Objective
To examine the impact of different bivalent oral poliovirus vaccine (bOPV) supplemental immunization activity (SIA) strategies on population immunity to serotype 1 and 3 poliovirus transmission and circulating vaccine-derived poliovirus (cVDPV) risks before and after globally-coordinated cessation of serotype 1 and 3 oral poliovirus vaccine (OPV13 cessation).
Methods
We adapt mathematical models that previously informed vaccine choices ahead of the trivalent oral poliovirus vaccine to bOPV switch to estimate the population immunity to serotype 1 and 3 poliovirus transmission needed at the time of OPV13 cessation to prevent subsequent cVDPV outbreaks. We then examine the impact of different frequencies of SIAs using bOPV in high risk populations on population immunity to serotype 1 and 3 transmission, on the risk of serotype 1 and 3 cVDPV outbreaks, and on the vulnerability to any imported bOPV-related polioviruses.
Results
Maintaining high population immunity to serotype 1 and 3 transmission using bOPV SIAs significantly reduces 1) the risk of outbreaks due to imported serotype 1 and 3 viruses, 2) the emergence of indigenous cVDPVs before or after OPV13 cessation, and 3) the vulnerability to bOPV-related polioviruses in the event of non-synchronous OPV13 cessation or inadvertent bOPV use after OPV13 cessation.
Conclusion
Although some reduction in global SIA frequency can safely occur, countries with suboptimal routine immunization coverage should each continue to conduct at least one annual SIA with bOPV, preferably more, until global OPV13 cessation. Preventing cVDPV risks after OPV13 cessation requires investments in bOPV SIAs now through the time of OPV13 cessation.