Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Oct 1;54(1):68-78.
doi: 10.1002/(SICI)1097-4547(19981001)54:1<68::AID-JNR8>3.0.CO;2-F.

Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production

Affiliations
Comparative Study

Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production

M E Smith et al. J Neurosci Res. .

Abstract

Certain cytokines are believed to play a key role in the development of autoimmune demyelinating diseases. Little is known, however, about the effects of these cytokines in the regulation of the key event in myelin destruction, the phagocytosis of myelin by phagocytic cells. We investigated the effects of certain cytokines and growth factors on cultured peritoneal macrophages and microglia in respect to their various functions, phagocytosis, secreted proteolytic activity, and oxidative activity. Interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and lipopolysaccharide (LPS), all proinflammatory factors, actually decreased (IFN-gamma and LPS), or had no effect (TNF-alpha) on myelin phagocytosis by macrophages, but substantially increased phagocytic activity by microglia. Surprisingly, interleukins 4 and 10 (IL-4 and IL-10), considered to be downregulating cytokines, increased phagocytic activity by macrophages, while with microglia, IL-4 had no effect, but IL-10 almost doubled myelin phagocytosis. Transforming growth factor-beta (TGF-beta) had no significant effect on either cell. These cytokines did not affect proteolytic secretion in microglia, while IFN-gamma and LPS induced a doubling of the secreted proteases. This proteolytic activity was almost completely suppressed by calpain inhibitors, although some gelatinase appeared to be present. Microglia exerted much more oxidative activity on the membranes than macrophages, and granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin 1beta (IL-1beta) significantly increased microglial oxidative activity. The pattern of responses of macrophages and microglia to the cytokine types indicate that in cytokine-driven autoimmune demyelinating disease, microglia may be the more aggressive cell in causing tissue injury by phagocytosis and oxidative injury, while infiltrating macrophages may produce most of the proteolytic activity thought to contribute to myelin destruction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources