Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul 1;58(13):2888-94.

p53 genes mutated in the DNA binding site or at a specific COOH-terminal site exert divergent effects on thyroid cell growth and differentiation

Affiliations
  • PMID: 9661907

p53 genes mutated in the DNA binding site or at a specific COOH-terminal site exert divergent effects on thyroid cell growth and differentiation

A Casamassimi et al. Cancer Res. .

Abstract

Expression of mutated versions of the p53 gene deranged the differentiation program of thyroid cells and resulted in deregulated growth. Specifically, p53 mutants in several residues of the DNA-binding region induced thyrotropin (TSH) -independent growth and inhibition of the expression of thyroid-specific genes. The loss of the differentiated phenotype invariably correlated with the blockage of the expression of the genes coding for the thyroid transcriptional factors PAX-8 and TTF2. Conversely, thyroid cells transfected with a p53 gene mutated at codon 392, located outside the DNA-binding region, stimulated the expression of differentiation genes in the absence of the TSH, and induced TSH-independent growth. cAMP intracellular levels were higher in thyroid cells transfected with the p53 gene mutated at the 392 site than in the untransfected thyroid cells, but lower in the cells transfected with the other mutated p53 genes. Fra-1 and c-jun were induced by p53, resulting in increased AP-1 levels. The results of this study suggest that p53 exerts effects on cAMP transduction pathway in thyroid cells, which are exquisitely sensitive to cAMP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources