Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan 1;93(1):87-95.

Definitive but not primitive hematopoiesis is impaired in jumonji mutant mice

Affiliations
  • PMID: 9864150
Free article

Definitive but not primitive hematopoiesis is impaired in jumonji mutant mice

K Kitajima et al. Blood. .
Free article

Abstract

A novel gene, jumonji was identified by a mouse gene trap strategy. The jumonji gene encodes a protein containing a putative DNA binding domain. The mice homozygous for jumonji gene with a BALB/cA genetic background show hypoplasia of the fetal liver and embryonic lethality, suggesting impaired hematopoiesis. In the peripheral blood of jumonji mutant embryos, the number of fetal liver-derived definitive erythrocytes, but not yolk sac-derived primitive erythrocytes, showed a marked reduction, suggesting that jumonji mutants die of anemia. The defects of definitive erythrocytes in jumonji mutants seemed to be caused by a decrease in the numbers of multiple hematopoietic progenitors including colony-forming unit-spleen (CFU-S) in the fetal liver. However, hematopoietic stem cells (HSCs) in the fetal liver of jumonji mutants could reconstitute the hematopoietic system of lethally irradiated recipients. In the fetal liver, the jumonji gene is expressed in fibroblastic cells and endothelial cells, but not in Lin-/c-Kit+/Sca-1(+) cells known to include HSCs. These results suggest that an environmental defect induce the impaired hematopoiesis in the fetal liver of jumonji mutant embryos.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources