Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun 26;273(26):15971-9.
doi: 10.1074/jbc.273.26.15971.

Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta

Affiliations
Free article

Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta

R Kekuda et al. J Biol Chem. .
Free article

Abstract

We have isolated a cDNA from rat placenta which, when expressed heterologously, mediates the transport of a wide spectrum of organic cations. The cDNA codes for a protein of 551 amino acids containing 12 putative transmembrane domains. Northern blot analysis indicates that this transporter is expressed most abundantly in the placenta and moderately in the intestine, heart, and brain. The expression is comparatively low in the kidney and lung and is undetectable in the liver. This transporter is distinct from the previously cloned organic cation transporters (OCT1, OCT2, NKT, NLT, RST, and OCTN1). When expressed in HeLa cells, the cDNA induces the transport of tetraethylammonium and guanidine. Competition experiments indicate that this transport process recognizes a large number of organic cations, including the neurotoxin 1-methyl-4-phenylpyridinium, as substrates. The cDNA-induced transport is markedly influenced by extracellular pH. However, when expressed in Xenopus laevis oocytes, the cDNA-induced transport is electrogenic, associated with the transfer of positive charge into the oocytes. Under voltage clamp conditions, tetraethylammonium evokes inward currents that are concentration- and potential-dependent. This potential-sensitive organic cation transporter, designated as OCT3, represents a new member of the OCT gene family.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data

LinkOut - more resources