Skip to content

⚡️Lightning fast in-memory VectorDB written in rust🦀

Notifications You must be signed in to change notification settings

KevKibe/memvectordb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MemVectorDB

An fast in-memory VectorDB in rust.

⚡️ Features

  • Fast: MemVectorDB stores vectors in-memory, ensuring fast insertion and retrieval operations.
  • Vertical Scalability: With vectors stored in-memory, MemVectorDB can scale vertically based on available system resources.
  • Metadata Support: Supports metadata storage, beneficial for RAG (Retrieval Augmented Generation) applications and pipelines.
  • Option for Persistence: Supports full restoration of data from logs.
  • Open Source: MIT Licensed, free forever.

🚀 Usage

1. Clone the repository:

git clone https://github.com/KevKibe/memvectordb.git

2. Build dependencies:

make build

3. Start the DB.

make run

4. Restore the DB from logs.

make run-restore

🐳 Using Docker

1. Pull the Docker image:

  • On x86_64 (Intel/AMD) systems:
docker pull kevkibe/memvectordb:v2.1.0
  • On ARM-based systems (e.g., M1, M2, M3):
docker pull --platform linux/amd64 kevkibe/memvectordb:v2.1.0

2. Run the Docker container:

  • On x86_64 (Intel/AMD) systems:
docker run -it --rm \
    -p 8000:8000 \
    -v /var/memvectordb:/memvectordb \
    kevkibe/memvectordb:v2.1.0
  • On ARM-based systems (e.g., M1, M2, M3):
docker run -it --rm \
    --platform linux/amd64 \
    -p 8000:8000 \
    -v /var/memvectordb:/memvectordb \
    kevkibe/memvectordb:v2.1.0

3. Run the Docker container with DB restoration:

  • On x86_64 (Intel/AMD) systems:
docker run -it --rm \
    -p 8000:8000 \
    -v /var/memvectordb:/memvectordb \
    -e RESTORE_DB=true \
    kevkibe/memvectordb:v2.1.0
  • On ARM-based systems (e.g., M1, M2, M3):
docker run -it --rm \
    --platform linux/amd64 \
    -p 8000:8000 \
    -v /var/memvectordb:/memvectordb \
    -e RESTORE_DB=true \
    kevkibe/memvectordb:v2.1.0

4. DB runs on http://localhost:8000

MemVectorDB Python client: Docs

Load Tests

  • All tests done with 100000 requests on a Macbook Air M1.

POST

Summary:
  Success rate: 100.00%
  Total:        1.9317 secs
  Slowest:      0.0363 secs
  Fastest:      0.0000 secs
  Average:      0.0010 secs
  Requests/sec: 51766.9796

  Total data:   5.15 MiB
  Size/request: 54 B
  Size/sec:     2.67 MiB

GET

Summary:
  Success rate: 100.00%
  Total:        1.0847 secs
  Slowest:      0.0081 secs
  Fastest:      0.0000 secs
  Average:      0.0005 secs
  Requests/sec: 92191.6443

  Total data:   4.58 MiB
  Size/request: 48 B
  Size/sec:     4.22 MiB

DELETE

Summary:
  Success rate: 100.00%
  Total:        1.0714 secs
  Slowest:      0.0168 secs
  Fastest:      0.0000 secs
  Average:      0.0005 secs
  Requests/sec: 93339.6446

  Total data:   5.05 MiB
  Size/request: 52 B
  Size/sec:     4.72 MiB

PUT

Summary:
  Success rate: 100.00%
  Total:        2.7216 secs
  Slowest:      0.0395 secs
  Fastest:      0.0001 secs
  Average:      0.0014 secs
  Requests/sec: 36743.3094

  Total data:   7.06 MiB
  Size/request: 74 B
  Size/sec:     2.59 MiB