Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep 22;37(38):13239-49.
doi: 10.1021/bi981248s.

The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries

Affiliations

The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries

A A Sauve et al. Biochemistry. .

Abstract

Human recombinant CD38 catalyzes the formation of both cyclic ADP-ribose and ADP-ribose products from NAD+ and hydrolyzes cyclic ADP-ribose to ADP-ribose. The corresponding GDP products are formed from NGD+. The enzyme was characterized by substrate and inhibition kinetics, exchange studies, rapid-quench reactions, and stopped-flow-fluorescence spectroscopy to establish the reaction mechanism and energetics for individual steps. Noncyclizable substrates NMN+ and nicotinamide-7-deaza-hypoxanthine dinucleotide (7-deaza NHD+) were rapidly hydrolyzed by the enzyme. The kcat for NMN+ was 5-fold higher than that of NAD+ and has the greatest reported kcat of any substrate for CD38. 7-deaza-NHD+ was hydrolyzed at approximately one-third the rate of NHD+ but does not form a cyclic product. These results establish that a cyclic intermediate is not required for substrate hydrolysis. The ratio of methanolysis to hydrolysis for cADPR and NAD+ catalyzed by CD38 increases linearly with MeOH concentration. Both reactions produce predominantly the beta-methoxy riboside compound, with a relative nucleophilicity of MeOH to H2O of 11. These results indicate the existence of a stabilized cationic intermediate for all observed chemistries in the active site of CD38. The partitioning of this intermediate between cyclization, hydrolysis, and nicotinamide-exchange unites the mechanisms of CD38 chemistries. Steady-state and pre-steady-state parameters for the partition and exchange mechanisms allowed full characterization of the reaction coordinate. Stopped-flow methods indicate a burst of cGDPR formation followed by the steady-state reaction rate. A lag phase, which was NGD+ concentration dependent, was also observed. The burst size indicates that the dimeric enzyme has a single catalytic site formed by two subunits. Pre-steady-state quench experiments did not detect covalent intermediates. Nicotinamide hydrolysis of NGD+ precedes cyclization and the chemical quench decomposes the enzyme-bound species to a mixture of cyclic and hydrolysis products. The time dependence of this ratio indicated that nicotinamide bond-breakage occurs 4 times faster than the conversion of the intermediate to products. Product release is the overall rate-limiting step for enzyme reaction with NGD+.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources