Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov;16(3):393-401.
doi: 10.1046/j.1365-313x.1998.00304.x.

A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes

Affiliations
Free article

A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes

B Kost et al. Plant J. 1998 Nov.
Free article

Abstract

The C-terminus of mouse talin (amino acids 2345-2541) is responsible for all of the protein's f-actin binding capacity. Unlike full-length talin, the C-terminal f-actin binding domain is unable to nucleate actin polymerization. We have found that transient and stable expression of the talin actin-binding domain fused to the C-terminus of the green fluorescent protein (GFP-mTn) can visualize the actin cytoskeleton in different types of living plant cells without affecting cell morphology or function. Transiently expressed GFP-mTn co-localized with rhodamine-phalloidin in permeabilized tobacco BY-2 suspension cells, showing that the fusion protein can specifically label the plant actin cytoskeleton. Constitutive expression of GFP-mTn in transgenic Arabidopsis thaliana plants visualized actin filaments in all examined tissues with no apparent effects on plant morphology or development at any stage during the life cycle. This demonstrates that in a number of different cell types GFP-mTn can serve as a non-invasive marker for the actin cytoskeleton. Confocal imaging of GFP-mTn labeled actin filaments was employed to reveal novel information on the in vivo organization of the actin cytoskeleton in transiently transformed, normally elongating tobacco pollen tubes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources