atlassian Intelligence による回答機能は、Jira Service Management の仮想サービス エージェントに接続されます。生成 AI を使って、リンクされたナレッジ ベース スペースを検索してカスタマーの質問に回答します。

アトラシアンでは、Atlassian Intelligence による回答は次のようなシナリオで最も効果的だと考えています。

  • 完全で最新のナレッジ ベースがリンクされており、仮想サービス エージェントがそれにアクセスし、Atlassian Intelligence による回答を使用してカスタマーの質問に回答できる。
  • Atlassian Intelligence による回答は、次のようなカスタマーの質問への回答に使用されます。
    • 情報や手順説明を提供することで解決できる質問。
    • 既存のナレッジ・ベース記事に記載されている(または追加できる)質問。
    • 一般的にエージェントにエスカレーションする必要がない質問。
Jira Service Management で Atlassian Intelligence の回答を使用する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence の回答にこれらのモデルがどのように使われているかを理解し、これらのモデルが不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence の回答は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • リクエストに正しく回答するためにアクセスする必要のある情報がすぐに利用できない(リンク先のナレッジ・ベースに存在しないなど)。
  • ナレッジ・ベースが古いか不完全であるため、検索が役に立たないかもしれない。
  • ナレッジ・ベースの記事に関連情報や質の高い情報が含まれていないため、それらの記事に基づいてカスタマーに提供される Atlassian Intelligence の回答が、関連性の低いものになる可能性がある。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

次の内容もご検討ください。

  • リンクされたナレッジ・ベース(およびそこに含まれる既存の記事)を積極的に見直して更新し、完全で最新の状態に保たれていることをご確認ください。
  • リンクされたナレッジ・ベース・スペースに適用される権限と制限を積極的に見直して、Atlassian Intelligence の回答が役に立つ正しい情報にアクセスできることをご確認ください。
お客様のデータと Jira Service Management での Atlassian Intelligence の回答について Copy link to heading Copied! 表示
  

Jira Service Management における Atlassian Intelligence の回答にお客様のデータがどのように使用されるかについて、ご不明な点があると思います。このセクションでは、FAQ ページで提供されている情報を補足します。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • プロンプトに関連するインスタンスのコンテキスト(リンクされたナレッジ・ベース・スペースなど)。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。
  • お客様のデータに関しては、Jira Service Management での Atlassian Intelligence の回答には、次のような対策を適用しています。
  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません。
    • OpenAI によって保存されません。
    • OpenAI のモデルの改善には使用されません。
    • エクスペリエンスを提供するためにのみ使用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • この機能は、リンクされたナレッジ・ベース・スペースに適用される権限と制限に従います。つまり、Jira Service Management ポータルでお客様が利用できるすべてのページが、Atlassian Intelligence の回答によって利用できるようになります。たとえば、特定の Confluence ページへのアクセスが制限されており、通常は Jira Service Management で利用できない場合、そのページのコンテンツは Atlassian Intelligence の回答による回答では提案されません。ご自身のコンテンツをインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。

Atlassian Intelligence を使用した自動化

Atlassian Intelligence を使った自動化のユースケース Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用する自動化では、OpenAI が開発した GPT モデルを利用しています。これらのモデルには、こちらで説明されている OpenAI モデルが含まれます。

Atlassian Intelligence では、これらのモデルを利用して自然言語の入力を分析し、Jira と Confluence 内で自動化ルールを生成します。

これらのモデルは、入力された内容に基づいて回答を生成し、本質的に確率的です。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの機能に関する詳細をご確認いただくか、このアプローチの詳細を OpenAI の研究論文でご確認ください。

Atlassian Intelligence を使った自動化のユースケース Copy link to heading Copied! 表示
  

自動化ルールの作成は、日常の自動化エクスペリエンスの主要部分です。Jira と Confluence の自動化ルール ビルダーに Atlassian Intelligence を追加することで、自動化ルールの作成をさらに容易にします。自動化する内容を入力して説明するだけで、簡単に自動化ルールを作成できるようになりました。Atlassian Intelligence がルールを作成するので、面倒な作業はすべて任せられます。JiraConfluence 向けの Atlassian Intelligence を使用した自動化の詳細をご覧ください。

Jira と Confluence 向けの Atlassian Intelligence を使用した自動化が最も効果を発揮するのは、開始方法がわからない場合や、ルール作成プロセスを加速したい場合です。

自動化ルールの最適な作成方法がわからない場合

自動化ルールは、トリガー、アクション、条件、ブランチなど、さまざまなタイプのコンポーネントを組み合わせて作成します。コンポーネントはルールの構成要素と考えてください。Atlassian Intelligence でルールを正常に作成するには、ルールに少なくともトリガーとアクションの両方が 1 つずつ含まれている必要があります。以下に例を示します。

Jira の場合

毎週月曜日、期限が 7 日以内のタスクをすべて検索し、担当者にリマインダー・メールを送信する。

チケットがテストに移動したら、そのチケットを John Smith に割り当てます。

Confluence の場合

  • 毎週月曜日、期限が 7 日以内のタスクをすべて検索し、担当者にリマインダー・メールを送信する。
  • 6 か月ごとに、その期間中に更新されていないページをすべてアーカイブし、その後、ページの作成者にメールで通知する。
  • タイトルに「製品仕様」を含むページが公開されたら、そのページへのリンクを含むページをレビューするための Jira チケットを作成する。

さらに、ルールを正常に作成するには、そのルールを構成するすべての要素が Atlassian Intelligence を使用した自動化でサポートされている必要があります。つまり、ルール内のトリガー、アクション、条件、ブランチはすべて Jira と Confluence の自動化と互換性がなければなりません。

Atlassian Intelligence を使った自動化に関する考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して自動化を強化するために使用されるモデルの仕組みにより、これらのモデルが不正確、不完全、または信頼性の低い動作をする場合があることにご注意ください。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、妥当なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使った自動化は、次のようなシナリオではあまり効果的でないことが判明しています。

  • Atlassian Intelligence がリクエストに適切に回答するために、リクエスト送信者が利用できない情報 (たとえば、制限されたページやプロジェクト) へのアクセスを Atlassian Intelligence を使った自動化に提供する必要がある。
  • 1 回限りのタスクを実行する必要がある。
  • ナレッジ・ベース内から情報を問い合わせる必要がある。

このため、Atlassian Intelligence を利用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

Atlassian Intelligence を使った自動化は、JiraConfluence で利用可能な既存の自動化コンポーネントでのみ機能します。

また、前述のように、Atlassian Intelligence に質問する内容をできる限り具体的にします。

お客様のデータと Atlassian Intelligence を使用した自動化 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して自動化する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で入手できる情報を補足します。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • Jira プロジェクトまたは Confluence ページなど、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データに関しては、Confluence 自動化での Atlassian Intelligence の利用には、次のような対策を適用しています。

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません
    • OpenAI によって保存されません
    • OpenAI モデルの改善には利用されません
    • エクスペリエンスを提供するためにのみ使用されます。

OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。

この機能はインスタンスの権限に従います。たとえば、お客様が特定のプロジェクトまたはページにアクセスできない場合、それらのコンテンツを使用した提案が受信した回答に含まれることはありません。ご自身のコンテンツをインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。

チャート インサイト

chart insights での Atlassian Intelligence の使用方法 Copy link to heading Copied! 表示
  

チャート インサイトは、OpenAI が開発した大規模な言語モデルによって強化されています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

chart insights のユース ケース Copy link to heading Copied! 表示
  

チャート インサイトでは、Atlassian Intelligence を使用して、Atlassian Analytics のあらゆるグラフのデータを簡単に理解できるようにします。そのために、ダッシュボードのタイトル、グラフのタイトル、グラフのデータ (列ヘッダーと行の値を含む) を使用して、グラフとそのデータの自然言語による要約を生成します。また、傾向や異常を特定して、そのグラフに特定のインサイトを提供することも目的としています。

アトラシアンでは、chart insights は次のようなシナリオで最も効果的だと考えています。

  • グラフのデータ行が多い。
  • グラフにダッシュボードのタイトルがある。
  • グラフに列ヘッダーがある。
  • グラフのすべての行と列に値がある。

棒グラフ、折れ線グラフ、および棒線グラフは通常、傾向、日付、その他多数のデータ行が含まれているため、この機能が最も適しています。

chart insights を使用する際の考慮事項 Copy link to heading Copied! 表示
  

chart insights 強化のために使用されているモデルは、その構造上、不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

chart insights は、次のようなシナリオではあまり効果的でないことが判明しています。

  • グラフのデータ行が 1 行またはわずか数行。
  • グラフが単一値タイプ。
  • グラフにタイトル、軸ラベル、列ヘッダーがない。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • グラフに表示されている特定のデータについて、詳細情報を持っている可能性のある他のユーザーに、インサイトの正確性を再確認します。
  • Atlassian Intelligence は、回答時にダッシュボード全体ではなく、単一のグラフのコンテキストのみを使用することを念頭に置いてください。
各自のデータと chart insights Copy link to heading Copied! 表示
  

chart insights のデータの扱いについて、さまざまな疑問が生じることでしょう。このセクションでは、このページに掲載されている情報の補足説明をします。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • グラフ内のデータなど、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データについては、chart insights では次の指標が適用されます。

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません。
    • OpenAI によって保存されません。
    • OpenAI モデルの改善には利用されません。
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • この機能では、お客様がアクセスでき、インサイトを要求したダッシュボードからの情報のみが使用されます。

Confluence の簡単な要約

Atlassian Intelligence が Confluence のページとブログを要約する方法 Copy link to heading Copied! 表示
  

Atlassian Intelligence を利用したページやブログの要約では、OpenAI が開発した LLM モデルを利用しています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを利用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

Confluence の簡単な要約のユース ケース Copy link to heading Copied! 表示
  

Atlassian Intelligence で Confluence ページやブログの簡単な要約を生成することで、時間を節約して、作業時間を短縮するために必要な詳細を入手できます。Confluence での Atlassian Intelligence の使用に関する詳細をご覧ください。

Atlassian Intelligence を利用したページやブログの要約は、次のようなシナリオで最も効果的です。

  • ページ内のテキスト量が多く、読むのに 5 分以上かかる。
  • ビジュアルが限られている、またはページの展開などの他のフォーマットで記述されたコンテンツが多い。
Atlassian Intelligence を利用してページやブログを要約する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence の機能を利用してページやブログの要約を強化するというモデルの利用方法により、これらのモデルが不正確、不完全、または信頼性の低い動作をする場合があることにご注意ください。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、妥当なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

当社は、マクロ、表、要約の展開のサポートを改善し続けていますが、Atlassian Intelligence を利用したページやブログの要約が、次のようなシナリオではあまり効果的でないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • コンテンツが不十分な、非常に短い Confluence ページの要約が必要な場合。
  • ほとんどのコンテンツが表形式または展開されている Confluence ページの要約が必要な場合。
  • ほとんどのコンテンツがマクロである Confluence ページの要約が必要な場合。

Atlassian Intelligence を利用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

次の内容もご検討ください。

  • テキストベースのコンテンツが多いことがわかっているページを要約するよう Atlassian Intelligence に依頼する。
お客様のデータおよび Atlassian Intelligence を利用したページやブログの要約 Copy link to heading Copied! 表示
  

Confluence 自動化に Atlassian Intelligence を利用する際に、お客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で公開されている情報を補足するものです。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。

  • 要約する Confluence ページのコンテンツなど、プロンプトに関連するインスタンスのコンテキスト。

  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。

  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データに関しては、Atlassian Intelligence を利用したページやブログの要約には、次のような対策を適用しています。

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません。
    • OpenAI によって保存されません。
    • OpenAI の改善には利用されません。
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • この機能はインスタンスの権限に従います。たとえば、Confluence ページにアクセスできない場合、この機能は表示されず、Atlassian Intelligence を利用してページを要約することもできません。ご自身のコンテンツをインスタンスの他のユーザーに利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。

Atlassian Intelligence で用語を定義する

Atlassian Intelligence が用語を定義する方法 Copy link to heading Copied! 表示
  

Confluence や Jira での Atlassian Intelligence を利用した用語の定義には、OpenAI が開発した大規模言語モデルを利用しています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを利用して、Confluence 内の自然言語による回答を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Atlassian Intelligence を利用した用語の定義のユース ケース Copy link to heading Copied! 表示
  

Confluence や Jira でコンテンツを利用する際に最も難しいことの 1 つは、読んでいる内容を理解するために必要となるコンテキストの把握です。略語、頭字語、なじみのない用語、チームやプロジェクト固有の名前は、必要な情報を得るために長時間検索することにつながります。

Atlassian Intelligence を利用して用語を定義すると、Confluence のページや Jira の課題説明のページに、会社固有の用語 (頭字語、プロジェクト名、システム名、チーム名など) の定義が表示されます。これにより、ユーザーは必要な情報を随時取得でき、それと同時にチームの連携を強化できます。

Atlassian Intelligence を使用すれば、読んでいるコンテンツから離れることなくこれらを自動的に定義できるため、時間を節約できます。

正しくないと思われる定義が見つかった場合は、既存の定義を編集するか新しい定義を追加してから、当該のページや課題説明にその定義が表示されるように設定するか、スペース全体、プロジェクト全体、組織全体にその定義が表示されるように設定することができます。

Confluence での Atlassian Intelligence を利用した用語の定義は、次のようなシナリオで最も効果的です。

  • 会社の Confluence インスタンスには、Atlassian Intelligence が参照する特定の用語について言及、記述、または説明しているページが複数ある。
Atlassian Intelligence を使用して用語を定義する際の考慮事項 Copy link to heading Copied! 表示
  

Confluence で Atlassian Intelligence の機能を利用して用語を定義するというモデルの利用方法により、これらのモデルが不正確、不完全、または信頼性の低い動作をする場合があることにご注意ください。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Confluence で Atlassian Intelligence を利用して用語の定義をすることは、次のようなシナリオではあまり効果的でないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • Confluence インスタンス内の用語についてのコンテキストが十分ではない(たとえば、特定の用語に言及しているページがない場合、その用語の定義は正確に生成されません)。
  • 用語を定義するには、ユーザーが閲覧権限を持たない Confluence コンテンツにアクセスする必要があります。
  • 一度に 1 つの用語を定義するのではなく、複数の用語を定義しようとしている。

さらに、Atlassian Intelligence を使用して用語を定義するには Confluence での検索が必要であるため、この機能は、Jira インスタンスと同じサイトにある Confluence インスタンスを閲覧する権限がある場合にのみ Jira で使用できます。

また、Confluence スペースや Jira インスタンスに複数の言語で書かれたコンテンツがある場合は、Atlassian Intelligence を使用した用語の定義が期待どおりに機能しないことがあります。

Atlassian Intelligence による用語の定義で使用されるお客様のデータ Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して用語を定義する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で公開されている情報を補足するものです。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • 定義したい用語など、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム・データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用して用語を定義する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません
    • OpenAI によって保存されません。
    • OpenAI モデルの改善には利用されません。
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • この機能は既存のユーザー アクセス権限に従うため、ユーザーがアクセス権限を持たないコンテンツから定義が表示されることはありません。その代わりに、この機能は、ユーザーがインスタンス内で閲覧する権限を持っているページとプロジェクトからのみコンテンツと定義を取得します。ご自身のコンテンツがインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。
  • ユーザーが定義の編集や更新を手動で行った場合、その定義は 1 年間保管されます。

Atlassian Intelligence でプル リクエストの説明を生成する

Bitbucket Cloud が Atlassian Intelligence を使用してプル リクエストの説明を生成する方法 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用したプル リクエストの説明の生成は、OpenAI が開発した大規模言語モデル (LLM) を使用して行います。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語およびコードを分析し、説明を生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、トレーニングを受けたデータに基づいて、最も可能性の高い次の単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

Atlassian Intelligence でプル リクエストの説明を生成するユース ケース Copy link to heading Copied! 表示
  

Atlassian Intelligence は、Bitbucket Cloud のコード レビュー エクスペリエンスでプル リクエストの説明やコメントを書いているときに、コンテンツの生成、変換、要約をサポートします。これには、次が含まれます。

  • プル リクエストに含まれるコード変更に基づいてプル リクエストの説明を生成します。
  • プル リクエストの説明の要約、改善、またはトーン変更を行います。
  • プル リクエストのコメントの要約、改善、またはトーン変更を行います。

アトラシアンでは、Atlassian Intelligence を使用した Bitbucket Cloud のプル リクエストの説明の生成は、次のようなシナリオで最も効果的だと考えています。

  • コード作成者が、プル リクエストの説明を書いたり改善したりするのを、Atlassian Intelligence に手伝ってもらいたい。これは、Atlassian Intelligence によって生成されたコンテンツがプル リクエストの説明として適切であると判断できるチームに最適です。
  • コード レビュー担当者が、すでに下書きしたプル リクエストのコメントのトーンや内容の改善を、Atlassian Intelligence に手伝ってもらいたい。
Atlassian Intelligence でプル リクエストの説明を生成する際の考慮事項 Copy link to heading Copied! 表示
  

この機能に使用されているモデルは、その構造上、不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った回答に質問の内容が正確に反映されていなかったり、妥当なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した Bitbucket Cloud のプル リクエストの説明の生成は、次のようなシナリオではあまり効果的ではないことが判明しています。

  • プル リクエストの説明で、コード変更にまだ存在していない情報 (たとえば、リポジトリの他の場所に含まれているソース コード) について言及する必要がある。
  • Atlassian Intelligence によって生成されたコンテンツがプル リクエストの説明として正しいかどうかを判断できない。
  • 人、場所、事実に関する最新かつ正確な情報が必要である。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence への質問を、できるだけ具体的なものにする。
  • AI ライティング・アシスタントによって生成された出力を校正、レビュー、編集して、正確でわかりやすくします。
  • 他のユーザーと協力してフィードバックを収集し、出力の品質を向上させます。
Atlassian Intelligence によるデータとプル リクエストの説明の作成 Copy link to heading Copied! 表示
  

Confluence で Atlassian Intelligence を利用して用語を定義する際に、お客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で入手できる情報を補足するものです。

処理されるデータの種類は以下のとおりです。

  • プロンプト (入力) と回答 (出力)
  • プロンプトに関連するインスタンスからのコンテキスト:
    • プル リクエストのコード変更とコミット メッセージ
    • プル リクエストの説明の内容
    • プル リクエストのコメントの内容
  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。
  • この機能について提供したいフィードバック

Atlassian Intelligence を使用したプル リクエストの説明の生成では、データについて次のような対策を適用しています。

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません
    • OpenAI によって保存されません。
    • OpenAI モデルの改善には利用されません。
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様のデータを使用することはありません。

Atlassian Analytics で SQL クエリを生成する

Atlassian Intelligence が Atlassian Analytics で SQL クエリを生成する方法 Copy link to heading Copied! 表示
  

Atlassian Analytics での Atlassian Intelligence を使用した SQL クエリの生成には、OpenAI が開発した大規模な言語モデルを利用しています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを使用して自然言語を分析および理解し、それを Atlassian Analytics 内でSQL(構造化クエリ言語)に変換します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

Atlassian Intelligence を使用した SQL クエリ生成のユース ケース Copy link to heading Copied! 表示
  

独自の SQL クエリをゼロから作成するのではなく、Atlassian Intelligence に自然言語で質問して、SQL に変換させます。質問すると、Atlassian Intelligence は、選択したデータ・ソースの Atlassian Data Lake のスキーマを使用して、Atlassian Analytics ダッシュボードにグラフを作成するための SQL クエリを生成します。Data Lake のスキーマについて学ぶのにも役立ちます。

アトラシアンでは、Atlassian Intelligence を使用した SQL クエリの生成は、次のようなシナリオで最も効果的だと考えています。

  • 生成された SQL から始めて、必要に応じてクエリを調整してカスタム・グラフを構築したいと考えている。
  • 自然言語の質問には Atlassian Data Lake のスキーマで参照されている単語や概念が含まれており、できるだけ具体的に記入されている。
  • Atlassian Data Lake のスキーマの詳細を確認したいと考えている。

どのような質問をすればいいのかわからない場合

下記はその例です。

  • Jira の未解決課題数の上位 5 つのラベルは何ですか?
  • 先月、x プロジェクトで完了した Jira の課題は何件ありますか?
  • 上位 5 つのステータスにあった平均時間はどれくらいですか?
  • 先月最もお気に入りに登録された Confluence ページのトップ 5 は何ですか?
  • x Jira Service Management プロジェクトで、過去 5 日間に何件のリクエストが発生しましたか?
Atlassian Intelligence を使用して SQL クエリを生成する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して SQL クエリを生成するために使用されるモデルの動作方法により、これらのモデルは不正確、不完全、または信頼性の低い方法で動作する場合があることに留意することが重要です。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した SQL クエリの生成は、次のようなシナリオではあまり役に立たないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • この機能が、Atlassian Data Lake のスキーマではすぐに利用できない情報(たとえば、Advanced Roadmaps のデータなど)にアクセスし、質問に適切に答えるために必要である。
  • 質問にカスタム・フィールドへの参照が含まれている。
  • 英語以外の言語で質問されている。
  • Atlassian Intelligence から返された SQL を検証できるほど SQL に精通していない。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence に質問する内容をできるだけ具体的にする。
  • 使用している Atlassian Data Lake のデータ・ソースに、質問に答えるのに必要なデータが含まれていることを確認する。
データと、Atlassian Intelligence を使用した SQL クエリの生成 Copy link to heading Copied! 表示
  

Atlassian Intelligence を利用して SQL クエリを生成する際に、お客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で入手できる情報を補足するものです。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • インスタンスに適用可能な、一般公開されている Atlassian Data Lake のスキーマを含む、プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データに関しては、Atlassian Intelligence を使用した SQL クエリの生成には、次のような対策を適用しています。

  • お客様のプロンプト(入力)と回答(出力)は:
    • 他のお客様は利用できません
    • OpenAI によって保存されません
    • OpenAI モデルの改善には利用されません
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • OpenAI は、サブプロセッサーのリストにあるサブプロセッサーです。リクエストの処理以外の目的で入力と出力を使用することはありません。
  • この機能は、Atlassian Data Lake の接続の権限に従います。たとえば、Atlassian Data Lake 接続にアクセスできない場合、SQL を構築してクエリを実行することはできません。

エディターのジェネレーティブ AI

編集エクスペリエンスにおける Atlassian Intelligence の仕組み Copy link to heading Copied! 表示
  

編集エクスペリエンスにおける Atlassian Intelligence は、OpenAI によって開発された大規模言語モデルによって支えられています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

エディターでのジェネレーティブ AI のユース ケース Copy link to heading Copied! 表示
  

Atlassian Intelligence は、組織内のすべてのチームで効果的なコミュニケーションを促進し、効率、意思決定、プロセスを向上させるのに役立ちます。

アトラシアンでは、編集エクスペリエンスに Atlassian Intelligence を使用すると、次のようなシナリオで最も効果的だと考えています。

  • 既存のコンテンツを対象ユーザー別に変換する。Atlassian Intelligence は、調子を変えたり、文章を改善し、技術情報を他のチームが理解しやすくしたりするのに役立ちます。これは、文章をより専門的かつ簡潔にしたいチームに最適です。
  • 既存のコンテンツを要約する。Atlassian Intelligence を使用すると、大まかなメモを有益な戦略ドキュメンテーション、ナレッジ・ベース記事、キャンペーン計画などに変換できます。また、既存の情報を分析して行動計画や項目を分析するのにも使用できます。これは、ページ内のテキスト量が多く、そこから多くのコンテキストを抽出する場合に最適です。
  • 新しいコンテンツを生成する。Atlassian Intelligence は、戦略ページ、プロジェクト概要、リリース・ノート、ユーザー・ストーリーなどの新しいコンテンツを作成するのに役立ちます。これは、チームが特定の目標を念頭に置き、明確で具体的なプロンプトを使用する場合に最適です。
編集エクスペリエンスに Atlassian Intelligence を使用する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用した編集エクスペリエンスにモデルがどのように使われているかを理解し、これらが不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った応答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

編集エクスペリエンスにおける Atlassian Intelligence は、次のようなシナリオでは、あまり効果的でないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • リクエストに正しく回答するためにアクセスする必要のある情報がすぐに利用できない(インスタンスに存在しないなど)。
  • 標準のマークダウンを超える形式でコンテンツを生成する必要がある(情報パネルを最初から生成するなど)。
  • 編集中の文書にはまだ存在していない情報を参照する必要がある(別の文書や別の製品に存在するコンテンツなど)。
  • 英語以外の言語でコンテンツを生成および変換する必要がある。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence への質問を、できるだけ具体的なものにする。
  • 複雑な要求をより小さな管理しやすいタスクに分割します。
  • 関連するキーワードを組み込んで、生成されるコンテンツの精度を高めます。
  • 入力テキストには適切な文法と句読点を使用します。
  • AI ライティング・アシスタントによって生成された出力を校正、レビュー、編集して、正確でわかりやすくします。
  • さまざまなプロンプトや入力テキストのバリエーションを試して、さまざまなアイデアを探ります。
  • 他のユーザーと協力してフィードバックを収集し、出力の品質を向上させます。
編集エクスペリエンスにおけるデータと Atlassian Intelligence Copy link to heading Copied! 表示
  

編集エクスペリエンスにおいて Atlassian Intelligence でお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で入手できる情報を補足します。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • Atlassian Intelligence をトリガーした製品など、プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データに関しては、編集エクスペリエンスにおける Atlassian Intelligence には、次の対策を適用しています。

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません。
    • OpenAI によって保存されません。
    • OpenAI モデルの改善には利用されません。
    • エクスペリエンスを提供するためにのみ使用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • この機能はインスタンスの権限に従います。たとえば、特定の Confluence ページにアクセスできない場合、受信した回答でそのページのコンテンツが提案されることはありません。ご自身のコンテンツをインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。

Confluence で回答を検索する

Atlassian Intelligence が Confluence で回答を検索する方法 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用した Confluence での回答の検索では、OpenAI が開発した LLM モデルを使用しています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

Confluence での回答検索のユース ケース Copy link to heading Copied! 表示
  

ナレッジ・ベースが急速に拡大しすぎて、ユーザーが追いつけません。Atlassian Intelligence を使用して Confluence で回答を検索すると、作業を進めるために必要な重要な情報にすばやくアクセスできます。この機能は、必要な情報を簡単に見つけるのに役立ちます。ユーザーがチームメイトに尋ねるような質問を理解し、即座に回答します。Atlassian Intelligence を使用して Confluence で回答を検索する方法の詳細を見る

Atlassian Intelligence を使用して Confluence で回答を検索するのは、詳細で完全かつ最新のコンテンツが Confluence サイトに大量に記載されている場合に最適だと私たちは考えています。

この機能は新しいコンテンツを生成するのではなく、(制限を守りながら) Confluence のページやブログを検索し、質問への回答を見つけます。Atlassian Intelligence は、Confluence の内容(具体的にはユーザーがアクセス権を持っている情報)のみに基づいて回答を生成します。

どのような質問をすればいいのかわからない場合

下記はその例です。

  • When is the next marketing team offsite? (マーケティング チームが次にオフサイトになるのはいつですか?)
  • What is the work from home policy? (在宅勤務ポリシーとは何ですか?)
  • What is Project Sunrise? (プロジェクト サンライズとは何ですか?)
  • When is our next marketing campaign? (次のマーケティング キャンペーンはいつですか?)
  • Where are the release notes for SpaceLaunch’s newest product? (SpaceLaunch の最新製品のリリース ノートはどこにありますか?)
  • How do I submit expenses for reimbursement? (経費精算を提出するにはどうすればいいですか?)
Atlassian Intelligence を使用して Confluence で回答を検索する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して Confluence で回答を検索するために使用されるモデルの仕組み上、これらのモデルは不正確、不完全、または信頼性の低い方法で動作する場合があることにご注意ください。

たとえば、受け取った回答に質問の内容が正確に反映されていなかったり、妥当なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した Confluence での回答の検索は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • 頻繁に変更される傾向がある情報(たとえば、毎月更新されるロードマップ)について、最新かつ正確な情報が必要である。
  • 特定の人々と、その人が組織で果たしている役割について、最新かつ正確な情報が必要である。
  • 質問に正しく回答するためには、自分が利用できない情報へのアクセス権が必要である(Confluence インスタンスのページが制限されているなど)。
  • 回答が、さまざまな値やカテゴリ(たとえば、毎週更新される指標)で構成されている。
  • ニュアンス、複雑さ、または人間レベルの推論を必要とする答えが必要である。

また、複数の言語で書かれたドキュメントがある Confluence スペースでは、Atlassian Intelligence を使用して Confluence で回答を検索しても、期待どおりに機能しないことがあります。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence への質問を、できるだけ具体的なものにする。
  • Confluence インスタンスに文書化されていることを把握しており、かつアクセス権を有していることについて質問する。
Atlassian Intelligence を使用して Confluence で回答を検索する際のお客様のデータの取り扱いについて Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して Confluence で回答を検索する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で入手できる情報を補足するものです。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • Confluence 検索から返された上位 3 ページのコンテンツなど、プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用して Confluence で回答を検索する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません。
    • どの LLM プロバイダーにも保管されません。
    • LLM モデルの改良には利用されません。
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • OpenAI は、当社の副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • この機能はインスタンスの権限に従います。たとえば、特定の Confluence ページにアクセスできない場合、受信する回答にそのページのコンテンツが使用されることはありません。ご自身のコンテンツがインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。

Jira で課題を検索する

Atlassian Intelligence を使用して Jira で課題を検索する方法 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用した Jira での課題検索には、OpenAI が開発した大規模な言語モデルが使用されています。このモデルには、こちらで説明する OpenAI モデルが含まれています。これは、生成された合成データを使用してアトラシアンが微調整したものです。

Atlassian Intelligence はこれらのモデルを使用して自然言語を分析および理解し、それを Atlassian Analytics 内で JQL(Jira クエリ言語)に変換します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI モデルの機能と OpenAI の微調整の詳細をお読みください。また、このアプローチの詳細については、OpenAI の研究論文もお読みください。

Jira の課題検索のユース ケース Copy link to heading Copied! 表示
  

複雑なクエリを作成するのではなく、日常の言葉で何をしたいかを Atlassian Intelligence に質問できるようになりました。Atlassian Intelligence を使用して課題を検索すると、プロンプトが JQL クエリに変換され、特定の課題をすばやく検索できます。

アトラシアンでは、Atlassian Intelligence を使用した課題の検索は、次のような場合に最も効果的だと考えています。

  • Jira プロジェクトで使用可能な課題フィールドを使用して Jira の課題をクエリしている。
  • クエリには、課題検索を絞り込むのに役立つ特定のフィールドと値が含まれている。
  • 検索対象のフィールドと値が Jira プロジェクトに存在している。
  • 英語でクエリを実行している。
  • クエリは JQL に翻訳可能である。Atlassian Intelligence はプロンプトを JQL コードに変換するので、入力に JQL に変換できるキーワードが含まれる場合、より良い結果が得られます。
Atlassian Intelligence を使用して課題を検索する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して課題を検索するために使用されるモデルの仕組み上、これらのモデルは不正確、不完全、または信頼性の低い方法で動作する場合があることにご注意ください。

たとえば、質問の内容が受け取った回答に正確に反映されていなかったり、一見筋が通っているようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した課題の検索は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • プロジェクト、ボード、ユーザーなど、課題以外の Jira エンティティを検索している。
  • 英語以外の言語で検索している。
  • データのグラフ、要約、またはその他の表示を作成するために課題を検索して分析したいと考えている。
  • 現在 JQL で提供されていない機能が検索に必要である(たとえば、「自分がコメントした課題を検索する」などの質問は JQL の機能に変換できない)。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

また、Atlassian Intelligence に質問する内容はできる限り具体的にしてください。検索するフィールドや値を正確に含めます。

Atlassian Intelligence を使用して課題を検索する際のお客様のデータの取り扱いについて Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して課題を検索する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で入手できる情報を補足するものです。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • 現在取り組んでいるプロジェクトなど、プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用して課題を検索する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません。
    • どの LLM プロバイダーにも保管されません。
    • LLM モデルの改良には利用されません。
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • 検索結果は、アクセスできる課題とフィールドに基づく(たとえば、特定の Jira プロジェクトにアクセスできない場合、そのプロジェクトの課題とフィールドは検索結果に表示されない)。

Jira Service Management でリクエスト・タイプを提案する

Jira Service Management での Atlassian Intelligence を使用したリクエスト・タイプの提案方法 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用してリクエスト・タイプを提案することは、OpenAI が開発した大規模な言語モデルによって支えられています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを使用して自然言語入力を分析し、Jira Service Management 内でリクエスト・タイプの名前と説明に関する推奨事項を生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

Jira Service Management でのリクエスト タイプ提案のユースケース Copy link to heading Copied! 表示
  

Atlassian Intelligence からの候補を表示することで、プロジェクト用にどのようなリクエスト・タイプを作成する必要があるかを考える時間を削減できます。自分の作業とチームが通常管理しているものを簡単に説明するだけで、どのようなタイプのリクエストを作成できるかがわかります。Atlassian Intelligence によって生成された提案の 1 つを選択して、リクエスト・タイプを作成します。Atlassian Intelligence を使用してリクエスト・タイプを提案する方法の詳細をご覧ください

アトラシアンでは、Atlassian Intelligence を使用したリクエスト・タイプの提案は、次のようなシナリオで最も効果的だと考えています。

  • 既存のリクエスト・タイプのテンプレートでは対応できない、非常に特殊なユース・ケースがある。
  • 非常に大まかな要件があり、いくつかのアイデアを探している。
  • 広く話されている言語(英語やスペイン語など)を使用している。
Atlassian Intelligence を使用してリクエスト・タイプを提案する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用してリクエスト・タイプを提案するために使用されるモデルの動作方法により、これらのモデルは不正確、不完全、または信頼性の低い方法で動作する場合があることに留意することが重要です。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用したリクエスト・タイプの提案は、次のようなシナリオではあまり効果的でないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • この機能が、リクエストに正しく回答するためにアクセスする必要のある情報がすぐに利用できない場合(インスタンスに含まれていない場合など)。
  • あいまいすぎるか、サービス管理とは無関係なプロンプトを提供している。
  • 広く話されている言語を使っていない。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence への質問を、できるだけ具体的なものにする。
Atlassian Intelligence を使用してリクエスト・タイプを提案する際のお客様のデータの取り扱いについて Copy link to heading Copied! 表示
  

リクエスト・タイプの提案に Atlassian Intelligence を使用する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で入手できる情報を補足するものです。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用してリクエスト・タイプを提案する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません
    • OpenAI によって保存されません
    • OpenAI モデルの改善には利用されません
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • この機能にはプロンプトの情報のみが使用されるため、Jira のすべての権限が尊重されます。

Jira Service Management で課題の詳細を要約する。

Atlassian Intelligence が Jira Service Management で課題の詳細を要約する方法 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用した課題の詳細の要約は、OpenAI が開発した大規模な言語モデルによって支えられています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

Jira Service Management での課題詳細の要約のユースケース Copy link to heading Copied! 表示
  

Jira Service Management で課題に関する長文の説明や多数のコメントをすべて読む代わりに、Atlassian Intelligence でこれらの情報をすばやく要約できます。簡単に新しい関係者と情報を共有したり、新しいエージェントにチケットを移動したり、課題に関する詳細情報を入手したりできます。これにより、エージェントは課題のコンテキストと進捗状況をすばやく理解でき、迅速に行動し、タイムリーな支援を提供できます。

Atlassian Intelligence を使用した課題の詳細の要約は、次の場合に最適だと私たちは考えています。

  • 説明とコメントが英語で記述されている課題。
  • コメントの数が多い課題や、コメントや説明が長い課題。
Atlassian Intelligence を使用して課題を要約する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence の機能を使用して課題の詳細の要約を強化するというモデルの仕組み上、これらのモデルが不正確、不完全、または信頼性の低い動作をする場合があることにご注意ください。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した課題の詳細の要約は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 英語以外の言語を使用している
  • 課題に履歴や詳細がない

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

Atlassian Intelligence を使用して課題の詳細を要約する際のお客様のデータの取り扱いについて Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して課題の詳細を要約する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で公開されている情報を補足するものです。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • プロンプトに関連するインスタンスからのコンテキストには、Jira Service Management の課題に関する詳細が含まれます(課題の説明、コメント、チケットに関係するユーザーなど)。
  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用して課題の詳細を要約する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません。
    • OpenAI 以外のサードパーティの LLM プロバイダーには送信されません。
    • OpenAI によって保存されません。
    • OpenAI モデルの改善には利用されません。
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。
  • この機能はインスタンスの権限に従います。エージェントとプロジェクト管理者のみに「要約」ボタンが表示されます。

Atlassian Intelligence を使用してカスタム数式を記述する

Atlassian Intelligence が Atlassian Analytics でカスタム数式を記述する方法 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用したカスタム数式の記述は、OpenAI が開発した大規模な言語モデルによって支えられています。たとえば、こちらで説明されている OpenAI モデルです。

Atlassian Intelligence はこれらのモデルを使用して自然言語を分析し、それを Atlassian Analytics 内で SQLite に変換します。

これらのモデルは、入力された内容に基づいて回答を生成し、本質的に確率的です。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

Atlassian Intelligence を使用してカスタム数式を記述するユース ケース Copy link to heading Copied! 表示
  

結果テーブルのデータの変換方法を Atlassian Intelligence に質問または説明すると、カスタム数式に使用される SQLite 式に変換されます。独自の SQLite 式をゼロから記述する必要はありません。質問すると、Atlassian Intelligence は前の Visual SQL ステップの結果テーブルのデータを使用して、グラフ用のデータに計算または演算を適用する SQLite 式を生成します。これは SQLite の関数とその構文について学ぶのにも役立ちます。

Atlassian Intelligence を使用してカスタム数式を記述するのは、次のようなシナリオで最も効果的です。

  • クエリしたデータの 1 つの列に変更を適用する。
  • 生成された SQLite 式を元に、必要に応じて改良する。
  • 自然言語での質問に、列ヘッダーや行データで参照される単語や概念が含まれる。
  • SQLite についてもっと知り、利用できる SQLite の機能を調べる。
Atlassian Intelligence を使用してカスタム数式を記述する際の考慮事項 Copy link to heading Copied! 表示
  

カスタム数式を使用する際は、Atlassian Intelligence で使用されるモデルが不正確や不完全であったり、信頼性が低かったりする場合があることに注意してください。

たとえば、質問の内容が受け取った回答に正確に反映されていなかったり、一見筋が通っているようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使ったカスタム数式の記述は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 1 つのカスタム数式の複数の列に変更を適用する。
  • 結果テーブルのデータではすぐには利用できない情報にアクセスするためにこの機能が必要である。
  • プロンプトで英語以外の言語で質問される。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence への質問を、できるだけ具体的なものにする。
  • クエリしたデータが、質問に答えるために必要なデータに対応していることを確認する
お客様のデータと、Atlassian Intelligence を使用したカスタム数式の記述 Copy link to heading Copied! 表示
  

Atlassain Intelligence を使用してカスタム数式を記述する際に、データがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションは、当社の Trust Center で公開されている情報を補足するものです。

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • 前の Visual SQL ステップの結果セットのデータを含めるなど、プロンプトに関連するインスタンスのコンテキスト。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。
  • クリックストリーム データなど、お客様がアトラシアンの機能をどのように利用したかに関するデータ

Atlassian Intelligence を使用してカスタム数式を記述する際には、お客様のデータについて次のような対策が適用されます。

プロンプト (入力) と回答 (出力) について:

  • 他のお客様は利用できません
  • OpenAI によって保存されません
  • OpenAI モデルの改善には利用されません
  • ご自身のエクスペリエンスのためにのみ利用されます。

OpenAI は、副処理者のリストに含まれる副処理者です。リクエストの処理以外の目的でお客様の入力と出力を使用することはありません。

Atlassian AI のロゴ。

透明性を重視して設計された Atlassian Intelligence および Rovo

オープンなコミュニケーション、説明責任、そして責任ある AI 利用を促進するためのアトラシアンの取り組み。

Rovo

以下の Rovo の機能を選択すると、ユース ケースとデータの使用について把握することができます。

Atlassian Intelligence を使用した自動化

自動化で Atlassian Intelligence を使用する方法 Copy link to heading Copied! 表示
  

Automation using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence では、これらのモデルを利用して自然言語の入力を分析し、Jira と Confluence 内で自動化ルールを生成します。

これらのモデルは、入力された内容に基づいて回答を生成し、本質的に確率的です。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Atlassian Intelligence を使った自動化のユースケース Copy link to heading Copied! 表示
  

自動化ルールの作成は、日常の自動化エクスペリエンスの主要部分です。Jira と Confluence の自動化ルール ビルダーに Atlassian Intelligence を追加することで、自動化ルールの作成をさらに容易にします。自動化する内容を入力して説明するだけで、簡単に自動化ルールを作成できるようになりました。Atlassian Intelligence がルールを作成するので、面倒な作業はすべて任せられます。JiraConfluence 向けの Atlassian Intelligence を使用した自動化の詳細をご覧ください。

Jira と Confluence 向けの Atlassian Intelligence を使用した自動化が最も効果を発揮するのは、開始方法がわからない場合や、ルール作成プロセスを加速したい場合です。

Atlassian Intelligence を使った自動化に関する考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して自動化を強化するために使用されるモデルの仕組みにより、これらのモデルが不正確、不完全、または信頼性の低い動作をする場合があることにご注意ください。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使った自動化は、次のようなシナリオではあまり効果的でないことが判明しています。

  • Atlassian Intelligence がリクエストに適切に回答するために、リクエスト送信者が利用できない情報 (たとえば、制限されたページやプロジェクト) へのアクセスを Atlassian Intelligence を使った自動化に提供する必要がある。
  • 1 回限りのタスクを実行する必要がある。
  • ナレッジ・ベース内から情報を問い合わせる必要がある。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

Atlassian Intelligence を使った自動化は、JiraConfluence で利用可能な既存の自動化コンポーネントでのみ機能します。

また、前述のように、Atlassian Intelligence に質問する内容をできる限り具体的にします。

お客様のデータと Atlassian Intelligence を使用した自動化 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して自動化する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • Jira プロジェクトまたは Confluence ページなど、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データに関しては、Confluence 自動化での Atlassian Intelligence の利用には、次のような対策を適用しています。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock
    • Are not stored by any LLM vendor.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。

All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.

この機能はインスタンスの権限に従います。たとえば、お客様が特定のプロジェクトまたはページにアクセスできない場合、それらのコンテンツを使用した提案が受信した回答に含まれることはありません。ご自身のコンテンツがインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。

How AI related resources uses Atlassian Intelligence Copy link to heading Copied! Show
  

AI related resources is powered by large language models developed by OpenAI, as well as a combination of open-source large language models (including the Llama series and Phi series) and other machine learning models. These large language models include OpenAI’s GPT series of models.

Atlassian Intelligence uses these models to analyze and generate natural language within our products, and to provide relevant responses from Atlassian and connected third-party products.

These large language models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated through predicting the most probable next word or text based on the data that they have been trained on.

Read more about the capabilities of OpenAI’s models or about this approach in OpenAI's research papers. For more information on open-source language models, see information on the Llama series and the Phi series.

Use cases for AI related resources Copy link to heading Copied! Show
  

Atlassian Intelligence enables your users to speed up the process of resolving incidents by suggesting a list of resources that they can refer to, across your linked knowledge base spaces and articles, Jira issues, and (if you are a Rovo customer) any third-party products you have integrated through Rovo. Read more about Rovo and third party tools.

We believe that AI related resources work best in scenarios where:

  • Your organization has a lot of documentation in your linked knowledge base spaces and connected third-party tools that are relevant to and helpful for resolving incidents that occur in your organization.

  • Your team needs quick access to resources that are likely relevant to the incident when they are triaging the incident.

Considerations when using AI related resources Copy link to heading Copied! Show
  

Remember that because of the way that the models used to power AI related resources work, these models can sometimes behave in ways that are inaccurate, incomplete, or unreliable. For example, the responses that you receive might not accurately reflect the content that they are based on or include content that sounds reasonable but is false or incomplete.

We’ve found that AI related resources is less useful in scenarios where:

  • You need current and accurate information about people, places, and facts.

  • You need AI related resources to access information not readily available to you, like restricted Confluence documents (for example, access-restricted Confluence pages) to properly respond to your request.

  • You have minimal documentation available in your setup that Atlassian Intelligence can use to suggest related resources.

For this reason, we encourage you to consider situations where you use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others.

You might also want to think about the following:

  • Reviewing permissions to ensure that users have appropriate levels of access to your relevant documentation and resources from third-party tools (like Slack channels).

  • Reviewing and confirming that your organization’s documentation is complete, up-to-date, and accurate.

Your data and AI related resources Copy link to heading Copied! Show
  

We understand you may have questions about how AI related resources uses your data. This section supplements the information available on our FAQ page.

We process:

  • Your prompts (inputs) and responses (outputs).
  • Context from your instance relevant to your prompt, such as incident data, alerts data, documentation in your Atlassian products, and connected third-party products such as Google Docs.
  • Data about how you interact with our features, such as clickstream data and the people you work with.
  • Any feedback you provide about this feature, including any prompts or responses you choose to share as part of your feedback.

When it comes to your data, AI related resources applies the following measures:

  • Your prompts (inputs) and responses (outputs):
    • Are not available to other customers.
    • Are not sent to any third-party LLM provider other than OpenAI.
    • Are not stored by OpenAI or any other third-party LLM provider.
    • Are not used to improve OpenAI or any other third party LLM provider.
    • Are used only to serve your experience.
  • OpenAI is a subprocessor on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • This feature follows your product’s permissions. For example, if you don’t have access to a certain Confluence page, you won’t find that page in the list of related resources. If you don’t want your content to be available in response to other users of your product, work with your organization admin to ensure the team’s access permissions are configured appropriately.
How AI suggestions in Jira Service Management use Atlassian Intelligence Copy link to heading Copied! Show
  

AI suggestions in Jira Service Management is powered by large language models developed by OpenAI, and other machine learning models. These large language models include OpenAI’s GPT series of models.

Atlassian Intelligence uses these models to analyze and generate natural language within our products.

These large language models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated through predicting the most probable next word or text based on the data that they have been trained on.

Read more about the capabilities of OpenAI’s models.

Use cases for AI suggestions in Jira Service Management Copy link to heading Copied! Show
  

With AI suggestions in Jira Service Management, your team can quickly get up to speed by gathering important context about your service requests and incidents at a glance. Atlassian Intelligence helps your team to:

  • For service requests, understand a brief summary of the issue, details of the issue reporter, and a list of suggested steps that could help agents resolve the issue. Atlassian Intelligence also suggests ways that your team can update service requests based on this context, such as changing their priority or adding an assignee.
  • For incidents, understand a brief summary of the issue and details of the probable root cause. Atlassian Intelligence also suggests ways that your team can update incidents based on this context, such as identifying an incident as a major incident, adding responders or affected services, changing their severity or priority, or investigating the problem by creating a problem issue.

AI suggestions in Jira Service Management can also recommend that agents escalate a request or incident when the applicable SLA is about to be breached. In the case of service requests, this feature may also suggest that agents escalate that request where the models used to power these suggestions identify, based on the text of the reporter’s comments, a sense of urgency or anger with that request.

We believe that AI suggestions in Jira Service Management work best in scenarios where:

  • Your projects receive a lot of similar requests or incidents.
  • Your organization already records service requests and incidents in Jira Service Management with complete, accurate, and up-to-date information.
  • Your team members' user profiles have been populated with information about their roles, departments, and locations.
  • Your customers and team members keep a written record of all the conversations by adding comments on issues.
  • Your projects include a number of each kind of service request or incident commonly encountered by your teams.
Considerations when using AI suggestions in Jira Service Management Copy link to heading Copied! Show
  

It’s important to remember that because of the way that the models used to power AI suggestions in Jira Service Management work, these models can sometimes behave in ways that are inaccurate, incomplete or unreliable.

For example, the responses that you receive might not accurately reflect the content that they are based on or include content that sounds reasonable but is false or incomplete.

We’ve found that AI suggestions in Jira Service Management are less useful in scenarios where:

  • You need current and accurate information about people, places, and facts.
  • You need suggestions for a service request or incident in circumstances where your project does not include any similar requests or incidents to learn from.
  • You need information that you don’t have access to within your project.
  • You need suggestions for assignees for whom information about their roles, departments, and locations has not been added to their profile.

For this reason, we encourage you to think about the situations when you use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others.

You might also want to think about:

  • Asking team members to make sure that their profile details (and past incidents/service requests) are fully populated before using AI suggestions in Jira Service Management.
Your data and AI suggestions in Jira Service Management Copy link to heading Copied! Show
  

We understand you may have questions about how AI suggestions in Jira Service Management uses your data. This section supplements the information available on our Trust Center.

We process:

  • The prompts (inputs) and responses (outputs)
  • Context from your instance relevant to the feature, such as similar requests or incidents, list of assignees or teammates, assets, and data in an issue like field values, comments, etc.
  • Data about how you interact with our features, such as clickstream data and the people you work with.
  • Feedback you choose to provide about this feature, including any prompts or responses you choose to share as part of your feedback.

When it comes to your data, AI suggestions apply the following measures.

  • Your prompts (inputs) and responses (outputs):
    • Are not available to other customers.
    • Are not sent to any third-party LLM provider other than OpenAI.
    • Are not stored by OpenAI.
    • Are not used to improve OpenAI.
    • Are used only to serve your experience.
  • OpenAI is a subprocessor on our List of Subprocessors. They don't use your inputs and outputs for any purpose besides processing your request.
  • This feature follows the permissions in your instance. For example, if you don't have access to a certain service request or incident, Atlassian Intelligence will not consider those requests or incidents while generating suggestions. If you don't want your content to be available to other users in your project or site, work with your org admin to ensure your permissions are set appropriately.
How Automation uses Atlassian Intelligence Copy link to heading Copied! Show
  

Automation using Atlassian Intelligence is powered by large language models developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include OpenAI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. 

Atlassian Intelligence uses these models to analyze natural language input and generate an automation rule for you within Jira and Confluence.

These models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated by predicting the most probable next word or text, based on the data that they have been trained on.

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Use cases for Automation using Atlassian Intelligence Copy link to heading Copied! Show
  

Creating automation rules is at the core of the everyday automation experience, and we want to make this even easier for you by adding Atlassian Intelligence to the automation rule builder in Jira and Confluence. Now, you can easily create automation rules by simply typing in and describing what you wish to automate, and let Atlassian Intelligence handle all the heavy lifting of creating the rule for you. Find out more about Automation using Atlassian Intelligence for Jira and for Confluence.

We believe that Automation using Atlassian Intelligence for Jira and Confluence works best in scenarios when you are not sure how to get started or want to accelerate the rule creation process.

Not sure how best to create an automation rule?

Automation rules are created by a combination of different types of components: triggers, actions, conditions, and branches. Think of components as the building blocks of a rule. To successfully create a rule with Atlassian Intelligence, your rule must at least contain both a trigger and an action. For example:

In Jira:

Every Monday, find all the tasks with a due date in the next 7 days, and send the assignee a reminder email.

When a ticket moves to Testing, assign the ticket to John Smith.

In Confluence:

  • Every Monday, find all the tasks with a due date in the next 7 days, and send the assignee a reminder email.
  • Every 6 months, archive any pages that haven’t been updated in that time. After archiving, send an email to the page author letting them know.
  • When a page is published with Product Spec in the title, create a Jira ticket to review the page with a link to the page.

In addition, for a rule to be successfully created, all its components must be supported by Automation using Atlassian Intelligence. This means that any triggers, actions, conditions, or branches in your rule must be compatible with Automation in Jira and/or Confluence.

Considerations for Automation using Atlassian Intelligence Copy link to heading Copied! Show
  

It’s important to remember that because of the way that the models used to power Automation using Atlassian Intelligence work, these models can sometimes behave in ways that are inaccurate, incomplete or unreliable.

For example, the responses that you receive might not accurately reflect the content that they are based on, or include content that sounds reasonable but is false or incomplete.

We’ve found that Automation using Atlassian Intelligence is less useful in scenarios where:

  • You need to give Automation using Atlassian Intelligence access to information that isn’t readily available to you (for example, a restricted page or project) to properly answer your request.
  • You need to perform one-off tasks.
  • You need to query information from within your knowledge base.

For this reason, we encourage you to think about the situations when you use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others.

Automation using Atlassian Intelligence will only work with the existing set of available automation components in Jira and Confluence.

You might also want to think about being as specific as possible in what you ask Atlassian Intelligence to do, as described above.

Your data and Automation using Atlassian Intelligence Copy link to heading Copied! Show
  

We understand you may have questions about how Automation using Atlassian Intelligence uses your data. This section supplements the information available on our FAQ page.

We process:

  • Your prompts (inputs) and responses (outputs).
  • Context from your instance relevant to your prompt, such as a Jira project or a Confluence page.
  • Data about how you interact with our features, such as clickstream data and the people you work with.
  • Feedback you choose to provide about this feature, including any prompts or responses you choose to share as part of your feedback.

When it comes to your data, using Atlassian Intelligence for Confluence automation applies the following measures:

  • Your prompts (inputs) and responses (outputs):
    • Are not available to other customers.
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock
    • Are not stored by any LLM vendor.
    • Are not used to improve LLM models.
    • Are used only to serve your experience.

All third-party LLM providers are subprocessors and listed as so on our  Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.

This feature follows the permissions in your instance. For example, if you do not have access to a specific project or page, you will not be suggested content from those assets in the response you receive. If you do not want your content to be available in responses to other users in your instance, work with your org admin to ensure your permissions are set appropriately.

アラートのグループ化

Atlassian Intelligence でアラートをグループ化する方法 Copy link to heading Copied! 表示
  

Alert grouping by Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence は、これらの機械学習モデルを利用して、アラート グループを分析および生成し、アラートの内容や使用されているタグの類似性に基づいて、製品内で関連性のある提案 (過去のアラート グループや過去のアラート対応者) を行います。次に、Atlassian Intelligence は大規模な言語モデルを利用して、製品内のこれらのグループの自然言語による説明や内容を分析および生成します。

これらの大規模な言語モデルは、入力された内容に基づいて回答を生成し、確率的です。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

アラートのグループ化のユース ケース Copy link to heading Copied! 表示
  

アラートのグループ化では、Atlassian Intelligence を利用して識別し、同様のアラートを一緒にグループ化します。また、アラートの内容や使用されているタグとの意味的な類似性に基づいて、過去の類似アラート グループや過去のアラート対応者 (または対応者のチーム) を特定して推奨することにも役立ちます。

アラート グループをインシデントにエスカレートする場合、状況に応じた情報すべてがアラートのグループ化により事前に入力され、インシデント作成プロセスの一環として確認できます。

アトラシアンでは、アラートのグループ化は次のようなシナリオで最も効果的だと考えています。

  • 組織では、短期間または長期間にかかわらず、類似または重複しているアラートが大量に発生するパターンが頻繁に起きている。
  • 組織では、常にアラートをタグで分類している。
  • チームは、類似または重複しているアラートをインシデントにエスカレートする必要があると気付くことが多い。
アラートのグループ化を使用する際の考慮事項 Copy link to heading Copied! 表示
  

アラートのグループ化の強化のために使用されているモデルは、その構造上、不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った回答に質問の内容が正確に反映されていなかったり、妥当なようでも虚偽または不完全な内容が含まれていたりする可能性があります。表示されるアラート グループには、タグの意味的な類似性が正確に反映されない可能性があります。

アラートのグループ化は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • アラートを適切にグループ化するために、アラートをグループ化する際に、アクセスする必要のある情報がすぐに利用できない。アラートのグループ化は、チームが設定した役割や権限の範囲内で機能するため、閲覧権限のあるアラートのグループとインサイトにのみアクセスできる。
  • チームが使用しているアラート タグが一貫していない、または適切に管理されていない。アラートのグループ化では、アラートのタイトルとタグの意味的な類似性に基づいてアラートがグループ化されるため、生成されるアラート グループの品質が、チームや組織が使用するアラート タグの一貫性とハイジーンによって決まる。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

また、アラート タグを使用する際に、あなたとチームが一貫したプラクティスに従うようにすることもご検討ください。

お客様のデータとアラートのグループ化 Copy link to heading Copied! 表示
  

アラートのグループ化でのデータの扱いについて、さまざまな疑問が生じることでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • アラート データ (アラート タイトル、アラート タグ、優先度、対応者チーム、説明) など、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

アトラシアンでは、お客様のアラート データを処理して、機械学習モデルのバージョンをトレーニングし、お客様のアラート特有のパターンを認識します。このバージョンは、ご自身のエクスペリエンスのためにのみ利用されます。

  • 当社は特定したパターンを保存し、お客様にインサイトをご提供します。
  • お客様のアラート データを利用して LLM をトレーニングすることはありません。

データについては、アラートのグループ化では次の指標が適用されます。

  • お客様の入力と出力:
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock

    • Are not stored by any LLM vendor.

    • Are not used to improve LLM models.

    • ご自身のエクスペリエンスのためにのみ利用されます。

  • All third-party LLM providers are subprocessors and listed as so on our subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能はサイトの権限に従います。たとえば、Atlassian Intelligence はタグと意味的な類似性に基づいて 50 件のアラートをグループ化し、ユーザーがそのうち 30 件のみを表示する権限を持っている場合、グループ詳細ビューにはその 30 件のみが表示されます。ご自身のアラートがサイトの他のユーザーへの対応として利用されないようにするには、組織/サイトの管理者に連絡して、権限が適切に設定されていることをご確認ください。
Atlassian Intelligence が Confluence のページとブログを要約する方法 Copy link to heading Copied! 表示
  

Summarize pages and blogs using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Confluence の簡単な要約のユース ケース Copy link to heading Copied! 表示
  

Atlassian Intelligence で Confluence ページやブログの簡単な要約を生成することで、時間を節約して、作業時間を短縮するために必要な詳細を入手できます。Confluence での Atlassian Intelligence の使用に関する詳細をご覧ください。

Atlassian Intelligence を利用したページやブログの要約は、次のようなシナリオで最も効果的です。

  • ページ内のテキスト量が多く、読むのに 5 分以上かかる。
  • ビジュアルが限られている、またはページの展開などの他のフォーマットで記述されたコンテンツが多い。
Atlassian Intelligence を利用してページやブログを要約する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence の機能を利用してページやブログの要約を強化するというモデルの利用方法により、これらのモデルが不正確、不完全、または信頼性の低い動作をする場合があることにご注意ください。

たとえば、受け取った回答に質問の内容が正確に反映されていなかったり、妥当なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

当社は、マクロ、表、要約の展開のサポートを改善し続けていますが、Atlassian Intelligence を利用したページやブログの要約が、次のようなシナリオではあまり効果的でないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • コンテンツが不十分な、非常に短い Confluence ページの要約が必要な場合。
  • ほとんどのコンテンツが表形式または展開されている Confluence ページの要約が必要な場合。
  • ほとんどのコンテンツがマクロである Confluence ページの要約が必要な場合。

Atlassian Intelligence を利用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • テキストベースのコンテンツが多いことがわかっているページを要約するよう Atlassian Intelligence に依頼する。
お客様のデータおよび Atlassian Intelligence を利用したページやブログの要約 Copy link to heading Copied! 表示
  

Confluence 自動化に Atlassian Intelligence を利用する際に、お客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。

  • 要約する Confluence ページのコンテンツなど、プロンプトに関連するインスタンスのコンテキスト。

  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。

  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データに関しては、Atlassian Intelligence を利用したページやブログの要約には、次のような対策を適用しています。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.
    • Are not stored by any LLM vendor.

    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能はインスタンスの権限に従います。たとえば、Confluence ページにアクセスできない場合、この機能は表示されず、Atlassian Intelligence を利用してページを要約することもできません。ご自身のコンテンツをインスタンスの他のユーザーに利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。

Atlassian Intelligence で用語を定義する

Atlassian Intelligence が用語を定義する方法 Copy link to heading Copied! 表示
  

Defining terms using Atlassian Intelligence in Confluence and Jira is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを利用して、Confluence 内の自然言語による回答を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Atlassian Intelligence を利用した用語の定義のユース ケース Copy link to heading Copied! 表示
  

Confluence や Jira でコンテンツを利用する際に最も難しいことの 1 つは、読んでいる内容を理解するために必要となるコンテキストの把握です。略語、頭字語、なじみのない用語、チームやプロジェクト固有の名前は、必要な情報を得るために長時間検索することにつながります。

Atlassian Intelligence を利用して用語を定義すると、Confluence のページや Jira の課題説明のページに、会社固有の用語 (頭字語、プロジェクト名、システム名、チーム名など) の定義が表示されます。これにより、ユーザーは必要な情報を随時取得でき、それと同時にチームの連携を強化できます。

Atlassian Intelligence を使用すれば、読んでいるコンテンツから離れることなくこれらを自動的に定義できるため、時間を節約できます。

正しくないと思われる定義が見つかった場合は、既存の定義を編集するか新しい定義を追加してから、当該のページや課題説明にその定義が表示されるように設定するか、スペース全体、プロジェクト全体、組織全体にその定義が表示されるように設定することができます。

Confluence での Atlassian Intelligence を利用した用語の定義は、次のようなシナリオで最も効果的です。

  • 会社の Confluence インスタンスには、Atlassian Intelligence が参照する特定の用語について言及、記述、または説明しているページが複数ある。
Atlassian Intelligence を使用して用語を定義する際の考慮事項 Copy link to heading Copied! 表示
  

Confluence で Atlassian Intelligence の機能を利用して用語を定義するというモデルの利用方法により、これらのモデルが不正確、不完全、または信頼性の低い動作をする場合があることにご注意ください。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Confluence で Atlassian Intelligence を利用して用語の定義をすることは、次のようなシナリオではあまり効果的でないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • Confluence インスタンス内の用語についてのコンテキストが十分ではない(たとえば、特定の用語に言及しているページがない場合、その用語の定義は正確に生成されません)。
  • 用語を定義するには、ユーザーが閲覧権限を持たない Confluence コンテンツにアクセスする必要があります。
  • 一度に 1 つの用語を定義するのではなく、複数の用語を定義しようとしている。

さらに、Atlassian Intelligence を使用して用語を定義するには Confluence での検索が必要であるため、この機能は、Jira インスタンスと同じサイトにある Confluence インスタンスを閲覧する権限がある場合にのみ Jira で使用できます。

また、Confluence スペースや Jira インスタンスに複数の言語で書かれたコンテンツがある場合は、Atlassian Intelligence を使用した用語の定義が期待どおりに機能しないことがあります。

Atlassian Intelligence による用語の定義で使用されるお客様のデータ Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して用語を定義する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • 定義したい用語など、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用して用語を定義する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能は既存のユーザー アクセス権限に従うため、ユーザーがアクセス権限を持たないコンテンツから定義が表示されることはありません。その代わりに、この機能は、ユーザーがインスタンス内で閲覧する権限を持っているページとプロジェクトからのみコンテンツと定義を取得します。ご自身のコンテンツがインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。
  • ユーザーが定義の編集や更新を手動で行った場合、その定義は 1 年間保管されます。

エディターのジェネレーティブ AI

編集エクスペリエンスにおける Atlassian Intelligence の仕組み Copy link to heading Copied! 表示
  

Atlassian Intelligence in editing experiences is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

エディターでのジェネレーティブ AI のユース ケース Copy link to heading Copied! 表示
  

Atlassian Intelligence は、組織内のすべてのチームで効果的なコミュニケーションを促進し、効率、意思決定、プロセスを向上させるのに役立ちます。

アトラシアンでは、編集エクスペリエンスに Atlassian Intelligence を使用すると、次のようなシナリオで最も効果的だと考えています。

  • 既存のコンテンツを対象ユーザー別に変換する。Atlassian Intelligence は、調子を変えたり、文章を改善し、技術情報を他のチームが理解しやすくしたりするのに役立ちます。これは、文章をより専門的かつ簡潔にしたいチームに最適です。
  • 既存のコンテンツを要約する。Atlassian Intelligence を使用すると、大まかなメモを有益な戦略ドキュメンテーション、ナレッジ・ベース記事、キャンペーン計画などに変換できます。また、既存の情報を分析して行動計画や項目を分析するのにも使用できます。これは、ページ内のテキスト量が多く、そこから多くのコンテキストを抽出する場合に最適です。
  • 新しいコンテンツを生成する。Atlassian Intelligence は、戦略ページ、プロジェクト概要、リリース・ノート、ユーザー・ストーリーなどの新しいコンテンツを作成するのに役立ちます。これは、チームが特定の目標を念頭に置き、明確で具体的なプロンプトを使用する場合に最適です。
編集エクスペリエンスに Atlassian Intelligence を使用する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用した編集エクスペリエンスにモデルがどのように使われているかを理解し、これらが不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った応答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

編集エクスペリエンスにおける Atlassian Intelligence は、次のようなシナリオでは、あまり効果的でないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • リクエストに正しく回答するためにアクセスする必要のある情報がすぐに利用できない(インスタンスに存在しないなど)。
  • 標準のマークダウンを超える形式でコンテンツを生成する必要がある(情報パネルを最初から生成するなど)。
  • 編集中の文書にはまだ存在していない情報を参照する必要がある(別の文書や別の製品に存在するコンテンツなど)。
  • 英語以外の言語でコンテンツを生成および変換する必要がある。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence に質問する内容をできるだけ具体的にする。
  • 複雑な要求をより小さな管理しやすいタスクに分割します。
  • 関連するキーワードを組み込んで、生成されるコンテンツの精度を高めます。
  • 入力テキストには適切な文法と句読点を使用します。
  • AI ライティング・アシスタントによって生成された出力を校正、レビュー、編集して、正確でわかりやすくします。
  • さまざまなプロンプトや入力テキストのバリエーションを試して、さまざまなアイデアを探ります。
  • 他のユーザーと協力してフィードバックを収集し、出力の品質を向上させます。
編集エクスペリエンスにおけるデータと Atlassian Intelligence Copy link to heading Copied! 表示
  

編集エクスペリエンスにおいて Atlassian Intelligence でお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • Atlassian Intelligence をトリガーした製品など、プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データに関しては、編集エクスペリエンスにおける Atlassian Intelligence には、次の対策を適用しています。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能はインスタンスの権限に従います。たとえば、特定の Confluence ページにアクセスできない場合、受信した回答でそのページのコンテンツが提案されることはありません。ご自身のコンテンツをインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。
How issue reformatter uses Atlassian Intelligence Copy link to heading Copied! Show
  

Issue reformatter is powered by large language models developed by OpenAI, including OpenAI’s GPT series of models.

Atlassian Intelligence uses this model to analyze and generate natural language within Jira.

These models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated through predicting the most probable next word or text based on the data that they have been trained on.

Read more about the capabilities of OpenAI’s models.

Use cases for issue reformatter Copy link to heading Copied! Show
  

Issue reformatter helps improve the clarity of your Jira issue descriptions by reformatting them using a template developed by Atlassian. This template covers the types of information that we usually expect to see in a Jira issue description, such as a user story, context for the work, and acceptance criteria.

We believe issue reformatter works best in scenarios where your issue descriptions already contain useful information (such as acceptance criteria or links to sources) but that information is not formatted using a clear or consistent structure.

Considerations when using issue reformatter Copy link to heading Copied! Show
  

It’s important to remember that, because of the way they work, the models that power issue reformatter can sometimes behave in ways that are inaccurate, incomplete or unreliable.

For example, your reformatted description might not accurately reflect the content that it was based on, or it might include details that sound reasonable but are false or incomplete.

We’ve found issue reformatter is less useful in scenarios where:

  • You need current and accurate information about people, places and facts.
  • Your issue descriptions don’t include much information, because there’s a higher chance that the models powering issue reformatter might add information that wasn’t included in your original description.

For this reason, we encourage you to think about the situations when you use Atlassian Intelligence, and always review the quality of the responses you get before sharing them with others. You might also want to think about reviewing and confirming that your issue descriptions include all relevant information before you start using issue reformatter to reformat them.

Your data and issue reformatter Copy link to heading Copied! Show
  

We understand you may have questions about how issue reformatter uses your data. This section supplements the information available on our Trust Center.

We process:

  • Your prompts (inputs) and responses (outputs).
  • Context from your instance relevant to your prompt, such as the Jira issue description and summary.
  • Data about how you interact with our features, such as clickstream data and the people you work with.
  • Feedback you choose to provide about this feature, including any prompts or responses you choose to share as part of your feedback.

When it comes to your data, issue reformatter applies the following measures:

  • Your prompts (inputs) and responses (outputs):
    • Are not available to other customers
    • Are not sent to any third party LLM provider other than OpenAI
    • Are not stored by Open AI.
    • Are not used to improve OpenAI's models.
    • Are used only to serve your experience.
  • OpenAI is a subprocessor on our list of subprocessors. They do not use your inputs and outputs for any purpose besides processing your request.
  • This feature only uses the information available within the Jira Issue and is invoked from the Jira Issue. Therefore, it can only be invoked by a user who has permission to view the issue and will not access any other information.

Jira Service Management で課題の詳細を要約する。

Atlassian Intelligence が Jira Service Management で課題の詳細を要約する方法 Copy link to heading Copied! 表示
  

Summarize issue details using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Jira Service Management での課題詳細の要約のユースケース Copy link to heading Copied! 表示
  

Jira Service Management で課題に関する長文の説明や多数のコメントをすべて読む代わりに、Atlassian Intelligence でこれらの情報をすばやく要約できます。簡単に新しい関係者と情報を共有したり、新しいエージェントにチケットを移動したり、課題に関する詳細情報を入手したりできます。これにより、エージェントは課題のコンテキストと進捗状況をすばやく理解でき、迅速に行動し、タイムリーな支援を提供できます。

Atlassian Intelligence を使用した課題の詳細の要約は、次の場合に最適だと私たちは考えています。

  • 説明とコメントが英語で記述されている課題。
  • コメントの数が多い課題や、コメントや説明が長い課題。
Atlassian Intelligence を使用して課題を要約する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence の機能を使用して課題の詳細の要約を強化するというモデルの仕組み上、これらのモデルが不正確、不完全、または信頼性の低い動作をする場合があることにご注意ください。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した課題の詳細の要約は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 英語以外の言語を使用している
  • 課題に履歴や詳細がない

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

Atlassian Intelligence を使用して課題の詳細を要約する際のお客様のデータの取り扱いについて Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して課題の詳細を要約する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • プロンプトに関連するインスタンスからのコンテキストには、Jira Service Management の課題に関する詳細が含まれます(課題の説明、コメント、チケットに関係するユーザーなど)。
  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用して課題の詳細を要約する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能はインスタンスの権限に従います。エージェントとプロジェクト管理者のみに「要約」ボタンが表示されます。

エディターのジェネレーティブ AI

Atlassian Intelligence でスマート リンクを要約する方法 Copy link to heading Copied! 表示
  

Summarize Smart Links with Atlassian Intelligence (AI) is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

スマート リンクの要約を活用したユース ケース Copy link to heading Copied! 表示
  

Jira、Confluence、Google Docs のスマート リンクにカーソルを合わせると、Atlassian Intelligence がコンテンツを要約して、ユーザーがリンクの重要性と価値を判断し、次のアクションを決定できるようにします。これにより、現在のページを離れてコンテキストを切り替える必要が減ります。

アトラシアンでは、AI でスマート リンクを要約することは、次のようなシナリオで最も効果的に機能すると考えています。

  • スマート リンクや課題を含むページを見ている。
  • スマート リンクや課題を含み、情報量やコンテンツが多いページを見ている。これらのスマート リンクや課題に時間がかかり、目的のメイン コンテンツを読むことに集中できない。
Atlassian Intelligence を利用しスマート リンクを要約する際の考慮事項 Copy link to heading Copied! 表示
  

AI によるスマート リンク要約のために使用されるモデルの仕組み上、不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った要約には基になっている内容が正確に反映されていなかったり、一見筋が通っているようでも虚偽または不完全な内容が含まれていたりする可能性があります。

AI でスマート リンクを要約することは、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • 非常に短いコンテンツを要約する必要がある。
  • 1 つのリンク内のすべてのメタデータとコンテンツを要約する必要がある。たとえば、Jira チケットのすべてのフィールド値、その説明とコメントの内容を理解したい場合。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

お客様のデータと Atlassian Intelligence を使用したスマート リンクの要約 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して課題の詳細を要約する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • 要約するリンクの内容など、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • この機能についてお客様が提供するフィードバック (フィードバックの一部として共有する回答を含む)。

お客様のデータについては、AI を使用したスマート リンクの要約では次の指標が適用されます。

  • お客様の要約:
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on ourSubprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能はインスタンスの権限に従います。たとえば、Jira や Confluence のチケットやページ、または Google のページにアクセスできない場合、そのソースからのコンテンツを要約することはできません。ご自身のコンテンツがインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。

Jira Service Management での Atlassian Intelligence の回答

Jira Service Management での Atlassian Intelligence の回答の仕組み Copy link to heading Copied! 表示
  

Atlassian Intelligence answers is powered by large language models developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Jira Service Management での Atlassian Intelligence の回答のユース ケース Copy link to heading Copied! 表示
  

Atlassian Intelligence による回答機能は、Jira Service Management の Virtual Service Agent に接続されます。ジェネレーティブ AI を使って、リンクされたナレッジ ベース スペースを検索してカスタマーの質問に回答します。

アトラシアンでは、Atlassian Intelligence による回答は次のようなシナリオで最も効果的だと考えています。

  • 完全で最新のナレッジ ベースがリンクされており、Virtual Service Agent がそれらにアクセスし、Atlassian Intelligence による回答を使用してカスタマーの質問に回答できる。
  • Atlassian Intelligence による回答は、次のようなカスタマーの質問への回答に使用されます。
    • 情報や手順説明を提供することで解決できる質問。
    • 既存のナレッジ・ベース記事に記載されている(または追加できる)質問。
    • 一般的にエージェントにエスカレーションする必要がない質問。
Jira Service Management で Atlassian Intelligence の回答を使用する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence の回答にこれらのモデルがどのように使われているかを理解し、これらのモデルが不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence の回答は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • リクエストに正しく回答するためにアクセスする必要のある情報がすぐに利用できない(リンク先のナレッジ・ベースに存在しないなど)。
  • ナレッジ・ベースが古いか不完全であるため、検索が役に立たないかもしれない。
  • ナレッジ・ベースの記事に関連情報や質の高い情報が含まれていないため、それらの記事に基づいてカスタマーに提供される Atlassian Intelligence の回答が、関連性の低いものになる可能性がある。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • リンクされたナレッジ・ベース(およびそこに含まれる既存の記事)を積極的に見直して更新し、完全で最新の状態に保たれていることをご確認ください。
  • リンクされたナレッジ・ベース・スペースに適用される権限と制限を積極的に見直して、Atlassian Intelligence の回答が役に立つ正しい情報にアクセスできることをご確認ください。
お客様のデータと Jira Service Management での Atlassian Intelligence の回答について Copy link to heading Copied! 表示
  

Jira Service Management における Atlassian Intelligence の回答にお客様のデータがどのように使用されるかについて、ご不明な点があると思います。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • プロンプトに関連するインスタンスのコンテキスト(リンクされたナレッジ・ベース・スペースなど)。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。
  • お客様のデータに関しては、Jira Service Management での Atlassian Intelligence の回答には、次のような対策を適用しています。
  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.
    • Are not stored by any LLM vendor.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能は、リンクされたナレッジ・ベース・スペースに適用される権限と制限に従います。つまり、Jira Service Management ポータルでお客様が利用できるすべてのページが、Atlassian Intelligence の回答によって利用できるようになります。たとえば、特定の Confluence ページへのアクセスが制限されており、通常は Jira Service Management で利用できない場合、そのページのコンテンツは Atlassian Intelligence の回答による回答では提案されません。ご自身のコンテンツをインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。
How summarize a Whiteboard uses Atlassian Intelligence Copy link to heading Copied! Show
  

Summarize a Whiteboard is powered by large language models developed by OpenAI. These large language models include OpenAI’s GPT series of models.

Atlassian Intelligence uses these models to analyze and generate natural language within our products.

These models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated through predicting the most probable next word or text based on the data that they have been trained on.

Read more about the capabilities of OpenAI's models.

Use cases for summarize a Whiteboard Copy link to heading Copied! Show
  

Save time and get the details you need to do your work faster by generating a summary of the content on a whiteboard using Atlassian Intelligence.

We believe that Summarize a Whiteboard works best in scenarios where you have already created content with a Whiteboard. You can copy or create a page from the summary Atlassian Intelligence generates using the buttons at the bottom of the summary panel. You can also rate the quality of the summary and provide feedback.

Considerations when using summarize a Whiteboard Copy link to heading Copied! Show
  

It’s important to remember that because of the way that the models used to power Summarize a Whiteboard work, these models can sometimes behave in ways that are inaccurate, incomplete or unreliable.

For example, the responses that you receive might not accurately reflect the content that they are based on, or include content that sounds reasonable but is false or incomplete.

While we continue to build better support for macros, tables, and expand in summaries, we’ve found that Summarize a Whiteboard using Atlassian Intelligence is less useful in scenarios where:

  • You need a summary of a Whiteboard where there is not enough content.

  • You need a summary of a Whiteboard where most of the content is in links or images.

We encourage you to think about the situations when you use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others.

Your data and summarize a Whiteboard Copy link to heading Copied! Show
  

We understand you may have questions about how summarize a Whiteboard uses your data. This section supplements the information available on our FAQ page.

We process:

  • Your prompts (inputs) and responses (outputs).
  • Context from your instance relevant to your prompt, such as content from the Whiteboard that you want to summarize.

  • Data about how you interact with our features, such as clickstream data and the people you work with.

  • Feedback you choose to provide about this feature, including any prompts or responses you choose to share as part of your feedback.

When it comes to your data, summarize a Whiteboard applies the following measures.

  • Your prompts (inputs) and responses (outputs):
    • Are not available to other customers.
    • Are not sent to any third-party LLM provider other than OpenAI.
    • Are not stored by OpenAI.
    • Are not used to improve OpenAI.
    • Are used only to serve your experience.
  • OpenAI is a subprocessor on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • This feature follows the permissions in your instance. For example, if you do not have access to a Confluence page, you will not be shown this feature or be able to summarize a page using Atlassian Intelligence. If you do not want your content to be available to other users in your instance, work with your org admin to ensure your permissions are set appropriately.

Confluence の簡単な要約

Atlassian Intelligence が Atlassian Analytics でカスタム数式を記述する方法 Copy link to heading Copied! 表示
  

Writing custom formulas using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して自然言語を分析し、それを Atlassian Analytics 内で SQLite に変換します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、トレーニングを受けたデータに基づいて、最も可能性の高い次の単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

AI を使ったカスタム数式のユースケース Copy link to heading Copied! 表示
  

結果テーブルのデータの変換方法を Atlassian Intelligence に質問または説明すると、カスタム数式に使用される SQLite 式に変換されます。独自の SQLite 式をゼロから記述する必要はありません。質問すると、Atlassian Intelligence は前の Visual SQL ステップの結果テーブルのデータを使用して、グラフ用のデータに計算または演算を適用する SQLite 式を生成します。これは SQLite の関数とその構文について学ぶのにも役立ちます。

Atlassian Intelligence を使用してカスタム数式を記述するのは、次のようなシナリオで最も効果的です。

  • クエリしたデータの 1 つの列に変更を適用する。
  • 生成された SQLite 式を元に、必要に応じて改良する。
  • 自然言語での質問に、列ヘッダーや行データで参照される単語や概念が含まれる。
  • SQLite についてもっと知り、利用できる SQLite の機能を調べる。
AI を使用してカスタム数式を書く際の考慮事項 Copy link to heading Copied! 表示
  

カスタム数式を使用する際は、Atlassian Intelligence で使用されるモデルが不正確や不完全であったり、信頼性が低かったりする場合があることに注意してください。

たとえば、質問の内容が受け取った回答に正確に反映されていなかったり、一見筋が通っているようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使ったカスタム数式の記述は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 1 つのカスタム数式の複数の列に変更を適用する。
  • 結果テーブルのデータではすぐには利用できない情報にアクセスするためにこの機能が必要である。
  • プロンプトで英語以外の言語で質問される。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence に質問する内容をできるだけ具体的にする。
  • クエリしたデータが、質問の回答を得るために必要なデータに対応していることを確認する。
お客様のデータと、AI を使ったカスタム数式の書き方 Copy link to heading Copied! 表示
  

Confluence 自動化に Atlassian Intelligence を利用する際に、お客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。

  • 要約する Confluence ページのコンテンツなど、プロンプトに関連するインスタンスのコンテキスト。

  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。

  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データに関しては、Atlassian Intelligence を利用したページやブログの要約には、次のような対策を適用しています。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能はインスタンスの権限に従います。たとえば、Confluence ページにアクセスできない場合、この機能は表示されず、Atlassian Intelligence を利用してページを要約することもできません。ご自身のコンテンツをインスタンスの他のユーザーに利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。
create incident (インシデントの作成) が Atlassian Intelligence を活用する方法 Copy link to heading Copied! 表示
  

Create incident with AI using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

These models generate responses based on your input and are probabilistic in nature. This means that their responses are generated by predicting the most probable next word or text based on the data that they've been trained on.

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

AI による create incident (インシデントの作成) のユース ケース Copy link to heading Copied! 表示
  

Jira Service Management で 1 つ以上のアラートまたはアラート グループをインシデントにエスカレーションする場合、AI による create incident (インシデントの作成) は Atlassian Intelligence を使って、インシデント作成プロセスの一環として確認できるように、すべてのコンテキスト情報をすばやく事前入力します。これにより、ユーザーはこれらのアラートやアラート グループから作成されたインシデントのコンテキストをすばやく理解し、インシデントにエスカレーションする際にアラートのタイトル、説明、優先度など、事前に入力された情報を確認、レビューすることができます。

AI による create incident (インシデントの作成) が最も効果的に機能するのは、次のようなシナリオだと考えています。

  • インシデントにエスカレーションするアラートに、英語のタイトルと説明が含まれている。
  • インシデントにエスカレーションするアラートに、長い説明がある。
  • 複数のアラートからインシデントを作成する場合。
AI による create incident (インシデントの作成) を使用する際の考慮事項 Copy link to heading Copied! 表示
  

AI による create incident (インシデントの作成) を強化するために使用されているモデルは、その構造上、不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

AI による create incident (インシデントの作成) は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • インシデントにエスカレーションするアラートに、英語以外の言語のタイトルまたは説明 (またはその両方) が含まれている。
  • インシデントにエスカレーションするアラートに、限られた情報しか含まれていない。

これらのことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

最も有用な結果を得るには、Atlassian Intelligence に依頼する内容をできるだけ具体的にすることをお勧めします。

また、Atlassian Intelligence に質問する内容はできる限り具体的にしてください。

Atlassian Intelligence によるインシデント作成時のお客様データの取り扱い Copy link to heading Copied! 表示
  

AI による create incident (インシデントの作成) がお客様のデータをどのように使用するかについて、疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • Jira Service Management アラートの説明、タイトル、優先度など、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

お客様のデータに関して、AI による create incident (インシデントの作成) では次の指標が適用されます。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM providor.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能は、インスタンス内のアラートの権限に従います。アラートを表示し、インシデントにエスカレーションする権限を持つエージェントにのみ、作成されるインシデントの詳細を入力するための Atlassian intelligence による提案が表示されます。

Create post-incident review

How create post-incident review uses Atlassian Intelligence Copy link to heading Copied! 表示
  

PIR (Post-Incident Review) creation by Atlassian Intelligence is powered by large language models developed by OpenAI. These large language models include OpenAI’s GPT series of models. Atlassian Intelligence uses these models to analyze and generate natural language within our products.

These models generate responses based on users' inputs and are probabilistic in nature. This means that the responses are generated by predicting the most probable next word or text, based on the data that they’ve been trained on.

OpenAI のモデルの能力、またはこのアプローチについて詳しくは、OpenAI の研究論文をお読みください。

Use cases for create post-incident review with AI Copy link to heading Copied! 表示
  

PIRs are a core part of the incident management process, helping incident responders and managers learn from current incidents and pass along insights to prevent similar incidents in the future. Atlassian Intelligence helps to accelerate the often time-consuming task of compiling a PIR by suggesting a PIR description based on relevant contextual information in your Jira Service Management instance and chat tools like Slack for you to review.

We believe that PIR creation using AI works best in scenarios where:

  • Your organization has a consistent practice of compiling PIRs for incidents.

  • Your team has incident details scattered across chat tools like Slack and Jira Service Management, which requires you to spend more time compiling a PIR from those sources.

  • Your organization records incidents in Jira Service Management with complete, up-to-date information.

Considerations when using create post-incident review with AI Copy link to heading Copied! 表示
  

It’s important to remember that because of the way that the models used to power PIR creation work, they can sometimes behave in ways that are inaccurate, incomplete, or unreliable. For example, the responses that you receive might not accurately reflect the content that they are based on or include content that might sound reasonable but is false or incomplete.

We’ve found that PIR creation using AI is less useful in scenarios where:

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • You need PIR creation to have access to information that isn’t readily available to you (for example, chat channels which you don’t have access to) to properly generate the PIR description.
  • The data available in your Jira Service Management instance is incomplete or insufficiently detailed, so the PIR creation may not be able to generate an accurate description.

For this reason, we encourage you to think about situations where you can use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others.

こちらもぜひご検討ください。

  • Being as specific as possible in what you want Atlassian Intelligence to do.
  • Ensuring that you and your team follow incident management practices consistently. For example, by recording complete and accurate details of incidents in your Jira Service Management instance and linking the relevant chat channels to the incident.
Your data and create post-incident review using AI Copy link to heading Copied! 表示
  

We understand you may have questions about how create post-incident review using AI uses your data. This section supplements the information available on our FAQ page.

処理されるデータの種類は以下のとおりです。

  • お客様のプロンプト (入力) と回答 (出力)。
  • Context from your instance relevant to your prompt, such as incident data (such as summary, labels, priority, responder teams, and description), linked alerts, and linked Slack chat channels.
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック (フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

When it comes to your data, PIR creation using AI applies the following measures.

  • プロンプト (入力) と回答 (出力) について:
    • 他のお客様は利用できません

    • OpenAI 以外のサードパーティの LLM プロバイダには送信されません

    • OpenAI によって保存されません

    • OpenAI モデルの改善には利用されません

    • ご自身のエクスペリエンスのためにのみ利用されます。

  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page.

  • This feature follows the permissions in your instance. For example, if you do not have access to the linked alerts of the incident or linked Slack channels, you will not be suggested content from these sources in the response you receive. If you do not want your content to be available in responses to other users in your instance, please work with your org admin to ensure your permissions are set appropriately.

Atlassian Intelligence でプル リクエストの説明を生成する

Bitbucket Cloud が Atlassian Intelligence を使用してプル リクエストの説明を生成する方法 Copy link to heading Copied! 表示
  

Generating pull request descriptions with Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語およびコードを分析し、説明を生成します。

これらのモデルは、入力された内容に基づいて回答を生成し、本質的に確率的です。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Atlassian Intelligence でプル リクエストの説明を生成するユース ケース Copy link to heading Copied! 表示
  

Atlassian Intelligence は、Bitbucket Cloud のコード レビュー エクスペリエンスでプル リクエストの説明やコメントを書いているときに、コンテンツの生成、変換、要約をサポートします。これには、次が含まれます。

  • プル リクエストに含まれるコード変更に基づいてプル リクエストの説明を生成します。
  • プル リクエストの説明の要約、改善、またはトーン変更を行います。
  • プル リクエストのコメントの要約、改善、またはトーン変更を行います。

アトラシアンでは、Atlassian Intelligence を使用した Bitbucket Cloud のプル リクエストの説明の生成は、次のようなシナリオで最も効果的だと考えています。

  • コード作成者が、プル リクエストの説明を書いたり改善したりするのを、Atlassian Intelligence に手伝ってもらいたい。これは、Atlassian Intelligence によって生成されたコンテンツがプル リクエストの説明として適切であると判断できるチームに最適です。
  • コード レビュー担当者が、すでに下書きしたプル リクエストのコメントのトーンや内容の改善を、Atlassian Intelligence に手伝ってもらいたい。
Atlassian Intelligence でプル リクエストの説明を生成する際の考慮事項 Copy link to heading Copied! 表示
  

この機能に使用されているモデルは、その構造上、不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った回答に質問の内容が正確に反映されていなかったり、妥当なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した Bitbucket Cloud のプル リクエストの説明の生成は、次のようなシナリオではあまり効果的ではないことが判明しています。

  • プル リクエストの説明で、コード変更にまだ存在していない情報 (たとえば、リポジトリの他の場所に含まれているソース コード) について言及する必要がある。
  • Atlassian Intelligence によって生成されたコンテンツがプル リクエストの説明として正しいかどうかを判断できない。
  • 人、場所、事実に関する最新かつ正確な情報が必要である。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence に質問する内容をできるだけ具体的にする。
  • AI ライティング・アシスタントによって生成された出力を校正、レビュー、編集して、正確でわかりやすくします。
  • 他のユーザーと協力してフィードバックを収集し、出力の品質を向上させます。
Atlassian Intelligence によるデータとプル リクエストの説明の作成 Copy link to heading Copied! 表示
  

Confluence で Atlassian Intelligence を利用して用語を定義する際に、お客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • プロンプト (入力) と回答 (出力)
  • プロンプトに関連するインスタンスからのコンテキスト:
    • プル リクエストのコード変更とコミット メッセージ
    • プル リクエストの説明の内容
    • プル リクエストのコメントの内容
  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。
  • この機能について提供したいフィードバック

Atlassian Intelligence を使用したプル リクエストの説明の生成では、データについて次のような対策を適用しています。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page.

Atlassian Analytics で SQL クエリを生成する

Atlassian Intelligence が Atlassian Analytics で SQL クエリを生成する方法 Copy link to heading Copied! 表示
  

Generating SQL queries using Atlassian Intelligence in Atlassian Analytics is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して自然言語を分析および理解し、それを Atlassian Analytics 内でSQL(構造化クエリ言語)に変換します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Atlassian Intelligence を使用した SQL クエリ生成のユース ケース Copy link to heading Copied! 表示
  

独自の SQL クエリをゼロから作成するのではなく、Atlassian Intelligence に自然言語で質問して、SQL に変換させます。質問すると、Atlassian Intelligence は、選択したデータ・ソースの Atlassian Data Lake のスキーマを使用して、Atlassian Analytics ダッシュボードにグラフを作成するための SQL クエリを生成します。Data Lake のスキーマについて学ぶのにも役立ちます。

アトラシアンでは、Atlassian Intelligence を使用した SQL クエリの生成は、次のようなシナリオで最も効果的だと考えています。

  • 生成された SQL から始めて、必要に応じてクエリを調整してカスタム・グラフを構築したいと考えている。
  • 自然言語の質問には Atlassian Data Lake のスキーマで参照されている単語や概念が含まれており、できるだけ具体的に記入されている。
  • Atlassian Data Lake のスキーマの詳細を確認したいと考えている。

どのような質問をすればいいのかわからない場合

下記はその例です。

  • Jira の未解決課題数の上位 5 つのラベルは何ですか?
  • 先月、x プロジェクトで完了した Jira の課題は何件ありますか?
  • 上位 5 つのステータスにあった平均時間はどれくらいですか?
  • 先月最もお気に入りに登録された Confluence ページのトップ 5 は何ですか?
  • x Jira Service Management プロジェクトで、過去 5 日間に何件のリクエストが発生しましたか?
Atlassian Intelligence を使用して SQL クエリを生成する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して SQL クエリを生成するために使用されるモデルの動作方法により、これらのモデルは不正確、不完全、または信頼性の低い方法で動作する場合があることに留意することが重要です。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した SQL クエリの生成は、次のようなシナリオではあまり役に立たないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • この機能が、Atlassian Data Lake のスキーマではすぐに利用できない情報(たとえば、Advanced Roadmaps のデータなど)にアクセスし、質問に適切に答えるために必要である。
  • 質問にカスタム・フィールドへの参照が含まれている。
  • 英語以外の言語で質問されている。
  • Atlassian Intelligence から返された SQL を検証できるほど SQL に精通していない。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence に質問する内容をできるだけ具体的にする。
  • 使用している Atlassian Data Lake のデータ・ソースに、質問に答えるのに必要なデータが含まれていることを確認する。
データと、Atlassian Intelligence を使用した SQL クエリの生成 Copy link to heading Copied! 表示
  

Atlassian Intelligence を利用して SQL クエリを生成する際に、お客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • インスタンスに適用可能な、一般公開されている Atlassian Data Lake のスキーマを含む、プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データに関しては、Atlassian Intelligence を使用した SQL クエリの生成には、次のような対策を適用しています。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能は、Atlassian Data Lake の接続の権限に従います。たとえば、Atlassian Data Lake 接続にアクセスできない場合、SQL を構築してクエリを実行することはできません。

Confluence で回答を検索する

Atlassian Intelligence が Confluence で回答を検索する方法 Copy link to heading Copied! 表示
  

Search answers in Confluence using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Confluence での回答検索のユース ケース Copy link to heading Copied! 表示
  

ナレッジ・ベースが急速に拡大しすぎて、ユーザーが追いつけません。Atlassian Intelligence を使用して Confluence で回答を検索すると、作業を進めるために必要な重要な情報にすばやくアクセスできます。この機能は、必要な情報を簡単に見つけるのに役立ちます。ユーザーがチームメイトに尋ねるような質問を理解し、即座に回答します。Atlassian Intelligence を使用して Confluence で回答を検索する方法の詳細を見る

Atlassian Intelligence を使用して Confluence で回答を検索するのは、詳細で完全かつ最新のコンテンツが Confluence サイトに大量に記載されている場合に最適だと私たちは考えています。

この機能は新しいコンテンツを生成するのではなく、(制限を守りながら) Confluence のページやブログを検索し、質問への回答を見つけます。Atlassian Intelligence は、Confluence の内容(具体的にはユーザーがアクセス権を持っている情報)のみに基づいて回答を生成します。

どのような質問をすればいいのかわからない場合

下記はその例です。

  • When is the next marketing team offsite? (マーケティング チームが次にオフサイトになるのはいつですか?)
  • What is the work from home policy? (在宅勤務ポリシーとは何ですか?)
  • What is Project Sunrise? (プロジェクト サンライズとは何ですか?)
  • When is our next marketing campaign? (次のマーケティング キャンペーンはいつですか?)
  • Where are the release notes for SpaceLaunch’s newest product? (SpaceLaunch の最新製品のリリース ノートはどこにありますか?)
  • How do I submit expenses for reimbursement? (経費精算を提出するにはどうすればいいですか?)
Atlassian Intelligence を使用して Confluence で回答を検索する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して Confluence で回答を検索するために使用されるモデルの仕組み上、これらのモデルは不正確、不完全、または信頼性の低い方法で動作する場合があることにご注意ください。

たとえば、受け取った回答に質問の内容が正確に反映されていなかったり、妥当なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した Confluence での回答の検索は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • 頻繁に変更される傾向がある情報(たとえば、毎月更新されるロードマップ)について、最新かつ正確な情報が必要である。
  • 特定の人々と、その人が組織で果たしている役割について、最新かつ正確な情報が必要である。
  • 質問に正しく回答するためには、自分が利用できない情報へのアクセス権が必要である(Confluence インスタンスのページが制限されているなど)。
  • 回答が、さまざまな値やカテゴリ(たとえば、毎週更新される指標)で構成されている。
  • ニュアンス、複雑さ、または人間レベルの推論を必要とする答えが必要である。

また、複数の言語で書かれたドキュメントがある Confluence スペースでは、Atlassian Intelligence を使用して Confluence で回答を検索しても、期待どおりに機能しないことがあります。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence に質問する内容をできるだけ具体的にする。
  • Confluence インスタンスに文書化されていることを把握しており、かつアクセス権を有していることについて質問する。
Atlassian Intelligence を使用して Confluence で回答を検索する際のお客様のデータの取り扱いについて Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して Confluence で回答を検索する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • Confluence 検索から返された上位 3 ページのコンテンツなど、プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用して Confluence で回答を検索する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能はインスタンスの権限に従います。たとえば、特定の Confluence ページにアクセスできない場合、受信する回答にそのページのコンテンツが使用されることはありません。ご自身のコンテンツがインスタンスの他のユーザーへの回答として利用されないようにするには、組織の管理者に連絡して、権限が適切に設定されていることをご確認ください。

Jira で課題を検索する

Atlassian Intelligence を使用して Jira で課題を検索する方法 Copy link to heading Copied! 表示
  

Search issues using Atlassian Intelligence in Jira is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して自然言語を分析および理解し、それを Atlassian Analytics 内で JQL(Jira クエリ言語)に変換します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Jira の課題検索のユース ケース Copy link to heading Copied! 表示
  

複雑なクエリを作成するのではなく、日常の言葉で何をしたいかを Atlassian Intelligence に質問できるようになりました。Atlassian Intelligence を使用して課題を検索すると、プロンプトが JQL クエリに変換され、特定の課題をすばやく検索できます。

アトラシアンでは、Atlassian Intelligence を使用した課題の検索は、次のような場合に最も効果的だと考えています。

  • Jira プロジェクトで使用可能な課題フィールドを使用して Jira の課題をクエリしている。
  • クエリには、課題検索を絞り込むのに役立つ特定のフィールドと値が含まれている。
  • 検索対象のフィールドと値が Jira プロジェクトに存在している。
  • 英語でクエリを実行している。
  • クエリは JQL に翻訳可能である。Atlassian Intelligence はプロンプトを JQL コードに変換するので、入力に JQL に変換できるキーワードが含まれる場合、より良い結果が得られます。
Atlassian Intelligence を使用して課題を検索する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して課題を検索するために使用されるモデルの仕組み上、これらのモデルは不正確、不完全、または信頼性の低い方法で動作する場合があることにご注意ください。

たとえば、質問の内容が受け取った回答に正確に反映されていなかったり、一見筋が通っているようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用した課題の検索は、次のようなシナリオではあまり効果的でないことが判明しています。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • プロジェクト、ボード、ユーザーなど、課題以外の Jira エンティティを検索している。
  • 英語以外の言語で検索している。
  • データのグラフ、要約、またはその他の表示を作成するために課題を検索して分析したいと考えている。
  • 現在 JQL で提供されていない機能が検索に必要である(たとえば、「自分がコメントした課題を検索する」などの質問は JQL の機能に変換できない)。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

また、Atlassian Intelligence に質問する内容はできる限り具体的にしてください。検索するフィールドや値を正確に含めます。

Atlassian Intelligence を使用して課題を検索する際のお客様のデータの取り扱いについて Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用して課題を検索する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • 現在取り組んでいるプロジェクトなど、プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム・データや一緒に作業する人など、お客様がアトラシアンの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用して課題を検索する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • 検索結果は、アクセスできる課題とフィールドに基づく(たとえば、特定の Jira プロジェクトにアクセスできない場合、そのプロジェクトの課題とフィールドは検索結果に表示されない)。

データから即座にインサイトを収集

以下の Atlassian Intelligence の機能を選択すると、ユース ケースとデータの使用について把握することができます。

チャート インサイト

チャート インサイトでの Atlassian Intelligence の使用方法 Copy link to heading Copied! 表示
  

Chart insights is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して、製品内の自然言語を分析および生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習したデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

チャート インサイトのユース ケース Copy link to heading Copied! 表示
  

チャート インサイトでは、Atlassian Intelligence を使用して、Atlassian Analytics のあらゆるグラフのデータを簡単に理解できるようにします。そのために、ダッシュボードのタイトル、グラフのタイトル、グラフのデータ (列ヘッダーと行の値を含む) を使用して、グラフとそのデータの自然言語による要約を生成します。また、傾向や異常を特定して、そのグラフに特定のインサイトを提供することも目的としています。

アトラシアンでは、チャート インサイトは次のようなシナリオで最も効果的だと考えています。

  • グラフのデータ行が多い。
  • グラフにダッシュボードのタイトルがある。
  • グラフに列ヘッダーがある。
  • グラフのすべての行と列に値がある。

棒グラフ、折れ線グラフ、および棒線グラフは通常、傾向、日付、その他多数のデータ行が含まれているため、この機能が最も適しています。

チャート インサイトを使用する際の考慮事項 Copy link to heading Copied! 表示
  

チャート インサイト強化のために使用されているモデルは、その構造上、不正確だったり、不完全だったり、信頼できない動作をしたりする場合があることを念頭に置くことが重要です。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

チャート インサイトは、次のようなシナリオではあまり効果的でないことが判明しています。

  • グラフのデータ行が 1 行またはわずか数行。
  • グラフが単一値タイプ。
  • グラフにタイトル、軸ラベル、列ヘッダーがない。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • グラフに表示されている特定のデータについて、詳細情報を持っている可能性のある他のユーザーに、インサイトの正確性を再確認します。
  • Atlassian Intelligence は、回答時にダッシュボード全体ではなく、単一のグラフのコンテキストのみを使用することを念頭に置いてください。
各自のデータとチャート インサイト Copy link to heading Copied! 表示
  

チャート インサイトのデータの扱いについて、さまざまな疑問が生じることでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • グラフ内のデータなど、プロンプトに関連するインスタンスのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

データについては、チャート インサイトでは次の指標が適用されます。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能では、お客様がアクセスでき、インサイトを要求したダッシュボードからの情報のみが使用されます。

Jira Service Management でリクエスト・タイプを提案する

Jira Service Management での Atlassian Intelligence を使用したリクエスト・タイプの提案方法 Copy link to heading Copied! 表示
  

Suggest request types using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models.

Atlassian Intelligence はこれらのモデルを使用して自然言語入力を分析し、Jira Service Management 内でリクエスト・タイプの名前と説明に関する推奨事項を生成します。

これらのモデルは、入力に基づいて回答を生成しますが、その本質は確率論に基づいています。つまり、学習させたデータに基づいて、次にくる可能性が最も高い単語やテキストを予測して回答が生成されます。

Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series.

Jira Service Management でのリクエスト タイプ提案のユースケース Copy link to heading Copied! 表示
  

Atlassian Intelligence からの候補を表示することで、プロジェクト用にどのようなリクエスト・タイプを作成する必要があるかを考える時間を削減できます。自分の作業とチームが通常管理しているものを簡単に説明するだけで、どのようなタイプのリクエストを作成できるかがわかります。Atlassian Intelligence によって生成された提案の 1 つを選択して、リクエスト・タイプを作成します。Atlassian Intelligence を使用してリクエスト・タイプを提案する方法の詳細をご覧ください

アトラシアンでは、Atlassian Intelligence を使用したリクエスト・タイプの提案は、次のようなシナリオで最も効果的だと考えています。

  • 既存のリクエスト・タイプのテンプレートでは対応できない、非常に特殊なユース・ケースがある。
  • 非常に大まかな要件があり、いくつかのアイデアを探している。
  • 広く話されている言語(英語やスペイン語など)を使用している。
Atlassian Intelligence を使用してリクエスト・タイプを提案する際の考慮事項 Copy link to heading Copied! 表示
  

Atlassian Intelligence を使用してリクエスト・タイプを提案するために使用されるモデルの動作方法により、これらのモデルは不正確、不完全、または信頼性の低い方法で動作する場合があることに留意することが重要です。

たとえば、受け取った回答には基になっている内容が正確に反映されていなかったり、合理的なようでも虚偽または不完全な内容が含まれていたりする可能性があります。

Atlassian Intelligence を使用したリクエスト・タイプの提案は、次のようなシナリオではあまり効果的でないことが判明しました。

  • 人、場所、事実に関する最新かつ正確な情報が必要である。
  • この機能が、リクエストに正しく回答するためにアクセスする必要のある情報がすぐに利用できない場合(インスタンスに含まれていない場合など)。
  • あいまいすぎるか、サービス管理とは無関係なプロンプトを提供している。
  • 広く話されている言語を使っていない。

このことから、Atlassian Intelligence を使用する状況をご検討いただき、受け取った回答の質を確認した上で、他の人と共有することをお勧めします。

こちらもぜひご検討ください。

  • Atlassian Intelligence に質問する内容をできるだけ具体的にする。
Atlassian Intelligence を使用してリクエスト・タイプを提案する際のお客様のデータの取り扱いについて Copy link to heading Copied! 表示
  

リクエストタイプの提案に Atlassian Intelligence を使用する際にお客様のデータがどのように使用されるかについて疑問をお持ちのことでしょう。このセクションでは、FAQ ページで提供されている情報を補足します。

私たちは以下を処理します。

  • お客様のプロンプト (入力) と回答 (出力)。
  • プロンプトに関連するインスタンスからのコンテキスト。
  • クリックストリーム データや一緒に作業する人など、お客様が私たちの機能をどのように利用したかに関するデータ。
  • お客様が提供することを選択した、この機能についてのフィードバック(フィードバックの一部として共有することを選択したプロンプトや回答を含む)。

Atlassian Intelligence を使用してリクエスト・タイプを提案する際には、お客様のデータについて次のような対策が適用されます。

  • プロンプト(入力)と回答(出力):
    • 他のお客様は利用できません
    • Are not sent to any third party LLM provider other than OpenAI, Google, or Anthropic on AWS Bedrock.

    • Are not stored by any LLM provider.
    • Are not used to improve LLM models.
    • ご自身のエクスペリエンスのためにのみ利用されます。
  • All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request.
  • この機能にはプロンプトの情報のみが使用されるため、Jira のすべての権限が尊重されます。

参考文献

専用のステータス ページで、アトラシアン製品に関するリアルタイムのステータスの更新をご確認いただけます。

Atlassian Intelligence について詳しく知る

アトラシアンによる顧客データの管理方法を把握できます。

Atlassian Rovo の詳細を見る