Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 May-Jun;22(3-4):271-81.
doi: 10.1016/s0141-8130(98)00025-7.

Structural perturbation of alpha-crystallin and its chaperone-like activity

Affiliations
Review

Structural perturbation of alpha-crystallin and its chaperone-like activity

C M Rao et al. Int J Biol Macromol. 1998 May-Jun.

Abstract

alpha-Crystallin is a multimeric lenticular protein that has recently been shown to be expressed in several non-lenticular tissues as well. It is shown to prevent aggregation of non-native proteins as a molecular chaperone. By using a non-thermal aggregation model, we could show that this process is temperature-dependent. We investigated the chaperone-like activity of alpha-crystallin towards photo-induced aggregation of gamma-crystallin, aggregation of insulin and on the refolding induced aggregation of beta- and gamma-crystallins. We observed that alpha-crystallin could prevent photo-aggregation of gamma-crystallin and this chaperone-like activity of alpha-crystallin is enhanced several fold at temperatures above 30 degrees C. This enhancement parallels the exposure of its hydrophobic surfaces as a function of temperature, probed using hydrophobic fluorescent probes such as pyrene and 8-anilinonaphthalene-1-sulfonate. We, therefore, concluded that alpha-crystallin prevents the aggregation of other proteins by providing appropriately placed hydrophobic surfaces; a structural transition above 30 degrees C involving enhanced or re-organized hydrophobic surfaces of alpha-crystallin is important for its chaperone-like activity. We also addressed the issue of conformational aspects of target proteins and found that their aggregation prone molten globule states bind to alpha-crystallin. We trace these developments and discuss some new lines that suggest the role of tertiary structural aspects in the chaperone process.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources