Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan 15;274(3):1440-8.
doi: 10.1074/jbc.274.3.1440.

Desensitization of G-protein-coupled receptors. agonist-induced phosphorylation of the chemoattractant receptor cAR1 lowers its intrinsic affinity for cAMP

Affiliations
Free article

Desensitization of G-protein-coupled receptors. agonist-induced phosphorylation of the chemoattractant receptor cAR1 lowers its intrinsic affinity for cAMP

Z Xiao et al. J Biol Chem. .
Free article

Abstract

Agonist-induced phosphorylation of G-protein-coupled receptors has been shown to facilitate the desensitization processes, such as receptor internalization, decreased efficiency of coupling to G-proteins, or decreased ligand affinity. The lowered affinity may be an intrinsic property of the phosphorylated receptor or it may be the result of altered interactions between the modified receptor and downstream components such as G-proteins or arrestins. To address this issue, we purified cAR1, the major chemoattractant receptor of Dictyostelium discoideum by a strategy that is independent of the ligand binding capacity of the receptor. To our knowledge, this represents the first successful purification of a chemoattractant receptor. The hexyl-histidine-tagged receptor was solubilized from a highly enriched plasma membrane preparation and purified by Ni2+-chelating chromatography. The protocol offers a simple way to purify 100-500 micrograms of a G-protein coupled receptor that can be targeted to the plasma membrane of D. discoideum. The Kd value for the purified cAR1 was about 200 nM, consistent with that of receptors that are not coupled to G-proteins in intact cells. In contrast, the affinity of phosphorylated cAR1, purified from desensitized cells, was about three times lower. Treatment of the phosphorylated receptor with protein phosphatases caused dephosphorylation and parallel restoration of higher affinity. We propose that ligand-induced phosphorylation of G-protein-coupled receptors causes a decrease in intrinsic affinity and may be useful in maintaining the receptor's sensitivity at high agonist levels. This affinity decrease may precede other processes such as receptor internalization or uncoupling from G-proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources